close

Вход

Забыли?

вход по аккаунту

?

Расслоения неевклидова 3-пространства гиперболического типа порожденные алгеброй антикватернионов. I

код для вставкиСкачать
!"#!$
%'&)(+*-,/.102435*
679817/:<;)=?>@)ACB->@DAE74F/B-G1:47/BIH'@-JK:47
LNMEMDO
PRQTSVU'WDXZY[WD\
]_^a`+`cbed+fhgjilkmgjfnfhoqprbli#stdoq^vuwCxj]qda`cyz]{^ge`cycoq^
|}i~xjf]c€#d+b~i~rfz`cpjd|‚dƒyci~xj^l„…x†d+]+dˆ‡ s‰fhg~gjŠ‹f
^abl|Œfh€ˆ]+d+Ž^g~yzi~pjoq^yfn]zg~ied+gedoa
‘“’•”c’–˜—š™R›$œ"ž
Ÿ ¡9¢N£9¤¥š¦
Œ
81J<F/B§H97/¨ª©D7/@D:<G17/@)«9¬DH9­R®#7G1¯C°K8±@²H9H9­R®³GhH97/>$7#´/µ9;DG-ACµ9@)H/G1AE¯+¶ …¶;Eµ<·'B1Ha´9;EG1¯E°4AD79«
H/B1G-:<;D«9¬E:<;nG1¯C;)79®µ/@)©E;DAD¶Hˆ8±@²79H/AEB-µ9B-G1;D¯N@²«/G¸°c¹-AD7/>:4«/@DG-G1;E>j´9µ9;DG-ACµ/@²H/G-AD¯G‚AC;)F/:K7c8-µ4B1H979°
´/µK7/>"B1H9B1H979°º@)«9»-B-©Eµ“:K;D>$´9«/B1:KG§H9­R®¼/·/¯E;D½9H4­R®º7¾·9J<@)«4¬EH9­R®‚F47/G-B§«š¼7/>"B-°‚´/µ4B-¿·/BÀ¯CG1B1»±;{¯D¯E74·9J
´/µK79«9;)¿B1H47/°Á:Œ«974H/B1½4F'@DAE;D½Á»±B-;D>"B-ACµ4747ŒH/B-B1¯E:4«474·';)¯E­R®Á´9µ9;EG1ACµ/@²H/G-AE¯}ÂÃG->R¶Ä¼<H'@²´/µ479>"B-µÅ¼TÆ Ç±È[ɧ¶48
¹-AE74®}B1»±;…µ9@D©E;DA…¯À·@²«9¬DH/B1½9ÊB1>7{µ/@D8§¯E79«/@DG1¬Œ;D©EË@D°{ACB-;EµK7/°Á´/µ4;EG-AEµ/@)H9G-AE¯H'@²·‚@)«4»±B-©Eµ9@D>$7ÌÆ Í)Èζ
"G1«97
H9B-:<;EAC;Dµ/@)°@)«9»-B-©Eµ9@K¼AC;ºB-B{´9µ9;EB1:9AE74¯E7/8-@)Ð979°´/µK79¯E;±·97/Aº:h´/µ4;EB-:4AE79¯DH/;E>$Jn´9µ9;)=
G-ACµ9@)H9G-AE¯EJNA¼$H/Ï @²·/B1«/B1H4H/;D>"JH/B-:<;EAE;Eµ9;)½cG1ACµ4JK:9ADJ4µ4;D½Å¶$$@D:Z¼$´/µK7z´9µ9;EB1:9AE74¯E7/8-@)Ð9747z@)«9»-B-©EµK­e:4¯N@²=
ACB-µKH979;DH/;)¯Á´/;)«9J<F979>cͲ=?>"B-µKH/;DB¹1«4«974´/AE74F/B-G-:<;DBÑ´/µ4;EG-ACµ9@)H9G-AE¯C;K¶/;-·';D©DH4­!>ˆ¿BÀ;E©Dµ/@)8-;E>+@²«9»±B-©)=
µ/@T@)H9AE7/:K¯N@DAEB-µ4H47/;DH9;D¯};D´9µ9B§·/B1«/°KB-ATÍ)=•>"B-µ4H9;EB»-79´9B-µ9©D;D«974F/B-G1:K;DB´9µ9;EG1ACµ/@²H/G-AE¯E;TG«974H/B1½4F'@DAD­!>
@D©DG-;D«9¨ÑAC;D>R¶$¹-AC;)½hG1¯C°K817n´9µ9B§·/G-AD@)¯E«9°4¨A}74H/ACB1µ9B-G…µ9@DG-G§«/;EB§H97/°¾H/B-B§¯C:4«474·/;D¯E­R®¾´/µ4;EG-AEµ/@)H9G-AE¯4¼
¯C;D81H979:K@D¨ÑË79BG´/;D>";EˬC¨Ò´/;-·@²«9»±B1©EµhÂõ/@)G-G1«9;EB1H47/B¹1«9«479´9AE79F9B-G-:<;D»±;ÀÍ)=δ/µ4;EG-AEµ/@)H9G-AE¯C@K¼K´/;Eµ4;²¿=
·'B§H9H/;DB@²«9»±B-©Dµ9;)½_:4¯C@DACB1µ4H979;DH9;D¯9¼<©)­R«/;µ/@DG1G->";EACµ4B1H/;¯ÓÆ Ô)ÈÕɧ¶K@):}7981¯CB-G1AEH/;†Æ Ö²Èμ4@)«4»±B-©Eµ9@À@²H/AE74=
:4¯C@DACB1µ4H979;DH9;D¯…G1;±·/B-µ<¿79AÀ¯CG-BAEµ47TAE79´/@´9;±·'@)«4»±B-©EµT¯CAC;Dµ9;D»-;À´/;DµK°N·':K@<×<:K;D>$´9«/B1:KG§H9­R®¼C·/¯E;D½9H4­R®
7T·9J<@)«4¬EH4­R®ÁF97/G1B1«š¶4c¹-AE;D½_G1AE@)AE¬CBµ9@DG-G1>@)ACµ474¯N@)B-ACG¸°Tµ9@DG-G1«9;EB1H47/BͲ=•>B1µ4H/;)»±;»179´/B1µ9©E;)«974F/B-G-:<;)=
»±;Ñ´9µ9;DG-ACµ/@²H/G-AD¯N@K¼²´9;Eµ9;²¿·'B1H4H/;EB´9;-·@)«4»±B-©Dµ9;D½À:<;E>$´9«9B-:<G1H9­R®F47/G-B1«Å¶);EG-ACµ4;EB1H/@IH9;Eµ9>@²«97/8-@)Ð979°
µ/@)G-G1«/@)79¯C@D¨ËB§½À«974H/B1½4H/;)½:K;)H9»±µKJK¹1H9Ð47977¯E­!°KG1H9B1H»-B-;E>"B-ACµK79F9B-G-:474½G->$­!G1«´/;D«4J<F/B1H4H9­R®;D©EØ=
B-:4AC;D¯4¶
šÙ ÚÜÛÝÞ4ÞNßRàÅá9âãášäRåàZæà/çzèRá9ââàšánåà4èRÝ/ßéKá/êÅæàÅëì"àÅíÀåßá9ì"ÞKâî_ï³ðãÞKá4ß
ñòÅó)ô)õ4öZ÷
÷Køù<úûZü4÷<ùKô)öøúZýKøý4ücþ \Nÿ ù<ý X ô)öøZ÷c÷
²ýúZ÷Kù<úüKøÅ÷øôöúü4ýÅú ÷
÷NòÅó)ô)õ4öZ
÷ Tô ÅúZAøú ô Åû/ý4ù<ýKöZ÷ Åý ²û'÷Kô)
ù ²ý ö TôDøú
ô lúøô)ü ö!ý "Åô)øZøýK#
ô )û'÷ →¯
òöøZýK$
ô öý4ú %)ü4ô ÅôDøúô 1
W (
1 ( , & ) = ( & ¯ + & ¯ ).
'
2
²ùKö/ûù/ö X* ôDöøýKóDý#)ô)üÅýKôDüKû'òZúÅýKü9÷$öý²ù<öZ÷Kø²ùKü4÷ 4 Y+ òZô ) øý{ýöZôÅô)òô)ù{ü
'ýKõ4öZ÷<ùKú $01. −1 . . 2 Y ) øZúý4EõKöZ2 ÷%
32ù
ô)øZù†÷NòZóDô)õKö$Z òAnû9ý4ù<ýKö-,/. 2 . .
¯
=
6
0
=
ó)ö5Á
4 ú
Y76 ôDýKõ4öZ÷<ù<ú ô òZô ôDøùlýKõ4öZ÷%32ù_ú%)ý4ù<ö=ý¯ø/|8n| û/ýKø9öý)ù<öZ÷Kø G
⊂
A
² ùKü4÷0 2 Y
Dû/ý 'òZôDû²øôRô<Åúøúqû9ý4ù<ýKöZýKó)ý
: õKôDö=ô 0 ü ýKöZù<ýKøý4ö úöý4ü4÷Køø8…õ4÷%)ú Ù
{ , ; i}
øý!{
÷
2 ù=² ý4Aó-òÅ÷) øýTùN÷Kõ<òZúZ ô
;
;
1
;Ù1
−;
−;
;
2
;Ù3
;
;
−;
3
2
;3
;1 >Ù
2
1 ?@ABDC<EAGF3HC
IKJML!BNEO@=PQMBMRLTSVUWQMIYXIL
ZN[@9C<IVP\[
I$@=PQMBMRL!]^[!_<@VC<BML!`!E!I`I_$E"@V`!C<E![_<@VC
BML!`E!I`!I_
EABMabC8`!BM_]L!IdceNBM`!`!IBeJD[@=P!ZL!`!IBfX!L!IE!gM_BNBM`!E!BFJMIIC
_BMC<JMC<_BD``!I-BM_[PEN!I_IhEKX!JMBM_VNIBM_[PENI_I!i
2
3
1
W
¶ …¶rIÑ
ù<ýˆü=ûúa÷<øù<úZûü4÷Kù<ô)öøZúýKø ) ù
2 š ÷cüKú3Å øZý
= x0 + x1 ;
%D÷úD÷<ù
_ü_üKú3šô
= z1 + z2 ; 2 , zk ∈ R(e3 ),
ó=Å ôÁû/ý òZô)û² øôZú± òÅ÷
z1 = x 0 + x 3 ; 3 ,
ý4ó=š÷T øý!TôDøúôÁ÷<øZù<úûü9÷<ù<ôDöøúý4øýKü jú
&
²ýöTôDøúôú )ô ô)ù}üKú3 2
&
1
+ x2 ;
2
3
ý!‚øý
z2 = x 2 + x 1 ; 3 .
= w1 + w2 ;
2
ýöZôÅô)òô)ù=…ýKö EòZý
= (z1 w1 + z2 w̄2 ) + (z1 w2 + z2 w̄1 ); 2 ,
¯ = z̄1 − z2 ;
+ x3 ;
(
'
9÷ ²û'÷Nòöø8‚ûü9÷!ÅöZ÷Kù}÷<øZù<úûü9÷<ù<ôDöøúý4øZ÷ÁöZ÷KüKô)ø
2
= (x0 )2 − (x1 )2 − (x2 )2 + (x3 )2 = z1 z̄1 − z2 z̄2 .
û ýKû'÷ %D÷<øZý}üÌþ UCÿ /÷<òZó)ôDõKöZ÷T÷<øùKúûü4÷Kù<ô)öZøúýKøZýKüT²ýÅôDö‚úù ! ô)öøôYZýš÷NòZóDô)õ4ö
S ÷<5
ü)ô<,nù<öô
,nùKúýKü70Åû/ý 'òZô)û)ø-,GÅü4ýø-,nú79÷Nò4ø-,Zú²ô)ò Y : ù<ý Z÷KöZ÷<óDöZ÷…ô öZ÷ ý4ù<öú ý ÷NòZóDô)õKöºû/ý 'òZôDû²ø-,ú²ô)ò
Y ) øZ÷_ýöô<Åô²òôDù=9öÅ÷<üKøZô øúô D÷ ø!ý {ô )ù<üKýôDô!øô)ø DòÅô)ü -, òÅô ô)øZCù<ýK=ü R(; 3ô )²
ù hý Åó)ö Z÷ 4ÁúÁó)ö 3 Y
÷ zýK2ùKö=ú 0 Á÷<ûùKýKö öý ²ù<öZ÷Kø ²ùKüKY
ý öZ÷<ü -," <ô ‚ø -,CT◦ûòÅ÷ ²ýKü
ùG
Y
±òZú òZô ôDø
G/C
~ú
öúøZ÷ ZòZ
ô {÷<ù‚ý šøý <ô ‚øý “û'òš÷ ùKý −1
ZýKùKû ◦šT
÷ ý<7ò Zú Åü4÷
∈ C◦
&
²òZýKü4& ú z1 w2 − z2 w1 = 0,
z1 w̄1 − z2 w̄2 6= 0.
)ô öZüKýKôIú%øZú,9š÷<ôDù
Cú}ú ô)ô û/÷KøýKøZúô)û32 öZýKô)ûú2
ü_û/ý 'òZôDû²ø32 öý4ô)zû1ùK:úzüK2ø=
32 w1 ö: w 232#ýöô<Åô²òô 32…ýKö EZò ý
π( ) = (z1 : z2 ).
π : G → CP 1
'
(
: ù<ýKöZýKô-² òZýKü4úôIý%)øZ÷Z÷Kô)ù!ù<ý…ýKõ4öZ÷%Dý öZýKô)ûúú ü<òôDù= ý ø ý!Tô²ù<ü4ý
1
ô)ù<⊂
ü4÷ CP
Zòû/ý4ù<ýKöý4ó)ý
Y ô D÷ ú)û'ò2Å÷2ù=ù<ýûZú ý øý!{M
C⊂
² ý4ýKù<ü4ô)zù1)z̄ù<1ü−
32zT2z̄ú2ô…6=ú%)0ý4ù<öýøý ¾û94ý ø
Y
1
⊂ CP
á/àZæá/íÀÝÒÙÅÚ "!
#$#&%('*)$+,)
)#.-0/+)$#1$23
+'*)0'546
)7,+)$+,)871*9*:;-<(,(1*,=
π:G→M
!$%(/+>?:A@&%B!
1*+>?:0<!
##&%(')$+,C(D
!ý _øZýÁöôD÷<òZú%)ý4ü4÷Kù
û'÷KûTý4ù E àÅì"G
Ý F4GÝ Há4Jß IšÞ HGKšàÚ S ý òZô)û ²øZýKô øýKóDýKý4õKöZ÷%)úô
ûöùKýKô‚üKô}ô²ù<ü4ô)øøý4ôTý øý4ó)ýKý4õKöZ÷%)úô{û/ýKø…ý4ö øý M'òZý²û/ý)ù<ú ú'òÅú ! $…ô)ö ( õ4ô
%
ýKûZö _øZý ²ùKú~<ô Åúøú øýKóDýaöZ÷!Åú)÷ YL ý ù<ý )ý²ùKýKúù³ú% Åü, ' ²ü%Dø-,rû/ý Zý M
øôDøù 0
÷ ý4ù<öú ²øZ÷Å÷NòÅ÷#ýKóDöZ÷<øúô)øúZôzöZ÷
²òZýKôDøú
øZ÷³ý4õ<òÅ÷²ù
M = U ∪ V.
ùKý !ý ‚øý‚üKü4ô ²ùKúøZô)ý Åøý4öýπÅø32†û/ýKý4öÅú Y ÷Kûhû'÷<ûnüºøô U
øZ÷Kù: z1 z̄1 − z2 z̄2 >ú 0 ²òZô Åý4ü4÷Kù<ô²ò 4øý ú z1 ôD6=ô 0 ûö /ó_ô šúøú øZýKó)ýhöÅ!÷ Åú )÷
Y )
ù M
z z̄$öZ<
1 ý4ù<öú
÷<øZù<úûzü9÷<=ù<ôDzö2ø/z
úý41ø ö
ô
²
N
ù
<
÷
4
ü
ú
¾
ü
D
ô
)
ó

