close

Вход

Забыли?

вход по аккаунту

?

180.Журнал Сибирского федерального университета. Сер. Техника и технологии №8 2014

код для вставкиСкачать
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Журнал Сибирского федерального университета
2014
Journal of Siberian Federal University
7 (8)
Техника и технологии
Engineering & Technologies
???????????? ?????
???????? ??? ?.?. ???????
???????? ??? ?.?. ?????????
???????? ??? ?.?. ???????????
???????? ??? ?.?. ???????
??.-????. ???, ?-? ???.-???. ????
?.?. ???????
??.-????. ???, ?-? ????. ????
?.?. ??????
??.-????. ???, ?-? ???.-???. ????
?.?. ????????
??.-????. ???, ?-? ???.-???. ????
?.?. ????
Editorial Advisory Board
Chairman:
Eugene A. Vaganov
Members:
Josef J. Gitelzon
Vasily F. Shabanov
Andrey G. Degermendzhy
Valery L. Mironov
Gennady L. Pashkov
Vladimir V. Shaidurov
Vladimir V. Zuev
Editorial Board:
Editor-in-Chief:
Mikhail I. Gladyshev
Founding Editor:
Vladimir I. Kolmakov
Managing Editor:
Olga F. Alexandrova
Executive Editor for Engineering &
Technologies:
Vladimir A. Kulagin
CONTENTS
Anton S. Mikhalev and Anatoly I. Rouban
Global Optimization on a Set of Continuous and Discrete
Variables with Unordered Possible Values
? 886 ?
Evgeny P. Khagleev
The Stefan Problem Solution by the Moving Boundary Conjugate
Equation
? 894 ?
Igor V. Lyutikov, Valeriy V. Zamaraev,
Аlexander А. Kuchin, Alexey N. Fomin,
Nikolay P. Bogomolov and Vladimir A. Kopilov
The Intensive Maneuverable Air Targets Detection Multichannel
Algorithm for Pulse-Doppler Onboard Radar Using the a Priori
Uncertainty of Signal Frequency Deviation
? 911 ?
Peter N. Kuznetsov,
Anastasia V. Kazbanova, Ludmila I. Kuznetsova,
Ludmila S. Tarasova and Vladimir P. Tverdokhlebov
Investigation of Physicochemical Properties of Partially Spent
Platinum$Rhenium Reforming Catalyst
? 919 ?
Vadim M. Bespalov,
Sergey B. Sidelnikov and Andrei S. Sidelnikov
Research of Properties Deformed Semi-Finished Products from
Aluminum-Zirconium Alloys, Obtained with Using Combined
Methods of Casting and Metal Forming
? 929 ?
???????? ?.?. ?????? ????????? ?.?. ???????
???????????? ??????? ?.?. ?????????
????????? ? ?????? 26.12.2014 ?. ?????? 84x108/16. ???. ???. ?. 10,1.
??.-???. ?. 9,6. ?????? ???. ?????? ????????. ????? 1000 ???. ????? 3474.
?????????? ? ?? ??? ???. 660041, ??????????, ??. ?????????, 82a.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Editorial board for Engineering &
Technologies:
Vladimir Kulagin ? Series Editor, Siberian
Federal University, Russia
Yuri Alashkevich ? Siberian State
Technological University, Russia
Sereeter Batmцnkh ? Institute of Heat
Engineering and Industrial Ecology
Mongolian Academy of Sciences,
Mongolia
Ralph Berger ? Institute of Food Chemistry,
Leibniz University of Hannover,
Germany
Valery Dovgun ? Siberian Federal
University, Russia
Carsten Drebenstedt ? Technische
University Bergakademie Freiberg,
Germany
Yuri Galerkin ? Saint Petersburg State
Polytechnic University, Russia
Gennady Gritsko ? Institute of Petroleum
Geology and Geophysics Russian
Academy of Sciences, Siberian Branch,
Russia
Georg Guggenberger ? Institute of Soil
Science of Leibniz University of
Hannover, Germany
Lev Endzhievsky ? Siberian Federal
University, Russia
Feng-Chen Li ? School of Energy Science
and Engineering Harbin Institute of
Technology, China
Vladimir Makarov ? Siberian Federal
University, Russia
Dmitriy Markovich ? Institute of
Thermophysics Russian Academy of
Sciences, Siberian Branch, Russia
Aleksandr Mineev ? Siberian Federal
University, Russia
Vladimir Moskvichev ? Special Designing
and Technological Bureau ?Nauka?
Krasnoyarsk Scientific Center of the
Russian Academy of Sciences, Siberian
Branch, Russia
Bernard Nacke ? Institute of
Electrotechnology Leibniz University
of Hannover, Germany
Oleksandr Nemchin ? CEO of the State
Research Institute of Innovative
Technologies in Power Energy and
Energy Efficiency of the Fuel and
Energy Ministry of Ukraine, Ukraine
Valeriy Nikulin ? Kamsk Institute of
Humanitarian and Engineering
Technologies, Russia
Valery Okulov ? Technical University of
Denmark, Denmark
Oleg Ostrovski ? University of New South
Wales, Australia
Ivan N. Dovzhenko,
Nikolai N. Dovzhenko and Sergey B. Sidelnikov
Development of Functioning Models and Design of the Unit
of Combined Rolling-Extruding for Processing of Non-Ferrous
Metals and Alloys
? 933 ?
Juri A. Gorbunov
Development of Rolled and Cabling-Wiring Production from
Aluminum Alloys at Plants in Russia
? 938 ?
Evgeny N. Evstifeyev,
Tatyana N. Savuskan and Tatyana A. Lopatukhina
Low-Toxic Core Sands For Mould Cores Pattern $ Making
in a Heated Rig
? 947 ?
Igor Z. Krasnov
Access Matrix as a Passive Element in the Protection of
Information Resources
? 959 ?
Kara-kys V. Kenden and Vladimir A. Tremyasov
Article Describes the Features of Electrical Supply System
Settlements of the Republic of Tyva
? 966 ?
Elena V. Fedotova, Artem A. Zholudev,
Viktor G. Izosimov, Yuri D. Shpiruk,
Yuri A. Maglinets and Gennadi M. Tsibul?skii
Analysis of the Seasonal Dynamics of Vegetation on Remote
Sensing Data
? 976 ?
Ksenia V. Shatrova,
Yuri A. Maglinets and Gennadi M. Tsibul?skii
The Model of Submission of Information on the State and
Dynamics of Lands of Agricultural Purpose
? 984 ?
Snezhana V. Platonova
Investigation of the Influence of Penetration Slit at its Foundation
Rainfall and the Stress State of Subgrade
? 990 ?
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Harald Oye ? Norwegian University of
Science and Technology, Norway
Vasili Panteleev ? Siberian Federal
University, Russia
Sergey Panko ? Siberian Federal
University, Russia
Petr Polyakov ? Siberian Federal
University, Russia
Victor Timofeev ? Siberian Federal
University, Russia
Ibragim Khisameev ? Kazan State
Technological University, Russia
Anatoly Shvidenko ? International Institute
for Applied Systems Analysis, Austria
Galina Chiganova ? Siberian Federal
University, Russia
????????????? ? ??????????? ???
?? ? ??77-28-722 ?? 29.06.2007 ?.
????? ???????? ? «???????? ??????? ????????????? ??????? ???????? ? ???????, ? ??????? ??????
???? ???????????? ???????? ??????? ?????????? ??????????? ??
????????? ?????? ??????? ??????? ?
????????? ????» (???????? 2010 ?.)
Sergey V. Kkopylov
Consideration of the Influence of Local Road Network Condition
on the Social, Economic and Industrial Development of Ulus, the
Republic of Sakha (Yakutia)
? 998 ?
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
СОДЕРЖАНИЕ
А.С. Михалев, А.И. Рубан
c?%K=???= %C2,?,?=?, ?= ??%???2"? ??C!?!/"?/. , ?,?*!?2?/. C?!?????/. ? ??3C%! ?%????/?,
"%??%??/?, ??=???, ?,
? 886 ?
Е.П. Хаглеев
p????,? ?=?=?, q2?-=?= ? ,?C%???%"=?,?? 3!="???, ?%C! ???, ?= C%?",??%L ?!=?,??
? 894 ?
И.В. Лютиков, В.В. Замараев, А.А. Кучин,
А.Н. Фомин, Н.П. Богомолов, В.А. Копылов
l?%?%*=?=???/L =??%!,2? %K?=!3???, ,?2???,"?% ?=??"!,!3??,. "%??3??/. ????L ?? ,?C3????%?%C??!%"?*%L K%!2%"%L !=?,%?%*=?,%??%L ?2=??,,, 3?,2/"=??,L =C!,%!?3? ??%C!???????%?2? ?=?2%2?%L
??",=?,, ?,??=?=
? 911 ?
П.Н. Кузнецов, А.В. Казбанова,
Л.И. Кузнецова, Л.С. Тарасова, В.П. Твердохлебов
h?????%"=?,? -,?,*%-.,?,???*,. ?"%L?2" ?=?2,??% %2!=K%2=??%?% C?=2,?=-!??,?"%?% *=2=?,?=2%!=
!,-%!?,??=
? 919 ?
В.М. Беспалов, С.Б. Сидельников, А.С. Сидельников
h?????%"=?,? ?"%L?2" ??-%!?,!%"=??/. C%?3-=K!,*=2%" ,? =???,?,?"%-?,!*%?,?"/. ?C?="%",
C%?3????/. ?%"??????/?, ??2%?=?, ?,2? , %K!=K%2*, ?="???,??
? 929 ?
И.Н. Довженко, Н.Н. Довженко, С.Б. Сидельников
p=?!=K%2*= ?%????L -3?*?,%?,!%"=?, , *%??2!3*?,L =?!??=2= ?%"??????%L C!%*=2*,-C!???%"=?, ??
%K!=K%2*, ?"?2?/. ??2=??%" , ?C?="%"
? 933 ?
Ю.А. Горбунов
p=?",2,? C!%,?"%??2"= C!%*=2= , *=K????%-C!%"%??,*%"%L C!%?3*?,, ,? =???,?,?"/. ?C?="%" ?=
?="%?=. pt
? 938 ?
Е.Н. Евстифеев, Т.Н. Савускан, Т.А. Лопатухина
l=?%2%*?,??/? ?2?!???"/? ????, ?? ,??%2%"???, ?,2?L?/. ?2?!???L " ?=?!?"=??%L %??=?2*?
? 947 ?
И.З. Краснов
l=2!,?= ?%?23C= *=* C=??,"?/L .?????2 ?=?,2/ ,?-%!?=?,%??/. !??3!?%"
? 959 ?
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
К.В. Кенден, В.А. Тремясов
n???*= ?%??%?2, -%2%.??*2!,???*,. C!?%K!=?%"=2???L " ?,?2??=. ="2%?%??%?% .??*2!%??=K???,
p??C3K?,*, ?/"=
? 966 ?
Е.В. Федотова, А.А. Жолудев, В.Г. Изосимов,
Ю.Д. Шпирук, Ю.А.Маглинец, Г.М. Цибульский
`?=?,? ???%??%L ?,?=?,*, !=?2,2????%?% C%*!%"= ?= %??%"? ?=??/. ?,?2=??,%??%?% ?%??,!%"=?,
g???,
? 976 ?
К.В. Шатрова, Ю.А. Маглинец, Г.М. Цибульский
l%???? C!???2="???, ,?-%!?=?,, % ?%?2% ?,, , ?,?=?,*? ?????? ?????*%.%? L?2"???%?% ?=??=???,
? 984 ?
С.В. Платонова
h?????%"=?,? "?, ?,
?!3?2%"%?% %??%"=?,
?=??3K???,
????"%?% -3??=???2= ?= ??% %?=?*, , ?=C! ????%? ?%?2% ?,?
? 990 ?
С.В. Копылов
r??2 "?, ?, ?%?2% ?, ???2?%L ?%!%??%L ??2, ?= ?%?,=???%?, C!%,?"%??2"???%? , .*%?%?,???*%?
!=?",2,? 3?3?%" !??C3K?,*, q=.= (?*32, )
? 998 ?
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 886-893
~~~
??? 681.513.5; 517.977
Global Optimization on a Set
of Continuous and Discrete Variables
with Unordered Possible Values
Anton S. Mikhalev and Anatoly I. Rouban
Siberian Federal University
79 Svobodny, Krasnoyarsk, 660041, Russia
Received 03.06.2014, received in revised form 04.11.2014, accepted 02.12.2014
The new algorithm of fi nding of a global minimum on the presence of constraints type of
inequalities on a set of continuous and discrete variables with disorder possible values is offered.
The idea of this approach is to separate at each iteration stage trial motions and working step,
and also the effective information processing obtained in the sample points. Existence of discrete
variables with unordered possible values leads to the solution of a sequence of tasks of global
minimization of multiextremal functions on a set of only continuous variables in the presence of
their constraints type of inequalities. As a result, among the obtained optimum solutions chooses
the best solution.
Keywords: global optimization, continuous and discrete variables, selective averaging of required
variables, constraints type of inequalities.
?????????? ??????????? ?? ?????????
??????????? ? ?????????? ??????????
? ???????????????? ?????????? ??????????
?.?. ???????, ?.?. ?????
????????? ??????????? ???????????
??????, 660041, ??????????, ?????????, 79
?????????? ????? ???????? ?????? ??????????? ???????? ??? ??????? ??????????? ????
?????????? ?? ????????? ??? ???????????, ??? ? ?????????? ?????????? ? ????????????????
?????????? ??????????. ???? ??????? ??????????? ? ?????????? ?? ?????? ????????
????? ??????? ???????? ? ???????? ????, ? ????? ? ??????????? ????????? ??????????,
??????????? ? ??????? ??????. ??????? ?????????? ?????????? ? ????????????????
?????????? ?????????? ???????? ? ??????? ?????????????????? ????? ??????????
??????????? ?????????????????? ??????? ?? ????????? ?????? ??????????? ??????????
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: ai-rouban@mail.ru
# 886 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Anton S. Mikhalev and Anatoly I. Rouban. Global Optimization on a Set of Continuous and Discrete Variables?
??? ??????? ????? ??????????? ???? ??????????. ????? ?????????? ??????????? ??????? ?
????? ?????????? ?????????.
???????? ?????: ?????????? ???????????, ??????????? ? ?????????? ??????????,
??????????? ?????????? ??????? ??????????, ??????????? ???? ??????????.
1. ????????
?????? ?????? ???????????? ???????? ??????? ??????? ???????? ????? ?? ?????????? ?
??????????? ????? ? ???????. ??????????? ???????????? ?????, ??????????? ? ?????????
?????? ???????????? ????????????, ????? ???? ??????? ? ??????? ???????????. ??? ????????? ???????? ??????? ??????????? ?????????? ???????????, ?????????? ?????????????? ???????? ? ????????????????, ??????????? ??????????, ?????????????? ???????? ??????????
???????? ????????, ? ?.?. ????????? ???????? ??????????, ???????????? ? ??????????????
??????????? ??????????? ??????????? ?????????? ? ??????? ????????? ???????? ??????
??????????.
???????? ????????? ??? ??????????? ??????????? ????????????????????? ???????
??????? ? ?? ????????? ??????????, ???????? ??? ???????????, ??? ? ?????????? ??????????, ???????? ????? ??????????? ? ?????????? ?????????? ? ??. ??????????? ?????????
??????? ?????????? ?????????? ??????????? [1?8].
? ?????? ?????? ??????????? ????? ???????? ?????? ??????????? ???????? ? ?????????????? ???????????? ?????????? ??????? ?????????? ??? ??????? ??????????? ???? ?????????? [4] ? ???????????? ????????? ??????????: ??????????? ?????????? ? ??????????
?????????? ? ???????????????? ?????????? ??????????.
2. ?????????? ??????
?????????? ??????????, ??????????? ?? ????????? ?? ????????? ????????, ???????
????? ????????? ?? ??? ??????.
? ?????? ????? ?????? ????? ?????????? ??????????, ????????? ???????? ??????? ?????????????. ??? ??? ???????? ???????? ???????????????? (?? ?????????? ???? ? ??????), ?
??? ?? ???????????? ??? ?? ???????? ?????? ???????, ??? ?????? ????????????? ??, ? ??? ??????? ?????? ??????????? ? ?????????? ??? ??? ????????? ????????. ???? ????? ??????????
?????????? ????? ?????????? ? ?????? ??????. ?????? ??? ?????? ?????????? ?????????? ? ?
?????????????? ?????????? ?????????? ? ? ????????? ?????????? ? ????? ???????? ????? ? ????????????? ????????? ?????????? ???????????.
?????????? ???????? ???????? ?????????? ??????? ??????? ?????? ??????????
f(x, y) ? ?????? ???????????-?????????? M j ( x, y ) 0, j = 1, m( y ) , ??? x = (x1 ?, xk) ? k ??????????? ??????????, y ? ?????????? ?????????? ? r ???????????????? ?????????? ?????????? y1, ?, yr.
??????? ???? ?????????????? ?????????? ?????????? ???????? ? ??????? r ????? ?????????? ??????????? ????????? ??????? f ( x, y? ) { f? ( x ) ?????? ?? ??????????? ?????????? x:
(1)
f ? ( x ) = min , ? = 1, r .
x X?
# 887 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Anton S. Mikhalev and Anatoly I. Rouban. Global Optimization on a Set of Continuous and Discrete Variables?
?????????? ??????? X? ???????? ????????????? ??????????
M j? ( x )
(2)
0, j = 1, m? .
????? M j ( x , y? ) M j? ( x ), m ( y? ) = m? .
??????? ??????????? ???? ?????????? ???????? ? ??????? ??????? ?????? ??????????.
??????? ??????? f ? ( x ), ? 1, r ?????????????????, ????? ???? ???????????????????, ?
????? ???????? ???????. ??????? ??????????? ????? ????? ???? ??????????? ? ???????????????????. ????? ??????????? ?????????????? ?? ?????? ?????????? (??? ?????????)
????????? ??????? f? ( x), M j? ( x ), j = 1, m? ? ??????? ??????.
3. ????? ???????? ???????
?????? ?????? ?????????? ??????????? (1), (2) ??? ?????? ????????????? ?. ? ???????
(i )
X?, ???????? ????????????? ????????????? (2), ??????????? n ??????? ????? x? , i 1, n . ?
(i )
(i )
???? ?????? ????????? ?????????????? ??????? f ? { f ? ( x ) , i 1, n .
(i )
??? ????????? ??????? ????? x? , i 1, n ??????????????? ?????????? ?????????? ???l
??????????? ????? ? ????????????? ??????? 3 ?l ? ??????? ? ????? x? :
xv(i,?)
xvl ,? 'xvl ,? uv(i ) , uv Џ [ 1,1], v 1, k , i 1,2,...
(3)
l
? ?? ??? ??????????? n ?????, ?????????? ? ?????????? ??????? X ?
? ?l X ? (?????????-
?????? ???????????? ???? ?????????? (2)).
???????? ????? x?0 ? ??????? 'x?0 ????????????? ??????? ? ?0 ???????? ???, ?????
0
? ? ?????????? ?????????? ??????? X ? ??? ?? ?? ?????, ??? ?????????? ?????????? ?????????.
l 1
????? ???????? x? , ? ??????? ????? ??????? ? ????????? ??????????? ???????? ?????????????? ??????? f?, ? ??????? ????????????? ??????? ????????? ????????
'x?,l v1 , v 1, m ????????? ?? ????????:
xQl ,?1
xQl ,? 'xQl ,? uv , min , uv , min
n
(i )
¦ uv(i ) p s, min , v
1, k ,
i 1
ps ( g?(i,)min )
(i )
p s, min
n
)
)
¦ ps ( g?,( jmin
(i )
, g ?,min
f ?(i ) f?? ,min
,
f?? ,max f?? ,min
(4)
j 1
'xQl ,?1
l
????? f??,max
n
(i )
J q 'xQl ,? ( ¦ | uv(i ) |q p s,min )1 / q , v 1, k ,
i 1
0,1,2,...;[0 ? q , q Џ{1,2,...}, 0 s ] max{ f ?(i ) , i 1, n}; f??,min
min{ f ?(i ) , i 1, n}; s ? ??????????? ????????????? ????
