close

Вход

Забыли?

вход по аккаунту

?

Радиоастрономия и астрофизика

код для вставкиСкачать
Характеристики поля
излучения в астрофизике
Содержание
• Интенсивность, яркость, плотность
потока
• Поляризация излучения
• Перенос излучения в среде
• Тепловое излучение тел, яркостная и
эффективная температуры
Интенсивность и яркость
Интенсивность излучения (Iν) определяется как
спектральная плотность мощности, проходящей
через единичную площадку, ориентированную
перпендикулярно к вектору групповой скорости, в
единичный телесный угол.
В пустом пространстве интенсивность излучения
вдоль луча постоянна.
dE 1 I dA1 d 1 d 1 dt dE 2 I (1)
d 1 d 2 d 1 dA2 R12
(2)
dA 2 d 2 d 2 dt
d 2 dA1 R 21
R12 R 21
Интенсивность излучения поверхности объекта
обычно называется его яркостью (B)
Плотность потока
Интеграл от яркости по всему источнику дает
плотность потока излучения от источника:
Единицей плотности потока в радиоастрономии
является 1 Янский (1 Ян) = 10-26 Вт м-2Гц-1
Иногда плотность потока определяется несколько
иначе (Θ – угол, отсчитываемый от центра источника):
Разница между этими определениями существенна
только для очень протяженных объектов.
Поляризация излучения
Эллипс поляризации для излучения с
волновым вектором, направленным
на нас (p – отношение осей эллипса).
Направление вращения учитывается
знаком p.
Параметры
Стокса
c l V
I
Q
I cos 2 Q U
2
I
2
(нормированные)
Сфера Пуанкаре
Если использовать
параметры Стокса в
качестве декартовых
осей, то любое
состояние
поляризации будет
соответствовать точке
на поверхности сферы
радиусом S,
называемой сферой
Пуанкаре.
Связь параметров Стокса с
измеряемыми величинами
Для антенн, измеряющих
две линейные поляризации
две круговые поляризации
Перенос излучения
dI dx
I Уравнение переноса излучения
(без учета коэффициента
преломления)
αν – коэффициент поглощения (может быть
отрицательным)
εν – коэффициент излучения
Для изотропного излучателя
P
4
Коэффициенты поглощения и излучения
определяются микрофизикой и состоянием вещества
Частные случаи
• Только излучение (αν = 0)
x
I ( x ) I ( x 0 ) ) dx (
x
x0
• Только поглощение (εν = 0)
x
I ( x ) I ( x 0 ) exp ( x ) dx x0
Оптическая толща
x
) dx (
x
x0
1 Оптически толстый случай
1 Оптически тонкий случай
Средняя длина свободного пробега фотона l 1 / Функция источника
S dI d
Функция источника часто
находится проще, чем
коэффициент излучения
I S
Решение уравнения переноса
t ( 0® X )
t ( x ¢® X )
é
ù
é
ù
ê X
ú X
ê X
ú
In ( X ) = In (0)exp ê - ò an x ¢ dx ¢ ú + ò en x ¢ exp ê - ò an x ¢¢ dx ¢¢ ú dx ¢
ê 0
ú 0
ê x¢
ú
ê
ú
ê
ú
ë
û
ë
û
( )
( )
( )
Физ. смысл: первое слагаемое –
начальное излучение, ослабленное
поглощением, второе – излучение
источника с учетом поглощения.
I ( ) I (0) e
S ( ) e
0
( )
d Пример
S const
I ( ) I (0) e
1
Обычно
измеряется
S 1 e
I S
I I (0 ) 1 S I I (0) S I (0) 1 e
Образование
спектральных линий в
однородных облаках
Уравнение переноса в неоднородной
преломляющей среде
В прозрачной и неизлучающей неоднородной
изотропной среде с показателем преломления n
I
n
const
2
d Iv n
2 I
dx n 2
Тепловое излучение
В равновесном случае
S B (T )
B (T ) 2hν
c
2
3
Закон Кирхгофа
1
h
Функция Планка
e kT 1
Интенсивность равновесного излучения в
прозрачной изотропной среде с показателем
преломления n равна n2Bν(T).