ý
“
ü
4
ü
ú
3
Å
ô
÷
Y
N
−1
õKúZô)ûù<úZüKøý4ô}ýKùKýKõKöÅ÷ T∈ôDπøúô (U ) −1
O
ý …ý4ö =EòZzô 1 (1 +
z; 2)
Y ) õKöZ÷Kù ø7ý Zò nò 2õKý4ó)ý
ú ϕ : π ý (U
ö)ô š→ô²òZUôDø×÷<øCù<◦úZûü4÷Kù<ô)öøZúýKø ϕ(−1 ) = (z, z1)
Y
z
∈
U
a
∈
C
ý Åú P…◦ ô)ý ý4ö …ú % Eý ö<ô Åô²ò 2Q}ú {ù<ϕöúZüKúZ(z,÷<òZa)ú %D=
÷ a(1
ú 2aöZ+÷ z
±; òÅ2ý) 6 ô)ùKö Åøý…üK3ú šô)
ù 7*ù<ý ù<K
ô)øZú ý öZú ô)øúZ
ù Y R ùKýKõ Åý4û'÷ %D÷K
ù _ù<öúü4úZ÷Nò Køý ²
ù ºöÅ÷ ²òZýKôDøú π| Åý ²ùN÷<ù<ý øO
(
V
úøü4ô)ö π|
)ú U2
Y
U → V : w = 1/z
ý ô öý4ô)û ú ( ú ô)ô)ù ±T
ò Åò _ò 2õ -, S Ýí…á4ðÝ'âãáÙÅÚ : ö
Y ý ù<ý öZ÷ ±òÅýKô)øZúô
!ý ‚øý…öZ÷ .TTúöú
ù Yš' ýÁöZ÷ ±òZý4ô)øú {øô)ø DòÅô)ü -,_÷<øùKúû6=ü4÷K0ù<ô)öZøúýKøZýKü
G →
M
ù<ý jún
õ šô öô ý<òÅ÷Kó²÷<
ù {ü š÷Nò Køô T}ô Y
π : A → CP 1
◦
W
IR³ÑÀ³Í²=•!!
÷ ýKùKöú öý4ô)ûùKúüKú%E÷ú2 ù<ý4ó)ýºöÅ÷
²òZýKôDøú‹þ ÿ Y ÷ ô)ù<ú )øZ÷Z÷<òÅ÷Zù<ý öZý û/ýKù<ý4öZ÷cü=û/ý ²ùN÷<ü4úùhü ²ý4ýKù<ü4ô)ù)ù<üKúZô‚ù<ýû
ô)ûZù<úüKú%D÷Zú
λú:üKøZAýK◦ó)ýY
→öPý3²ù<öÅ÷<ø)ù<ü4÷Nýöô<Åô²òô)ùÀ∈
A
◦öõKýKòZúô²û/ýKô öý²ù<öÅ÷<ø)ù<üKý
Z
ö
K
ý
)
ô
Z
û
<
ù
)
ó
ú
D
ô
3
X
S23
òZúøZ∈
ô PZ÷KùN÷ nûü4÷ Åöúû'÷Tû9ý4ù<ýKöZýKó)ý
X3(
'
Q : (x0 )2 − (x1 )2 − (x2 )2 + (x3 )2 = 0
ý4öý!"š÷<ôDù=“ú%DýKù<öZýø û/ýKø²ý Y
á/àZæá/íÀÝ$Ú
'*7!$%B@ ).4 <!'%B)#.+>?:G,#)&% !$%B@ )$4 <B>
7 )&%G2B).- -<(,1
,!$%(/+'*)O@&%B!
1
+'*)P<!
##&%(')$+,()*<B'*#.-<G!*+(#.-81
!
'+(@<(9*+,, %%(,- ,)$# '*@ ' -0,!D
E
!
+-0,1!*-0) <(+,'+'*1 '
<B).=
# ' P
' 0/ %(,+)$C+'5C
3 S2
àÅì"ÝGF4ÝGHá4ßJIšÞHGKšàÚ S ý 1 /ùN÷<ùKúüKøZ÷ÅúÅ÷<ó)öÅ÷ 1 ÷
A◦
←→
π&
λ
←→ S23
.p
−→
CP 1
öýKôDû úô
ýöô<Åô²òô)ù¾öÅ÷
²òZýKôDøúô ù<ý4ó)ý¾øZô)ô)ü4û'òZú3šýKü4÷ öý²ù<öZ÷Kø p(X)
²ùKü4÷òZúøôøý{
û/ý4øó)=ö (z ø1:úzô2 ) ö -, Y! ²øý7*ù<ý ù<ý…öZ÷±òZý4ô)øúôùN÷<ûTôù<öúü4úZ÷Nò øý Y : ó-òÅ÷KüKøý öZ÷
² òZýKôDøúú
ú ô)ôDù=^K²ù<ö/ûù9öZøZ÷ˆó)ö3Å÷
"û/ýKù<ý4öZ÷ Åô
)ù<ü4ô)ù
π
òZôDü úTdÅ üKúó²÷ ú 0 9
ú'òZúO²ý4ó-òÅ÷)øý ( 0
C◦0
Y ) ÅøÅ÷<û/ýü
' z = az z = az2 ó)ö3ýöZ÷S 23
=a a∈C
ùKýOÅ ô² ù<ü4úô}øZô P…ôDûù<úü4øý‚úú ◦ ôDô)ù 3Åöý R◦ YB ý ù<ý 1 ²ù<1ö9ûZ2ù/öøý
ú)% ý ýKö…øÅ÷z
óDö3 ôÁ
4 úqû/ý ' òZô)û) ø-,
± òÅýKô)øZú ü<ò ô)ù= Á÷<ûùKýKö ó)ö3Å ÷
ú) ô²òhôš
úpøúøZýKó)ý ý7E ò Y7: öô
%E òCNùN◦÷</R
ù<ô9◦ ýKò ú S
z10 = eiϕ z1 ,
z20 = eiϕ z2
ú'òZúnü_üKô}ô²ù<ü4ô)øø-,“ýÅøýKöZýÅø-,ºû/ýKý4öšúøZ÷<ùN÷,
x0 (ϕ) = x0 cos ϕ − x3 sin ϕ,
x1 (ϕ) = x1 cos ϕ + x2 sin ϕ,
U(
x2 (ϕ) = −x1 sin ϕ + x2 cos ϕ, x3 (ϕ) = x0 sin ϕ + x3 cos ϕ.
'
$
"ô ²ù<ô ²ù<ü4ô)øøý
ú Zöô)ý4õKöZ÷%)ýKü9÷<øúšû/ý4ù<ýKöô VýKõ4ý%DøZ÷ú 0
+ ù<^
øZ÷%)ü4÷Kù
%B)1*>"P,! <!*-8!#-0,)#,$P,#$71*,@ !%P, Y ÷K=û¾û'A(ϕ)
÷<ûZöúºA(ϕ)
ùN÷<ûú,O∈dšSüKúó²÷, Zöú5)ý ó-òÅ÷ ²ýKü9÷<øøZýqøý4ö úöý4üKû/ô ( 02 2 ù<ýˆô±òÅú 2
ýKöõ4úùtøZô“ú ô2ùˆù<'ýô)û#øZ÷
=
=
6
0
÷<õ ²ýKò 2ù<ô Kù Y ô Y û9ý4øó)ö ø ú )ý ²ùKýKúùŒú % òZòZú ù<úô)ûú,Oö -, Y ²òZúO{ôO 2 9ù<ý
= ýK0õ4öZ÷
²ý4ýKù<ü4ô)ù )ù<ü 32QT÷ ö ÷ zû/ý4øó)ö ø úú öúZøZ!÷ ZòÅ<ô ‚úùh÷<õ ²ý<ò72ù ü<ò$“ôDó)ýn
%
32Q}
ô Y ÷<ûZú8
ô ö ôýKõKöÅ÷ %
32ùý ÅøýÀú % <W Z÷KöZ÷ ôDù<öú ô ²ûú ,#²ô ô ²ùKüÀý4õKöZ÷ %
32Tú ,
ûü9!÷ ÅöúZûú üKò 2Tú ,= ZöýKý4õKöZ÷ %D÷ ú“ù<ý Zô)ûnýKûö ‚øý ²ù<ú Y
C
/
û
4
ý
ø
…
K
ý
ö
Z
ø
ý
O
'
Z
ò
ý
²
/
û
ý
)
ù
2
ö
4
ý
)
ô
û
Zú 2röZ÷ ²òZýKôDøú _òZýKû'÷<ò Køý
) ù<!ý "Åô ²ù<üKò 1
ü4$ô }ô ²ù<ü4ô)øø -,û/ýKý4ö ÅúøZ÷KùC÷ , Y )
ù ÅøZ÷ öZú ô)ö !ý ‚øý %E÷ 7ú )÷<ù ºü¾CP
Y ý<òZ!ý ‚úü
B
z∈U
ýKò ú z = u + v;
3
u=
x0 x2 + x 1 x3
,
(x0 )2 + (x3 )2
v=
x0 x1 − x 2 x3
.
(x0 )2 + (x3 )2
6 ÷ Åô øZ<ô üKøô5/öZ÷KüKøôDøú ²òZýKôDü Y1: öZ÷ ÷Kù<öúü9÷<ô ýý4õ<òÅ÷²ù<ú
ýKùKûš÷Tý<ò7Zú )ú²ùKô Ošü,ºòZúøZô
ø-,59öÅ÷<üKøZô)øú
ξ( ) = x1 − vx0 − ux3 = 0,
η( ) = x2 − ux0 + vx3 = 0.
z2 − zz1 = 0
'
\(
W<X
ý ý 2eúøZüKô)ö7²úú
÷<øÅ÷NòZý4ó)úø2 )ú²ù<ô w = 1/z
¶ …¶rIÑ
Zý<òZý!‚úü
w = u0 + v 0 ;
÷<öÅ÷ ô)ùKö
ú
ý<ò7Zú øZ÷zýKõKòÅ÷)ù
2
V
ξ 0 ( ) = x0 + v 0 x1 − u0 x2 = 0,
(u, v)
3
²ô ô
)ù<üO²ü%D÷<ø ²ý4ýKù<øZýT}ôDøú ú
(u0 , v 0 )
u0 =
u
,
u2 + v 2
v0 =
(
'
η 0 ( ) = x3 − u0 x1 − v 0 x2 = 0,
−v
.
u2 + v 2
KùKýÁü9)ú'ò ±òÅýKüKú 2 2
ýKõ4ô-)ú²ùKô R ù<ýÁû'÷D ÷<ôDù="²òZýKôDüÀøÅ÷!ºýKûö‚øý²ù
2
S
u +v = 1
²ý4üZ÷š÷2ù Y
6 ô)ùKöÅ øý#ZöýKü4ô)öúùZù<ý ZöúüKô<Åô)øZøôü TTôhZ÷KöZ÷ ôDù<öúZô²ûZúôh/öZ÷KüKøôDøú±òZý4ô)ü
2 ôDøú Z ÷KöZ÷ ôDù<öZ÷K² üKý7 ù=À
û \( ú'òZú ( ü %D÷KüKú)ú ý)ù<úÁýKùhý<òZý!{ô)øú
U' ( ý± òZôú² ûò
'
'
ù<ýûú
Y
z
=
π(
)
öôDýKõKöÅ÷)% ý4ü4÷Køúº
üKúš ÷
÷ ýKùKöú ü
A◦
0
=
.
,
0
. = ¯ ,
.
,
(
'
∈ G.
%)ü4ô)ù<øý þ \Nÿ ó-ò YW5( ùKý ù<ú Zöô)ý4õKöZ÷%)ýKü9÷<øúºýú
ü4÷2ùTý<òÅø32eó)ö3 ýÅý4õKú
Zöú . 2 ' 2
( úc÷<øù<úýÅýKõ4ú öú . 2 2
( ô)öü4ýKóDý¾úü4ù<ýKöZýKó)ý“öýÅý4ü öý | ÷K| øù<>úû0ü9÷<ù<ôDöøúý4øýKüýKùKøý)' úù<ô²òK| ø|ý
| ²û'| ÷Nò<ö0øýKóDý öZýKú%DüKôšô)øú
²' ùKöZ÷<ø|) ù<|ü4÷n
Y ) ù
2 š÷
± òÅô74 ô)ù! ù<ý8…ýKö E ò ( ý öZôÅ ô)ò
2 ù" ý<òÅø3r
2 ó)ö"ÅüKúTô)øZú¾óDúô)öZ(1)
õKý<òÅúô)û/ýKó)ý
öý²ù<öÅ÷<ø)ù<ü4÷ Y ) øZ÷ %D÷<ü4' ú²úZùzý4ù TTô²ùKú Å÷<öZ÷ ô)ù<öý4üˆú )ý)ù<ýKúùcú% X , )ü%)ø-,û/ý b
ú
ý4øô)øù Y ÷ ý4ù<öú ý4ùÅ ô²ò4øý Z öZ÷<üô“úòZô)üô5dÅ ü4úó)ú ýKòZý!‚
úü .
= a1û/+
a'
2òZ; ôD2û