(i )
(i )
(i )
pS (·); ? ?????????? uv , p s,min ??? ????????? ?????? ?????? ????? ???????? l; 0 d g ?,
min d 1.
n
??????? ???????????? (????) ??????????? ?? ??????? n ??????? ?????
# 888 #
(i )
¦ p s, min
i 1
1
.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Anton S. Mikhalev and Anatoly I. Rouban. Global Optimization on a Set of Continuous and Discrete Variables?
????????? ???????? ???????? ?????? ?????? ?????? ??????? ?????????? ??????? ??????? ???????????? ?? ???????? ????????: max{| 'xvl ,? |, v 1, k} d H .
????? ?????????? ??????????? ???????? ??? ?????? ?? r ??????? {x? , f? ( x? ), ? 1, r}
??????? ????????? ??????? x? , f ? ( x? ) :
min{ f ? ( x? ), ? 1, r}
f ? ( x? )
(5)
??????????? ???????? ?????????? ?????????? ????? ????? ?*.
4. ????????? ???????
?????? 4.1. ?????? ????????????????? ?????????? ??????? (???????????? ???????????
?????????? x), ??????????????? ???????? ?????????? ??????????, ????????? ? ???? ????????? (? ??????? ???????? min) ???? ??????????? ??? ????????? ?? ?????????????? ? ???????? ??????? ? ?????? ???????? ? ? ?? ????????????:
§
·
1
1
1
ё, ? 1,3 .
,
, f? ( x ) minЁ 2
2
2
Ё x a?
ё
3
(
4
)
2
(
2
)
x
b
x
c
?
?
©
№
(6)
???????????? ??, b?, c? ?????????? ??????? ???????????, ??? ? ? ????? ???????? ?????????? ?????????? y. ?????? ????????? ???????? ????????? ????????????? ??? ???????
?:
?
1 : a1
0 .4; b1
0 .2; c1
0 .3 ;
?
2 : a2
0.3; b2
0.15; c2
0.4 ;
?
3 : a3
0.5; b3
0.1; c3
0.2 .
???????? ?????????? ??????? ????????? ? ????? x* = 2, ?* = 3.
?????? ??????????? ???????????, ?????????? ???????? ????? ??????? ?????????? ??????????? ???????? ??? ?????? ????????????????? ???????:
? 1 : x d 0 .5 ? 3 .5 d x ; ?
2 : x d 1 ? 3 d x ; ? 3 : x d 1.2 ? 2.8 d x .
????? ????? ??????????? ?????????? ????????? ???????? ?????????? ?? ????? x* = 4,
?* = 3. ?????? ??????? f3(x) ? ??????????? ???????????? ?? ???. 1?.
???????? ?????? ????? ???????????? ??????? ???????? ?????????? (??????? ???????????? ?? 12?20 ????????) ? ??????? ??????????? ????????? ??????????? ????????, ??????
1. ????????? ??? ?????????: x0 = 2, ?x0 = 4, n = 25, ?q = 1, q = 2, ???? ??????????????, ???????
????????????? ???? s = 200.
??????? ? ?????????????? ???????? ?????????????? ?????????? ??????????????
?????? R[ ?; ?] ? � R[ 1; 1] , ???????????? ?????? ????????? [?; ?]:
~
f? ( x )
??????? (6) ?? R[ 1;1], ? 1, 2, 3 .
???????????? ?? ????????? ?? ???????? ???????? ? ????????? «???-??????»: U
(7)
2? ?
'f ?
.
????? ?f? ? ???????? ????????? ??????? ??? ?????? (??? ????????? x ?????? ?????????? ??# 889 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Anton S. Mikhalev and Anatoly I. Rouban. Global Optimization on a Set of Continuous and Discrete Variables?
?????). ??? ? = 1 ??? 100 % ?? ????????? ? ??????? (??????? ??? ??????), ??? ? = 0.1 ???
10 %. ????????????? ?? ???????????? ????????? ????????? ??????? ??? ??????? ? ? ????????? ????????: ? 1 : 1 d x d 0.5 ? 3.5 d x d 5 ; ? 2 : 1 d x d 1 ? 3 d x d 5 ; ? 3 : 1 d x d 1.2 ?
2.8 d x d 5 . ?????? ????? 100 % ??? ????????? ????????? ??????????: ?1 = ?2 = 1.5, ?3 = 2.5 .
??? ?????? ? 50%-??? ??????? (???. 1?) ???????? ?????????? ??????? ?? 15?20 ????????
? ??????? ???????????, ?????? 1. ????????? ??? ?????????: x0 = 2, ?x0 = 4, n = 500, ?q = 1, q = 2,
???? ?? ??????? ??????????????, ??????? ????????????? s = 100.
?????? 4.2. ?????? ????????????????? ????????? ??????? ?????? ???:
? = 1 : f1(x1,x2) = min {3|x1 ? 2| + 2|x2 ? 2|0.9 ? 4; 3|x1 ? 4|1.5 + 3|x2 ? 4|1.7 ? 6; 2|x1 ? 6|1.8 + 3|x2 ? 6| ? 2;
3|x1 ? 2|1.4 + 3|x2 ? 6| ? 3; 2|x1 ? 6|1.3 + 2|x2 ? 2|1.6 ? 1}
? = 2 : f2(x1,x2) = min {3|x1 + 2| + 2|x2 ? 2|0.9 + 9; 3|x1 + 4|1.5 + 3|x2 ? 4|1.7 + 1; 2|x1 + 6|1.8 + 3|x2 ? 6| + 7;
3|x1 + 2|1.4 + 3|x2 ? 6| + 3; 2|x1 + 6|1.3 + 2|x2 ? 2|1.6 + 5}
? = 3 : f3(x1,x2) = min {3|x1 + 2| + 2|x2 + 2|0.9 + 4.5; 3|x1 + 4|1.5 + 3|x2 + 4|1.7 + 2.5; 2|x1 + 6|1.8 + 3|x2 + 6| + 10.5;
3|x1 + 2|1.4 + 3|x2 + 6| + 6.5; 2|x1 + 6|1.3 + 2|x2 + 2|1.6 + 8.5}
? = 4 : f4(x1,x2) = min {3|x1 ? 2| + 2|x2 + 2|0.9 + 2; 3|x1 ? 4|1.5 + 3|x2 + 4|1.7; 2|x1 ? 6|1.8 + 3|x2 + 6| + 6;
3|x1 ? 2|1.4 + 3|x2 + 6| + 4; 2|x1 ? 6|1.3 + 2|x2 + 2|1.6 + 8}.
??????? ????? ???????? ? ????????? ??????:
? =1 : (2; 2), (2; 6), (4; 4), (6; 2), (6, 6) ? ?????????? ? ????? (4; 4);
? =2 : (-2; 2), (-2; 6), (-4; 4), (-6; 2), (-6, 6) ? ?????????? ? ????? (-4; 4);
? =3 : (-2; -2), (-2; -6), (-4; -4), (-6; -2), (-6, -6) ? ?????????? ? ????? (-4; -4);
? =4 : (2; -2), (2; -6), (4; -4), (6; -2), (6, -6) ? ?????????? ? ????? (4; -4).
??????? ?????????? ??????? ????????? ? ????? x* = (4; 4), ?* = 1, ? f1 ( x ) { f ( x , y1 ) 6 .
??? ?????? ?? ??????? ?????? ???? ??????????? ???????????:
? = 1 : (x1 ? 4)2 + (x2 ? 4)2 ? 16 ? 0;
? = 2 : (x1 + 4)2 + (x2 ? 4)2 ? 16 ? 0;
? = 3 : (x1 + 4)2 + (x2 + 4)2 ? 16 ? 0;
? = 4 : (x1 ? 4)2 + (x2 + 4)2 ? 16 ? 0.
???????????????? ??? ??? ?????????????? ???????, ????? ?????? ??????? ??? ??? ?
??????????? ??? ? = 1 ???????????? ?? ???. 2. ???????? ?????????? ????????? ??????????
?? ????? x* = (4; 4), ?* = 1.
~
f3(x)
f3(x)
x
?)
x
?)
???. 1. ??????? ??????????? ? ??????? ??? ? = 3: ? ? ??? ??????; ? ? ??? 50%-??? ??????
# 890 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Anton S. Mikhalev and Anatoly I. Rouban. Global Optimization on a Set of Continuous and Discrete Variables?
x2
f1(x1, x2 )
x1
x1
?)
?)
???. 2. ???????????????? ??? ?????? ??????? (??? ? = 1) (?) ? ????? ?????? ??????? ??? ??? ??,
?????????? ??????? ??????? ????????? ?????? ????? (?)
x1
x2
l
?)
l
?)
???. 3. ????????? ??????????? ?????????? x1 (?) ? x2 (?) ??? ?????? ???????? ??????????????? ???
???? ???????
???????? ?????? ?????????? ???????? ?????????? ????????? ? ?????????? ???????
?? 30?40 ???????? ? ??????? ??????????? ?????? 1 (???. 3). ????????? ?????????:
n = 50, x0 = (2;2), ?x0 = (10;10), ?q = 1, q = 2, ???? ?? ??????? ??????????????, ???????
????????????? s = 100.
??????? ? ?????????????? ???????? ?????????????? ?????????? ??????????????
??????
~
f ? ( x1 , x 2 )
f ? ( x1 , x 2 ) ?? R[ 1; 1] .
?????????????? ?? ?????????? ????????? «???-??????». ??? ???? ?????????????
?? ???????????? ????????? ????????? ?????????? ????? (??????? ??? ??????) ??????
?????????? ???????, ?????????? ????????????:
# 891 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Anton S. Mikhalev and Anatoly I. Rouban. Global Optimization on a Set of Continuous and Discrete Variables?
~
f1 ( x1, x1 )
f1(x1, x1)
x1
x1
?)
?)
???. 4. ??????? ??????? f1(x1,x2) ??? x2 = x1 ??? ????? (?) ? ??? 50%-??? ?????? (?)
?=1: ?????????? ????? ???????? ? ????????? [?6; 11];
?=2: ?????????? ????? ???????? ? ????????? [1; 17];
?=3: ?????????? ????? ???????? ? ????????? [2.5; 21,5];
?=4: ?????????? ????? ???????? ? ????????? [0; 19].
????? ???????, ???????????? ? ??? 100%-??? ???? ??? ??????? ???????? ? ?????
??????????: ?1 = 8.5, ?2 = 8, ?3 = ?4 = 9.5.
??? ??????????? ??????? ??????? ?????? ?? ???. 4? ? 4? ????????? ??????? ???????
(??? ? = 1 ? ??????, ?????????? ?????????? ?????????) ??? ?1 = 0 (??? ?????) ? ??? 50%-???
??????.
??? ?????? ? ??????? (50 %) ???????? ?????????? ???????? ??????? ?? 35?40 ????????
? ?????????? ??????? ??????? ??????????? ?????????? ????????? ???????, ?????? 0.98. ????????? ??? ?????????: n = 500, x0 = (2;2), ?x0 = (10;10), ?q = 1, q = 2, ???? ??????????????, ??????? ????????????? s = 50.
??????????
??????????? ???? ??????? f ? ( x ), ? = 1, r ????? ??????????? ? ????? ? ??? ?? ?????????? ??????? X, ?????????? ???????? ??????????
M j ( x) d 0, j 1, m .
? ???? ?????? ????? ????????? ????? ?????????? ?????????????? ????? ?? ???? ??????? (? ??????? ???????? «???????») ???? ?????????????? ??????? ? ???? ? ????????????
??????? ?????? ?????????? ???????????.
?????? ??????????
[1] ???????? ?.?. ????????? ?????? ? ?????????????????? ???????. ?.: ?????, 1978.
239 ?.
[2] ????????? ?.?., ??????? ?.?. // ???????? ?? ????. ??????????? ???????????. 1987.
? 1. ?. 119?127.
[3] ?????????? ?.?., ????????? ?.?. ?????? ?????? ??????????? ????????. ?.: ?????,
1991. 247 ?.
# 892 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Anton S. Mikhalev and Anatoly I. Rouban. Global Optimization on a Set of Continuous and Discrete Variables?
[4] ????? ?.?. ?????????? ??????????? ??????? ?????????? ?????????. ??????????: ???
????, 2004. 302 ?.
[5] ??????? ?.?., ?????? ?.?. ???????????? ?????? ?????????? ???????????. ?.: ?????????, 2008. 352 ?.
[6] ???????? ?.?. ?????? ??????????? ?.: ????????? ?????, 2009. 824 ?.
[7] ????????? ?.?. ????????????????? ????????? ?????? ??????????? ??????????. ?.:
???-?????, 2009. 159 ?.
[8] ????????? ?.?., ???????? ?.?. // ?????? ?????????????? ?????????? ? ?????????????? ??????. 2011. ?. 51. ? 8. ?. 1376?1389.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 894-910
~~~
??? 536:620
The Stefan Problem Solution
by the Moving Boundary Conjugate Equation
Evgeny P. Khagleev*
Siberian Federal University
79 Svobodny, Krasnoyarsk, 660041, Russia
Received 05.10.2014, received in revised form 11.11.2014, accepted 29.11.2014
The conjugate equation, describing intensity of phase transformation of a substance on the moving
boundary, is used in the Stefan problem instead of the traditionally applied boundary condition of the
fourth type (Stefan condition). At the numerical solution of the problem on the one hand the conjugate
equation allows to carry out the shock-capturing method without reorganization of grid areas, on the
other hand ? accurately trace the position of the moving boundary.
The estimation of adequacy of the wet ground layer freezing process mathematical modeling in the
new statement is carried out to the real process.
Keywords: modeling, heat exchange, phase transformation, latent heat of phase transformation, moving
boundary, Stefan boundary condition, conjugate equation, mathematical and physical models.
??????? ?????? ???????
? ?????????????? ????????? ??????????
?? ????????? ???????
?.?. ???????
????????? ??????????? ???????????
??????, 660041, ??????????, ??. ?????????, 79
? ?????? ??????? ?????? ??????????? ???????????? ?????????? ??????? ?????????? ????
(??????? ???????) ???????????? ????????? ??????????, ??????????? ?????????????
???????? ??????????? ???????? ?? ????????? ???????. ??? ????????? ??????? ??????
????????? ??????????, ? ????? ???????, ????????? ????????? ???????? ???? ???
??????????? ???????? ????????, ? ?????? ? ????? ??????????? ????????? ?????????
???????.
???????? ?????: ?????????????, ??????????, ??????? ???????????, ??????? ???????
???????? ???????????, ????????? ??????? ???????????, ????????? ??????? IV ????, ?????????
??????????, ?????????????? ? ?????????? ??????.
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: sfu118@mail.ru
# 894 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
Introduction
Modeling of heat exchange processes in the heterogeneous systems, separate phases of which are
in hard contact among them, are based on application of the boundary conditions of the fourth type (BC
IV), which written down in the form of equality of temperature and heat flows of contacting phases
within thermal effects [1?3]. The heat exchange problems in the heterogeneous systems used the BC
IV is called the conjugate problems (problems). They can be divided into two classes. The first class is
conjugation problems of the heat exchange with stationary boundaries and the second one ? problems
with the moving boundaries on the surfaces of which take place phase or chemical transformations of
substance. The second class of the problems, so-called the Stefan problems, is considered in this work.
Historically the Stefan condition, later called BC IV [4], was used for the first time (1889) in the Stefan
problem about frost penetration (thawing) of wet ground with a heat outflow (source):
tf
tth
t ph ; ? f
wt
wt
? th
wn
wn
Q ph
d?
,
d?
(1)
where tf, tth, tph is respectively temperature of frozen, thawed zones of wet ground and the phase
transformation of water into ice, °C; ?f, ?th is the coefficients of heat conductivity of ground in frozen
and thawed zones, W / ( m · K ); n is the normal to the phases boundary; ? is the coordinate of the
moving boundary of the section of phases, m; ? is time, s; Qph = qph ? W ? 1 is latent heat of the phase
transformation of wet ground, J/m3; qph, ?, W is specific latent heat of the phase transformation, J/kg,
ground density in a dry state, kg/m3, and ground weight humidity in fractions of unit.
Further they began to refer to the Stefan problems any tasks of aggregate state changes of
substance and the boundaries movement connected with it [2, 3, 5, 6]. In many cases they had taken
into account the thermal emissions not only into the inter phase boundary but also in crystallization
area with according to the phase diagram of solution or alloy. Inter alia the most part of water in wet
fine-dispersed ground is in the bound state. This bound water has lower freezing temperature than free
water. Therefore in the heat equation described the fine-dispersed ground freezing process the heat
emissions of continuing processes of bounded water crystallization behind a freezing front they had
taken into account by introducing volume distributing heat source [7?9]:
?f
wt
w?
dWbw
w§
wt · w §
wt ·
,
Ё? f
ё Ё ? th ёё q ph ?
w? © w? № wy Ё©
wy №
d?
(2)
where Cf is volume thermal capacity of frozen ground, J/(m3·K); W bw is not frozen bound water in
ground behind a freezing front line in fractions of unit. The method allows to written down the Stefan
condition on the moving boundary between frozen and thawed zones as before.
1. Methods of the Stefan problems solution
The Stefan problems are considered the most difficult in the mathematical relation in the heat
exchange theory: the coefficients entering the equations in partial derivatives, for example (2),
generally depend on the solution, and existence of phase transformation moving boundaries (1) makes
them especially nonlinear. The exact solution is received only for the one-dimensional Stefan problem
in automodel statement: freezing of the isotropic medium with the heat equations for the frozen and
thawed zones
# 895 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
Ci
wt( y , ?)
w?
?i
w 2 t( y , ?)
wy 2
,
(3)
by the Stefan condition (1) on the moving boundary surface and the boundary conditions
t1 ( 0, ? ) { T1
const; t 2 ( y ,0 ) { T2
const; ?(0) 0,
where i = 1, 2 is respectively indexes of frozen and thawed zones for the heat equations (3); T1 ? 0, T2 ? 0
is respectively temperature established on the ground surface, and its initial temperature; y ? spatial
coordinate of semi-bounded homogeneous medium (ground), 0 ? ? ? ?.
A number of the Stefan problem approximate analytical solution methods [4, 10 ? 12] is known.
However all of them have only estimated nature for the investigation of the moving dynamic of the
substance phase transformations front. A common disadvantage of the methods is in the temperature
distribution laws in contacting zones to set previously and often they are wide differing from the
valid. At last, all approximate analytical solution methods become inapplicable in the multifront Stefan
problems case.
Generally in practice the numerical methods apply to the Stefan problems solution. In
comparison with the analytical methods they allow to realize mathematical models with fuller
and exact reproduction of the heat exchange processes with substance phase transformations. For
example, there is an opportunity to set real temperature distribution in the conjugate zones and
the timing variable boundary conditions, and also to consider multidimensional, multilayer and
multifront problems.
The numerical methods of heat exchange solution with substance phase transformations are
divided into two forms: with explicit phase boundaries declaration and without declaration of its.
The variable time stepping method and the front-fixing method are referred to the first of them.
The iterative difference scheme establishing time interval during which a phase transformation
front will move on a spatial grid exactly on one step is applied in the variable time stepping method
[11?17]. In the opposite option the front catching is carried out in the fixed temporary grid point
with being arranged spatial grid. The problems range, applying the variable time stepping method, is
limited to the Stefan one-front problem at the monotonous movement of the required front.
The front-fixing method idea consists in a Stefan problem transformation, formulated for areas
with curved phase transformation boundaries, to a problem for rectangles form areas with known
boundaries [11, 16?19]. Thus a fixed space-time grid would have been constructing in all areas
corresponding to some phase on each time point. The dynamically adaptive grids methods are used for
this purpose. It allows to increase accuracy of the numerical solution for areas with different spatial
scales. It should be noted that generation of the dynamically adaptive grids upon transition from one
time step to another is rather difficult for multidimensional problems. For this purpose not all known
techniques of the dynamic grids construction can be acceptable. For example, the orthogonal grids
construction in similar problems meets considerable calculating difficulties [19].
