close

Вход

Забыли?

вход по аккаунту

?

Васькаева

код для вставкиСкачать
Бюджетное образовательное учреждение начального профессионального образования республики Калмыкия "Профессиональное училище №4", г. Городовиковск
Интернет - конференция по учебной работе
Педагогические методы и технологии обучения в профессиональном образовании
"Технология УДЕ на уроках математики"
Васькаева Р.В., преподаватель математики
"Укрепление дидактических единиц - это технология обучения, обеспечивающая самовозрастание знаний учащегося благодаря активизации у него подсознательных механизмов переработки информации посредством сближения во времени и пространстве мозга взаимодействующих компонентов доказательной логики и положительных эмоций". /Эрдниев П.М./
В современном российском образовании существует много технологий, направленных на успешное обучение, на то, чтобы обучающийся мог в жизни решать любые задачи и ориентироваться в любой ситуации. Среди таких технологий есть технология УДЕ (укрупнение дидактических единиц), разработанная академиком РАО, заслуженным деятелем науки России и Калмыкии, профессором, доктором педагогических наук Пюрвя Мучкаевичем Эрдниевым. Этот метод находится на стыке наук - математики, физиологии, медицины, философии и филологии и отражает глубинные стороны восприятия учащимися излагаемого преподавателем материала. Технология обучения, основанная на УДЕ, раскрывает и приводит в действие психофизиологические резервы мозга, так как совместное и одновременное изучение родственных разделов, представление информации в образно-наглядной форме, самостоятельное составление упражнений на основе сравнения и обобщения и т.п. открывает доступ к этим резервам, заставляя действовать все механизмы мышления. Являясь интегральной технологией, УДЕ отвечает тенденции современного познания к интеграции и синтезу информации.
Сущностные особенности УДЕ (обращение, деформация, составление упражнений) проходят, усложняясь, сквозной линией через все этапы математического образования. Таким образом, сущность УДЕ сводится к объединению знаний во времени или в пространстве. Элементы знания, распределённые раннее по разным разделам и курсам, объединяются и образуют тем самым целостный сплав структурно-новых знаний. Особенности технологии УДЕ на уроках математики: в качестве основного элемента методической структуры взято понятие "математическое упражнение" в самом широком значении этого слова как элементарная целостность двуединого процесса "учения-обучения". Ключевой элемент технологии УДЕ - это упражнение триада, элементы которой рассматриваются на одном занятии: исходная задача, её обращение, обобщение. В работе над математическим упражнением отчетливо выделяются четыре последовательных и взаимосвязанных этапа: составление математического упражнения, выполнение упражнения, проверка ответа (контроль), переход к родственному, более сложному упражнению. Эти упражнения называются укрупненными упражнениями. Основной формой упражнения становится многокомпонентное задание. Которое образовано из нескольких логически разнородных, но психологически состыкованных в некоторую целостность частей: а) решение "готовой" задачи; б) составление обратной и её решение; г) составление аналогичной задачи; д) составление задачи по неким элементам, общим с исходной задачей; е) составление более сложной обобщенной по тем либо другим характеристикам исходной задачи. Дидактической единицей может выступать совокупность вопросов или группы задач, отрабатываемых, как правило, в пределах одного урока. П.М. Эрдниев указал четыре основных способа УДЕ:
1. Совместное изучение связанных вопросов программы
2. Метод деформированных упражнений, в которых искомым является не один, а несколько элементов
3. Решение прямой задачи и преобразование её в обратные или аналогичные
4. Усиление удельного веса творческих заданий по самостоятельному конструированию учащимися задач, примеров
Первый способ УДЕ - совместное и одновременное изучение взаимно связанных вопросов программы. Например, я применяю данный способ при изучении следующих тем: логарифмическая и показательная функция, производная и первообразная, тригонометрические функции. Такое совместное изучение тем дает экономию времени на изучение материала, освобождает тем самым время на отработку навыков применения знаний, а также учащиеся учатся сравнивать и анализировать.