ú
<
÷
Z
ø
<
÷
Z
ò
K
ý
D
ó
ú
ø
ý
ý
Y
š ô. a1 = a 0 + a 3 ; 3 a2 = a 2 + a 1 ; 3
b1 , b2
øô=Pb1ú7+±òÅb÷ 2Y ; 2
S23 á/àZæá/íÀÝÚ L<G!
1
>
=
! <!
)$-L<B,)#9
)O#$71*,(@ ,
0
=
'7@<B99P
,
b0
 b1
B=
 b2
b3

*<B'*#.-<G!*+(#.-81
!
∈G
71*,
B⊂G
b1
b0
b3
b2
b2
−b3
b0
−b1
).+,C
0
=B
A◦
#
'*< )$7)&%G2 !*-<(,().C
−b3
b2 
.
−b1 
b0

1
'
(
+!0#.'$:
<!*+2B)$<!
##&%(')$+,()L, ,+(759,
<(9).- +! 4.!3) '*7@<(9 9 <('*)- ,(1*+>?: * < ).'4 <G!*=
3
'1!*+,C '-0' <(> )018'75+' <B'*7+>?:'5' < 7,+!*-8!: , ) - 1*,7
z 0 1 = b1 z1 + b̄2 z2 ,
z 0 2 = b2 z1 + b̄1 z2 .
'
W(
E àÅì"G
Ý F4GÝ Há4Jß IšÞ HGKšàÚ öZ÷Kü ôfdÅü4úó)ú 0 ∈ G öôDýKõKöÅ÷%
32ù8öZ÷<üôf ô
ø ôÁû'òš÷
rüOöÅ÷<üô YG ý ùKý ºý4øú²ý!,'öZ÷<ø=
2ù{öZ÷±òZý4ô)øúô š÷{ýöô<Åô²òô ô…ú ú
Åü4úTôDøúzü 3 )ý!,'öZ÷<ø2ù¾öZ÷
²òZýKôDøúô Y ) ù<2 š÷ ±òZô<7KôDù!Nπù<ýöZ÷KüôTdÅüKúZó)úúZø øô)û/ýKùKýKö 32tóDö 3p öô)ý4õKöZ÷%)ý4ü4÷<øZú Y6 ÷Åô ùKú öôDýKõ4öZ÷ 73úö 2ùøZ÷Sõ42 ÷ %Dô
1
CP
%)ý4ü4÷Køú òZúZø
ô ø ô^öôDýKõKöÅ÷ %)ý4ü4÷Køú rü
Y <Zý<ò %)ýKü9÷<ü …ýKö Eò ( ýKò ú ü
û/ý 'òÅô)û ²øý üK3ú šô W (²Y ôDö
ô +' ûü4$ô }ô ²ù<ü4ô)øø A◦û9ý4ýKö ÅúøÅ÷<ùN÷ ú %E÷<ù<ô öZ÷ ý4ù öôDüqú ,#û'÷<û³ý Åøý4öý Å' ø ôý<ò ú /
ü öZý ²ùKöZ÷<ø )ù<üKô 3 Z÷<öÅ÷ ô)ùKöú ô ²û 32 ó)ö 3
öý4ô)ûùKúüKø -, öZô)ýKõ4öZ÷ %DýKü9÷<øú ÷<ù<öú ô (±Y ÅSö 2/ó)ý ²ù<ý4öýKø $ …ý4ö Eò
W (
' ü4÷<øZú ºý Åøý4öý Åø -,ºû/ýKý4ö ÅúøZ÷Kù Y
'
ú3ø Zúö 32ù‚ü
Z
ö
K
ý
)
ô
Z
û
<
ù
ú
K
ü
ø
ô
$
ö
)
ô
4
ý
K
õ
Z
ö
÷
)
%
4
ý
CP 1
+ ù<ú öôDýKõ4öZ÷ %DýKü4÷Køú !ý ‚øý %D÷ Zú )÷K
ù nü“øôDý Åøý4öý Åø -,û/ýKý4ö ÅúøZ÷KùC÷ , (Y ýK=ó š÷ Zò ú
Zý<ò ú ²ý4ýKù<ü4ô)ù )ù<üKôDøøý
z∈U
w∈V
z0 =
b̄1 z + b2
,
b̄2 z + b1
w0 =
b1 w̃ + b̄2
.
b2 w̃ + b̄1
W4U
IR³ÑÀ³Í²=•!!
ý öô<Å ô²òZôDøü 3
Zù<ý Å ô)ù<ôDö úøZ÷Køù
÷ ô)ù<ú 2
4
_ù<ýøý)ù
2 šýhüKô$Tô)ù<üKôDøøýKóDý5detB
Zý<òZý!‚=úù<(b
ô)ò1Kb̄øZ1 ýK−ó)ý b2 b̄ø2ý!)‚ú=ùKô²|ò | YM 6=ý 0ù<ý ý!‚øý.ZSú 2
ùN÷<ù
7J ù<ý
Y ö3Z÷ ( ²ý²ù<ý4úùú%OÅü,qû/ý ZýKøôDøù ÅüKú{ô)øú ôDöüKý4ó)ý
Z öú 2 detB( ú=ü4ù<1ýKöý4ó)ý öú ' 2
( öýš÷ YB öú ù<ý ²ü%)øZ÷û/ý ý4øô)øZùC÷¾ôÅú ø' ú†ú|%)|ý >ýKö0…øZ÷O
ô
ZúZ÷Nò4' øý7| ²ô)| üÅ<ý/0øúZùC÷KöøýóDö3ô
Y ) ù ôDù<ú ùN÷<ûTô
ù<ý
öZô)ýKõ4öZ÷D% ýKü9÷<øúô}ó)ö3 W( G öZô)ýKõ4öZ÷%3
2 }ôDô ² òZýKúzü SU
)ô)õ!(1,
1)
ý!TôDù¾õù“ù<ýKòKû/ý
'
ù<ý!"Å ô² ù<ü4ô)øø Y
ô)ö_òZôDüô dÅ ü4úó)ú 0 .Y .
÷ ýKùKöú ù<ô
Z
Y ý<ò)% ý4ü4÷Kü}ý ù
…ýKö E ò
∈G
=
ý<ò ú ( Z
'
W4W(
'
z 0 1 = a1 z1 + a2 z̄2 , z 0 2 = a2 z̄1 + a1 z2 .
2 ùY öôDýKõKöÅ÷)% ý4ü4÷KøúŒ
ýÅ øý4öý : Z öý) ù<öZ÷<ø7² ù<ü4ô 3 ù<ú öZô)ýKõ4öZ÷D% ýKü9÷<øú ² ýKý4ù<üKôDù² ùKü3
ø-,û9ý4ýKöÅ úøÅ÷<ù S2 ÷Kù<öúZ ô
a0
 a1
A=
 a2
a3