The method with explicit allocation of moving boundary developed by Y. A. Popov [23] gained
rather wide spread occurrence. The essence of this method is concluded to the following:
1) the clearly defined phase transformations boundary is replaced to layer of freezing (thawing
out) ground with thickness h which equal to step of numerical integration;
# 896 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
2) the source (outflow) of phase transition heat Q ph q ph?W � d? d? within frost penetration layer
h is replaced with the temperature heat equivalent of lt q ph?W C w ;
3) in phase transition points temperature is maintained at level t ph = const during the whole
time while the condition і lt d? 't( h ) is met;
?
4) when і lt d? t 't( h ) discontinuous movement of moving boundary is making on one step in the
?
direction corresponding to frost penetration (thawing) process development at the moment.
The multidimensional multifront Stefan problems solution without explicit allocation of the phase
transformation boundaries is made by shock-capturing method [19?22] developed by Russian scientists
A. A. Samarsky, B. M. Budak, etc.
In mathematical modeling by the shock-capturing method of the multidimensional Stefan
problems is based on association of the separate zones heat equations with the Stefan condition on
phase transformations moving boundaries:
C( t )
>t @
wt
w?
p
¦
1
( nk )
k 1 xk
w
wxk
wt є
Є
t ph , «?( t ) »
wx ј
¬
§ ( nk )
wt
ЁЁ xk ?( t )
wxk
©
D
·
ёё,
№
(4)
w) ?
( x ,t ) Џ ^) ? ( x ,t )`,
w?
(5)
where
­°?1i , t ! t ph ;
?( t ) ®
°?? 2i , t d t ph ,
­°C1i , t ! t ph ;
C( t ) ®
°?C 2i , t d t ph ,
p is a spatial measurement; nk is the coordinate system; k 1, p ; i = 1, 2 is a layer index; [] is the
brackets meaning the discontinuous step of the corresponding value; D=qph?W; ? ? is the ?-th front of
phase transformation.
The solution includes three stages:
1) associating the heat conduction equations (4) and the Stefan conditions on moving boundaries
with phase transformations (5) into one generalized heat equation:
?0
­
Ѕ wt
®C( t ) ¦ D? ? t t ph ѕ
? 1
Ї
ї w?
p
¦
1
( nk )
k 1 xk
w
wxk
§ ( nk )
wt
ЁЁ xk ?( t )
w
xk
©
·
ёё ,
№
(6)
in which release (absorption) of phase transformation heat is entered into the left equation member in
the concentrated thermal capacity form;
2) making explosive coefficients smoothing and «spreading» Dirac ?-function on temperature
in some interval, containing phase transformation temperature;
3) solving the generalized heat equation (6) by a finite difference method using iterative
differential schemes.
Characteristic property of the shock-capturing method is taking into account of phase transition
heat in the expression defined in the range of smoothing [-?, ?]. Thus the parameter of smoothing ?
should be selected in such a way that the phase transition front would get into a smoothing interval
on each temporary step. The choice of a smoothing parameter gets special sense in tasks where the
expression, containing phase transition heat, exceeds more than one number exponent of the specific
heat capacity coefficient of material.
# 897 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
The so-called ?enthalpy statement? is applied along with the above-considered Stefan problem
definition. In this case in the heat equation an unknown function is represented explosive per se.
Enthalpy in the phase transformation point is represented in the form of the piecewise-linear continuous
function for shock-capturing method realization. The enthalpy statement means substance thermal
capacity constancy, otherwise difficulties arise at all numerical modeling stages [19].
Tasks of a temperature-moist mode of the hydraulic water retaining structures, which built in areas
with severe climate, represent big complexity. In such problems, in conjunction with the conductive
heat transfer, the convective heat transfer by filtering flows of water or air in rocks pore space is
observed as well [9, 26?32].
Besides the traditional difficulties connected with the solution of the multidimensional multifront
Stefan problems, the necessity of taking into account of water and air flows filtration processes is to
arises furthermore.
2. Conjugate equation in the Stefan problems
In the above listed problem statements the phase transition on the moving boundaries is described
by the Stefan condition (1), representing the BC IV with heat source (outflow).
The author of this work offered another approach to the conjugated heat exchange problems [33?
36]. The essence of the method consisted of an identical description of heat transfer processes both
in the conjunctive bodies and on their boundaries as well. The authors of the works [17?20] came to a
similar conclusion by offering the shock-capturing method, having united the heat equation (4) with
BC IV (5). The generalized heat equation with the effective smoothed thermal capacity, received in
that way, becomes suitable for a description of all computational domain. But it is possible to come
to the conclusion about a uniform description of a heterogeneous system by a straight way, directly
observing the nature of heat transfer processes and substance phase transformations without using of
BC IV (1) or (5).
Actually thermo-physical properties of substances on boundaries and inside interacting bodies
are identical by the nature and differ from each to other only quantitatively. Heat transfer mechanisms
in these bodies and on their boundaries also occur under the same nature laws: heat conduction,
convection and radiation. The unity of substance properties and the heat transfer mechanisms assumes
the identical formalized description of the heat transfer processes in the energy equations form,
irrespective of the current point location in the heterogeneous system.
In the context of the Stefan problem the conduction equation is appeared as such equation, written
down for thawed and frozen zones. The heat transfer process on zones moving boundaries, taking into
account substance phase transformations, is also described by the heat equation.
Let?s consider the one-dimensional frost penetration wet ground problem. Let us take that all
humidity in ground pores stays is in free state form of water and freezes at the phase transition
temperature of tph = 0 °?. During the ground frost penetration process a frozen zone is formed. In the
zone all water is in solid state, and in the remaining thawed zone water is in a liquid phase (Fig. 1). The
heat equation (3) works in the specified zones.
On the moving boundary between the thawed and frozen zones the temperature would be
continued and the thermal flow would be broken by I type. This is the case on the right and left
of the moving boundary or from the frozen and thawed zones the thermal flows is finite and isn?t
# 898 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
( )
p
0
?*(?)
qf
qt h
qph
?
Fig. 1. The wet ground frost penetration scheme: qth is heat flow density by the heat conductivity from the thawed
zone to the moving boundary; q ph is latent heat of phase transformation; q f is heat flow density by the heat conductivity from the moving boundary in a frozen zone; ?* (?) ? the frost penetration depth in wet ground at present
time.
equal because the thermal flow on the moving boundary changes by discontinues way. Therefore the
functions ? f wt wy and ? th wt wy [( W)0 has limits on the one hand and the limits are not equals
[ ( W )-0
on the other hand. On the strength of law of conservation of energy the discontinuity must be balanced
by the appropriate quantity of heat. The quantity is water into ice (or ice into water) phase conversion
latent heat (Fig 1).
Taking into account preceding we can write down the heat equation in the following form:
C ad
wt
w? ?(?)
§ w §
wt · w §
wt · ·
dW
Ё ЁЁ ? th ёё ЁЁ ? f
ёё ёё
q ph ?
,
Ё wy
w
w
w
y
y
y
d?
№
©
№ № ?(?)
© ©
(7)
where Cad is the additive heat capacity per unit volume of ground on the moving boundary.
As opposed to the said research papers [1-3] it is should be taking into consideration that on the
moving boundary water into ice phase transformations comes to pass at the constant temperature of
tph = const = 0 °?. Therefore a left side of the equation (7) turns into null and would as a result the
truncated heat equation
§ w §
wt · w §
wt · ·
dW
.
ёё ёё
q ph ?
0 ЁЁ ЁЁ ? th ёё ЁЁ ? f
wy № wy ©
wy № №
d?
© wy ©
?(?)
(8)
The source member in the equation (8) represents the latent heat of phase transformations water
into ice (ice into water), occurring on frost penetration (thawing) moving boundary. When crossing
this boundary ground temperature continuously changes, passing through phase transformation point
tth = tph = tf , and heat physical properties change discontinuously, for example ? th ? ? f (8).
Let?s call the equation (8) as conjugation equation energy on moving boundary of the thawed and
frozen zones or the conjugate equation.
In case of thermal-physic properties constancy of the thawed and frozen zones the conjugate
equation would take more simple form
# 899 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
§
w 2t
w 2t ·
dW
ё
.
q ph ?
0 ЁЁ ? f
?
th
2
2 ё
d?
wy
wy № ?(?)
©
(9)
The conjugate equation for a two-dimensional case can be written down in a form
0
§ § w 2t w 2t
Ё ? th Ё
Ё Ё wx 2 wy 2
© ©
·
§ w 2t w 2t
ё?fЁ
ё
Ё wx 2 wy 2
№
©
··
dW
ёё
q ph ?
.
ёё
d?
№ № ?(?)
(10)
Note that the conjugate equations (8)?(10), which the left part is equal to zero, doesn?t become
stationary. Nonstationarity is shown in continuous change a water state of matter composition on the
moving boundary. In case of prevailing influence from the frozen zone qth < q f (Fig. 1) the water amount
in the moving boundary surroundings of differential small thickness dy will gradually decrease from
its initial value W = W0 to zero. When all water turns into ice W = 0 the frost penetration boundary
moves deep into the ground array at the differential small value dy. The phase transformations of water
into ice W0 ? W ? 0 continuously proceed on surroundings of a new boundary location. On the contrary,
at qth > q f (Fig. 1) the water amount on the moving boundary would increase from 0 to W0. When all
ice will has thawed W = W0 the phase transformations boundary moves at a value dy in the opposite
direction, towards the ground array thawing.
It follows a wet ground freezing (thawing) moving boundary position will be defined by water
state of matter on the boundary on each time point from the following expression:
­°? * (? ),
W0 t W ! 0;
?(? ) ®
*
°?? (? ) r dy , W 0 ,
(11)
where ?*(?) is the moving boundary position at the current time. Thus the first expression in (11)
corresponds to the developing transformation process of water into ice (ice into water) W0 ? W ? 0.
The process is defined by the conjugate equation (8). The second expression in (11) corresponds to the
moment when the phase transformations of water into ice (ice into water) came to the end, and the frost
penetration front automatically moves further deep into ground at a value + dy. In the thawing case it
will be ? dy.
The moving boundary motion deep into the ground will proceed until the heat flows from thawed
and frozen zones won?t be counter balanced on it: qth = q f (Fig. 1). Thus according to the conjugate
equation (8) or (9) dW/d? = 0. It means that the phase transformations on moving boundary can?t
proceed further. The depth, where the condition qth = q f is satisfied, corresponds to the maximum frost
penetration depth in wet ground ? (?) = ? max under the set external conditions.
Thus, heat transfer processes identical by the nature in the system ?frozen zone ? moving boundary
of phase transformations ? thawed zone? (Fig. 1) are modeled by the equations identical in essence,
namely the heat equations: whether in frozen or thawed zones (3) or on boundary (8), (9).
The Stefan problem statement, presented here, is some generalization between problem definitions
with the phase transformation moving boundary explicit allocation [11, 13?18] and without it explicit
allocation [19?22].
This is the case, on the one hand, in considered statement the phase transformation moving
boundary is explicit being allocated in the computation domain. However in the known statements [11,
13 ? 18] the moving boundary is presented in the form of BC IV (the Stefan condition) (1). In the offered
# 900 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
statement it is presented in the truncated heat equation form or in other words the conjugate equation
(8). The BC IV (1) represents the movement equation of the moving boundary. The development
intensity of substance phase transformation process, for example water into ice, isn?t controlled by BC
IV (1). All phase transformation process is ?swallowed? for one time step. On the contrary to the BC IV
the conjugate equation (8) traces this process continuously from the beginning to the end, establishes
aggregate composition of matter on this boundary on each time point.
On the other hand, in the author?s offered statement the equations of types (3) and (8) have
an effect in whole computational domain as well as in model without the phase transformation
boundary explicit allocation [19 ? 22]. And the BC IV (1) extrinsic by own nature don?t inclusion
in the computational domain. The difference of this statement from known [19 ? 22] consists in
explicit allocating the phase transformation moving boundary in our case. The transformation
process of water into ice (ice into water) proceeds on this boundary from the beginning to the end
at a temperature of t ph = 0 °?. Whereas in known statement [19 ? 22] the phase transformations are
established in temperature values range and t ph = 0 °? are considered as one of ordinary temperature
in the specified range.
3. Validity verification of the mathematical model
with the conjugate equation
to the real frost penetration process
Let?s consider the wet ground freezing problem with the solution knowing from practice for
the verification of validity of the mathematical model with the conjugate equation. In particular it
is generally known1 that the maximum depth (without snow cover) of seasonal frost penetration of
Novosibirsk sandy ground is 2,42 m.
3.1. Problem statement
The Novosibirsk winter climatic conditions are showing on Table 12.
The sand ground thermo-physical properties are accepted as3: density ? = 1,4 kg / m3; humidity
W0 = 0,15; the coefficient of heat conductivity ?th = 1,39 ? ?f = 1,62 W / (m · K); heat capacity per unit
volume Cth = 2,18 ? Cf = 1,76 J / (m3 · K). Let us suppose that the ground thermo-physical properties in
each of zones are constant values.
The depth of zero annual temperature fluctuations is taken for the ground layer effective
depth [4]:
?0
? th ? y
?Cth
� ln
A0
,
A?
where ? y = 315 360 000 is year duration, s; Ao is temperature fluctuation amplitude on a
ground surface,°?; A? = 0,1 is temperature fluctuation amplitude at the depth ?0, °?. As the fi rst
approximation it is possible to accept that temperature fluctuation amplitude on the ground
surface compliance with temperature fluctuation amplitude of external air. Then according to tab.
1 fluctuation amplitude is Ao = 19,0 ? ( ? 18,8 ) = 37,8 °?, where 19,0 °? ? the average monthly
temperature of July. That?s why the zero annual temperature fluctuations depth in the Novosibirsk
conditions
# 901 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
Table 1. External air average monthly temperature tout for Novosibirsk
Months
Nov
Average monthly temperature tout, °?
Month duration, day/h
Duration on accumulation, h
Dec
Jan
Feb
Mar
-9,2
-16,5
-18,8
-17,3
-10,1
30/720
31/744
31/744
28/672
31/744
720
1464
2208
2880
3624
1,39 � 31536000 ( 3,14 � 2,18 ) � ln37,8 0,1 15,01m.
?0
At this depth the ground temperature keeps at level t [0 ? 6 °?.
On the basis of the above-stated physical problem definition its mathematical statement can be
presented in the form of the following system of the differential equations:
- the heat equation for the internal points of the frozen and thawed layers of wet ground (3)
?f
wt
w 2t
wt
w 2t
? f 2 , ?th
?th 2 ;
w?
w?
wy
wy
- the conjugate equation on the moving boundary (9)
0
§
w 2t
w 2t ·
dW
Ё ? th
ё
;
q ph ?
?
f
2
2 ё
Ё
d?
wy
wy № ?(?)
©
- the motion equation for the moving boundary (11)
?(? )
­°? * (? ),
W0 t W ! 0;
® *
°?? (? ) r dy , W d 0,
where W0, W is respectively initial and current ground weight humidity in fractions of unit.
The following edge conditions are accepted for the differential equation system closure (3), (9), (11):
- the initial condition
t y,0
f y,0, W y,0 W0 , 0 d y d H 0 ,
(12)
where H0 = ? 0 = 15,0 is the ground effective depth equal to the zero annual temperature fluctuations
depth, m;
- the boundary conditions:
on the ground layer surface is the boundary conditions of the I type (Table 1)
(13)
t( 0,? ) tout ,
at effective depth is the boundary conditions of the I type
t( H 0 ,? ) 6,0.
(14)
3.2. Approximation of main equations and edge conditions
The heat equations approximation for the frozen and thawed zones (3) has an ordinary
form:
# 902 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
Ci
t kj 1 t kj
?i
'?
t kj1 2t kj t kj1
'y 2
, i 1, 2.
(15)
Let?s carry out the conjugate equation approximation (9) for three adjacent points j ? 1, j, j+1,
where j-point (Fig.2) corresponds to the frost penetration moving boundary position at given time
point ? ?(?)
? th
t kj1 t kj
'y
0
?f
t kj t kj 1
'y
'y
q ph ?
W jk 1 W jk
'?
or
0
? tht kj1 ? th ? f � t kj ? f t kj1
'y 2
q ph ?
W jk 1 W jk
'?
(16)
where W jk , W jk 1 is ground humidity on the moving boundary respectively on the k and k +1 temporary
layers.
The computation formulas for a determination of the temperature on k +1 temporary layer in the
frozen and thawed ground zones and humidity on the moving boundary respectively will be received
by solving the differential equations (15), (16) relatively t kj 1 and W jk 1 :
t kj 1
t kj k i t kj 1 2 t kj t kj 1 ,
(17)
?
?
j- 1, k
??
??
?*(?)
j , k+1
??
j, k
j+1, k
Fig. 2. The template for the conjugate equation approximation (13) on the moving boundary: ? ? space-time grid
nodes; ? ? ? ? ? ? moving boundary
# 903 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
>
@
W jk 1 W jk k ph ? tht kj1 ? th ? f � t kj ? f t kj 1 ,
(18)
where k i = ?i ?? / (Ci ?y2) is the coefficient in the ordinal finite difference equation, m·K/W;
k ph =?? / (?y2qph ?) is the coefficient in the conjugate equation on the moving boundary of freezingthawing, m / W.
3.3 The task algorithm
The explicit finite-difference scheme on the uniform space-time grid ?y = const, ?? = const is
used in the numerical solution algorithm of the problem (3), (9), (11) and (12)?(14):
?k
k � '?, k 0,1, 2, ...;
yj
j � 'y , 0 d y j d H 0 , N0
H 0 / 'y;
j 0, 1, 2, ..., N 0 .
(19)
The time step ?? = const was choose as the minimum step of the two possible values
'? min ^'? i `,
where ??i ? ?y2 / 2 ai, i = 1, 2 is the stability condition for the frozen i = 1 and thawed i = 2 ground
layers; ai = li / Ci is the thermal diffusivity coefficient of the frozen or thawed ground zones,
m2 / s.
In a general view the task algorithm looks as follows. Let?s appoint a calculation cycle with a step
?? corresponding to duration of five winter months (Table 1).
On each temporary step the straight-through computation is carried out in the direction from top
to down, from the external ground surface up to the effective depth H0 (19):
1. The temperature on the ground surface is established for the entire time period that is until the
end of winter according to (13) (Table 1).
2. The temperature for internal points of the frozen and thawed zones and humidity on the
moving boundary is calculated by consistently solving the differential equations system for the frozen
zone (17), for the moving boundary (18) and again (17) for the thawed zone. The specified calculations
are carried out till the humidity on moving boundary vanish, that is W jk 1 0 . Then according to (11)
moving boundary is discontinuously moved on one step ?y to the next j+1 point (Fig. 2) and assigning
temperature t kj1 t ph to the point.
3. The temperature at the ground effective depth H0 is determined according to (14).
In order to comply with the energy conservation law at performing the moving boundary
discontinuous motion to the next point the author applied the method of temperature and humidity
compensation comprising the following.
Let us suppose that the moving boundary is at the depth ?*(?), corresponding to the j grid point
(Fig. 2). For the k + 1 moment in surroundings of this point all water will turn into ice. According to
the computation formula (18) two outcomes are probably: either W jk 1 0, or W jk 1 0 .
The first outcome corresponds to the heat outflow on the moving boundary in an adjacent frozen
zone exceeds the heat inflow to this boundary from the thawed zone just enough to turn water W jk ,
remained after k temporary layer, into ice. The second outcome specifies that the excess of the heat
outflow over its inflow was bigger, than it was required for transformation W jk into ice. That is the
heat outflow excess has led to the ?surplus? ice in the amount 'Ice W jk 1 . But more ice than the
# 904 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
initial amount of water can not exist, that is 'Ice W jk 1 . Therefore, the freezing conclusion must be
established by the fact W jk 1 0. And to comply with the energy conservation law the heat outflow
surplus at the point carry out by decrease its temperature below tph. The defined temperature t kj 1 is
found from the heat-balance equation
q ph ? � 'Ice
C f t kj 1 t ph
and follow
t kj 1
t ph q ph ? � 'Ice C f .
