close

Вход

Забыли?

вход по аккаунту

?

Презентация

код для вставкиСкачать
Международная конференция
«Дни геометрии в Новосибирске, 2013»
МЕЛКАЯ ВОДА НА СФЕРЕ:
ТОЧНЫЕ РЕШЕНИЯ И КОМПЬЮТЕРНОЕ
МОДЕЛИРОВАНИЕ
Иванова Анна Владимировна
Остапенко Владимир Викторович
Черевко Александр Александрович
Чупахин Александр Павлович
Институт математики им. С. Л. Соболева СО РАН, Новосибирск,
28 – 31 августа, 2013 г.
Физическая
постановка задачи
Движение сплошной среды (газ, жидкость) на вращающейся притягивающейся сфере
(атмосфера планет, Мировой океан).
Гравитация и вращение, действуя в различных направлениях, обеспечивают глобальный
баланс среды. На этом фоне развиваются движения среды различных масштабов.
Перемещение потока, несущего обломки
деревьев, домов и т.д., смытые в океан во время
цунами в Японии (концентрация примеси)
Ученые работали под руководством россиянина Николая
Максименко. Используя данные спутниковых наблюдений,
а также информацию, полученную от 15 тысяч плавучих
датчиков, специалисты попытались предсказать, как будет
двигаться поток, несущий обломки деревьев, домов и так
далее, смытые в океан во время цунами 11 марта 2011
года.
Как показала разработанная авторами модель, первое
столкновение потока с Гавайями произойдет через два
года, а второе - через пять лет.
Международный тихоокеанский исследовательский центр
при университете штата Гавайи
Модель мелкой воды
•Малость параметра мелкой воды
a0
•Бессдвиговое течение по вертикальной
переменной.
R0 F a 0 - радиус сферы
V0
2a0
V0
gH
- число Россби,
0
- число Фруда.
0
Н 0 - характерный вертикальный масштаб
V 0 - масштаб горизонтальной скорости
Значения для Земли
r0 R
1
0
~ 94 ,
f0 F
2
H0
2
~ 10 .
Дифференциальные
уравнения модели
1 2
2
D V ctg r0V cos 4 r0 h sin cos f 0 h ,
1
DV Vctg r0 cos f 0 (sin ) h ,
1
Dh
(sin
)
h (V ( sin ) ) 0 ,
1
D t (sin ) V - полная производная вдоль поверхности сферы,
0 - дополнение до широты,
, V
- меридиональная, долготная компоненты скорости.
- глубина слоя,
h 0
0 2
- долгота;
Особенности:
•Гиперболическая система на компактном многообразии
•Наличие особенностей в решении (сильные и слабые разрывы)
•Построение решения в целом – склейка решений в различных областях,
частях сферы
Интегральные законы
сохранения
qn dl dt 0
t1 S
t2
Закон сохранения массы
h ds
S
Закон сохранения q ds
полного импульса S
t2
t1
2
gh
( q(vn ) n ) dl 2
t1 S
t2
t2
t1
S
h F ds dt 0
Закон сохранения энергии является выпуклым расширением.
F F k Fc
F k 2 w v – сила Кориолиса,
Fc w ( w x ) – центробежная сила.
Примеры
разрывных решений
Состояние равновесия
Состояние равновесия
V 0,
h ( ) h 0 2
0
r
8 f0
Разрывное состояние равновесия
sin 2
V 0,
2
r0
2
sin , k ,
h1 8 f0
h ( ) 2
h r0 sin 2 , ,
k
2 8f
0
h ( k )
В дальнейшем они используются как начальные
данные для нестационарных решений
Разностная схема для
двумерной задачи
Разностная схема, предложенная В.В. Остапенко
i i ,
: i i 0, N ,
i j ,
j 0 , M 1,
:
1
i 0 , N 1,
,
2
j
1
j 0 , M 1,
,
2
Закон сохранения массы
n 1
r sin h , h , ( q i 1, sin i 1 q i , sin i )
n
n
n
( Q , j 1 Q , j )
n
n
n
0,
Закон сохранения импульса
n 1
r sin i
g
2
qi, j qi, j
n
n
2
2
Qi, j
Qi, j
n
n
n 1
2
2
W
2
n 1
h i , j sin
2
n
n
2
i cos i ( in, j ) 1 WQ
( Q ) i 1 , j sin i 1 ( Q ) i 1 sin i 1
n
( qV ) i , j 1 ( qV ) i , j 1
n 1
n
2
n 1
i, j
n 1
sin 2 i Q i , j V i , j cos i ,
n
n 1
q i , j V i , j cos i Wq
n
n 1
i, j
n
( QV ) i , j 1 ( QV ) i , j 1
n
2
n 1
( h ) i , ( h ) i , 1
2
g
n 1
n 1
r sin i
n
( h ) , j ( h ) 1, j
2
sin i
( q ) i 1 , j sin i 1 ( q ) i 1 sin i 1
n
sin 2 i ( i , j ) 2 ,
n
Примеры расчетов
Шеврон с углом на экваторе
Распад разрыва на сфере
Эффекты:
Экватор
1)
Кумуляции для хребтовшевронов или хребтовколец.
2)
Воспроизведение хребта в
противоположной точке
сферы ( в ослабленном
виде)