a1
a0
−a3
−a2
a2
a3
a0
a1

−a3
−a2 
.
a1 
a0
W(
'
á/àZæá/íÀÝ
W5( '4 <!3*9 - 1 *<B'*#.-<G!*+(#.-81
)
Ú L<B)$'54 <!3
'1!*+, 2
=
'
S3 ! G< ! ).-<(,)$#9 '*7@<(9 9 P, 71*, ).+,C
D + ! 1*''40) @ '*1*' <G2 +(2 ) #.'=
A ⊂ G
:
<!*+2B)$- <G!#$#&%('*).+,) +' #$'7) < ,- W = ! <! )$-L<B,)#9 '7@<B99A%B)1*>?: #$71*,@ '*1
#.-<(9 -09 <B+'C @<(9 >
-0'@ ' <G!
##&%('*).+, 2 D !
#.-0+'*#$- , M'+ !0#.'*7) < ,- !*4*#.' % - =
S
+9 ,+(1*' % , *<B'#$-L<!*+(#.-81
!D
E àÅì"ÝGF4ÝGHá4ßJIšÞHGKšàÚ ô)öZüKýKô-/ù<ü4ô)ö"Åô)øúZôÑýô)ü4ú3Åøý YEQ ÷NòZôDôNöZ÷
÷<ù<öúZü4÷{ýKù<øZý T}ôDøúô 0
<øZ÷3Åô ù<ýTýKøý )ýKüZ÷!š÷Kô)ù9ýKùKøýTTô)øúô ú=,4ýšø-,}û/ýKý4öšúøZ÷<ù
0
òZúT zöZ1ú : z²2òZýKü4úú
$÷OzöZ1ô)ýK: õ4zöZ2÷%DýKü9÷<øúô 0 . ü + ù<ý5%)øZ÷úZù(ù<ý .
Y
òôDù=“ü ù<ý ²ò Z ÷<aô2 òZ=ôDü0 Åô²ùKüKúô )ù<ö/ûù∈/öCøý◦ “óDö3jöZ÷±òZý4ô)øú Y: = 3 ýKøý
úø3 ZúöKôDùTöô)ý4õKöZ÷%)ý4ü4÷<øZúô 0
$'öÅ÷
ýKù<öZô)øøý4ô…ü‚ù<ô)ý4öô ô ' Y7: ²ú'ò7 S2U(
'
= A(ϕ)

cos ϕ
 0

A(ϕ) = 
0
sin ϕ
0
0
cos ϕ sin ϕ
− sin ϕ cos ϕ
0
0

− sin ϕ

0
.

0
cos ϕ
÷<òZó)ôDõ : Z÷ ²ù<øý ²ù<ú Ñú%òZôDü-, dÅüKúZó)ýKü7Iýöôšô²òô -,aõ9÷%Dú²ø újôÅúZøúZ÷ ú
ö$…ù<ýKòKû/ý öZô)ýKõ4öZ÷%DýKü9÷<øúô
0
ü<òôDù= Z÷<öÅ÷<ùN÷<ûùKúô)ûú YP; k ÷Kû‰û'÷<û
= ; 3
ýKøZý{ú ô)ô)ù ÷Kù<öúI :
I = A(π/2)