(20)
Thus, in the freezing process for the j point we have W jk 1 0, t kj 1 t ph in the first outcome case
and W jk 1 0, t kj 1 t ph q ph ? � 'Ice C f in the second outcome case.
It should be noted that after water into ice phase conversion completion the first outcome W jk 1 0
is improbable. In contrast to the exact calculation in the finite-difference approach the second outcome
W jk 1 0 with the necessary for temperature and humidity compensation is to be expected with a high
probability.
The second part of the j point freezing is the boundary discontinues moving to the next point. The
phase transition temperature assign t kj1 t ph in the point j + 1 according to (11). But earlier the point
was in the thawed zone and its temperature was above the phase transition temperature t kj1 ! t ph . That
is why the excess temperature 't t kj1 t ph at the point tph is compensated by equivalent amount of
?surplus? humidity ?W in order to comply with the energy conservation law:
where 'W
W jk1
(21)
W 0 'W ,
C th t kj1 t ph q ph ? is compensative humidity, corresponding to the excess temperature at
the j + 1 point.
Hence the process of the humidity freezing in the surroundings of j + 1 point will begin not with
W0, but with the greater value determined by (21). On the one hand, we lowered the temperature at
this point to tph, and on the other hand, we increased humidity by the surplus water equivalent amount
?W.
Thus, the temperature-humidity compensation (20), (21), introduced during the boundary point-topoint motion, will provide to comply the energy conservation law at the numerical calculation level.
3.4 Computing experiment result discussion
On the presented mathematical model (3), (9), (11) and (12)?(14) of the ground frost penetration
process in the conditions of Novosibirsk (Table 1) with the effective depth equal to the depth of
temperature zero annual fluctuations 15,0 m and developed task algorithm the author create computing
program on the MS FPS 4.0 software.
The results of the Stefan problem modeling with applying of the conjugate equation show good
compliance with the value of the normative (maximum) ground frost penetration depth. So, in the
conditions of Novosibirsk ground without snow cover freezes through on depth of 2,42 m. And the
author receives ? max = 2,45 m by model (3), (9), (11) and (12)?(14) realization (Fig. 3).
The classical definition of the Stefan problem with the boundary condition of the IV type was
realized (1) as well for comparison. The problem is solved by known methods: by the variable time
# 905 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
0
4
8
12
16
20
24
28
32
36
?·10?2, h
0,0
0,4
0,8
1,2
1,6
2,0
2,4
?, m
thevariabletimesteppingmethod
thefront?fixingmethod
theconjugateequationmethod
normativefreezingdepth?max=2,42m
a)
26
28
30
32
34
36
?·10?2, h
2,2
2,3
2,4
2,5
?, m
thepolynomialtrendlineofthesecondorder
b)
Fig. 3. The computing experiment results: a ? ground frost penetration dynamics by three cases of Stefan problem
modeling; b ? the same (final section)
stepping method and by the front-fixing method. It is received ? max = 2,49 m on the variable time
stepping method, and ? max = 2,40 m on the front-fixing method (Fig. 3).
The computing experiments results make a conclusion that the Stefan problem solution method
with the applying of the conjugate equation is not yield in calculation accuracy to known methods for
solving the Stefan problem in its classical formulation.
The numerical Stefan problem solution in author?s statement according to item 3.3 is fulfilled by
shock-capturing method without reorganization of the space-time grid (?y = 0,05 m, ?? = 1086,42 s)
with an explicit allocation of the frost penetration moving boundary. The phase transformation of
water into ice from initial ground humidity W0 = 0,15 to 0 occurs on this boundary at the temperature
# 906 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
w
0,16
0,12
0,08
0,04
0,00
2900
?, h
3000
3100
3200
3
3300
340
00
3500
3600
phasetransfo
ormationofwaaterintoice
graphofthep
initialsandgrroundhumidittyW?=0,15
Fig. 4. The changes of the aggregate composition of water on the moving boundary at the end of winter
of tph = 0 °? for a certain time interval (Fig. 4). Using the received phase transformation graphs we can
establish the aggregate composition of water.
It should be noted that the stages width of the frost penetration staggered graph for the model with
the conjugate equation (Fig. 3) is an additional indicator of the ground frost penetration dynamics.
For example, the ground frost penetration process is more and more slowed down at the end of
winter (Fig. 3, b and Fig. 4). So after moving the boundary on the depth ?? = 2,30 m, occurred in the
time point ? = 2963 h, for all water freezing in the ground elementary layer ?y = 0,05 m required
?1 = 3100 ? 2963= 137 h (Fig. 3, b ? Fig. 4). And ?2 = 3292 ? 3105= 187 h is required (Fig. 3, b ? Fig. 4)
after moving the boundary on the depth ?? = 2,35 m. That is required on 50 h more at the new frost
penetration depth ?? = 2,35 m, than on the previous depth ?? = 2,30 m. And more bigger time lag is
required for all water freezing on the depth of the moving boundary ?? = 2,40 m. It is upwards of 85 h
than on the moving boundary depth ?? = 2,30 m.
Duration of water freezing also decrease with the spatial grid step ?y reduction, which is taken for
freezing ground elementary layer on the moving boundary. In the limit case ?y?0 stages widths also
converge to 0. As a result the frost penetration stages graph for a model with the conjugate equation
will turn into a smooth curve, for example, into the polynomial line of the second order trend, or the
median line connecting the step centers (Fig. 3, b). Thus, the Stefan problem solution with use of the
conjugate equation on the moving boundary allows receiving fuller information about the ground frost
penetration process. As the solution results is received the stepping and smoothing frost penetration
graphs (Fig. 3) characterizing the ground frost penetration process dynamics, and the substance phase
transformations curve on the moving boundary (Fig. 4).
Resume
1. The distinctive feature of the presented approach to the Stefan problem modeling from the
known methods consists in applying of the conjugate equation on the moving boundary instead of
# 907 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
traditionally used the boundary conditions of the IV type (the Stefan condition). In the new problem
statement the heat exchange processes for the frozen and thawed zones and for the moving boundary
are described by the same equations ? the heat equations.
2. The problem numerical solution with the conjugate equation allows explicitly assign the frost
penetration (thawing) moving boundary location with shock-capturing method implementation without
the space-time grid reorganization on each new step on time.
3. The conjugate equation at each new time step gives the opportunity to define not only the
moving boundary location, but the water aggregation state on the boundary.
4. Stage width of the frost penetration step graph gives pictorial presentation of occurring process
dynamics, and for a concrete value ?? gives the value of freezing time of a wet ground layer on the
moving boundary.
5. Temperature-humidity compensation, brought in the problem algorithm at the point-to-point
motion of the boundary, allows to comply the energy conservation law at the numerical solution
level.
6. The numerical experiment results prove the Stefan problem solution method with the conjugate
equation appliance doesn?t yield in the calculation accuracy to known the Stefan problem solution
methods in its classical formulation.
1
2
3
???? 2.02.01-83.* ????????? ?????? ? ??????????.
???? 23-01-09. ???????????? ????????????.
???? 2.02.04-88. ????????? ? ?????????? ?? ???????????? ???????.
References
[1] ????? ?.?. ???????????????: ??????????. ?.: ???????, 1971. 560 ?.
[2] ????????? ?.?. ???????????? ?????????????? ????????? ?????- ? ???????????
??????? ?????. ????: ????. ?????, 1971. 266 ?.
[3] ????????? ?.?. ??????????? ? ???????? ?????? ??????????????????. ????: ????.
?????, 1988. 240 ?.
[4] ?????? ??????????? ???????? ??? ?????????-????????????? ????????????? /
???. ?.?. ?????????. ?.: ???-?? ???, 1974. 431 ?.
[5] ??????? ?.?. ????????????? ?????? ????????? ????????????. ?.: ??????, 1954.
236 ?.
[6] ?????????? ?.?. // ???????????????? ????????????, ??????????: ???????????????
??. ???-??, 1965. ???. 12. ?. 114?137.
[7] ?????????? ?.?. // ??? ????. 1952. 82. ? 6. ?. 889?891.
[8] ??????????? ?.?., ??????? ?.?. // ??????????? ? ???????? ??????????, ????????? ????
? ?????????? ?????????? ??? ?????? ????????????. ?. 1 ??????????? ? ???????? ?????????
???? ? ??????????. ??????: ??-? ??????-??????????? ??????? ?????? ?? ???. 1974. ?. 99?108.
[9] ???????????? ?.?., ??????? ?.?., ??????? ?.?. ? ??. // ?????????? ??????????????? ?
????????????: ????????? ??????????? ? ????????? ?? ????????????. ?.: ???????????????,
1989. ?. 97?100.
[10] ??????? ?.?., ????????? ?.?. ????????? ?????????????? ??????. ?.: ?????, 1972.
735 ?.
# 908 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
[11] Crank J. Free and Moving Boundary Problems. Oxford: Clarendon Press. 1984. 425 p.
[12] ????? ?.?. ?????????????? ?????? ?????????? ????????????. ???????????: ?????.
????????? ???????????? ????? ???, 1995. 136 ?.
[13] Douglas J, Gallie G.M. // Duke Math. J. 1955. Vol. 22. ? 4. P. 557?572.
[14] ???????? ?.?. // ??? ????. 1964. ?. 157. ? 6. ?. 1280?1283.
[15] ????? ?.?., ???????? ?.?., ??????? ?.?. // ?????????????? ?????? ? ????????????????.
?.: ???-?? ????. ??-??, 1967. ???. 6 ?. 321?341.
[16] Javierre-Perez E. Literature Study: Numerical methods for solving Stefan problems. Delft:
Delft University of Technology, Report 03-16, 2003. 94 p.
[17] ?????????? ?.?., ????????? ?.?. // ?i???? ??????????? ??i?????????. ???. ?????????
??????????. I??????????, 2011. ???. 194. ?. 11?31.
[18] ????? ?.?., ???????? ?.?., ????????? ?.?. // ??????? ????? ???? ???????. ?.: ???,
1972. ???. 2. ?. 3-23.
[19] ????????? ?.?., ????????? ?.?. ?????????????? ?????????????. ?.: ?????????
????, 2003. 784 ?.
[20] ????????? ?.?, ????????? ?.?. // ????. ??????. ?????????? ? ???. ??????. 1965. ?. 5,
? 5. ?. 816?827.
[21] ????? ?.?., ????????? ?.?., ????????? ?.?. // ????. ??????. ?????????? ? ???. ??????.
1965. ?. 5, ? 5. ?. 828?840.
[22] ????????? ?.?. ????????? ?????? ??????? ????? ?? ????????? ????????. ?.: ???-??
????. ??-??, 1987. 164 ?.
[23] ????? ?.?., ???????? ?.?., ???????? ?.?. ???????????????? ? ???????? ???????????????????????? ????. ?.: ??????????, 1982. 224 ?.
[24] ????? ?. ?., ?????????? ?.?., ????????? ?.?. ? ??. // ???. ?????. ?????????????. 2004.
? 10. ?. 107?112.
[25] ?????????? ?.?. ????????????????? ?????????? ??????? ????????????? ????????????
???????????. ???????????: ???? (????????). 2003. 132 ?.
[26] ?????????? ?.?. // ???. ?????. 1971. ?. 96. ?. 205?218.
[27] ???????????? ?.?., ??????????? ?.?. // ???????????????? ????????????? ? ???????
???????? ??????: ????? ??????????????? ????????? ?? ????????????. ??????????, 1975.
???. 101. ?. 90?93.
[28] ??????? ?.?., ????????? ?.?.?????????????? ????????? ??????: ????. ??????? ?.:
???????????????, 1987. 311 ?.
[29] ????? ?.?. // ?????????? ??????????????? ? ????????????: ????????? ???????????
? ????????? ?? ????????????. ?.: ???????????????. ????????????? ???-???, 1989. ?. 97?100.
[30] ????????? ?.?., ???????????? ?.?., ???????? ?.?., ??????? ?.?. // ??????????
??????????????? ? ????????????: ????????? ??????????? ? ????????? ?? ????????????. ?.:
???????????????. ????????????? ???-???, 1989. ?. 109?111.
[31] ??????? ?.?., ?????? ?.?. // ???????????????? ?????????????. 1993. ? 11. ?. 22?25.
[32] ??????? ?.?. // ???????? ?????. ?????????????. 1997. ? 8. ?. 53?58.
[33] ??????? ?.?., ??????? ?.?. // ????????????? ??????? ?????????. ??????????: ????,
1992. ?. 63?69.
# 909 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny P. Khagleev. The Stefan Problem Solution by the Moving Boundary Conjugate Equation
[34] ??????? ?.?. // ??????? ????. ????????????????????????????? (???????????????).
??????????: ????, 1996. ???. 3. ?. 63?75.
[35] ??????? ?.?., ??????? ?.?. // ?????????????? ??????????, ????????????????
?????????, ?????????????? ??????????: ????????? ????????. ????. ????-???, 2009.
C. 244?252.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 911-918
~~~
??? 621.396.96
The Intensive Maneuverable Air Targets Detection
Multichannel Algorithm
for Pulse-Doppler Onboard Radar Using
the a Priori Uncertainty
of Signal Frequency Deviation
Igor V. Lyutikova*, Valeriy V. Zamaraevb,
?lexander ?. Kuchinb, Alexey N. Fomina,
Nikolay P. Bogomolova and Vladimir A. Kopilova
a
Siberian Federal University
79 Svobodny, Krasnoyarsk, 660041, Russia
b
Military Academy of Aero-Space Defence
named after the Marshal of Soviet Union G.K. Zhukov
50 Zhigareva, Tver, 170022, Russia
Received 14.09.2014, received in revised form 06.10.2014, accepted 24.11.2014
This article is devoted to describing the synthesis intensive maneuverable air targets detection
algorithm for pulse-Doppler onboard radar that uses multiple correlative-filtration coherent process
with frequent time-frequency grid, taking into account a priori uncertainties on the four parameters
of the received signal (pulse duration, delay time, Doppler, frequency deviation), and uses the
noncoherent processing based on likelihood ratio method for several recurrence frequency pulses
that is, for all time exposure on a fi xed phased antenna array directional diagram main beam azimuthelevation angle position, using the results of observations during previous accumulation intervals to
increase the correct detection conditional probability.
Keywords: detection algorithm, intensive maneuverable, pulse-doppler, onboard radar, signal
frequency deviation.
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: lyutikovigor@mail.ru
# 911 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Igor V. Lyutikov, Valeriy V. Zamaraev? The Intensive Maneuverable air Targets Detection Multichannel Algorithm?
?????????????? ????????
??????????? ?????????? ?????????????
????????? ?????
??? ?????????-???????????? ????????
???????????????? ???????,
??????????? ????????? ????????????????
????????? ???????? ???????
?.?. ???????a, ?.?. ?????????, ?.?. ??????,
?.?. ?????a, ?.?. ?????????a, ?.?. ???????a
a
????????? ??????????? ???????????
??????, 660041, ??????????, ??. ?????????, 79
?
??????? ???????? ????????-??????????? ???????
??. ??????? ?????????? ????? ?.?. ??????
??????, 170022, ?????, ??. ????????, 50
?????? ????????? ???????? ??????? ????????? ??????????? ?????????? ?????????????
????????? ????? ??? ?????????-???????????? ???????? ???????????????? ??????? (???).
????????????? ???????? ?????????? ??? ?????????????? ?????????????-??????????
??????????? ????????? ? ?????? ?????????????? ??????, ??????????? ?????????
???????????????? ?? ??????? ?????????? ???????????? ??????? (?? ????????????
?????????, ??????? ????????, ??????? ???????, ???????? ???????), ??? ? ?????????????
?? ?????? ?????? ????????? ????????????? ?? ????????? ?????? ?????????? ???????????
?????????, ? ?????? ?? ??? ????? ????????? ???? ?? ????????????? ???????????-???????????
??????? ???????? ???? ????????? ?????????????? ???????????? ???????? ???????. ??? ????
???????? ????????? ?????????? ?????????? ?? ????? ?????????? ?????????? ?????????? ?
????????? ?????????? ???????? ??????????? ??????????? ??????????? ????????? ?????.
???????? ?????: ???????? ???????????, ?????????? ?????????????, ?????????????????????, ???????? ???????????????? ???????, ????????? ???????? ???????.
??? ????????, ??? ???????????????????? ??????????? ?????? ?? ??????????? ????????? ????? (??), ? ??? ????? ?????????? ?????????????, ???????? ????????? ? ?????? ???????? ?? ????? ???????????? ?????????? ??? [1]. ????????? ???????????? ???????????????
?????????-???????????? ???????? ???????????????? ??????? (?? ????) ???????? ?????
???????????, ????????????? ?????????? ????????????? ??????? ??? ?????? ???????????.
????????????? ?????????? n = 1,2,...,N ?????? ?????????? ??????????? ????????? F?( n ) ???
?????????? ??? ?????????? ?????? ???, ????????????? ?????????????? ????????? ?? ?????
????????? ? ??? ???????????? ????????? ????????? ?? ?? [2, 3], ????????? ?????????????
????????? ??????????? ????? ????????? ? ???????? ??????? ? ?? ??????? ??? ??????????
?? ????? ??????? ????????? ?? ?????????? (???????????? ? (???) ??????????????). ??????????? ?????????? ? ??????????? ????????? ???????? ?? ????????? ?????????? ?? ??????????
???????? ?????????? F?( n ) ??? ???? ?? ????????????. ??? ???????? ? ??????????????? ???# 912 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Igor V. Lyutikov, Valeriy V. Zamaraev? The Intensive Maneuverable air Targets Detection Multichannel Algorithm?
???? ??????????????? ??????? ???????, ? ?????? ????????????? ??????????? ?????????????
??????????? ????????? ???????? ?? ??? ????? ????????? ???? (??? ????????? ?????????? ??
????????? ???????? ??????????). ?? ?????? [4] ????????, ??? ??? ?????????? ????????? ??????????? ? ?????? ????????????? ????????? ??????????? ?? ??? ?? ????, ???????????? ??
???????????? ?????????????? ?????????????? ?????????????-?????????? ????????? ? ?????? ?? ?????????????? ??????? ??????, ??????????? ????????? ???????????????? ?? ????
?????????? (??????? ???????, ??????? ???????? ? ???????????? ??????????? ?????????),
? ????? ????????????? ????????? ?? ?????? ?????? ????????? ????????????? ?? ?????????
?????? ?????????? F?( n ) ??????????? ?????????. ?????? ?????? ????????? ?? ????????? ?????????? ???????????? ??, ?????????????? ??????????? ?????????????? ? ????????, ???
??????? ????? ??????????? ????????? ??????????? ??? ??????????, ??? ? ?????????????? ???????????? ??????? ???????? ?? (??? ?????????? ????? ??????? ????????, «?????????»
?? ? ???????, ?????????? ???????????????? ???????, ???????? ?? ???????????), ???????? ??
????? ??????????.
?? ???? ????????? ??????????? ? ??, ?? ??????? ?? ?? ????????? ? ??????????? ?? ????????? R, ?????????????? ???????????? ???????? v? ?????? ?, ??????????????, ?????????????
????????? ???????? df /dt ???????????? ?? ????????????? ????? ????? ? ??????????? ??????? ?? ?? [5].
df
dt
vW2
.
RO
(1)
??? ?????????????? ????????? ?????????? ??????????? ???????????????? ???????????? ?
?? ????? ??? ???????? ?????????????? ???????????????? ????? ???????? ? ???????? ??????????? ??????? ???-????????, ??? ????? ???????? ????????? ???????????????? ????????
??????? ???????????? ??????? ? ?????????? ??????? ??????????????? ??? ?????????. ????