3)
Воспроизведение хребта в
начальной позиции (еще в
более ослабленном виде)
Линии тока
а(t=0)
в(t=50)
б(t=10)
г(t=120)
Примеры расчетов
Два шеврона в разных местах
Экватор
Линии тока
а(t=0)
в(t=120)
б(t=50)
г(t=225)
Примеры расчетов
Эллиптическое кольцо
Экватор
Кумуляция происходит в фокусах эллипса
Линии тока
а(t=0)
в(t=90)
б(t=7)
г(t=250)
Эти задачи имеют наглядную физическую интерпретацию, водяные хребты в виде шевронов встречаются на снимках со
спутников поверхности Земли и других планет (как облаков в атмосфере, так и течений в океане). Хребет в виде
эллиптического кольца моделирует распространение волн при падении метеорита или другого крупного объекта в океан.
Зональные течения
2
r0
2
sin ,
h1 8 f0
h ( , ) 2
h r0 sin 2 ,
2 8f
0
0 1
2
h 2 h1 8
r0
8 f0
sin ,
2
1 Помимо состояния равновесия существует класс
точных зональных течений, в которых
меридиональная скорость 0 , а скорость по
параллелям V 0 . Течение направлено вдоль
параллелей.
Существуют решения, сопрягающие состояние
равновесия с такими течениями через контактный
разрыв.
Профиль свободной поверхности
жидкости (1) относительно
вращающейся сферы (2) в стационарном
решении с контактным разрывом при
2
h1 7 ,
r0
8 f0
1,
1 2
3
Примеры расчетов
Устойчивость зонального течения относительно
периодического возмущения границ
Профиль глубины h
t=0
Долготная компонента скорости V
t=0
t=10
t=200
t=10
t=200
Примеры расчетов
Устойчивость зонального течения
относительно периодического
возмущения границ
V – долготная скорость
Струйные течения и
шевроны на Юпитере
На снимке «Кассини» выделены «шевроны» и антициклон South Equatorial Disturbance
(SED). (Здесь и ниже изображения NASA / JPL / Space Science Institute.)
Обратите внимание на линию маленьких тёмных V-образных «шевронов»,
которая сформировалась вдоль одного края течения и мечется то на запад, то
на восток. Со временем относительно чёткая линия превращается в волну, и
«шевроны» движутся вверх и вниз (то есть на север и юг) — точно так же, как
на Земле.
http://science.compulenta.ru/666521/
Примеры расчетов
Шевроны с зональным течением
Вихри в трехмерном виде
при t=60
Заключение
Приведена система законов сохранения массы и полного импульса для
уравнений мелкой воды на вращающейся притягивающей сфере.
Выполнены численные расчеты задач о распаде разрыва в двумерном случае.
1) Представлены результаты численного моделирования задачи о распаде разрыва
в результате обрушения водяных «хребтов» различной геометрии.
Основные эффекты при распространении возмущений на сфере:
периодическое повторение основных этапов,
кумулятивный эффект (фокусировка) возмущений,
образованием вихрей различных масштабов, взаимодействие их между
собой: рождение и уничтожение.
2) Представлены результаты численного моделирования распространения
возмущений на контактном разрыве между состоянием равновесия и зональным
течением с возмущением
Показана устойчивость зонального течения относительно периодического
возмущения границы.
Литература
•ЧеревкоА.А., Чупахин А.П. Уравнения мелкой воды на вращающейся притягивающей
сфере// ПМТФ. 2009. №2
•ЧеревкоА.А., Чупахин А.П. Уравнения мелкой воды на вращающейся притягивающей
сфере II. Простые стационарные волны и звуковые характеристики// ПМТФ. 2009. №3
•Остапенко В.В., ЧеревкоА.А., Чупахин А.П., О разрывных решениях уравнений
мелкой воды на вращающейся притягивающей сфере // Изв. РАН. МЖГ. 2011. № 2.
С. 33-51.
•Иванова А.В., Остапенко В.В., Чупахин А.П., Численное моделирование течений
мелкой воды на вращающейся притягивающей сфере // Вестник НГУ. Серия:
Математика, механика, информатика. 2010. Т.10, вып. 3. С. 30-45.
Спасибо за внимание!
Документ
Категория
Презентации по физике
Просмотров
1
Размер файла
4 151 Кб
Теги
1/--страниц
Пожаловаться на содержимое документа