0
0 0 −1
 0
0 1
0 
.
I =
 0 −1 0
0 
1
0 0
0
+ ù<ýº÷Kõ²ýKò2ùKøZ÷¾úZøüKýKò2hú öZý²ùKöZ÷<ø)ù<ü4÷
S23
'
W(
Y
á/àZæá/íÀÝ"Ú
L<('*#.-<G!
+#.-81*'
,$ )$).- #$-L<B9-09 <B9 4,!##.,(!$%(/+'@ ' *<B'#$-L<!*+=
S3
.# -81
! %%(,- ,)$# '*@ ' -0,! #! 2,+' <B' !
4#$' % -0+'C ,+1*' % ,,
''- +'
8).=
I
+, '- ' <B'P9 )$-L<B,!
<('*#.-<G!
+#.-81
!82B1$%G2B).-8# 2 <$P,- '*1*'C !'5+(@<(9#+,2
K
!*4*#.' % - +'C%(,+().C+'C'+@<B9+,().C(D
E àÅì"G
Ý F4GÝ Há4ßJIšÞHGKšàÚ )ô öZüKýKô /ù<üKôDö"ÅôDøúôT±òZô<7KôDù¾ú%T²ü4ý)ù<ü4÷ 2 −Id Y + ùKýKù
÷P…úZøýKöRùN÷Kûú ýKõKöÅ÷%)ý 1D% ÷š÷<ôDùcü 3 úøü4ý<ò2Kú2 òZòZúù<úô)û9ý4ó)Iýq=
ù<úZ÷ YÑS öý ô
S2
WK\
¶ …¶rIÑ
ù<ý4ó)ý ýöôšô²òôDù=‚òZô)ü dÅü4úó)ý ú ý ù<ý T)ý!,'öZ÷<øôDù#²û'÷<òöøý4ôhöý4ú%)ü4ôÅôDøúô
W!( 0 I , I & ) = ( , & ) Y: ±òZô< ²ùKüKúô ù<ýKóDý öú ∈¯ Q ùKýûú ú ˜ = I ²ýZö{ô)ø
'ýKùKøý (I
)úù<ô²òKøý¾÷Kõ)ý<ò2ùC÷ Y7: ²ú'ò7“ù<ôDýKöô X ú, ý!‚øý¾ü%<ù‚üºû'÷ô)ù<üKôÁýýKöø-,
ù<ý ô)û Zö -, û/ýKøóDö QøZúú Y ñQP…úøý4ö šùN÷<ûú ýKõKöÅ÷%)ý üZý<òZøô}ýöô<Åô²òô)ù
û/ýKøóDö ø Zú 2 MY höZú ù<ý ü )ýKó-òÅK÷²ýKü9÷<øøZýøý4Iö úöý4üKû/ô ( 2 2 Y ) ù<2 š÷±òÅô74ô)ù!
'
ù<"
ý ö ÷ “û9ý4øó)ö ø úú öúøZ÷ ZòZ
ô _úZùTù<ý ¾ý4õ<òÅ÷²ù<ú −1 ˜ =ú'òZú −1 'üTû/ýKù<ý4öý
p (U )
p (V )
øZ÷ ,4ý Åúù =“ú =,9ý ÅøZ÷ ºùKý û'÷ Y
ÅùKýºùN÷<û {ô O
÷ ö ÷ üKò ô)ù =hý4õKöZ÷ ÷ ô)ù<ú (ù<ý“ô ²òZú I ∈Q
h( , I )
%
32Q}
ô nûü9!÷ ÅöZúûú Y ∈ Q
Q
á/àZæá/íÀ
Ý "Ú(<(9! 751
, )$+,C*<B'#$-L<!*+(#.-81
! S 3 <!
#(!
7!
).-8# 21 <G2 ') *<B'5,G3*=
'*75@<B9
1
)75)$+,() #$1*',G:
A
,
B
D
2
E àÅì"G
Ý F4GÝ Há4Jß IšÞ HGKšàÚ : =û/ýKôÅü4úTôDøúô Zöý)ù<öZ÷<ø7²ù<ü9÷ 3 üh²úò ( ýöZôÅô)òô)ù=
û/ý ý%)úZúô
$öÅ÷<üKý4ó)ýú…òZôDüKýKóDý dÅüKúZó)ýKü7öúZô üò2õKý Sý42ö3Åû/ô Y ' Åö9óDý$²ùKýKöý4ø$
Y : )÷ ý Åô)òZô -öô<7ýKòZý!‚ú ù<ý }ô)ù<ü32ù òÅô ô)øZù . 8
A
ùN÷<û∩úZB
ô Z=ù</
ý Id. Zò ò 2õ4ýKóDý 7Y : ±òÅô )ù<üKúô…òÅúøô
Zøý)ù<ú%Åô.‚ü‚û'÷,ô²ù<∈ü4ô5G
=
=
6
0
Åý ²ùN÷<ù<ý øýü õ4öZ÷<
ù õ4÷ %)ú )ø ô òZô ô)øù V÷NòÅó)ô)õ4ö
Y ýK=ó š÷ ýKò ú . N
~ý öZô Åô)ò 2ù“
ü öý ²ù<öZA÷Kø ²ùKüKô 3 òZú T ¾ùK!ý š=ô ²ùKüK=ô)øZλøýK∈ô
7Y 6 ýºóDý ý4ù<ô)ù<úZú 0
∈
S2
=λ
öRôDýK◦õ4öZ÷ %DýKü4÷Køúô Y
ñøÅ÷NòZý4ó)ú øZýtüKý %)øúû'÷Kô)ù öZ÷ ±òÅýKô)øZúô öý ²ù<öÅ÷<ø )ù<ü4÷ 3 ný öô šô²ò ô ýKô†òZôDü ú
ô ‚ø úzûòÅ÷ )÷ ú ý ý Åó)ö ô
ZöúøZ÷ ZòZ<ô _÷<ù
Y + òZô ô)øù †ú S& 2 ó)ö 3
C
◦
ý Åøý aòZô)ü4ý ô ‚øý ÒûòÅ÷ < ý ù<ý ý šó)ö 3ô ô ±òÅú −1 G
Y ) ù <2 š÷
& ∈ C◦
ýKò Z÷<ô ²òZýKü4ú z̄1 w2 − z2 w̄1 = 0,
z̄1 w1 − z2 w̄2 6= 0.
%‚øú, ±òZô<7KôDù
Yb+ ù<ýhý%DøZ÷Z÷Kô)ù! ù<ýhú ôDô öZ÷
±òÅýKô)øZúô 0 3
=öw̄ô1šô²:òw
2 ý
ü
1 û/ýKz¯ù<1ý4:öýKzô‚
2ôDù=/öýKôDûúô 0 Y óDý ±òÅpý! : Sú 2 →
→
M
⊂
CP
p
(
)
=
(z̄
:
z
)
1
2
ò
2 ù= ö ôhòZúøô øý³
û/ý4øó)ö ø úú òZòZú ù<úô)û9ý4ó)ýqù<úZ÷ 0 Ye6 ÷öú ôDöZò
K
ý4øú“ú ô
2 ùO/ öZ÷KüKøôDøú
2
1
z = z /z̄ ∈ U
x1 − vx0 + ux3 = 0,
x2 − ux0 − vx3 = 0,
÷<øÅ÷NòZý4ó)úøô \(²Y ) ù<2 š÷Áü4ú3Åøý7
ù<ý"²ú 1 ôDù<öú 3
Zô)öôDüKýÅúù…û/ýKøZó)ö øú2
x → −x3
ü_û/ýKøóDö øZ' ú2 0 13!*,$ +9 Y
K
÷ )÷Kô)ù =zó)öK3 ÅüKú{ô)øúK$ù<ýnù<ô)ý4öô ÷ \ ý)ùC÷Kô)ù= öZ÷KüKôÅòZúüKýúzü ù<ý R ù<ýû'
±7ò Å÷<ô $ý šøZ÷<û/ý ý Åó)ö ú
ôDø2ù=qöýKò ú YN öôDýKõ4öZ÷%DýKü4÷Køú ýšó)ö3
ýKöZ!ý šô)øø ôŒòZô)ü ú dÅAüKúZó²÷ Bú 0 .9 ²!ý ,'öZ÷Kø2ùºöÅ÷
²òZýKôDøúô 0 YB ýšó)ö3Z÷
A ù<ú
p
=
)üKý ²ù<ü4ý ü Zô²òZý øôTý4õ<òÅ÷ š÷<ôD!ù Zøý ²ý ÅôDö ‚úù ý Åó)ö S 7Å
ô )ù<ü32Q#32
B
øZ÷öZ÷ ±òÅýKô)øZúú 0 <öÅ÷<ü4÷ GY : )÷ ý Åô)òZô GZöô)ý4õKöZ÷ %)ýKü9÷<øú W ( úZ3ø 73úö 32ù“ù<!ý "Åô ²ùKüKô)øZøýK$
ô öZô)ýKõ4öZp÷ %DýKü9÷<øúôõ4÷ %
ù<ý4ó)ý_öZ÷ ±òZý4ô)øú öZú ±òZý4üK' úú
Y Åô . !ý ‚øý
.ZúùN÷<
ù 7ù<ý
ZúùKýK=ó š÷ ùKú Zöô)ý4õKöZ÷ %)ýKü9÷<øú öúøú ÷ 2ù‚ü4b3ú 2 = 0
b1 ∈ S
z10 = eiψ z1 ,
z20 = e−iψ z2 .
ù öZô)ýKõ4öZ÷%DýKü9÷<øú W
Å÷<öZ÷ ô)ù<öúô)û9ýTóDö3
: 3 ú ²ý4ýKù<ü4ô)ù )ù<ü 329
ü_ýSÅ2øý4öýÅø-,ºû/ýKý4öÅúøZ÷KùC÷,ºú ô
2ù‚üKú3
B(ψ)
Kû/ýKù<ý4öô
x0 (ψ) = x0 cos ψ − x3 sin ψ, x1 (ψ) = x1 cos ψ − x2 sin ψ,
x2 (ψ) = x1 sin ψ + x2 cos ψ, x3 (ψ) = x0 sin ψ + x3 cos ψ.
ú öôDýKõ4öZ÷%DýKü4÷Køú9ýKöõ4úùN÷ úû/ýKù<ý4ö-,Oü<ò2ù=ö ôÀü%D÷Kú øý“û/ýKøóDö øúZú
+ ù<
÷<øÅ÷NòZý4ó)úø U(²Y 6 ÷%)ý4üKô ú, * <!
1*>" , (! <!*-0! -0,)$# , P, #751
,@ ! , Y7: Z÷²ù<øZý²ùKú
'
W
IR³ÑÀ³Í²=•!!
ô)ù