?????????? ??????? ????? ???? ??????????? ? ?????????? ????????????? ? ????????? ???
?????? ??????? ???????? ????? ??????????? (?? ???????????? ?????????? ????????? ????????? ????????).
? [6-12] ???????????? ????????? ???????? ?????????? ????????????? ????????, ?????????? ?? ????????????? ????????? ?????, ???????? ?? ?????????? ? ???????????.
???????? ????????? ?????????? ???????????? ??????????????? ?? ???? ?? ??????????? ?????????? ????????????? ?????, ???????????? ?????????? [4] ???????????? ?????????????? ?????????????-?????????? ????????? ? ?????? ?????????????? ??????, ?? ??????????? ????????? ???????????????? ??? ?? ??????? ?????????? (??????? ???????, ????????
???????, ??????? ????????, ???????????? ??????????? ?????????), ? ????? ?????????????
????????? ?? ?????? ?????? ????????? ????????????? ?? ????????? ?????? ?????????? F?( n )
??????????? ????????? (?.?. ?? ??? ????? ????????? ????, ????????? ??? ???? ??????????
?????????? ?? ????? ?????????? ?????????? ??????????). ?????? ?????? ?????? ????????
??????????????? ????????.
? ? ? ? ? ? ? ? ? ? ? ???????? ??????? ????????? ??????????? ?????????? ????????????? ????????? ????? ??? ?? ????, ???????????? ????????? ???????????????? ?? ???????
????????, ????????????, ??????? ???????, ???????? ??????? ???????????? ???????.
# 913 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Igor V. Lyutikov, Valeriy V. Zamaraev? The Intensive Maneuverable air Targets Detection Multichannel Algorithm?
?????? ????????? ??????????? ? ????? ??????????????????:
1. ??????????? ????????????? ???????? ????????? ????????????? ?? ?????????? ? ??(N )
(N)
????? ????????-????????? ??????? ?? ????, ?????????? ???????? ?????????? l ??k
( Z ??k
).
(N)
2. ????????? ?????? ????????????? ???????? ?????????? f (Z ??k ).
3. ??????????? ??????????? ??????? ???????? ????????? ????????????? ?? ??????????(N)
(N)
) ????? ?????????? ???????? ?????? V?? , ???????????????
??? ???????? ?????????? f (Z ??k
???????? ???????? ??????????? ?????? ??????? ???? ? ???????? ??????????? ?????? ??????? P??.
??? ???????? [13], ??? ???????????? ???????? ??????? ???????? ??????? ? ???????
??? ?????????? ???? ? ??????????? ?????? ?? ????? ?????????? ? ????????? ?????????. ?????????? ?? ?????????? ????????????? ?? ???????????????? ?????? ?? ????? ????????? ?? ???? ? ?????? ??????? ??????? ?????????? (???) ???????????? ????? ???????????
???????? ? ???????????? ????? ??????????: ???? ????? ?, ?????? ?, ??????????? ????? ???????? t ??( n ) ? ???????? ?????? n-?? ??????? ???????????? ????????? ?????????, ????????????
??????????? ????????? W (?n ) , ??????? ??????? F?, ???????? ??????? ?f?(?) ?, ????? ???????,
?? ????????????? ?? ????? ?????????? ???????????-??????????? ????????? ???????? ????
????????? ?????????????? (??) ??? ???????? ?????? ?? M(n) ???????-???????? ?????????????? ????????? ? ?????????? P 2S'f ? / W (?n ) , ???????????? W (?n ) ??????? ?? n-? ??????? F?( n )
?????????? ???????????? ????? ???????-???????? ??????? ?? ???????????? ??????? ???????? W (?n ) (t ??( n) ) (2).
W (?n )
(n)
(n)
­0, t ??
0 _ ??? _ t ??
T (n)
°
(n)
(n)
°0,0 t ?? d W ??
.
® (n)
(n)
(n)
(n)
(n)
(n)
(n)
°t ?? W ?? , W ?? W ? t ?? d W ?? W ?
°T ( n ) t ( n ) , W ( n ) t ( n ) T ( n )
??
??
??
Ї
(2)
????? ?????????? ????????? ?????????? ? ?????????????? ? ???????? ?? ??????????
?????????? ???????????????? ???? ??????????. ??? ???????????? ??????? ????????? ??????? ???????????????? (??????? ???????????????) ?? ??????????????? ?? ??????? ? ???????
??? ????????, ??? ???????? ??????? ?f? = 0 ? ?f? ? 0, ??????? ?? ???. 1 ? 2 ??????????????.
??? ?????????? ???????????????? ????????? ?????????? ???????????? ??????? ? ???
????? ?????????? ??????? ??????????????? ??? ????????? ???????????? ? ???????????? ??
???? «????????» ????? ?? ???? ??????? ???????????? ? ????????? ?????? ?? ??????? ?? ??????????: ??, ??, ?TS , ?F?, W (?n ) , ?f?. ????? ???????, ??????????, ??????????? ?????????????
????????? ???????, ?????? ???? ?????????????? ?? ??????? ?? ??? ??????????.
??? ??????????? ??????? ???????? ??????? ?? ??????????? ?????????? ????? ???????????? ??? ?? ????, ???????????? ?? ???. 3.
?? ????????????? ??????????? ? ? ???????????? ? ??????? ???????? ???? ???????? ????????? ?????????????? (??) ???????????? ???????? ??????? (???) ?? ?????? n-? ????????? ?????????? (??? ????????????? ??????? F?( n ) ??????????) ?? ???? ???????????? ?? ?????(n)
???????? ??????? ????????? ?????????? ????? yHE
(t ) «??????+???».
?? ???. 4 ? ???? ???????????? ????????? ????????? ?????????? ????????? ?????????
(n)
??????????? ????????? yHE
(t ) (??????? ?????????? ?????? ???????? ????????? ??????# 914 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Igor V. Lyutikov, Valeriy V. Zamaraev? The Intensive Maneuverable air Targets Detection Multichannel Algorithm?
???. 1. ??????? ??? ??????? ??????????????? ????? ?????????????? ??? ?f? = 0
???. 2. ??????? ??? ??????? ??????????????? ????? ???-?????????????? ??? ?f? ? 0
???????? ?????, ??????? ???????? ?????? ? ????????? ???????????????? ????? ????????)
? ???????????? ????????? B1(t), B2(t),? BI(t) ????????? ??????? (?????????? ????? ????????
?????? ? ???????? «???? ????????????») ???????????? «?????? ????» (?????????????? ???????) ?? ?????? ??????? F?( n ) ??????????. ?????????? ????????? ??????? I = T?/?TS ? 1, ???
T? ? ?????? ??????????, ?TS ? ??? ????? ?? ??????? (??? ????????? ??? ?TS ?????? ???? ?????? ??????? T?). ??? ???????: ???????? ?TS = ??/2, I = 4, n = 1,2,3,4, ????????? ?? ?? ??? = const,
?????????? Q? = 2.5. ?????? ????? ?? ????? ?????????????-?????????? ????????? (?? ???????
(n)
???????? ??????????? ???????? ?????????????? ????? (???) ?? ????? t??
???????????? ??????????) ???????? ????????????.
????? ? ?????? ??????????? ?????? {?,?,i,k,?} ?? ?????? n-? ????????? ???????????? ??(n)
???????? ?? ????? t??
????????? YHE( nik)P ??????????? ??? ?? ?????? ????????? ??????????
??? ? i-? ?????? ????????? ? ?-? ?????? ????????? ???????? ?? ?-? ??????? ?? ?????????????
# 915 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Igor V. Lyutikov, Valeriy V. Zamaraev? The Intensive Maneuverable air Targets Detection Multichannel Algorithm?
???. 3. ????? ???????????? ??? ?? ????
??????????? ? ? ???????????? ? ??????? ???????????? ?? ?????? ??????????? ? ????? ????????? ?????????????:
p (YHE( nik) P )
YHE( nik) P
2
V HE
ikP
Є
1
exp « 2
«¬ 2V HEikP
( n)
є §
§Ё Y 2( n ) D 2 ·ё» I Ё D HEikP YHEikP
0
HE ikP
2
© HEikP
№» Ё V HE
ikP
ј ©
·
ё.
ё
№
(3)
? ?????? ??????????? ?????? {?,?,i,k,?} ?? ???? ?? ?????? n-? ????????? ???????????? ?????????? ?????????? ????????? ???????? H0 : ? ??k? = 0 ?????? ???????????? H1 : ? ??k? ? 0. ?????????? ??? ????? ????? ????????? ????????????? (??) (???)
[14]. ????????, ??? ??????????? ???????? ?? ????????? ? ??k? ??????? ?????????????
????????? ??????? Y (HEn)kP ? ???????? ??????????? ??? ????? ????????: 1) ???????????? ?? ?????; 2) ???????? ?????? ?????? ?? ???????? ????????? ????????, ???????????
????????? ??? ? ???????????? (?? ????????? ???????? ? ? ?????????? k) ??????????
(n)
(n)
max Y HE(n)1P ( ? ) max ( max Y HE
Y HE
1( ? )
1k P ( ? ) ); 3) ???????? ?????? (?? ???????) ????????? ?????P
P
?
??, ??????????? ???????????? ????????? ??????????? ??? ?? ??????????????? ???????? ?? ??????? Y (HEn )k max Y (HEn )ik P ' ( ?) , ????? ?????????? Y (HEn)kP ?????????? ???????? ?????????
i
??????? ?????????????, ??????????? ?? ? ?????? ??????????? ?????? ?? ????? ?????????? N-?????????? ???????????? ?????????? ????? ???????? ?????????? ? ????????????
?? ????????? ???:
N
(N )
lHE
k
(n)
– p YHE k D HE k
n 1
0
N
(n) – max p (YHE k D HE k z 0 )
N
(n)
– p (YHE k D HE k
n 1
CN
0)
.
(4)
n 1 D HE k
??????? ????????? ?????????????? ? ??????? ?????????? ? ????????????????? ??,
?????:
# 916 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Igor V. Lyutikov, Valeriy V. Zamaraev? The Intensive Maneuverable air Targets Detection Multichannel Algorithm?
???. 4. ???????? ????????? ????????? ??????? ? ????????? ??????????? ????????? ? ????? ?? ??????
??????? F?( n ) ?????????? ???????????? «??????» ???? (???? ?????????????) ? ???? «????????????»
(N )
ln( lHE
? )
(N )
??? Z HE
k
Z
N
(N )
Z HE
k N ln( C ) ,
N
(n)
¦ U HE k
0 .5 ¦ Y
n 1
2 (n)
HE k
(5)
.
n 1
?? ????????? ???????? ?????? ??????????? [15] ?????? ????????? ????????????? ??
?? N-?????????? ???????????? ??????????:
(N )
HE k
N
(N )
f ( Z HE
k )
(n)
f ( ¦ U HE
k )
n 1
2
N
Y HE (kn )
n 1
2
f(¦
)
(N )
Z HE
k
N 1
( N 1 )!
e
Z
(N )
HE k
.
(6)
???????? ?????? V??( N ) , ??????????????? ???????? ??????? ??????????? ?????? ???????
P?? , ???????????? ?? ???????
f
P??
і f(Z
V??
(N)
??k
(N)
)dZ ??k
V??
e
§ 1
·
1
1 2
N 1
N 2
ЁЁ
V?? V?? ... V?? V?? 1ёё .
(
N
1
)!
(
N
2
)!
2
!
©
№
(7)
??? P?? = 10 ?6 ? ???????? N = 4 ????? V??( 4) = 21.3505.
????? ???????, ?????? ?????????? ???????????? W ????????? ???????? Z HE( 4k) ?????????
??????????????? ??????? V??( 4) ?? ??? ???????: 1) ? ? ??????????? ???????; 2) W ? ? ? ???????
( 4)
????????. ???? ??????????? ?????????? ????? Z ??k
t V??( 4) , ?? ??? ???????? ? ??????? ? ? ??( 4)
V??( 4) , ?? ??? ???????? ? ??????? W ? ? ?
??????, ?? ????????? H0, ???????????; ???? ?? Z ??k
???????? H0 ???????????.
???????? ??????? A* ??? ?????????????? ????????? ????? ???
?*
(N )
(N )
­
°0, ???Z ??k V??
®
(N )
(N) .
°?1, ???Z ??k t V??
(8)
# 917 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Igor V. Lyutikov, Valeriy V. Zamaraev? The Intensive Maneuverable air Targets Detection Multichannel Algorithm?
??????
????? ???????, ???????????? ???????? ??????????? ?????????? ????????????? ?? ???
?? ???? ?? ?????? ?????? ????????? ????????????? ?? ????????? N ?????????? ????????????
??????????, ???????????? ????????? ???????????????? ?? ??????? ????????, ????????????
?????????, ??????? ??????? ? ???????? ???????. ??????????????, ??? ?????????? ?????????????? ????????? ???????? ? ????????????? ?????????? ???????? ??????????? ???????????
??????????? ?????????? ????????????? ??, ??? ? ?????????? ??????? ????????????? ???????????? ????????????? ????????????? ? ?????????????? ?????? ?????-?????.
?????? ??????????
[1] ?????????? ?.?. ? ??. ????? ????????????? ???????? ???????????????? ??????. ??????????? ? ???????????. ?.: ?????, 2002.
[2] ?????? ?.?., ?????? ?.?., ????????? ?.?. ??????????????????? ????????????????
???????: ????. ??????? ??? ????? / ???. ?.?. ?????????. ?.: ?????, 2007. 283 ?.
[3] ?????? ?.?., ???????? ?.?., ????? ?.?. ? ??. // ??????? ???? ??. ?.?. ???????. ???.
???????????????. 1999. ? 4. ?. 1626.
[4] ??????? ?.?., ???????? ?.?. // ???????????? (?????? ? ???????). 2008. ? 10.
[5] ???????? ?.?., ????? ?.?., ??????? ?.?. // ?????? ??????????? ????????????????.
2012. ? 9.
[6] ?????? ?., ?????? ?. ???????? ????????? ???????????????? ??????????. ????????????? ?????. ?.: ????? ? ?????, 1993. 320 ?.
[7] ???????? ?.?., ????? ?.?., ???????? ?.?. [??????????? ??????] // ????? ? ???????????.
2012. ? 1.
[8] ?????? ?.?., ????? ?.?., ??????? ?.?. // ????????????. 2010. ? 7.
[9] ?????? ?.?., ???????? ?.?., ??????? ?.?., ????? ?.?. // ????????????. 2003. ? 6.
[10] ?????? ?.?., ???????? ?.?., ????? ?.?. // ????????????. 2004. ? 10.
[11] ??????? ?.?., ????????? ?.?. // ????????????????. 2005. ? 3.
[12] ?????? ?.?., ??????? ?.?., ??????? ?.?. // ????????? ????????. ???. ????????????,
2007.
[13] ???????????????? ???????: ?????? ?????????? ? ??????: ??????????. ???. 2-?, ???????. ? ???. / ???. ?.?. ??????. ?.: ????????????, 2007. 512 ?.
[14] ??????? ?., ?????? ?. ?????????????? ?????? ? ?????. ?.: ??. ???. ???.-???. ???.
???-?? «?????», 1973.
[15] ???????? ?.?. ?????? ????????????: ????. ??? ?????. ?.: ????????, 2003. 576 ?.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 919-928
~~~
??? 544.478
Investigation of Physicochemical Properties
of Partially Spent Platinum?Rhenium
Reforming Catalyst
Peter N. Kuznetsova*,
Anastasia V. Kazbanova , Ludmila I. Kuznetsovaa,
Ludmila S. Tarasovab and Vladimir P. Tverdokhlebovc
a
Institute of Chemistry and Chemical Technology SB RAS
50-24 Akademgorodok, Krasnoyarsk, 660036, Russia
b
Krasnoyarsk Scientific Center SB RAS
50-45 Akademgorodok, Krasnoyarsk, 660036, Russia
c
Siberian Federal University
82 Svobodny, Krasnoyarsk, 660041, Russia
a
Received 02.10.2014, received in revised form 22.10.2014, accepted 15.11.2014
The physicochemical properties of the partially spent catalyst Pt-Re-Cl/Al2O3 reforming of petroleum
fractions (R- 98 UOP) have been studied. It has been found that during operation of the catalyst, a
reduction of textural characteristics, chemical composition, partial phase transformation of alumina
support, and accumulation of metallic impurities and carbon deposits take place. The DSC method
has been found the presence on the surface of the catalyst of various types of carbonaceous deposits
burnable at different temperatures. Their removal is complete at temperatures 500-550 °C.
Keywords: reforming, platinum?rhenium catalyst, regeneration, carbon deposits, catalyst poisons.
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: kuznetsov-petr@rambler.ru
# 919 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Peter N. Kuznetsov, Anastasia V. Kazbanova? Investigation of Physicochemical Properties of Partially Spent?
???????????? ??????-?????????? ???????
???????? ?????????????
???????????????? ???????????? ??????????
?.?. ?????????, ?.?. ??????????,
?.?. ????????? , ?.?. ?????????, ?.?. ?????????????
?
???????? ????? ? ?????????? ?????????? ?? ???
??????, 660036, ??????????, ?????????????, 50, ???. 24
?
???????????? ??????? ????? ?? ???
??????, 660036, ??????????, ?????????????, 50
?
????????? ??????????? ???????????
??????, 660041, ??????????, ??. ?????????, 82
?
??????? ??????-?????????? ???????? ???????? ????????????? ???????????? Pt-Re-Cl/
Al2O3 ?????????? ???????? ??????? (R-98 UOP). ???????????, ??? ? ???????? ????????????
???????????? ??????????? ????????? ?????????? ?????????????, ??????????? ???????,
????????? ??????? ??????????? ?????????????? ????????, ?????????? ?????????????
???????? ? ???????????? ?????????. ??????? ??? ??????????? ??????????? ?? ???????????
???????????? ????????? ????? ???????????? ?????????, ?????????? ??? ?????????
????????????. ?? ?????? ???????? ?????????? ??? ???????????? 500-550 °?.
???????? ?????: ?????????, ??????????????? ????????????, ???????????, ????????????
?????????, ?????????????? ???.
????????
?????????????? ????????? ???????? ????? ?? ??????? ????????? ??????????? ?????.
??????? ?????????? ????? ????????, ??????????? ? ????????????? ????????????? ? ???????????? ??????? ??????? ?? ??????? ???????????? ????????????. ?????????? ??????????? ?
???????????? ?????????? ???????????? ? ??????????? ??????????? Pt, Re ? Cl, ??????????
?? ???????? ? ????? ???????? [1-5]. ? ????????? ????? ? ?????? ??????????? ?????????? ??
???????????? ????? ?????????????, ? ???????? ?????????? ????????????.
?????????????? ???????? ???????? ?????????? ?????????? ??????? ?????????? ???????????? ????????? ???????? ? ????????????? ??? ????????????? ??????????? ? ?????? ????????????? ?? ????? (??????). ???????? ?????????? ???????????? ????? ??????????? ??-?? ???????? ???????????? ???????? ? ????????????? ???????????, ????????? ????????, ????????
??????? ??? ????????? ?????????? ??????????, ? ?????, ? ?????????? ?????????? ??????????????? ?????, ??????????? ?? ??????????? ???????????? ?????????, ??????????? ????????
??????. ??? ???????????? ????????? ??????????? ?????????? ????? ???? ????????????? ????? ?????????? ??????????????? ??????????????? ????????, ???????? ?? ??????? ????????
????????? ?????.
?? ??? «???????? ???» (???????? «????????») ????????????? ????????? ?????????? ?????????????? ?????????? ??????? ?? ??????????????? ??????????????? ????????????
R-98 ????? UOP ? ???????????? ????. ??????? ?????????? ?????????????? ? ???? ???????# 920 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Peter N. Kuznetsov, Anastasia V. Kazbanova? Investigation of Physicochemical Properties of Partially Spent?
???????? ??????????? ????????? (?-202, ?-203 ? ?-204) ? ????? ????????, ??????????? ?????