Второй способ УДЕ - метод деформированных упражнений является необходимым атрибутом уроков математики, которые основываются на логических операциях, переборе возможных решений, сравнение чисел, прикидки и контроля ответа.
Третий способ УДЕ - решение прямой задачи и преобразование её в обратные или аналогичные. Данный способ активно применяется при необходимости акцента на переходы от одного процесса к другому или, что то же самое, целесообразность сознательного сравнения этих во многом противоположных процессов. Приведу пример:
Решение уравнения
(уравнение, корни)Составление уравнения
(корни, уравнение)Требуется решить логарифмическое уравнение: =2. (А)
Уравнение имеет смысл при х>0, х≠1 =2 2х+3=х2
х2 -2х-3=0
х1=3; х2= - Проверка: ? 2
? 2
? 2
? 2
2=2
х2 = - не удовлетворяет уравнению (при этом значении переменной знаменатель не существует). Уравнение имеет один корень: х=3.Составить уравнение, имеющее корень х=3. Внимательный анализ хода решения уравнения (А) и проверки корня в предыдущем задании позволяет осуществить противоположный переход "тождество - уравнение", например:
=2
=2 Введем в числитель и знаменатель число 3 (значение будущей неизвестной х):
=2 Наконец, составим искомое уравнение, заменив 3 буквой х:
=2
Решая составленное уравнение (Б), ученик получит намеченный заранее корень х=3.
Составление обратных задач является главным средством наращивания знаний. Не погоня за множеством комбинаций, а использование по возможности всех связей только между отдельными величинами - вот что главное в методе укрупнения.
А также при формировании новых знаний и повторении использую матричное или блочное представление материала. При составлении блоков большую роль играют три принципа: системность, краткость и простота. Системность - расположение материала не по курсам, а по разделам. Краткость - изложение программного материала в максимально концентрированном виде. Простота - блоки должны быть не перегруженными, легкими для восприятия и воспроизведения. Если традиционная программа предлагает последовательное изучение членов предложения, то при блочной подаче учащийся имеет возможность сравнивать, анализировать, находить общее и различное. При такой подаче учащиеся легче воспринимают и быстрее усваивают материал, он более прочно закрепляется в памяти. Пример использования таблицы при обобщении знаний по теме "Введение декартовых координат в пространстве". Учащиеся заполняют таблицу, где в левой части отмечены содержательные линии, по которым проводится сопоставительный анализ.
Содержательные линииНа плоскостиВ пространствеКоличество осей23Название осейOX-ось абсцисс
OY-ось ординатOX-ось абсцисс
OY-ось ординат
OZ-ось аппликатРасположение осей относительно друг другаOX ┴ OYOX ┴ OY ┴OZНачало координатт.О (0;0)т.О (0;0;0)Формула расстояния между двумя точкамиd=√(х2-х1)2+(у2-у1)2d=√(х2-х1)2+(у2-у1)2+(z2-z1)2Формулы координаты середины отрезкахс=; ус=; xc=; ус=; zc=. Таким образом, применяя элементы УДЕ на уроках математики, я убедилась, что эта технология обладает качествами системности и целостности, устойчивостью к сохранению во времени и быстрым проявлением в памяти. Запоминание крупного блока знаний совершается в пределах фазы оперативной памяти (20-30 минут), т.е. в течение урока. Эти ее качества необходимы при изучении математики. УДЕ - это специфическое отображение в дидактике объективной тенденции всей современной науки и интеграции знаний, ведущей к углублению обобщения в познавательных процессах. Способствует освоению учащимися главные, существенные понятия, связи, возрастающего объема информации за меньшее, чем прежде, время и при резком снижении нагрузки на учащегося. УДЕ развивает логическое мышление, учит приёмам свертывание и развертывания информации, помогает безошибочно вычленять главное.
Литература:
1. П.М. Эрдниев, Б.П. Эрдниев /Обучение математике в школе/М.: Просвещение, 1996.
2. П.М. Эрдниев /Обучение математике методом укрупнения дидактических единиц/Элиста, 1979
3. Л.Д. Мунчинова /Одновременное изучение противоположных и сходных физических явлений (процессов)/учёба 1,97 с-20
Автор
profobrazovanie
Документ
Категория
Без категории
Просмотров
160
Размер файла
284 Кб
Теги
васькаева
1/--страниц
Пожаловаться на содержимое документа