+÷P…úZøýKö³ü%E÷<ú øý÷<õ)ý<ò2ù<øý#úøZüKý<ò72húú òòZú öZú )ýKýKùKüKô)ù²ù<ü2Q}úôTö ô‚û/ýKøZó)ö øúú
ýKõ4öZ÷%32ù{üKù<ý4öýKô$²ô ô
)ù<üKý_ý4õKöZ÷ %
32Tú ∈, Q ù<ý nûü4÷ Åöúûú Y
2
J
ù<úZ=ô²B(π/2)
û/ý4ó)ýhù<úÅ÷ JY ) =ù −Id
ôDù<ú ?ù<ý
"Ú hàÅæí…Ý/ßã F4Ý ã ³ì"àÅâé<æ <â ãã
ø ú2 ZýKöý!"ÅôDøø32 öZ÷Kü úO ô
_ø úºû'òÅ÷
)÷ ú YCQ ò
÷ ýKùKöú û/ýKøóDö ù<ýô)û/öZý²ùKöZ÷<ø)ù<ü4÷"øôZ öúøZ÷KZòZô<_÷
Tú,c÷Kõ²ýKò2ù"üõKô)öZô û/÷KøýKøZúô)û/ýKô_øýKö ú öý4ü4÷<øZú 2
, ù<ýû'÷ ú $…ôDö{ô<ÅúøúøýKóDý
YEQ ö/ ó)ú ú² òZýKü9÷ ú D% ÷š ÷<ô úT
ú øú ý4ôÅúZ=øúεø=ý4ó)±1
ý‚öZ÷Å ú) ÷"² ôDüÅ ý4ô)ü4û'òZú3Å ý4ü4÷# öý) ù<öZ÷Kø² ù<ü9÷û/ý4ù< ýKöô òZú7²ù<øý‚øÅ÷ ûöü9÷2ù"Zöý) ù<öZ÷<ø7² ù<ü4ý 3 Y
Z ö ô_û/SýKøZ2 ó)ö ø úúG öZúøZ÷!Å òZô<_
÷
}úZô Z òz
ýZ öôÅ ô)òZô)øZøý) ù<úzý4õ<òÅ÷² ù<ú
)ù
h
Z
ø
!
÷
}
Z
û
ö
/
)
ó
ý
ú
ù
ü
9
÷
E
ú
,
…
4
õ
÷
%
)
ú
)
ø
ô
!
<
ù
ý
û
ú
ý!‚
øýüõKöZ÷Kù
D øZ÷Z öú ô)ö D
Y
P
\
(
pùN÷<−1
U
'
û(U
0 )
.
.
W)X3(
1
1
'
= √ (0 : u : −v : 1), ˜ = √ (1 : v : u : 0),
R
R
4 ÷Àù<ýû'÷5z
. üõ4öZ÷<øZ÷Àü$' òÅý² û/ý² ù<ú
ó=Å ôüÁöZ÷
÷<ù<öúZü4÷<ô ý{
ýKõKòÅ÷) ù<ú
R
=
1ø−
uú2 −
vö2 >-,05
4
ý
=
ó
š
T
÷
Z
K
÷
Z
ö
÷
D
ô
<
ù
ö
ú
ô
²
û
Z
ú
Y
ô
/
Z
ö
K
÷
K
ü
D
ô
ø
K
ý
ò
ú
ü{ü4ú3Å ô
Y
0
x =0
h:
.
WEU(
.
'
(ϕ) = cos ϕ + ˜ sin ϕ.
ú ô)ô)ùT ²òûZöZ÷<ù
Å÷TTô)ó)ý{öZ÷
²ùKý!øú¾ù<ýûú Åý_øZ÷Å÷Nò4øýºùKýûú . Y
Åô.
øô¾û9ý4ýKöÅúøÅ÷<ù$÷š÷Zù<ú : üKô<ϕÅô ü ùKýqýKõKòÅ÷)ù<ú öý²ù<öZ÷Kø²ùKü4÷ 3 ûöúü4ý<òZúøZô
(ϕ)
öý4ü4÷<øZøô_ûcöÅ÷
²òZýKôDøú2 Y: û'÷ô)ù<üKô{õ4÷%)ú)Sø2-,û/ýKý4öÅúøZ÷Kù“üõKô)öZô ó²÷!
)ýKülû/ýKý4ö ÅúøÅ÷<ù
ù<ýZûú
÷±òZý4ô)ü4ýˆû/ýKýKöÅúZøZ÷<ù
Z÷KöZ÷ ôDù<ö
òZô)ü4ý i
ó)ý/Å ÷<öZ÷KùC(u
÷Kûù<)ú=Zô²(u,
û/ý4v)
ó)ý/dÅ üKúZó²÷zü^=) ýKp(
ýKùKüK)ô)ù² ù<ü4úú 9 öÅ÷<üKøZô)øúô WEU±( Y ýKó=š ÷ˆý ô)ϕöZ÷Kù<ýKö
ý4õKöZ÷%
32ùøZ÷<ù9öÅ÷Nò4ø8öôô)öˆüù<ýZû9ô Yö' ú ôDøúünû/ýKù<ý4öô_û 9
{∂
}
=
{∂
,
∂
}
A
i
ϕ
ýKò ú .
.
.
.
∂1 = ∂1 cos ϕ + ∂1 ˜ sin ϕ,
∂2 = ∂2 cos ϕ + ∂2 ˜ sin ϕ,
∂3 = ˜ .
6 ÷Åô ÷<ù<öZú ôDù<öúZô²û/ý4ó)ýhù<ôDø%)ý4öZ÷nü ù<ý öZô
ôDöô YM ÷<ûqû'÷<ûzòZôDüôOZ÷KöZ÷<ùN÷<ûZù<ú dÅüKúóDú ü<ò2ù= ÅüKú{ô)øú ú Zöý)ù<öZ÷<ø7²ù<ü9÷ù<ý¾û9ý ýKøZô)øù ù<ý ÷<ùKöú
Åý²ùN÷<ù<ýøý_ü Zú±òZúZù
_ü{ùKýû/ô. Y: öô%
EòNùN÷<ù<ô9ýKò ú ô²ûúô
gAB = (∂A , ∂B )
= (0)

v 2 − 1 −uv −Rv
1 
−uv u2 − 1 Ru  .
(gAB ) = 2
R
−Rv
Ru
R2

'
WE\(
÷ öZý ²ùKöZ÷<ø )ù<ü4h
÷ ý )ù<ý!øøýŒýKùKöúZ÷Kù<ô²ò4øý}ûöúü4ú%)ø Y: )ú'òÁô)ô úøü9÷ + ù<ý ô)ù<öZúû'h
ö úZ÷Køù<øý²ù<úû9ý ýKøZô)øù ôDù<öúô²û/ýKóDýºù<ôDø%)ý4öZ÷Åû/÷Kûhú ±òÅôÅý4ü4÷NòÅý{ý!‚ú3÷<ù
7S%D÷KüKú=ù
òZúT ‚ýKù{õ4÷%)ú)ø-,¾û/ýKý4öšúøZ÷<ù Y
ý )ù<öý4ú øý4ö ÷NòÅú %D÷ ú 2 û/ýKøóDö øúZú1öú ôDø#öZô
%
EòNùN÷Kù ñ Y _Y úöý4û/ýKü4÷
þ ÿ Y ù<ý ô²ò 2 öZú ²ý4ô ÅúøZú û öý4ú %)ü4ý<ò 4øý ³ù<ý Zû9ôöZ÷ ÷<ùKöúü4÷Kô ý ³ý4õ<òÅ÷ ²ù<ú
öý4ô)ûùKúüKø 8ö
ô ôDö %D"
÷ Åü4ôŒüKôDö T}úZø lû9ý4ù<ýKöZýKó)O
ý Zöú ô ùKý ûú ú Y
ô ÅüKô…üKôDö T}úZø
ü õ4ô)öô øZ"
÷ ýKò öô ö ý ∈ýKhòZ!ý ‚˜úü = I ∈ h
TY
& i (i = 1, 2)
h
h̃
W (
& i = ∂ i − Γi ˜ ,
' =ó Åô
øô)û/ý4ù<ýKö ô9/øû úú“ûöúü4ý<òZúZø
ô ø -,ºû9ý4ýKö ÅúøÅ÷<ù A
Y'P ±òÅýKüKúZô Γi ù<ú 9/ø
(u
v, ϕ) ø 8#öô
û úZú#ý öô šô²ò 2ù =³ý šøý %DøZ÷ ø7ý 0
) = Y (u,
öZýKô)ûZù<úüK
&ôDi ö ∈ h̃
²ü %D÷Køø 8 {ù<ý û/ý Y$øZ÷ %)ΓýKü4i ô =
#$(˜'*,<(∂'*i 1*') 75! , <B) ) <B'
û/ýKøóD{ö A ø }Z=úú {Y , ö& ú i , ˜ô)}ø ¾ù<ô)ö úøý<òÅýKó)ú 2jñ Y _Y 6 ýK3ö šô)øZ÷ þ W²ÿ 9ù<ý ûZú
!ý ‚øý}øÅ÷ %)ü9÷<
ù yiùK
üKôDö T}úZøZ÷ úTøýKö ÷<òZ"
ú ô)öü4ýKóDýöý šK
÷ ±òZý4ô)üÀöZ÷ ±òZý4ô)øú C÷ ý ýKöZøý Œ
ý û/ý TøýKö ÷NòZú
˜
üKùKýKöý4ó)ý{öý š÷ Y
W
¶ …¶rIÑ
á/àZæá/íÀÝ$Ú ' %G2<! h̃ )#.-0/*<2 !$2 '+(@<(9*+,, K D
ú
ýýKöøôzù<ýûú ý<òö$ù<ý E àÅì"G
Ý F4GÝ Há4Jß IšÞHGKšàÚ ÷Kûlû/÷Kû &
ü )ú'ò úøü9÷<öúZ÷Kiøù<øý²ù<ú²û'÷<òöøý4ó)ý#ZöýKú%DüKô<Åô)øú ( , & i ) = 0 ú
Y
ý4=ó š÷TT
&˜iý4)ù<=øý0)ú (˜
, & i ) = 0 Y ý ù<ý ¾ù<ý ûZIú
Y ÷<ûZú ýKõKöÅ÷%)ý 3ý<òöÅ÷ úøü9÷<öúZ÷Kø(˜ù<øZ, ÷{
˜
&
(ù<ô)ò
, &˜Kø
=úZø0üKýK
∈
h̃
h̃
i )ý‚
i
ò 2húZú ú Zý ùKý ¾ô ²
ù Tö ÷ “û/ýKøóDö ø Zúú Y
I
K
ú '
<
ù
ý
"
<
ý
ò
Å
ö
÷
#
Z
ö
ú
Z
ø
÷
!
Å
Z
ò
ô
<
‚
ú
{
ù
K
ý
K
õ
Å
ò
÷ )ù<ú −1 Y ý<òZ!ý ‚ú ! ²øZý ù<ý_ô ²òZ/
∈
p−1 (U ) K ) ô ö
ô Zô)öô
ù
<
2
š
{
÷
n
ú
ú
%
±
Z
ò
ô
<
7
K
D
ô
ù
!
<
ù
‚
ý
ü
O
²
ý
öý4üK!ý p"š÷ (V2Q}
)
Y
k
& ˜ i = γi &
I = ˜ I˜ = −