???????????? ?????????????? ??????????, ??? ???????? 24,5-25,0 ???/??2 ? ??????????? ?
????????? ?? 490 ?? 511 °?. ??????????? ???????????? ?????????????? ???????????? ?????
?????? ???????? ?????????. ????????? ??????? ?????? ????? ???????????????, ?????????? ????????? ????????????, ????? ?? ??????????? ??????????? ?????????. ????? ??????????? ??????????? ???????????? ?? ??????????, ?????????? ????????? ? ????????????? ????
?????????????? ?? ?????? ??????. ??? ??????? ???????????? ????? ????????? ???????????
??????? ? ?????????? ??????? ??????????? ????????????. ???? ??????????? ????????? ???????????, ?? ????? ???? ??????? ????????? ?????????????? ????????. ??????? ?????? ?
????????? ????????? ??? ??????????? 385 °?, ???????? 1,47 ??? ??????-????????? ??????,
?????????? 0,3 ??. % ????????? ? ??????? ??l4. ?? ???? ?????? ????? ???????????? ????????? ???????? ?? 0,6?0,8 ??. %.
??? ???????????? ??????-?????????? ? ??????????? ??????? ???????????? ? ?????????
?? ? ???? ???????????? ???? ???????? ???????????????? ????? ????? ?????????? ??????????
????? ??????????? ???????? ????????????? ????????????.
? ????????? ?????? ????????? ?????????? ???????????? ??????-?????????? ? ??????????? ??????? ???????? ????????????? ???????????? ?????????? R-98 ?? ????????? ??-6?? ??
???????? ???, ????????? ???? ????????????? ? ???? ???????????? ????? ??????? ?????? ??????????? ??? ??????????? ??????? ??????????? ????????????.
???????? ????????????
???????????????? ????? ???????????? ????? ?????? ????? ? ????????? ???????? ??????? ??????????? ?? ??? ???????????? ????? ?? ????????? ?-202, ?-203 ? ?-204.
?????????? ???????? ????????? (???????, ?????, ????????, ?????) ? ???????? (??????,
????) ?????????? ???????? ??????? ?????????, ????????????????????? ???????. ??????????
???????? ?????????? ???????????? ??????? ????? ???????? ??????? ????? ?????? ? ????????? ?????? ? ?????? ????????? ??? 900 °? ? ??????????? ??????????? ??2 ? ??????? ?
????????? ????????.
??????? ?????? ?????????? ???? ?????????? ?? ???????????????, ??????? ??????????
?? ????????????? PANalytical X?Pert PRO, ????????????? ?????????? PIXcel ? ??????????
?????????????? ?? C?K? ?????????. ?????????????? ?????? ???????? ??????? ? ??????? ???????????? ???????????? ??????? ????????? [6, 7].
?????????? ?????????????? ????????????? ???????????? ?? ?????? ??????????????????
????????? ????? ?? ????????? Micromeritics ASAP 2020.
????????????????????? ?????? ???????????? ????????? ?? ???????????? ????????? ?
????? ?? ??? ? ??????? c?????????? ???????????????? STA 449 Jupiter (????? NETZSCH)
? ????????????? ?????????? ????????? ????? (????????????????), ???????? ??????? (???????????????? ??????????? ????????????) ? ??????? ???????????? ????? ? ??????? ???????????? ?????????????? ????-???????????? QMS 403 Aeolos (????? NETZSCH). ????????????????? ?????? ???????????? ? ????????????? ????????? ?? 40 ?? 900 °? ?? ?????????
10 ?/??? ? ???????????? ????????? ??????? ??? ???????? ?????? 30 ??/??? ? ????? ? ???????? ??????? ? ???????? ????? 30 ??.
# 921 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Peter N. Kuznetsov, Anastasia V. Kazbanova? Investigation of Physicochemical Properties of Partially Spent?
???????????? ????????? ????????? ????? ????????? ? ?? ????????????? ?????? ???
????????????? ??????? ASTM D6175-98, ????????????? ????????????? ? ???? ?????? ???????????? ??????? Shell ? ?? ?????? ????? ??? ????????? ?????? ???????????? ?? ??????
ASTM 4058.
?????????? ? ??????????
?????????? ????? ???????????? ???????????? ??????? ?????? 4-8 ??, ????????? 1,5 ??.
??????? ??????? ???????????? ????? ??????-????? ????. ????? ????????????? ????????????
?? ????????? ?-202 ? ?-203 ?????????? ????? ?????? ?????? ? ????????? ????????? ? ????????? ??????? ??????? ??? ??????? ?????. ??????? ??? ?????? ????????????, ???????????? ??
?????????? ???????? ?-204, ????????? ????-?????????? ??????.
?????????? ?????? ????. ? ????. 1 ????????? ??????????? ???????? ???????????? ???????, ?????, ????????, ????? ? ????????, ?????????? ??????? ?????????????? ????????.
?????????? ??????? ?? ???? ?????? ????????????? ???????????? ?????????? 0,24-0,25 ???.%,
??? ??????????? ??????????????? ?????????? ? ?????? ???????????? (0,24 ???.%). ?????????? ????? ? ?????? ???????????? ?????????? 0,23 ???.%, ? ? ???????????? ????????? ??????
(0,20-0,21 ???.%). ??? ????? ????????? ?? ????????? ???? ????? ? ???? ????????????, ???
?????????? ????? ? ???? ????? [8]. ?????????? ????? ? ?????? ???????????? ? ? ?????? ??
??????? ? ??????? ????????? ?????????? ?? 0,85 ?? 0,98 ???.%, ? ????????? ???????? ?-204 ???
??????????? ?? 0,42 %, ?.?. ? ??? ????.
? ?????? ???????????? ? ?????????????? ?????????? ?????????? ??????? ?????????? Fe,
? ???????????? ?????? ?????????? ?????? ??????? ?????????????. ?????????? ??? ?????????? (0,27 %) ???? ? ?????? ?? ???????? ?-204. ????????? ?????????? ?????????????? ????
?? ?????? ?????????????? ??????? 0,002 ???.%, ??? ??????????? ? ??????????? ??????? ???? ?
????????? ????? ??? ?????????? ????????? ?????? ?????.
???????? ?? ?? ??? ??????????? ????? ????????? ??????????? ??????????????????
??????????? ?? ?????? ???????????? ?????????, ????????? ???? ?????????? ?? ????
?????? ? ?????????? ?? 1 ???.%. ???????? ????????? ???????? ??? ??????????? ?????
???? ??????????? ???????????? ? ???? ?????????? ? ????????? ???????? ????????????
??????? ???????????? ????????? ? ?????? ??????????? ????????????, ? ????? ?????????? ??????????? ? ????????????? ???????? ?????? ? ???? ???????????? ?? ?????? ???????????.
??????? 1. ?????????? ???????? ??????????? ? ???????? ? ?????? ???????????????? ????????????
??????????
???????????
?????????? ?????????, ???.%
Pt
Re
Al
Cl
Fe
C
0,23
51
0,88
0,02
-
??????
0,24
????? ?? ?-202
0,24
0,21
54
0,85
0,03
0,55
????? ?? ?-203
0,25
0,21
53
0,98
0,04
0,97
????? ?? ?-204
0,24
0,20
51
0,42
0,28
0,31
# 922 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Peter N. Kuznetsov, Anastasia V. Kazbanova? Investigation of Physicochemical Properties of Partially Spent?
??????????????? ??????. ?????????? ? ???? ???????????? ?????? ????????????????
??????? (????. 2) ????????, ??? ???????? ???????? ????????????? ????????????, ??? ? ???????, ??????????? ?????????????? ?-Al 2O3. ? ???? ???????????? ????????? ???????? ????????? ??? ??????????? ???????: ?????????? ?????? ???????????? ???????? ????? ???????? ?-Al 2O3, ? ????? ???????????? ?? ???????? (?? ???????????????? ??????) ???????? ?-203
?????????? ??????? ??????? ??Al 2O3 ? ?????????? 3 ???.%. ????????? ??????? ????? ????
??????????? ??????????? ???????? ???????? ???????? ????? ???????? ??? ????????? ??????? ???????????.
??????? ?????????? ????????????, ??????? ??????????????????? ??????????? ?????
????????????, ??-????????, ??? ?????????? ????????? ??????????? ?? ??????? ??????. ??????? ??? ????? ????? ? ????????? ????????, ?????????? ?????????? ?????????? ????? ?/
??? ??? ?????????? ???????????? ????????? ???? ????? ??-?? ????????? ? ?????????????
???????? ?????? ? ????????.
?????? ?????????? ??????????? ??????? ???????? ????????????? ???????????? ? ??????????? ? ??? ??????? ?????? ?????? (? ??????????? ???????? ?-Fe2O3), ??????????? ???? ???
???????? ??????????????? ??????????. ????????? ???????, ??-????????, ?????????? ? ??????????? ? ?????????? ???????? ???????????? ??? ????????? ??????????? ??????????? ?????,
?????????? ???? ???? ? ????????? ??????????.
???????? ????????????? ??????? ? ????? ?? ??????????????? ?? ??????????, ??? ?????
???? ??????? ? ????? ??????????? ?/??? ?? ???????????????? ??????????.
?????? ?????????? ????????????? ????????????. ?? ???. 1 ????????? ???????? ?????????????????? ????????? ????? ??? ????????? ???? ????????????. ?? ???? ????????? ??????????? ????????? ?????????? ??????????, ??????????? ?? ???????????? ???????? ????????
?-Al2O3. ??? ???????????? ????????????? ?????? ????? ??????????? ??????????? ??? ???????
????????????? ????????, ??? ??? ???????, ??? ????????? ?? ?????????? ??????? ???.
?????? ????????????? ?????? ??? ?? ????????, ????????????? ?? ????????????? ?????
???????, ????????? ?? ???. 2. ?????, ??? ??? ??????? ????? ?????? ?????????????? ????????????? ???????????? ????????? ? ?????????? ????? ?????????????? ??? ?? ????????, ?????? ??? ????????? ? ????????? ?? 2,5 ?? 7,0 ??. ????? ????????????? ???????????? ????? ?????
??????? ????????????? ?????? ??? ?? ????????, ???????? ?? ?????? ??????? ????????? ?
??????? ???????? ??????? ?? ????????? ?? ?????? ?????????????.
?????????????? ?????????????? ?????????? ???????, ???????????? ?? ??????? ?????????, ????????? ? ????. 3. ???????? ??????????? ??????????? ? ???? ???????????? ????????
??????? 2. ??????? ?????? ????????? ? ???? ????????????? ???????????? ????? ?????? ?????
??????
????????????, ??
??????
????????
??????????????? ????
?(?)-Al2O3
5,1
?????????
??????????????? ????
???
????? ?? P-202
?(?)-Al2O3
5,5
???
????? ?? P-203
?(?)-Al2O3
5,7
??????, 2.5 %
????? ?? P-204
?(?)-Al2O3
5,8
?-Fe2O3, 0.3 %
???????????
# 923 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Peter N. Kuznetsov, Anastasia V. Kazbanova? Investigation of Physicochemical Properties of Partially Spent?
P-204
dV/dD, ?? /? ? ??
P-203
P -204
3
P-202
R-98 ??????
P -203
P -202
R -98 ???? ??
0.0
0.2
0.4
0.6
0.8
1.0
2
P/P0
???. 1. ???????? ?????????????????? ?????????
????? ?? ???????? ???????????????? ????????????
??????????
10
? ??? ??? ???, ??
100
???. 2. ????????????? ?????? ??? ?? ???????? ?
???????? ????????????
??????? 3. ?????????? ?????????????? ???????? ????????????
???????????
??????
????????
???????????, ?2/?
????? ???, ??3/?
??????? ???????
???, ??
?????? ??????,
??
209
0,56
7,2
7,8
????? ?? P-202
175
0,55
8,3
8,9
????? ?? P-203
170
0,53
8,3
9,4
????? ?? P-204
174
0,55
8,5
9,1
?? 20 %. ??????????????, ??????? ?????? ??????, ???????????? ?? ???????? ???????? ??????????? ??? ????????? ?? ??????????? ?????, ???????? 7,8 ?? ??? ??????? ????????????
? 8,9-9,4 ?? ? ??? ?????????????. ??????? ??????? ??? ?????????? ?? 7,2 ?? (??? ???????
????????????) ?? 8,3-8,5 ?? (? ????????????). ????????? ?????????? ????????????? ??????????????? ? ????????? ?????????? ??????????? ? ??????? ???????????? ??? ?????? ?????
?? ????????? ? ???????????? ???????? ????????? ????????????.
???????????????? ??????????? ???????????? (???). ?? ???. 3 ????????? ?????? ???
??? ?????????? ???????????? ? ?????? ??????? ?? ??????????? 900 °?. ??????????????? ?????? ??? 67-130 °?, ??????????? ??? ???? ????????, ?????? ? ????????? ????????????? ????,
??????? ????????????? ????-?????????????????. ????? ???????? ???? ??????????? ????????? ??????????????? ???????? ??? ???????????? 150-210, 346, 400-460 ? 550 °?. ????????
??????????????? ?????? ??? 550 °? ?????????????? ???????????? ????????? ?????? ?????
(???. 4). ??? ???????????? ???? 600 °? ?? ?????? ??? ??? ???? ???????? ??????????? ???????????? ??????????? ?????????? ????????? ?????? ?? ???? ????????? ??????????? ???
?????? ????? ???????.
??????? ??????????????? ?????? ??????? ? ?????????? ????????? ???????????? ?????????, ??? ?????????????? ??????????? ???????? ?????? ??? ? ????????? ??2 (???. 3 ? 5).
???????, ???, ?? ?????? ????-??????????????????? ???????, ??????????? ??2 ?? ???????# 924 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
0
150 C
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-0.1
0.5
P-204
0
400-460 C
0.4
2800
290 C
0.3
?-203
P-202
5000
580 C
0
346 C
???, %/???
???????? ?????, ???/??
Peter N. Kuznetsov, Anastasia V. Kazbanova? Investigation of Physicochemical Properties of Partially Spent?
0.2
P-204
0.1
P-203
0.0
?-202
-0.1
-0.2
-0.3
0
200
400
600
-0.4
800
0
200
0
???????????, ?
?????? ???, ?
???. 3. ?????? ??? ??? ??????????????????????
?????????
????
????????
?????????????
????????????, ?????????? ?? ????????? ?-202,
?-203 ? ?-204
400
600
0
???????????, ?
800
???. 4. ?????? ???????? ?????? ????? ???
??????????????????????
?????????
????
????????????, ?????????? ?? ????????? ?-202,
?-203 ? ?-204
?? 2
8.0x10
-10
7.0x10
-10
6.0x10
-10
5.0x10
-10
4.0x10
-10
P-203
3.0x10
-10
P-202
P-204
0
200
400
600
800
0
???????????, ?
???. 5. ?????? ????????? C?2 ??? ?????????????????????? ????????? ???? ????????????, ??????????
?? ????????? ?-202, ?-203 ? ?-204
??????? ?????????? ???? ? ???????? ??????????, ??? ????????? ?? ??????? ??????? ?????????????????? ???????????? ?????????.
?? ???? ???????? ???????????? ????????? ???????????? ??????? ?????????? ??? 150210 °?. ??????? ?? ???????? ?-202 ? ???????? ?? ???????? ?-203 ?????????? ????????????
??????????????? ???????? ??????? ???????????? ????????? ? ??????????????????? ??????? 500-580 °?. ? ???????????? ?? ???????? ?-204 ????? ?????? ???????????, ?????????
????????? ?????????? ???????? ?????????? ??? ????? ?????? ??????????? ? 350-450 °?
(???. 3 ? 5).
????? ???????, ?????? ??????????? ??????? ?? ?????????? ???????? ? ?????? ??? ????????? ?? ????????? ???????? ????????? ????? ?? ????????????? ? ?????? ?????????: ?????????? ?????????? ????????????? ?????????, ???????????? ?????? ??????????? ????????# 925 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Peter N. Kuznetsov, Anastasia V. Kazbanova? Investigation of Physicochemical Properties of Partially Spent?
????, ?????????? ? ??????? ?? ???? ???????????????? ?????? ? ???????? ?-203. ????? ????????,
??? ? ????? ?? ????? ?? ???????? ?????????? ??????? ??????????? ?????????????? ????????
? ??????????????????? ??????????? ?????? (????. 2) ? ?????????? ???????? ???????????
(????. 3). ? ??????? ??????? ?????????? ??????????? ? ?????? ????????. ??????????? ? ????????? ???????? ?-204 ?????????? ?????????? ???????? ???????????????, ?????? ?????????
??????????? ??? ????? ?????? ???????????.
??????? ?????????? ???????????? ?? ?????? ??? ????????? ?? ??, ??? ? ?????????????
?????????? ????????? ?? ??????? ? ????????? ????????????? ?????????. ???????? ????????????? [9, 10], ??? ?????? ???????? ????????? ????????????? ????????? ?? ?????????????
????? ???? ?????? ? ?????? ?? ??????????? ?? ??????????? ?/??? ?? ??????????? ????????????, ?.?. ???????? ? ??????????.
?????? ?? ??????? ?????????????, ????? ????????, ??? ? ?????? ????????????????? ???????????? Pt-Re/Al2O3 ?? ?????? ?????? ??? 150-210 °? ?????????? ????????????? ?? ???????????? ???????????? ??? ???????????? ????????? ?? ????????????? ??????????. ??????
??????????? ????????? ??????????? ?????????????? ????????? ????????????? ???????. ???
????? ??????? ??????????? 350-450 °? ???????? ???????????? ?????????, ??????? ?????
???? ???????????? ?? ??????????? ?????????? ????????? ???????? ?????? ?????????????
??????. ??? ???????????? ???? 450 °? ???????? ?????????, ???????????? ?? ???????????
?????????? ???????? ????? ?? ????????????? ??????. ?? ???????? ?????????? ?????? ???
? ????????? ??2 ????? ????????, ??? ??? ???????????? ????????? ? ???????????? ????????
??? ???????????? ???? 550 °?, ??? ????? ??? ?????????? ????????????????? ????????? ??????????? ??????????.
? ?????? ???????, ???????? [11] ????????? ???????? ????????? ????????????? ????????? ?? ????????????? ????? ???? ??????? ? ?? ???????? ? ??????????. ????????, ???
??? ????? ?????????????? ? ??????????? ????????? ????????, ??? ?????? ??? ???????????
??????????? ?? ????????? ? ?????????. ???????? ? ????????? ????????????? ?????????
?? ????????????? ? ?????????? ?????? ??????????. ?? ?????? ???? [11], ? ?? ??????? ??????? ??? ??????????????? ???????????? ???????????, ??? ? ????????? ??????????????
????????, ? ????? ????????? ?????????????????? ??????. ?????????? «??????????????»
???????????? ?????????????? ????????? ? ?????????? ?????????? ???????????? ????????? [12]. ??? ???? ??? ??????????? ??????? ?? ?????? ??? ??????? ??????????????????
??????????, ??? ????????? ?? ????????? ??????? ?????????????????? ???????? ? ???? ?????????? ?? ????????? ? ???????????, ??????????? ??? ??????? ???????????. ? ?????? ?????????? ?????? ? ????????? ? ?????????? ???????? ???????? ???????? ????????,
??? ????????? ???????? ????????? ???????? ?? ????????????? ??????????? ???????? ????? ????????.
??? ???? ???????? ??? ??????????? 600 °? ? ???? ?? ?????? ??????????? ??????????
????????? ??????. ?????? ?????? ????? ???? ?????? ? ??????????? ???????????? ??????
????????, ??????? ????????? ? ?????????? ?????.
??????????? ???????????? ?????????. ??? ??????? ???????? ??????????? ??????????
???????????? ????????? ?? ?????????????, ????????? ?????? ????????? ????????????? ???????????? ??????????? ?? ?????????? ?? ????????? ?????? (????. 4).
# 926 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Peter N. Kuznetsov, Anastasia V. Kazbanova? Investigation of Physicochemical Properties of Partially Spent?