ФДТ и равновесное тепловое
излучение
• Флуктуационно-диссипационая теорема
(ФДТ) связывает равновесное
флуктуационное электромагнитное поле с
величиной потерь в некотором объеме. Она
представляет собой обобщение закона
Кирхгофа.
• В формулы ФДТ для равновесных
флуктуаций входит слагаемое,
соответствующее нулевым колебаниям.
Однако, в формулах для потока энергии его
не надо учитывать, так как это всегда стоячие
волны.
Приближения Рэлея-Джинса и Вина
• Приближение Рэлея-Джинса (hν << kT)
B (T ) 2 k
c
2
T 2
2 kT
2
• Приближение Вина (hν >> kT)
B (T ) 2 h
c
2
3
e
h
kT
Законы теплового излучения
• Закон смещения Вина
m ax 2.82
kT
6 10 T
10
[Гц]
h
• Закон Стефана-Больцмана
F B cos d d B d B T
0
σB – постоянная Стефана-Больцмана
4
Излучение нагретых тел
I B (T ) 1 R R – коэффициент отражения
R = 0 → абсолютно черное тело (АЧТ)
Отражение и преломление волн
Из равенства
тангенциальных компонент
волновых векторов:
1 0
sin 2
sin 0
1
2
n1
n2
Амплитуды отраженной и преломленной волн
находятся из условий непрерывности
соответствующих компонент электрического и
магнитного поля на границе раздела.
Формулы Френеля
• Для случая, когда вектор E перпендикулярен
к плоскости падения
E 0 E1 E 2
k 0 z E 0 E1 k 2 z E 2
Отсюда:
E1 E2 k0 z k2 z
k0 z k2 z
2k0 z
k0 z k2 z
E0 E0 1 cos 0 2 1 sin 0
1 cos 0 2 1 sin 0
2
2
2 1 cos 0
1 cos 0 2 1 sin 0
2
E0
E0
Коэффициент отражения по
мощности
При нормальном падении (как для
прозрачной, так и для
поглощающей отражающей среды)
Если обе среды прозрачны, то при
наклонном падении для случаев,
когда вектор электрического поля
перпендикулярен и параллелен
плоскости падения
sin (q 2 - q 0 )
2
R^ =
R =
sin (q 2 + q 0 )
2
tg 2 (q 2 - q 0 )
tg 2 (q 2 + q 0 )
При q 0 + q 2 = p / 2 R = 0, так что в отраженном
свете электрическое поле будет перпендикулярно к
плоскости падения. Это - угол Брюстера или угол
полной поляризации
Если отражающая среда оптически
2
менее плотная, то при 0 r , где
tg p sin r n 2 / n1 происходит полное
1
отражение падающей волны
Яркостная температура
• Яркостная температура излучения TB
определяется через соотношение
I B (T B )
• Часто она определяется, используя
приближение Рэлея-Джинса (TR).
I 2 kT R
2
Уравнение переноса для
яркостной температуры
T R T0 e
T ( ) e
d 0
T R T0 e
T 1 e
T R T0 T T0 1 e
T R ~ T ( ~ 1)
Эффективный уровень выхода
излучения из оптически толстого
слоя
Функция взаимной когерентности
• При радиоинтерферометрических измерениях непосредственно
измеряется так называемая функция взаимной когерентности
Вольфа или, что то же самое, корреляционная функция
случайного поля, создаваемого источниками, расположенными
в дальней зоне антенны.
Для абсолютно некогерентного и стационарного во времени излучения
(что обычно имеет место в радиоастрономии):
Средняя интенсивность излучения на частоте ω
по направлению n
Случайное поле
в этом случае будет стационарным
процессом как по временным, так и по пространственным
координатам, и корреляционная функция будет зависеть лишь от
разности аргументов:
Пуст
ь
(
– временной спектр сигнала)
Тогда
Временная корреляционная функция
сигнала
Теорема ван Циттерта - Цернике
Документ
Категория
Презентации по физике
Просмотров
10
Размер файла
868 Кб
Теги
1/--страниц
Пожаловаться на содержимое документа