0
0
1
I =  0 (γji ) 0  .
−1
0
0
k
ú"üKò2ù=Tû9ý ýKøZô)øùN÷ ú_÷P…úZøýKöZ÷
Å ô. i Å ý4ü<òZôDù<üKý4ö2ùh±òZý4üKú2 i k
γj
γk γj = −δji
ù<ýTúøZüKý<ò72húú Nû/ýKù<ý4öZ÷Túø373úöKô)ù=}øZ÷Yý<òöô úøü4ý<ò2Kúô
Zöý)ù<öZ÷<ø7²ù<ü9÷ Y
øý ý .γúùN÷Kù
(ù<ýü¾öZ÷
÷<ù<öúZü4÷<ô ý öôô)h̃öZô ùKúû/ý ý4øô)IøZù ý²ù<ý!øø
6 ô² òZý!‚
únöZ÷<ü4ø
W5(
0 1
i
'
(γj ) =
.
−1 0
á/àZæá/íÀÝ Ú
''+)$+-0>
' <B)$7)&%G2 - ,+1! <(,(!*+-0+9 # 1$23
+'*#.-0/ @&%B!
1
=
{Γ }
+'*@ 'O<G!#$#&%('*).+,2 D +, +) 3!
1*,(# 2(- i '- &# %('*)$1*'C '' <B75,+(!*-0> , <(, *< ).'4 <G!53*'*1
!*+,,
!
7!#- ,
<('*1
!*++>?: '' <B75,+(!*- , 3% )$+2 -8# 2 ' 3
!#'+9
Γi0 = fii0 Γi + fi30 .
û ±òÅô 74ô)ù{ú %9±òÅý E àÅì"G
Ý F4GÝ Há4Jß IšÞ HGKšàÚ ÷ ýKùKöú 'òZý )û/ý ²ùKú Γ = { , & } YS ÷K5
üKú DýKøúÁý4õKöZ÷%
32ùöZ÷<öZôÅô)òZô)øúZô ⊥ )ýKöZù<ýKóDýKøZ÷<iòKøý4ôö û9ý4øó)ö ø =ù<0ô)ý4öô úú Y(˜: , ²& ú'iò7) ‚
ü4÷KöúZ÷Køù<øý"öú“òZô)ü4ý šô
)ù<üKúú²ùKö/û X ù<ý_öZ÷
öôšô²òZôDøúôÀúøH
ù /öøýTóDö3$Nû/ýKùKýKöý4ôü ùKú,}û/ýKý4öšúøZ÷<ùN÷,…ú ô)ô)ù…ü4ú3 0
YKS ÷<ûTúTü{þ <ÿ NõÅô ÷š÷ùKúöýKü9÷<øø-,û/ý øZ÷ %
ü4÷K
ù 8²ü %)øý ²
ù 1*+9-L< ).++().C YV: ú7±òZú ôDô!û/ý ý4øϕô)ø=ùzüϕ+t
ýKö ÅúZøZ÷<ùN÷ , Y-Q ò ù<ýKóDΓ8
ý %D÷ ô)ù<ú ù<ýý4øúÁøô %E÷<ü4ú =ùýKù ±òÅýKô)ü4ý Àû/ýKýKö ÅúZøZ÷<ù cú$ý ù<ý øôú % ô)ø 2ù =öZ"
ú Å
ô )ù<üKúZúºó)ö 3 : )÷ ý Åô²òZô Y
ù<(˜
ý ,T∂i3û9ý b) ú ±òZ<ô ÅýKü9÷<ù<ô)ò Kø7ý S Y ýK=ó š9
÷ ýKò ∂ú 3 Γ i = (∂3 ˜ , ∂Y i )ý +
6 ý ý4øô)∂ø3 ù ˜ü=K−
ø /ù<öôDøøô ²ü %Døý )ù<"
ú Å∂ý i3²ùN÷<=
ù<ý ∂iø˜ýÁü ú ±òÅú
ù ŒüÁøZ÷ Å∂÷N3ò Γ4iø=
ý _0ù<ý û/"
ô .-
(0) =
ü_û/ýKù<ý4öý . . YÅP úù ü4÷ WDX ( ý<ò ú Γi = (˜, ∂i )
.
∂1 =
ýKùKûš÷
'
.
1
√ (0 : R + u2 : −uv : u),
R R
1
√ (0 : uv : −(R + v 2 ) : v),
R R
∂2 =
W(
6 ÷Åô %D÷<û/ý4ø öZô)ýKõ4öZ÷%DýKü9÷<øúhû/ý ZýKøôDøù²ü%Døý)ù<ú Y ÷ ý4ù<öú öôDýKõKöÅ÷%)ý4ü4÷Køú
÷!÷ù<úZöýKü9÷<øø-,ºû/ý4ýKöÅúøZ÷Kù
Γ1 = −
v
,
R
0
ý4ó=š÷
(˜ , ∂i0
ui = f i (uj ),
YÅP úùü4÷
∂i0 = f ii0 ∂i + fi30 ∂3'ýKù<û
÷_ú²òZô
) = fii0 (˜ , ∂i ) + fi3
Γ2 =
0
0
u
.
R
0
'
0
u3 = f 3 (uj , u3 ).
W ( ú WCU( ú ô)ô ˜ Y ý ù<ý ' Kô) ù"/û'' ÷%D÷KøøZ÷…ýKö ∂ 3EòÅ=
÷ Y
Γi 0 =
W IR³ÑÀ³Í²=•!!
Q òüKô)öT}úø²ýöýKü4ý!"š÷2Q}ô)óDý}öôô)öÅ÷Tú ô)ô)ù ô²ù<ý²òZô 2QT÷“ùN÷<õKòZúZ÷"ýKòö ø-, öýKú%)üKô<Åô)øZú
&
&
1
0
0
i
˜
j
0
Gij
0
˜
0
0
1
9 üKô)öT}úø ) ý öý4üKý!"š ÷
2 }ôDó)ýnöô ô)öZ÷
øý
÷ ô)ù<ú ù<ýzùN÷<û+û'÷<û ý!‚
ýKò úù
ºü‚öZô
%
EòNùN÷Kù<ô9Řô=
²ù<∂ü43úhøZ÷‚ù<ýû^jòZúøZô
ø-,5ÅúP…ôDöô)øúZ÷Nò{KøA-,}¾ýô)öÅ÷ ú
ù<ý4öýKü ù<ý!"Å ô) ù<üKôDøøýKóDý
2 ù !
7!# -0,*<B'5=
Y ý± òÅôÅ øúZôýKõKöÅ÷%
3
Ei = ∂i −ü}Γù<iý∂3û/ôT EY3 =
÷∂ 3 ý4ù<öô)øZúôh² ùKö/ ûù/ öø-,O/ öZ÷<ü4øô)øZú
1
!*++>C <B) )<
{EA } ö(A
úü4=
ýÅ 1,
úù2,ûÁ3)ýKõ"ô)ûZù
øZô)ó)ýKòZýKøZý øý² ù<ú
ùKýKó)ýöô
ôDöZ÷ Y6 ýùN÷<ûŒû'÷<û
C
[E
,
E
]
=
R
E
A
B
C
AB
9/
øû úZú
D% ÷KüKú= ùTù<ý<ò4û/ýTý4ùTõ9÷)% ú7² ø-,‚û/ýKý4öš úøZ÷<ù!² öZôÅ Rúô)óDýTû/ý Z ýKøôDøùTý4ùEòZúø
ýKù_øE ò
òZúΓT i (
3
'
Rij := Rij
= ∂ j Γi − ∂ i Γj .
+ ù<ý#ù<ô)øD% ýKöÒûZöúüKú)% ø üKø9 ùKöô)øøZô
) ü)% øZý² ùKú þ <ÿ Y ) øÒú ô)ôDù+ôš úø² ùKüKô)øZø32 < Tô ² ùKüKô)øZø3†
2 û9ý ýKøZô)øù' û/ýKù<ý4öZ÷
üT) ú'ò W ( öZ÷<ü4øZ÷
'
R12 = −
2
.
R2
÷Kûú ý4õKöZ÷%)ý ó)ýKöZú%)ý4øùN÷Nò4øýKô_öZ÷<öô<Åô²òÅô)øúô‚ü4ø/ù<öôDøøô
^)ü%Døý)ù<úqøôºúøZüKý<ò72 ù<úü4øý Y ÷<ûnû'÷<ûýKøZý{ý4öù<ý4ó)ýKøÅ÷Nò4øý ²òZý! û/ýKøóDö øZú
øôYü<òô)ù=øýKö ÷<òKøZý Y
K
á/àZæá/íÀÝÚ ).-<(,)$# ,C -0)$+ 3
' <
WE\( <G!
##&%('*).++'*@ '
<('*#.-<G!
+#.-81
!O2B1%G2B).-8# 2
'
=*
<B'*)-0,*<B9) "> )$1#'*@ '
D
H⊥
,;'*< )$7)&%G2B).-
+(!
4.!3)<!
#$#&%('*).+,2
).-<(,9
E àÅì"G
Ý F4GÝ Há4Jß IšÞHGKšàÚ S ý ZýKøôDøù ôDù<öúô²û/ýKóDýù<ôDø%)ý4öZ÷
öôô)öôÁý4õKöZ÷%
32ù ÷<ùKöú
(GAB ) =
Gij
0
0
1
g
%('*#'#$-
,
'4.!*=
ü³÷!š÷ù<úöZýKü4÷Køøý ,
ó=Åô ²ýKó-òš÷²øZý W (
YJ ÷<ûZú ýKõ4öZ÷ %Dý "óDýKöú %)ýKøZùC÷<ò Kø ô‚û9ý ýKøZô)øù
i Γû9
j ý4ýKöÅúøÅ÷<ù
ù<ôDø%)ý4öZ÷ øZôO' %D÷< ü4ú=GijùýK=ù g±ijòÅýK−ô)ü4Γýz
YM ý ù<ý $û'÷<û Åý4û'÷%D÷Køý S_Y qYM ó)úZ÷ ö
K
ý
D
ô
û
<
ù
ú
ö
K
ô
Z
ø
º
÷
4
õ
÷%¾öZ÷
²òZýKôDøúnúýöZôÅô)òô)ù‚øZ÷ºøô
%D÷Kö øý g þ WNÿ ù<ôDø%)ý4ö
⊥
øôDû9ý4ù<ýKö 2 ô)ù<öZúû g∗ Y-H6 ý^²ý4ó-òÅ÷)øýqù<ôDýKöô ô ôDù<öúû'÷
úZøü4÷KöúZ÷<øZù<øZ÷qý4ù<øý)ú ù<ô)ò Køý Z÷KöZ÷ ôDù<öú Zgô ²û/ý +ó)ö 3
öÅ÷<ü -,^d Åü4úó)ý4ü 1²!ý ,'göZ÷Kø 2Tú ,qöZ÷ ±òZý4ô)øúZô Y
ú3ø Zúö KôDù¾øZ÷¾õ4÷ %)ô}øZô)û/B
ýKù<ý4ö 32‰óDö 3 ∗ ZöýKôDûù<úü4ø -,öô)ý4õKöZ÷ %)ý4ü4÷ ý ù<ý B
øú Nú %)ý ýKö …ø 32³ó)ö 3Zô Y 6 ý ∗ üKò ô)ù =}ó)ö 3Zý B
#ÅüKú {ô)øú <ZöýKôDûù<úöý4ü4÷Køøý ô )
ù ô)ùKöúûú þ W Nÿ úŒú ô)ôDù ÷K3û )Bú ÷Nò KøBýü4ý % !ý _ø 8$ýKö 3Åý4û
Y ý ù<ý ∗
öý ²ù<öÅ÷<ø )ù<üK
ý Zý ²ùK!ý øøý nûöZúüKú %Dø Y : )ú'ò WD\ ( ú W ( rû9ý= 3ýKøZô)øù ôD(U,
ù<öúgûú ) ∗ ü
øZ÷Kù /öZ÷Nò 4øý öZ
ô ôDöô G²ý4ýKù<ü4ô)ù )ù<ü 32Q}ô Zöú ' öZýKô)ûZù<ú' öý4ü4÷<øZúú!÷ š÷ ù<úöZýKü4÷Køøý “g öô ôDö öÅ÷<üKø
W(
1
Gij = − 2 δij .
'
ú Z÷Kù<ô²ò KøýÁý öô šô²òZôDøøZ÷ {O
ú Rý < Tô ²ùKü #)ýKü Å!÷ š÷Kô)9
ù ô)ù<öúZû9ý O'òZý ôDù<öúû'÷ ∗ ý4ù<ö
g
û/ý )ù<5
ú 4Áý4õ4÷ ôDü )û9ý4ó)ý…ü{û9ý4ø …ýKö øý ý šô²òZú 4÷Køû'÷<öô Y 6 ô)ùKö ÅøT
ý ý $úùN÷<
ù 7 ù<ý{ô)ô
ó²!÷ ²ý4ü4÷ŒûZöúüKú %)øZ÷{öZ÷KüKøZ÷
Y
K = −4
÷ ýKùKöú Åô)öúZü4÷ ZúýKøø ôY/öZ÷KüKøôDøú ²ý ZöýKü4!ý ÷ 2Tô)óDý}öô ô)öZ÷ %D÷ ú )÷Kü_ú ,“ü
üKú Åô
ú ZöúüK<ô Åô)øZø 32³ü T}ô
YNP úù ü4÷ T<ô ú …úû Œü…ü õKý4öôÑüKô)ö T}úøT"
C
ùN÷<õKòZú EAZBöýK=ú %DDüK<ôAB
Åô)øCú ý<7ò Zú W
a) Ei
b) Ej & i
c) Ei ˜
¶ …¶rIÑ
= & i ,
= pij + Γkij &
= γik & k ,
d) ∂3
˜
+
h
,
e)
∂3 & i
ij
k
f ) ∂3 ˜
˜,
=
=
βik &
= − .
'
k,
(
úˆôDó)ý ² òˆý öô<Å ô²òZôDø‰ünù<ôDýKöô ô Y 6 ÷3Åô Å ô. nû/ý ý4øô)øZùÓ÷P…úøýKöÅ÷
%)øÅ÷ô)øúnúó)ô)ý ô)ù<öZúô)ûú ±ò㠚ö/ó)ú,hû/ý P…úúôDøù<ýKü YP öÅ÷<üKøZô)øúô ( ý<ò7Å÷ ô)ù=#
ú% ( ý ý 2ªúZøüKýKò2húZú Y ÷Kûú TôýKõKöÅ÷%)ý /öZ÷<ü4øô)øúZô ( ' ý<ò7Å÷<ô)ù=
ú% (±YN ' ÷ ý4ù<öô)ü öôDýKõ4öZ÷%DýKü4÷Køúô}÷š÷Zù<úöý4ü4÷<øZø-,hû9ý4ýKöÅúøÅ÷<ù! öú3' Åô ûcüü4ý7
' ýKøôDøù
ù<ý_û/ý Z
ýKõ4öZ÷%3
2 ù}ý4õ "ôDûù}øZô)û/ýKù<ý4öý¾
òZúøô øý ) ü)% øZý²ùKú'÷ k
p h β γ
ü<ò
2 ù=n
ù<ô)ø)% ýKöZøΓij únüKô²òÅúúøZ÷ ú
õ9÷D% ú² ø úû/ý ý4øô)øZùC÷ ú Y
úZøù<ô)óDöúö4 ô ý² ù<úT/ öZ÷<ü4øô)øZú ( öZú3Å ô ûO± òÅô732Tú ü ÷ ýKùKöô)ü9² òZýKü4úT
'
üKý÷ Y
W( %9/ öZ÷<ü4øô)øZú ' ( Y ôDù<ý ' ( ± òÅô74 ô)ù
p[ij] = 0,
Γk[ij] = 0,
1
h[ij] = − Rij .
2
Å ö9 óDý ² ù<ý4öýKø$býKòöøý4ô øý!TôDøúô /öZ÷<ü4øô)øú ( øÅ÷ úøZ÷ ZöúüKýšúùû
˜
'
²ý4ýKù<øZýT}ôDøú (
pij = −Gij , hij = −Gik γjk .
' úüh/ öZ÷KüKøô ( %
( ú ( üù<ô)û'÷Kô)ù! ù<ýÀù<ô)øD% ýKö ) ýKüZ ÷!š ÷Kô)ùh Y6 ýù<ý4ó=š ÷! øý!‚
' øZ÷
øúô ( Zý<' ò öøZý
ú úùü4÷5ù<ýû/βý ý4øô)øù γ %D÷<ü4ú=ùù<ýKòKû/ýý4ùõ4÷%)ú)ø-,
û/ýKý4ö' š úøZ÷<ù!Z ý<ò ú & k k
Y ô)ù<ý Göijô 7 }ô)óDýO Y"W ù<ý‚ýD% øZ÷Z÷Kô)ù!
k
G
γ
+
G