??????? 4. ??????????? ?????????????? ???????????? ??????????
?????????????
?????????????,
??/??
0,9
?????????????
????????????? ? ????
????????????, ???
1,4
?????? ?????
????????????
??? ?????????, %
1,5
?? ???????? P-202
1,0
1,4
1,2
?? ???????? P-203
0,9
1,4
1,3
?? ???????? P-204
1,1
1,5
1,1
???????????
??????
??????
1. ??? ???????????? ??????-?????????? ??????? ???????????????? ???????????? ?????????? R-98 ???????????, ??? ? ???? ??? ???????????? ??????????? ??????????? ????????? ??????????? ???????: ?????????? ???????????? ???????? ????? ???????? ?-Al 2O3, ???
????????? ??????? ??????????? ? ??????. ??????????? ??????? ?-Al 2O3 ? ????????????
???????????? ?????? ????????? ?? ??, ??? ? ???????? ????? ????? ???????????? ????????? ??????????? ??? ????????? ???????????? ?????????, ??? ??????? ??????? ???????
???????? ????? ???????? ?-Al 2O3 ? ?????????? ??????????????????? ??????????? ???????.
2. ???????????, ??? ? ???? ???????????? ??????????? ?????????? ???????? ????????
??????????? ? ????????? ?????????? ??????? ???. ??? ???? ?????????? ???????????? ????????? ???? ??????????.
3. ?????? ??????????? ???? ????????????? ???????????? ??????? ? ?????????? ??????????? ? ??? ??????? ?????? ??????, ??????? ???????? ???? ??? ?????????????? ??????????
????????????. ?????????? ?????? ?????? ????? ???? ??????? ? ????????? ???????????? ???
????????? ??????????? ?????, ?????????? ???? ???? ? ????????? ??????????.
4. ??????????? ???????? ? ?????? ????????????? ???????????? ????????? ?? ????????
???????? ???????? ????????? ?? ?????? ????????????? ???????????, ??? ????? ???? ???????
????????????? ????????????? ????????? ?????? ??? ??????????? ? ????????????? ????????
?????? ? ????????.
5. ??????? ??? ???????? ????????????? ????????? ????? ???????????? ?????????
?? ??????????? ???????????? R-98. ?????? ???????? ?????????? ????????? ????? ??????????
??? ??????????? 500-550 °?.
?????? ??????????
[1] ??????? ?.?. ?????????? ???????? ??????????? ????? ? ????. ???: ?????, 2002.
?. 672.
[2] ?????? ?.?., ????????? ?.?., ?????? ?.?. // Oil&Gas Journal. 2008. ? 6. ?. 19. ?. 98.
[3] ????? ?.?., ???????? ?.?., ????? ?.?.? ??.// ???????????????? ? ??????????. 2004.
? 4. ?. 52.
[4] ????? ?.?., ?????????? ?.?., ???????? ?.?., ????? ?.?. // ???????? ? ???????. 2010.
?. 51. ? 1. ?. 88.
# 927 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Peter N. Kuznetsov, Anastasia V. Kazbanova? Investigation of Physicochemical Properties of Partially Spent?
[5] ???????? ?.?., ??????? ?.?., ????? ?.?.? ??. // ???????????????? ? ??????????. 2012.
? 3. ?. 3.
[6] Rietveld H.D. // J. Appl. Cryst. 1969. V. 2. P. 66.
[7] Solovyov L.A. // J. Appl. Cryst. 2004. V. 37. P. 743.
[8] ???????? ?.?. ?????????????? ???????? ????????? ????????????? ??????????????
????????. ? ???.: ??? «????????????», 2010. 728 ?.
[9] Comelli R.A., Canavese S.A., Querini C.A., Figoli N.S. // Appl. Catal. A: Gen. 1999. V. 182.
P. 275.
[10] Barbier J., Churin E., Parera J.M., Riviere J. // React. Kinet. Catal. Lett. 1985. V. 29. P. 323.
[11] Resofszki G., Muhler M., Sprenger S. etc // Applied Catalysis A: General. 2003. V. 240.
P. 71.
[12] Martin N., Viniegra M., Zarate R. etc // Catalysis today. 2005. V. 107-108. P. 719.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 929-932
~~~
??? 621.777
Research of Properties Deformed Semi-Finished Products
from Aluminum-Zirconium Alloys,
Obtained with Using Combined Methods
of Casting and Metal Forming
Vadim M. Bespalov*,
Sergey B. Sidelnikov and Andrei S. Sidelnikov
Siberian Federal University
79 Svobodny, Krasnoyarsk, 660041, Russia
Received 21.10.2014, received in revised form 09.11.2014, accepted 02.12.2014
This article represent the results of research of mechanical and electrical properties of deformed
semi-fi fnished products from alloys system Al-Zr, obtained with using methods of combined castingrolling, combined casting and rolling-extruding and drawing.
Keywords: combined processes, casting, rolling, extruding, drawing, electrical wire, mechanical and
electrophysical properties.
???????????? ??????? ??????????????? ??????????????
?? ??????????-??????????? ???????,
?????????? ???????????? ???????? ?????
? ????????? ?????????
?.?. ????????,
?.?. ???????????, ?.?. ???????????
????????? ??????????? ???????????
??????, 660041, ??????????, ??. ?????????, 79
? ?????? ?????? ???????????? ?????????? ???????????? ???????????? ? ?????????????????
??????? ??????????????? ?????????????? ?? ??????? ??????? Al-Zr, ?????????? ????????
???????????? ?????-????????, ???????????? ????? ? ????????-??????????? ? ?????????.
???????? ?????: ??????????? ????????, ?????, ????????, ???????????, ?????????,
?????????????????? ?????????, ???????????? ? ????????????????? ????????.
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: vmbespalov@mail.ru
# 929 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Vadim M. Bespalov, Sergey B. Sidelnikov? Research of Properties Deformed Semi-Finished Products?
Development and application of methods combined casting and rolling, and casting and rollingextrusion for obtaining deformed semi-finished products from high-strength aluminum alloys as a
wire rod, bars and wire is currently one of the most promising areas of research. Their results will
enable used in the future such semi-finished products for the manufacture of power wires for power
transmission lines, having not only high strength but also heat resistance.
According to State Standard ?13843-78 aluminum wire rod from alloys of technical aluminum
marks ?5? and ?7? diameter 9,5 mm obtained on casting-rolling aggregates (CRA) must have a
tensile strength ?? about 80-110 MPa and electrical resistivity 0,0282 Ohm·mm2/m (1,7 times more
than electrical resistivity of copper). Working temperature of rolled wire is 90 °C. The lack of electrical
conductivity compared to copper wires can be offset by an increase of conductor size, but such strength
and heat resistance is not enough to ensure reliable operation of the lines, excluding precipices. In this
regard, recent studies aimed at finding ways to strengthening and improving the thermal stability of
aluminum wire rod.
One of perspective directions is the study of alloys system Al-Zr. Based on the review of the
scientific literature, presence of zirconium in aluminum alloy: significantly increases the strength of
the alloy; prevents grain growth at elevated temperatures; improves weldability; prevents grain growth
in areas near the weld; reduces susceptibility to corrosion under voltage; reduces the sensitivity to the
cooling rate during hardening.
This paper shows a comparison the results of the mechanical characteristics and electrical
resistivity of wire rod obtained by the classical method (CRA) at «IrkAF» JSC and rods obtained by
method combined casting and rolling-extruding in laboratory conditions of FSAEI HPE «Siberian
federal university» [1] from aluminum alloys with a similar chemical composition containing up to
0,15 % of zirconium [2].
Rods were obtained on experimental installation which working unit includes rolls diameter 200
mm; they form a closed caliber with dimensions 14Ч14 mm. At the exit of the rolls using hydraulic
cylinder is preloaded matrix with caliber hole 9 mm.
Experiments were conducted using two technologies, in the first case used combined rollingextruding (CRE) of rod from billet cast in a mold with size 14Ч14 mm and in electromagnetic crystallizer
diameter 15 mm (process EMC+CRE). In this case, billet heated to a temperature 550 °C, moved to
the caliber of rolls, rolled up to the surface of the matrix and extruded through matrix to obtain rod
diameter 9 mm.
In the second case was performed combined casting and rolling-extruding (CCRE). During the
experiment the melt poured into the caliber of rotating rolls consistently crystallized, compressing by
them and came out of the matrix in the form of rod specified size. Temperature of the melt at pouring
was 750 °C according to conditions for obtaining factory wire rod presented in the work [3].
To estimate technological properties of rods and wire rods conducted cold drawing without
intermediate annealing to obtain wire diameter 2 mm. Then performed a two-step annealing of metal
first at a temperature 300 °C, then at a temperature 450 °C at a fixed holding time.
At each redivision sampled for the study of the mechanical properties and treated in accordance
with the requirements of State Standard 1497-84. Testing of the samples was carried out on an
electromechanical machine Walter + Bai AG LFM400 («Walter + Bai AG», Switzerland) with force
400 kN, with recording basic parameters (?? ? tensile strength, MPa and ? ? relative elongation, %).
# 930 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Vadim M. Bespalov, Sergey B. Sidelnikov? Research of Properties Deformed Semi-Finished Products?
The study results showed that the range of values of the billet ultimate tensile strength molded by
casting into a mold is 60 ? 65 MPa, and billets obtained in EMC ? 100-110 MPa.
After heat treatment of cast billet and obtaining rod using method CRE depending on the casting
method values ?? increase to 120 ? 140 MPa, and after using methods CRA and CCRE ? to 110 ? 120
MPa. At the same rod tensile strength obtained by technology EMC+CRE higher on average by 7 %.
Analysis of the mechanical properties of the wire after drawing with degrees of deformation to
95 % (Fig. 1) showed that wire obtained from rods after CRE and EMC+CRE has higher strength
characteristics (?? = 210 ? 220 MPa) compared with the wire obtained from rods after CRA and CCRE.
Note also that the plastic properties higher in rods obtained after method CCRE.
It was also found that the presence of zirconium in aluminum alloy increases the thermal stability
of semi-finished products. Conducted thermal testing showed that the values of tensile strength with
increasing temperature up to 200 °C for rods obtained by method CRE decreases by 20 %, and for rods
obtained by method CCRE ? by 10 %.
Electrical resistance of the samples was measured using a millivoltmeter «Vitok» according to
State Standard 7229-76. Results presented in Table 1.
According to results of investigations can be concluded:
Using zirconium as an alloying element in aluminum alloys containing up to 0,15 % allows in
1,5 times increase strength and improve the thermal stability of deformed semi-finished products
compared to wire rod made of technical purity aluminum marks ?5? and ?7?.
For the production of deformed semi-finished products from aluminum alloys with higher
strength properties necessary apply the method CRE with using billet obtained in electromagnetic
crystallizer.
Fig. 1. Mechanical properties of deformed semi-finished products from alloys system Al ? Zr depending on the
processing methods: ?? ? tensile strength; ? ? relative elongation; ? ? deformation degree
# 931 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Vadim M. Bespalov, Sergey B. Sidelnikov? Research of Properties Deformed Semi-Finished Products?
Table 1. The average values of the electrical resistivity of deformed semi-finished products obtained by different
technologies
Method
CRA
CRE and
EMC+CRE
CCRE
Characteristic
??, MPa
?, %
Electrical resistivity,
Ohm·mm 2/m
Wire rod diameter
9,5 mm
110 ? 120
8,71
0,0305 ? 0,0309
Wire diameter 2 mm
190 ? 200
1,55
0,0310 ? 0,0320
Annealed wire
diameter 2 mm
60 ? 70
20,83
0,0290 ? 0,0307
Rods diameter 9 mm
120 ? 140
17,0
0,0291 ? 0,0309
Wire diameter 2 mm
210 ? 220
2,5
0,0296 ? 0,0311
Annealed wire
diameter 2 mm
75 ? 85
34
0,0288 ? 0,0304
Rods diameter 9 mm
110 ? 120
24
0,0284 ? 0,0298
Wire diameter 2 mm
Annealed wire
diameter 2 mm
190 ? 200
3,65
0,0285 ? 0,0307
70 ? 80
36
0,0275 ? 0,0297
Technology CCRE compared with the classical methods (CRA) allows receiving deformed semifinished products with higher ductility and electrical conductivity. Values of the electrical resistivity
for them are in the range 0,0285 ? 0,0307 Ohm·mm2/m.
Conducting a two-step annealing of wire obtained by cold drawing with deformation degree to
95 % makes it possible to recover the plastic properties of metal and reduce the value of the electrical
resistivity to 0,0275 ? 0,0297 Ohm·mm2/m which is close to the values of the required State Standard.
Thus, to obtain the electrical wire rod from aluminum alloys with a high level of mechanical and
electrical properties appropriate to apply methods of combined casting and rolling-extruding.
The studies were conducted in accordance with the contract ?13G25.31.0083 with Russian
Ministry of Education and UC RUSAL by topic «Development of technology for obtaining aluminum
alloys with rare earth, transition metals and highly effective equipment for the production of electrical
wire rod».
References
[1] S.B. Sidelnikov, N.N. Dovzhenko, N.N. Zagirov. Combined methods of treatments of nonferrous metals and alloys: a monograph. / / M.: MAKS Press, 2005. P. 344.
[2] Padalka V.A., Dovzhenko N.N., Sidelnikov S.B. and others. The study of the structure and
properties of cast and deformed semi-finished products from alloys system Al-Zr obtained by combined
methods of casting and rolling-extruding. Foundryman of Russia. 2011. ?5. P. 33-36.
[3] Experimental-industrial development of production wire rod from aluminum-zirconium
alloys: collection of reports on the results of III international Congress «Non-Ferrous Metals» / edited
by G.L. Pashkov, professor P.V. Polyakov. Krasnoyarsk, 2011. P. 560-563.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 933-937
~~~
??? 621.777
Development of Functioning Models and Design
of the Unit of Combined Rolling-Extruding
for Processing of Non-Ferrous Metals and Alloys
Ivan N. Dovzhenko*,
Nikolai N. Dovzhenko and Sergey B. Sidelnikov
Siberian Federal University
79 Svobodny, Krasnoyarsk, 660041, Russia
Received 14.09.2014, received in revised form 29.10.2014, accepted 15.11.2014
Analyzed the state production of long-length products from non-ferrous metals and alloys.
Developed new models and proposed constructions of aggregates of combined treatment.
Keywords: metallurgy, non-ferrous metals, combined processes, rolling, extruding, modeling.
?????????? ??????? ????????????????
? ??????????? ????????
??????????? ????????-???????????
??? ????????? ??????? ???????? ? ???????
?.?. ????????, ?.?. ????????, ?.?. ???????????
????????? ??????????? ???????????
??????, 660041, ??????????, ??. ?????????, 79
???????????????? ???????????? ???????????? ????????? ?? ??????? ???????? ? ???????.
??????????? ????? ?????? ? ?????????? ??????????? ????????? ??????????? ?????????.
???????? ?????: ???????????, ??????? ???????, ??????????? ????????, ????????,
???????????, ?????????????.
With the continuous technological development and globalization of markets before the
enterprises producers of metal products there is acute problem increase efficiency and provide release
of competitive production. This problem is especially urgent in the production of long products from
non-ferrous metals and alloys in the form of rods, wire and profiles of small cross-section.
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: sbs270359@yandex.ru
# 933 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Ivan N. Dovzhenko, Nikolai N. Dovzhenko? Development of Functioning Models and Design of the Unit of Combined?
Underlying of this work process of combined rolling-extruding (CRE) [1] has great potential for
improving the efficiency of obtaining long products from non-ferrous metals and alloys.
Analysis of the scientific-technical and patent literature has shown that as basic for most
continuous processes applies rolling, and ways to ensure the creation of active friction by
movable walls of the instrument, for example, in the methods Conform, Extrolling and Lynex.
Devices for the implementation of these methods work in conjunction with the aggregates of
continuous casting billet, mostly rotor type. Most common in the industry have installs Holton
Conform? of company Outokumpu Holton Ltd. with wheels diameter 300, 400 and 500 mm,
and also company BWE Ltd. Conform? and Conklad? with wheels diameter 285, 315, 350,
400, 550 mm and drive power from 100 to 500 kW. The maximum diameter of the billet is 25,5
mm from aluminum and 22 mm from copper. Approximately 75 % of working units Holton
Conform? intended for obtaining of aluminum products and 25 % from copper and copper
alloys.
Despite the advantages of these units should be noted and shortcomings of the method Conform:
high energy intensity of the process, as the costs of overcoming the friction forces on the surfaces
of instrument assembly require for drive the use electric motors of high power; unevenness of
deformation; sufficiently complicated construction of press unit and its cooling system. Thus, the
driving power of installation CRE comparing to installation Conform at comparable diameters of
the rolls and wheel lower for 3-4 times.
For the process CRE performed a complex of theoretical and experimental research, implemented
protection of technical solutions in the form of patents, established pilot installations based on
the rolling mills. However, there is a need of development constructions of industrial aggregates
CRE as objects of modular continuous technology taking into account the advantages and lacking
disadvantages of pilot units.
The analysis showed that the design of industrial aggregates CRE as objects of module
technologies need to develop their structural and parametric descriptions using a set of project
parameters and operational models.
One of the main factors determining the energy-power parameters of the process CRE is the
coefficient of extraction during extrusion, and therefore were performed experimental studies on the
installation CRE-200 for an alloy of lead with antimony, aluminum and its alloys and copper. On
Figure 1 represented typical for the process CRE dependence of the forces on the matrix, rolls and
moments (further index 1 ? relates to roll with a ledge, index 2 ? with cutting) during deformation
in hot conditions at 470 ?C of aluminum A7 in various calibers. Analysis of experimental data
revealed the following general patterns of the process CRE: increase extraction increases the forces
on the matrix which is characteristic of the extrusion process, and on the rolls due to increased
boost pressure in the deformation zone from the force of extrusion; reduction in cross-sectional
area of caliber at one and the same extract reduces the forces on the matrix; change in the force on
the rolls is very sensitive to changes in the extrusion force; moment on the roll with cutting more
than moment on the roll with a ledge, due to the difference in the contact area of the walls caliber
with billet during deformation; there is a correlation relationship between the moments on the roll
with a ledge and roll with cutting, and the rate of change ?M2 / ?M1 higher for of hot deformation
conditions for alloy AD31 and copper than lead.
# 934 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Ivan N. Dovzhenko, Nikolai N. Dovzhenko? Development of Functioning Models and Design of the Unit of Combined?
a
b
Fig. 1 Dependence of the forces on the matrix ?m and rolls ?r (a) from extraction ? during extruding the alloy ?7
(1 ? ?r, and 2 ? ?m, caliber 13Ч22 mm; 3 ? ?r and 4 ? ?m , caliber 11Ч15 mm) and moments on the rolls ?1 and ?2
(b) with the same parameters (1 ? ?2 and 2 ? ?1, caliber 13Ч22 mm; 3 ? ?2 and 4 ? ?1, caliber 11Ч15 mm)
For process CRE implemented on the rolls of different diameters found that the length of the arc
of capture, the pressure on the rolls, zone sizes crimping under the rolls and moments on the rolls are
not the same.
For the calculation temperature of press-article to the development solution
of J.L. Sternik on the basis of one of the properties of integrals of the differential equation Fourier to
account for the two-dimensional heat flow in the billet deformation in the form of bar and substitution
of thermal characteristics for the alloy AD31 following equation was obtained
? ???
? 0 0, 315 J p?? '? ???? '? ??? '? ?? 2[? 0 0, 315 '? ???? '? ??? '? ?? ? ? ] � Є1 exp 1, 5 Nu / Pe є ,
¬
ј
2
where ?0 ? billet temperature, ?ex=CVsC( [ex,?ex)(1+1,4ln?) ? pressure of extruding, ? ? extraction coefficient
during extruding, ??rol, ??dec and ??fr ? temperature increase accordingly from deformation during
rolling, decompression and friction on the walls of caliber, ??=Cvh0/? ? Peclet number, Nu=ld1/h0 ?