γ
=
0
ik
jk
ù<ý‚ùKô)øD% ýKö
ü<ò ô)ù=¾
û/ýj² ý) ú 1 ô)ùKiöúø ú ý ù<ý Y Å úø) ù<üKôDø øZ÷ < }ô² ù<ü4hô)øøÅ÷
û/ý ý4øô)øZùC÷ ùKýKó)ý“ù<ô)ø)% ýKöÅ÷¾öZ÷KüKøZ÷ hij = −(1/2)R
Y2 ij ôDù<ý û/ý² ý
h12 = −1/R
² ú 1 ô)ù<öúZúhüKù<ý4öýKô…úÁ
% öZ÷KüKôDø² ù<ü ( š ÷Kô)ù
' <X(
Gkm γik γjm = Gij .
'
òZô<Å ýKü9÷<ù<ô)òKøý7 ôDù<öúû'÷ ∗ ü<ò ô)ù= ö úù<ý4üKý¾
ýKù<øý² úùKô²ò4øýŒû/ý ' òÅô)û² øý ² ùKö/ û g
ù/ ö Y
γ
û9ý ýKøZô)øùN÷ ú“òZúøZô
øý ) üD% øý) ù<ú ∗
( ÷ ô =“
YG ² òZú/ öZ÷<ü4øô)øú ' (
∇ = {Γkij } Y6 ý{ùN÷<ûû/÷Kû¾û/ý Z
ø ý!‚
úù
T ýKò öøý{øZ÷
ù<ýT ý<ò7 Zú ý
& k
∂k Gij = Gsj Γsik + Gis Γsjk
øôDøù k ý4õ "ôDûùN÷_øô)óDý<òZý4øý øý² ù<úöZ÷KüKø~øE ò2# ² ü)% øý² ù
∗ øôÁú ô)ô)ù¾ûö ô)øZú Y
R ý<ò ôDøø ² ýKý4ù<øýT}ô)øZúô ôDô…û9ý ýKøZô)øùjý öZôÅ ô)ò∇
2 ù=n
ýÅ øý)% øZ÷Zøý}û'÷<û
ý ù<ý ij
² ú üKý<ò7 S öú) ù<ýP…ô)ò ô)ù<öZúô) û/ýKó)ýnù<ôDø)% ý4öZ÷
YšQ ö/ ó)ú ú ± òZý4ü4÷ ú ∗ ô) ù
“öZú ∇
÷<øZýKü4÷"² ü)% øý² ù
O
öýKôDûù<úöZýKü4÷Køøý ô)ùKöúûú Y Gij
úøùKô)ó)öZúöK ô ý) ù<ú / öZ÷<ü4øô)øú ( f ýKò ú X0
( ÷
÷Kù<öúü9÷ ± òÅýKüKú#
∂3 Γkij =
'
∗
ý4øô)øZù k øô"D% ÷<ü4ú= ù¾ý4ù5² òZýKôDüKý
û9ý4ýKöÅ úøÅ÷<ùeú ý ù<ý z
÷P…ú k Y 6 ýû/ý =
øý4ö ∇i γj ü<ò ôDù=“
û/ý4ü4÷<öZúZ÷<øùKΓøijý Z ý² ùKý! øø γ
∗
i
∇k γj = 0.
: ±òZ<ô ²ùKüKúô ù<ý4ó)ýTû9ý4ü4÷KöúZ÷<øZù<øý#Zý²ùKý!øø üKòô)ù=ºú“ù<ô)ø%)ýKö
YG ÷<ûú ýKõ4öZ÷%Dý ýKùKøý)úù<ô²òKøýqû/ý òZô)û²øZý ²ù<ö/ûù9öÌù<ô)ø%DýKö ∗ üKòô)ù= ô)hù<ijöZúû/ý
úöýKû/ý4ü4÷
g
S òÅô)öZ÷ Y
ý öú_öZ÷ ýKù<öôDøúú{öZ÷±òZý4ô)øú öý²ù<öÅ÷<ø)ù<ü4÷ 3 øÅ÷!ºýKõKòÅ÷ ÷ ô)ù<ú øZ÷Kû9ý4ø
ô *ù<$
²ù 2
Zý<ò ú ÷<øÅ÷NòZý4ó)ú ø ôÑöZ
ô %
Eò NùN÷Kù Y : Z÷ ²ù<øZý ²ùKú Kû/ý ZýKøôDøù SôD2ù<öúZô²û/ý4ó)ý
ù<ôDø %)ý4öZV÷ ∗ ý<ò Z÷ 2ù =nú % W ( 9ý ý 2lúøüKôDö ²úZú“únöZ÷KüKø
g
'
G i0 j 0 = −
1
δi0 j 0 ,
R02
IR³ÑÀ³Í²=•!!
ó=ÅôÁù<ôô)ö 0 0 2 0 2
Y
R =u +v −1>0
÷<õ4ýKùN÷ü8Zý<òZøôDøZ÷ Zöú ZýÅô)ö‚û/ô}ýKøš÷ 6
9
U (D(²Y
'
) S
'
WW
ZöýKôDûù 9 U! U'Y[W<&NXKX
<X
"!$#&%&
')(*,+.-/0.12*4365&7)/5$/K=98:-.;412<=0*?>&/nÍ)=@3BA >C;4*430.3D>7E0.3F7G5C7H(JIA*LKD+5$12<2;NMOIA*NPG(.<2;(
>CKD*6Q&*4/*KR>CMD*?0S+JITMD(*>&/JMD<VUW->CMD*LKD/.<25$/X>C1VQ&*4+.KR><¶ Y¸¶
Z ¶ [¶:\5CKR0.*4/]0.*4^"5CMD*?0_3B5&`,*a5&7(.<23bP)5&KDcW3TMD5KD*43B*4>CKD;R(d+<V>Ce<V>&1f3BA >C;4*43g>&/0_3BA >C;4*43TPG(<2;R(]<23
;45&//*L;LMD*?0PG<MD(MD(*4`_¶C')(.<V3h;41V>C3B3:5C73BA >C;4*43h<2/JMD*LKD*43FMD*?0(<2`i7j5CK>&AA.12<V;4>CMD<25$/b5C7k>&12Q&*4+.KR>C35C7;45$`,A.12*Le¼
0.5&-+.1V*>&/00.- >C1"/W-`l+*LKD3-¼L`T>C<2/1I612<2c"*m>C/>&AA.12<V;4>CMD<25$/MD5G1V<2/.*?>CKnQ&*45$`,*MBKBI5&7./5&/4=98h-;412<V0.*?>C/3BA >&;L*43
ÂE3B*4*E¼o*E¶oQK¶ ¼qÆ Ç±ÈÕɧ¶p*4/.*LKR>&1nMD(.*45&KBIq5C7)3BA >C;4*435^"*K>&12Q$*L+.KR>&30*4^"*4125$A*40q7r-.KBMD(*K7rKD5&`sMD(<23Pm5&KDcW35&7
(<2` Æ Í)Èζhto*LMuv+*T>&/w>C12Q$*4+KR>K¶h')(.*,A.KD5xF*4;LMD<2^W<2y?>CMD<25&/z5C7G<MPG<2121)Q&<V^$*bMD(*,A.KD5xF*L;LMD<2^"*T3BA >&;L*TPG<MD(
>{3FMBKD-.;LMD-.KD*D¶|.5&K<2/3FMR>C/;4*E¼kMD(.*bA.KD5xF*4;MD<V^W<2y?>MD<V5&/}5&7HUW->CMD*LKD/.<25$/>&12Q$*4+KR>S<23>{Í)=90<V`,*L/3B<25$/~*41212<VAMD<2;
3BA >C;4*E¶mS-;R(wMD(*g3D>&`,*TMD(*{>&/JMD<VUJ- >CMD*KD/<25$/z>&12Q&*4+.KR>~<V3b0.*LMD*LKD`,<2/.<V/.QaMD(*g(JI.A*KD+5$12<2;S3BA >C;4*{PG<MD(
MD(*S1V<2/.*?>CKS>&+.3B5$12-.MD*E¶m')( >M?€ 3TPG(JIz<Mg<V3T<2/JMD*LKD*43FMD<2/QMD5125J5$c_<V/JMD5~MD(*a+.-/ 012*43,5&76/.5$/K=O8h-;L1V<V0*?>&/
3BA >C;4*43-¼oPG(<2;R(PH>C3;45$/.3FMBKD-;LMD*?0XPG<MD(MD(.*b(*412A~5&7H3B-.+ >C1VQ&*4+.KR>C3-¶Y@M<236c/.5?PG/ Æ Ö²Èμ>&/JMD<VUJ- >CMD*KD/<25$/
>&12Q&*4+.KR>;45$/JMR>&<2/MD(*hPG(5&1V*:MD(.KD*4*:MOIA*43‚5&7.3B-+ >C12Q$*4+KR>&3n3B*4;45&/ 0.>CKBI65CKR0.*LK±×C;45&`,A12*Le¼?05$-+.12*)>&/00.- >C1
/W-`l+*LKD3-¶C')(<23h>CKBMD<2;412*H<23h>&+5&-.MnMD(.*m+-./ 01V*L3
5&7/Í)=90.<2`,*4/.3B<V5&/l(JIA*LKD+5&1V<2;)3BA>&;4*D¼CPG(.<2;(lQ$*4/.*LKR>CMD*?0+JI
;45&`,A12*Leg/W-`N+*KD3m3B-+>&12Q$*L+.KR>K¶')(*6/.5&KD`T>C1V<2y?>MD<25$/a5C7n+-./ 0.12*f1V<2/.*?>CK;45&/Q&KD-.*4/;L*PH>C3;L5$/3FMBKD-.;LMD*?0
>&/0{MD(*Q$*45&`,*LMBKD<2;?>&1‚`,*?>&/.<V/.QN5C7
MD(*Q&*LMBMD<2/Q,5&+xO*4;LMD3HPH>C3f*LeA.1=>C<2/*?0g<V/{MD(<23>CKBMD<2;412*E¶
ƒ ¥š¢.„…š£4¢.†‚…š£
‡ ¶‰ˆŠB‹ŒCŽX NKµ4;EG-ACµ9@)H9G-AE¯N@@$‘‘I79H9H9;D½‚G§¯C°K81H/;DG-AE7š¶ Ï{’ ¶Ä×4@±JK:K@K¼ ‡?“$”&• ¶ Ï ÔEÍCÇÀGE¶
Ç<¶‰ˆŠB‹ŒCŽql'µ4;EG-AEµ/@)H9G-AE¯E;À«974H/B1½4H/;D½_:K;)H9»±µKJK¹1H9Ð4797q–&– ’ @DACB->R¶'G1©4¶ Ï ‡?“ Ô “ ¶ Ï{— Ç)Ô9™˜&˜Cɧ¶
Ï ¶9ÔNÇ “ Ï ÔCÖEÖ<¶
ÍK¶‰šG›.œNŽL&žLŸ"›. {ššH¡o¢£›&‹Š?ŸJŠC NV¡o¢¥¤4‹ ¦:§D›Ž{š š<µ4;EG-AEµ/@)H9G-AE¯C@ÑH'@²·{@²«9»±B-©Dµ/@)>"7Ŷ Ï @²=
8±@²H9¬9×98§·/=ίE;À@D8-@)Hš¶4J<H9=•AE@<¼ ‡?“&• Ö<¶ Ï Ç&˜DͅGE¶
Ô4¶‰¨¤&©Cª4«›Ž ¬w­NV¡¢®¬C¯¤"ŸJŠC}°ˆN;DH ‘Ñ;Eµ4>$H'@D°ˆ7+¹§«9«974´/AE74F/B-G1:4@)°z>";-·'B§«97µ/@)G-G1«/;DB1H979°
±Ñ;)´‘@~–&–ºRµZ¶Å»±B1;E>R¶"G-B->R¶ Ï @)8±@)H4¬9×$8§·9=ίC;‚@D8-@)Hš¶š>@DACB->R¶$;D©D=ίN@<¼Ç&²&²EÍ<¶ Ï ­R´š¶Ç²Ô4¶ Ï
¶ •W‡ Ï “$• ¶
Ö<¶‰°f9³ Š&C¬NˆN´G9$@DG-G§«/;EB§H97/°T@)«4»±B-©Dµ_µ/@)8->"B-µ4H9;EG-AE7{Ô4¶ Ï @D8-@)H9¬4×9@)8±@)HŶ4J<H4=?A)¼ ‡?“&“$“ ¶ Ï ÔEÔÁGD¶ Ï
B1´Å¶4¯Œ! ‡$‡ ¶ ‡ ²K¶ “$“ ¼ — Í$²DÍ ” = “$“ ¶
˜K¶‰µŠL©$Ž ¶9³ ª"Œb°f ’ H/;)»±;E>"B-µKH9­!B´/µ4;EG-ACµ9@)H9G-AE¯N@<¶ Ï{’ ¶Ä×/@-JK:4@<¼ ‡?“ ˜&˜K¶ Ï ” Ô$˜…GE¶
” ¶‰¢£›&‹Š?ŸJŠCaNÅjH/;Dµ9>@)«47/8±@²Ð97/°<®‚¯_´9µ9;EB1:9AE74¯EH/;D>ˆ´/µ4;EG-ACµ9@)H9G-AE¯CBÀG…8±@²·'@)H4H9­!>µ/@DG1G1«/;DB1=
H979B->]–$–81¯4¶4¯DJK8-;D¯4¶ ’ @DAEB->@DAE79:4@<¶ Ï ‡?“"” Ô4¶ Ï,— ÖN¶ Ï ¶/Ç ‡ ˜ Ï ÇEÇ ‡ ¶
• ¶‰¢®¬C¯¤"Ÿ"Š&°ˆlD¯E°481H9;EG-AD7ÀH'@R·/7 ‘‘ÑB-µ4B1H9Ð47/µ4JCB->$­R®µ/@DG1G1«/;DB1H979°K®–&–AC;)»-7H/@-J4:K77ACB1®<HŶ
R…¶Kµ9;D©D«/B1>"­+»±B1;E>"B-ACµK797š¶ Ï ‡4“$• ÍK¶ Ï ¶ ‡ Ö<¶ Ï ¶ ˜ ‡ Ï “ ÍK¶
“ ¶‰¢®¬C¯¤"Ÿ"Š&6°ˆNEµ4;EB-:4AE79¯DH9­!BRµ/@)G-G1«9;EB1H47/°À7Á´9µ9;EB1:9AE74¯EH9­!BRG§¯C°K81H/;DG-AE7{–$–81¯4¶E¯DJ481;D¯9¶ ’ @²=
ACB->@)AE7/:K@K¶ Ï ‡4“$“ Ö<¶ Ï,— Ö<¶ Ï ¶ • Í Ï “ ²<¶
‡ ²<¶·´)§R›¬©&¬‹W¸ ŽT¨N¹E´/µ9;DB-:9AD7/µ9;)¯N@²H9H9­!BR74H9¯N@)µ47/@)H/ADH9­!B!@$‘‘79H4H9­!BIG1¯C°K81H/;DG-AE7g–&–!µZ¶D»-B-;E>R¶
G-B->R¶ Ï @D8±@²H9¬4×98§·9=ίC;…@)8±@)HŶ4J<H9=•AD@K¼ ‡4“$• ²<¶ Ï ­R´Å¶ ‡ Ç<¶ Ï ¶'Ç ” Ï Í ” ¶
;EG-AEJ<´479«'@¯Áµ4B§·@):4Ð979¨
‡ Í<¶ ‡ Ç<¶ ²)Ô
º £»
†‚¼Z¡½·¾¡…š¥n¿ÁÀ{¥
¼š¥¢K¡ ½/¥
 ·';D:9AC;DµÃ‘7/8§7/:<;D=•>@DACB1>@)AE79F9B-G-:K79®hH'@-JK:ż´/µ4;"‘ÑB1G-G-;Eµ
:K@$‘ÑB¸·'µ4­+»±B1;E>"B-ACµK797_@)8±@)H9G-:<;D»±;…»-;EG1J²·Ï @)µ9G-AE¯EB1H9H9;D»±;J<H979¯EB-µ9G§7/ACB-AD@K¶
8$=9`T>C<21Î×f#&ÄRÅjÆLVW. "!$#&%WÇ:!CÆDVÄR
Документ
Категория
Без категории
Просмотров
3
Размер файла
235 Кб
Теги
типа, пространство, порожденных, алгеброй, расслоения, гиперболическое, неевклидовой, антикватернионов
1/--страниц
Пожаловаться на содержимое документа