Nusselt number, ?=Nu???/(1+Nu???), ? ? coefficient of thermal diffusivity,Cv ? average velocity of
sections in the deformation zoneCv=2?R1R2/(R1+R2), and ? ? rotational speed of the rolls.
For conditions R1=210 mm, R2=180 mm, ?=15,1, ?0 =480 °? (alloy AD31) results of calculation by
the above formula is shown in Fig. 2.
Analysis of simulation results showed, that with increasing rotational speed of the rolls of heat
transfer time is reduced between the metal of billet and rolls. Accordingly decreases temperature drop
in the billet of rolling and decompression zones which increases the product temperature at the outlet
of the matrix.
Based on the results of studies proposed to use for aggregates CRE:
? box-like frame with console emplacement of rolls, diameter from 100 to 300 mm, providing
rapid tool changing (rolls and matrix) to produce small batches of deformable alloys (aluminum
??1, silver SAg40 etc.) with the wide nomenclature;
? closed frame (the diameter of the work rolls 400 or 500 mm), providing greater stiffness and is
designed to operate using a large cross-section billets with high performance, and also allows
# 935 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Ivan N. Dovzhenko, Nikolai N. Dovzhenko? Development of Functioning Models and Design of the Unit of Combined?
Fig. 2 Calculated dependence of the temperature of the product ?prod output from the matrix of the speed of rolls
n and temperature of the rolls Trol: 1 ? 150 °?; 2 ? 200 °?; 3 ? 250 °?; 4 ? 300 °?; 5 ? 350 °?
a
b
Fig. 3 Configuration solution of aggregate CRE-300 (a) and construction of a combined unit of gear cage
with console rolls (b): 1 ? console roll; 2 ? frame; 3 ? bearing; 4 ? sealing; 5 ? fast coupling; 6 ? gear wheel;
7 ? matrix
processing hardly-deformable alloys of aluminum and copper. Variant configuration solution
of aggregate CRE-300 of frame type presented on Fig. 3.
The design of roll is combined using hard alloy ring and mounting system of company «Kark».
Further, this version of the unit has been improved through the use of design combined unit gear cage
with console rolls (Fig. 3b).
As a drive of the work rolls proposed to use modern motor reducers or hydraulic motor reducers
does not require additional reducers which significantly reduces the overall dimensions of the unit
CRE. For the production of press-articles from billets with a cross section 40Ч40 mm and more from
aluminum alloys and copper developed construction of aggregate CRE-400 with the initial diameter of
the rolls 400 mm (Fig. 4). As an analog of roll block is taken cage section rolling mill of construction
USTU-UPI (Yekaterinburg).
Therefore, developed models and proposed the construction of aggregate CRE-400 which ensures
that no overturning moment through the use of individual drive for each roll, high stiffness of system
roll-matrix block and reliability. The results of the studies were used to create a physical model of the
installation of combined processing for the production electrotechnical wire rod.
# 936 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Ivan N. Dovzhenko, Nikolai N. Dovzhenko? Development of Functioning Models and Design of the Unit of Combined?
Fig. 4 The construction of aggregate CRE-400 (a) and cross-section in the plane of work rolls (b)
References
[1] Sidelnikov S.B., Dovzhenko N.N., Zagirov N.N. Combined methods of treatments of nonferrous metals and alloys. M.: MAKS Press, 2005. P. 344.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 938-946
~~~
??? 621.777
Development of Rolled
and Cabling-Wiring Production
from Aluminum Alloys at Plants in Russia
Juri A. Gorbunov*
Engineering and Technology Center «SIAL» Ltd
103 Pogranichnikov, Krasnoyarsk, 660111, Russia
Received 04.10.2014, received in revised form 14.11.2014, accepted 06.12.2014
This article provides an overview the state of production and consumption cabling-wiring production,
plates, sheets and foil from a different aluminum alloys in Russia, CIS and other countries. Also the
forecast consumption of aluminum semi-finished products in the coming years.
Keywords: aluminum, rolling, cabling-wiring production, aluminum alloys, foil.
???????? ???????????? ???????
? ????????-????????????? ?????????
?? ??????????? ??????? ?? ??????? ??
?.?. ????????
??? «?????????-??????????????? ????? «????»
??????, 660111, ??????????, ??. ?????????????, 103
? ?????? ???????? ????? ????????? ???????????? ? ??????????? ????????????-?????????
?????????, ????, ?????? ? ?????? ?? ????????? ??????????? ??????? ? ??????, ???????
??? ? ?????? ???????. ??????????? ??????? ??????????? ??????????? ?????????????? ??
????????? ????.
???????? ?????: ????????, ????????, ????????????-????????? ?????????, ???????????
??????, ??????.
Refusal of planning and distribution system of production organization and the transition to market
conditions, management of the economy, accompanied by our country in the 90?s of last century, the
conversion of defense industries, subsequently was characterized by a sharp drop in consumption of
deformed semi-finished products from aluminum alloys in almost all areas and, accordingly, their
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: gja@sial-group.ru
# 938 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Juri A. Gorbunov. Development of Rolled and Cabling-Wiring Production from Aluminum Alloys at Plants in Russia
collapse in industrial production. For the last period of time the situation will definitely improve, but
the recovery in output of machine-building enterprises and their competitiveness in some industries
remains an urgent task.
Considering the results of activity in recent years the main branches of the Russian economy
potentially targeted at a wide use of aluminum alloys, the following results can be noted
(Table 1).
The results presented in some positions (for example, the number of civil and transport aircraft,
passenger coaches, civilian vessels) significantly lower than previously reached a maximum of industrial
production, not to mention the performance of leading foreign firms. Naturally, this is reflected in the
volume consumption these sectors of semi-finished products from aluminum alloys.
It should be noted that in a number of basic branches of machine building low level of consumption
aluminum semi-finished products defined not by a lack of demand for the final product, but low
competitiveness of domestic products of mechanical engineering defined as the level of scientific and
engineering developments and technical condition of the enterprises industrial base. For this reason,
some sectors of the national economy focused more on the purchase of foreign equipment (for example,
civil aviation), and others to establish assembly plants of foreign products in Russia with a relatively
low degree of localization components production at domestic plants (as, for example, the automobile
industry). Last also entails a strong drop in consumption of aluminum and semi-finished products from
it. For example, in the automobile industry for the first half of 2013 it is projected at 18 % (compared
to the same period of last year).
In the absence of sufficient demand for aluminum semi-finished products from the domestic
engineering industry many of the metallurgical plants are forced to shift to foreign markets. However,
not in all cases they are able to provide the stringent requirements of the external market for the quality
and price of products. It is for this reason main volume aluminum, produced at the company «Rusal»
plants 4,174 mln tons, not implemented domestic enterprises, and sent for export. According to the
Table 1. Volumes of production with the use of aluminum alloys in different branches of industry in 2010 ? 2012
Branch of industry
Aircraft construction
Helicopter construction
Electric power and cable industry
Building
Passenger railcar construction in
2012 (TVZ JSC)
Automobile manufacturing in 2012
Shipbuilding
The volume of production
- in 2012 ? 23 passenger and cargo aircraft *
- in 2011 ? more than 120 military aircraft (2nd place in the world)
- in 2011 ? 267 helicopters (steady growth, the 3rd place in the world)
Development of UNPG from 2013 ? 1880 km
(96, 636 kt)
In 2012 volume of processing ? 211kt
62, 5 mln. sqr. m (in 1985 ? 16,3 mln. sqr. m)
378 passenger carriages
351 underground carriages
Passenger a/m ? 1968,8 thousand units
Buses ? 57,2 thousand units
Trucks ? 208,1 thousand units
1,3 % of world volume by the number of civilian transport ship
* In 2011 Airbus sold 1608 civil aircraft, Boeing ? 921, B?mbardier ? 245, Embraer -105, i.e. all about 2900 units.
# 939 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Juri A. Gorbunov. Development of Rolled and Cabling-Wiring Production from Aluminum Alloys at Plants in Russia
Directorate of Marketing UC «Rusal» in 2012 aluminum consumption among industries of Russia and
some CIS countries was divided as follows (Table 2).
These data provide only an indirect idea of the volume of production of deformed and cast
semi-finished products by domestic metallurgical enterprises, as for the preparation of alloys used a
significant amount of scrap, attracted from the market. According to various expert estimates, total
production volume of semi-finished products from aluminum alloys in the considered period of time is
more than 900 kt. Thus the structure production by shares of different types semi-finished products in
the total volume of production quite significantly different from the global representation. In particular
this applies to flat rolled, production of which in Russia is concentrated in the factories of the company
«Alcoa Rus», «KUMZ», «SMK» and plants of company «Rusal».
Production of plates and sheets from aluminum alloys. The product line of domestic rolling plants
includes the full range of semi-finished products ? plates, rolled sheets and foil. According to various
sources, the total production of plates and sheet in 2010 amounted to only 237 kt (Table 3), in 2011
increased by 26,7 %, and for the 6 months of 2012 decreased by 10 % compared to the same period of
the previous year.
Thus, taking into account volume of production foil in RF share of rolled in the total
production of semi-finished products from aluminum is less than 40 % (in universal practice ?
Table 2. Volumes supplies of aluminum to various industries of the CIS in 2012, kt
17
1
Automobile Industry
2
Grand total
3
1
27
186
22
6
229
81
4
4
108
265
Ferrous metallurgy
Other processing
In all
Extrusion
Uzbekistan
3
27
Ukraine
10
Rolled products
Russia
Kazakhstan
Cable
Sector of industry
Armenia
Byelorussia
Consumption of aluminum by industry of the CIS
30
7
291
69
71
42
46
41
43
684
27
11
Table 3. Production of plates and sheets from aluminum alloys by leading RF enterprises in 2010
Enterprises
Production of plates and sheets in RF
2010, kt
in % to 1985
Alcoa SMZ
145
30
KUMZ
60
67
BKMPO/AMR
20
8
SMK
12
8
Total
237
# 940 #
788
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Juri A. Gorbunov. Development of Rolled and Cabling-Wiring Production from Aluminum Alloys at Plants in Russia
about 70 %). Of these, about 140 kt of production is exported and not consumed by domestic
enterprises.
At the same time, it should be noted that the metallurgical enterprises in recent years has begun
actively invest in the development of the industrial base for the production of rolled products, bringing
it closer to the state of the worldwide requirements. One of the first modernization of rolling production
began plants of company «Alcoa Rus» (plate production plant AMR in White Kalitva with capacity
22,4 kt per year and ribbon rolling production at Alcoa SMZ). The same path followed KamenskUralsk metallurgical plant, modernizing plate production with production capacities similar AMR and
beginning at the present time to implement the following investment project. In the interests of the
aviation industry KUMZ implementing a project to build a new hot rolling mill 5000 for the production
of plates width 3800-4500 mm, length of 30 m and a production capacity of nearly 166 kt per year.
According to published statements by management of KUMZ in its technical and technological
equipment the project of rolling production exceeds the Russian and European analogue. Its
implementation will ensure the supply of high quality new for the geometry and nomenclature
semi-finished products increase the share of Russian production of the most advanced aluminum
and aluminum-lithium alloys to 20 % of the total supply semi-finished products for leading aircraft
corporations such as Boeing, Airbus and Bombardier.
After lengthy work stoppages at the Krasnoyarsk Metallurgical Plant in March 2013 board of
directors En+Group considered a proposal by the company?s management to modify the unfinished
rolling complex and commissioned before the end of the year to submit for approval an updated project.
Key differences between the updated projects of the previously developed are less capital-intensive in
more rapid return on investment and the possibility of a phased implementation.
According to data published in the first phase KraMZ planning to start production aviation plates
and components for the aerospace industry in the amount of 60 kt per year. This will be upgraded
existing capacity of the plant, put into operation the hot rolling mill, line of milling, quenching treatment
unit and other equipment. In the future, based on market demand will be considered the possibility
of rolling complex capacity expansion to 250 kt per year and organizing the production of aluminum
sheets, can sheet and other products.
In May 2013 adopted a extension program of metallurgical production for Krasnoyarsk region
which provides for the establishment in 2016 rolling complex production capacity of 420 kt per year.
According to the Industry and Trade Ministry of region the project will cost 16.5 billion rubles.
It is assumed that the project will create the first aluminum rolling production in Siberia in the
immediate vicinity, as to the largest aluminum producers, as well as to aircraft. Lower transport costs
coupled with the use as feedstock of liquid aluminum of Krasnoyarsk aluminum smelter and lower
electricity prices compared to the European part of Russia and the Ural where there are other rolling
plants will make products from KraMZ most competitive on the market. The company has already held
preliminary talks on the supply of plates to largest aircraft manufacturers.
In fairness it should be noted that the increased use of aluminum alloys is planned not only in
aircraft and helicopter construction. For example, in 2006 a group of companies «Volgabus» introduced
the first fully low-floor bus with aluminum body series «CityRythm». The appearance of this machine
has completely changed the market of passenger vehicles. «CityRythm» set new standards in design,
ergonomics, comfort, safety and technical equipment.
# 941 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Juri A. Gorbunov. Development of Rolled and Cabling-Wiring Production from Aluminum Alloys at Plants in Russia
«Group GAZ» which is the absolute leader in the segment of light commercial vehicles and in
the segment of buses began increasing the volume of use of aluminum alloys in these vehicles. At the
same time there were samples of vehicles with tanks from rolled aluminum sheet, wagons ? hoppers
for grain transportation, discusses the restoration of production hovercrafts, body which are wholly
made of aluminum alloys and other projects.
Despite the progress in the development of domestic machine building projects for the development
of rolling productions carry a certain element of risk. This is due to the fact that on the one hand the
growth rate of domestic consumption market leaves much to be desired, but on the other hand there is
an intense increase production capacity of enterprises in South-East Asia (in the first place China), to
which are increasingly turning domestic consumers of rolled products.
Since it is known that in addition to the presence of existing rolling production facilities in China
the company Northeast Light Alloy Co Ltd (Harbin) ordered the company SMS Demag slab mill
capacity of 300 kt per year. In March 2011, Airbus and its partner EADS have signed with a Chinese
group of Southwest Aluminium contract to supply aluminum plates. The company is certified by
suppliers.
In early 2011, the company Aleris International Inc (headquartered in Beachwood, Ohio, USA)
began construction of the plant for the production of rolled aluminum in Chzhentszyan Jiangsu
Province, China. The company known as Aleris Dingsheng Aluminium (Zhenjiang) Co Ltd, has a
designed capacity 250 kt per year. According to media reports the potential power of the hot rolling
mill puts it on par with the most powerful companies in the world, for example, such as Aleris plant
in Koblenz.
November 4, 2011 the Japanese company Furukawa-Sky Aluminum announced the first phase of
the project to create a new rolling plant in Thailand, under which planned installation and start cold
rolling mill. Board of Directors Furukawa-Sky Aluminum decided a second phase provides for the
purchase and installation of a hot rolling mill. The second phase of the project will start in February
2013 and will be completed in March 2015. The plant?s capacity is expected to grow from 100 kt to 180
kt of rolled aluminum per year. In April 2012 it was reported that Novelis Corporation intends to build
a plant in China to produce aluminum sheets for automobile industry. She signed an agreement on its
construction with the district Changzhou National Hi-Tech administration (near the city of Changzhou,
Jiangsu Province). The company will have a capacity of 120 kt of rolled products per year; it will cost
$ 100 million. The launch is scheduled at the end of 2014.
Given the fact that China and Japan already have plenty of modern rolling production, introduction
of new facilities could create significant competition to domestic producers.
Foil production. The total foil production at three plants UC «Rusal», included in the packaging
division, according to the website of the company is around 86 kt per year (Table 4).
In this group the largest enterprise «Sayanal» JSC. It produces more than 40 kt of foil on
the basis of three lines of direct strand reduction rolling. In 2010 mastered the production on an
industrial scale foil with a thickness of 5 microns. In November 2011 together with the established
in the packaging division of «Rusal» the One Technology Center produced the fi rst batch of ultrathin
foil thickness of 4.5 microns. At the moment the equipment «Sayanal» allows to produce a smooth
foil thickness of 4-6 microns, which is used for the production of multi-layer composite packaging
materials for various purposes, condensers, and in other industries. Producing this type of foil is
# 942 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Juri A. Gorbunov. Development of Rolled and Cabling-Wiring Production from Aluminum Alloys at Plants in Russia
Table 4. Production of aluminum foil at factories UC «Rusal»
Companies
Foil production per year (kt)
2011
Change
2012
( %)
+ 12 %
Russia
Sayanal
36,372
40,666
«Ural foil»
17,305
16,509
?5%
«Sayan foil»
2,164
2,808
+ 30 %
26,263
+4%
Armenia
Armenal
25,313
Total
81,154
86,246
considered one of the most promising directions in the development of «Sayanal», because it is a
product with high added value.
In 2010 «Rusal» announced the completion of complex modernization program of «Armenal».
As part of the German company «Achenbach» carried equipment for direct strand reduction rolling,
performed a full-scale modernization of blank and foil mills, Aluminium foil and packaging
equipment is equipped with means of control and automatic process control. The production capacity
of updated company amounted 25 kt of foil. Investment has exceeded $ 70 million. The plant
has already reached the planned level of production. Implementation of the program has allowed
«Armenal» to start production of thin foil thickness 6-9 microns as the most demanded products in
domestic and international markets. The volume of production is 18 kt per year. The design capacity
for the production of household foil is 7 kt per year. It is planned that the main sales markets will be
Europe and USA.
UC «Rusal» December 2011 announced plans to increase the total production of the packaging
division in 2014 to 100 kt per year, which should be around 5,3 % of world production of foil (excluding
China). Investment in the project will amount to approximately $ 17 million. The main prerequisite for
such a scenario is the projected increase in sales related to the expansion of demand for a thick foil used
for container production, and the growth realization foils for industrial products.
The increase in the total production of the packaging division of the company planned due to the
modernization of plants for the production of foil and packaging materials:
? at «Sayanal» ? from 38 to 42 kt, the investment will be about $ 4 million;
? at «Armenal» ? from 26 to 36 kt, the investment ? about $ 6 million;
? at «Ural foil» ? from 16 to 24 kt per year, the investment ? about $ 7 million.
Payback period ? 3-4 years.
At «Ural foil» produces about 16 kt of production, the modernization started in March 2012. To
2014 is planned to upgrade the melting-casting and rolling equipment (including mill Quarto 1800).
By that time, the share of thin foils with a thickness of 20 microns will increase from 34 to 50 % of the
total output, and the hyperfine 9 ? micron foil from 14 to 25 %.
Manufacture of cabling-wiring production. Along with the rolling of production which is the
basic consumer of aluminum in all industrialized countries, the Russian Federation is very significant
# 943 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Juri A. Gorbunov. Development of Rolled and Cabling-Wiring Production from Aluminum Alloys at Plants in Russia
role plays power and cable industry. If the world average, the industry consumes about 5-6 % recycled
aluminum, by the end of last year in Russia for the production of wire and cable products directed 29 %
of the total aluminum implemented by UC ?Rusal? to domestic consumers. A large proportion of this
metal has undergone primary processing into rolled wire in aluminum plants, equipped foundry and
rolling equipment and the rest on cable plants.
The main materials used for the production of electrical purposes, were commonly used in our
country grades of aluminum A5E, A7E and partially alloys AD31E, AVE and others. In this case,
according to various experts in recent years, about 40 % of the final product is sent to the construction
and power generation, 5-6 % in the fuel industry and petrochemical industry, and the rest ? in
metallurgy, transportation and other industries.
Based on estimates from the leaders of non-profit partnership «Association «Power cable»,
which includes virtually all of the major companies of cable areas, the range and quality of their
products mainly satisfies all domestic industries, although some products still exist imports. At the
same time, several years ago, series of major accidents related to icing of high-voltage power lines,
forced domestic power industry draw on the experience of foreign countries on the use of alloys of
aluminum ? zirconium.
Abroad, these alloys have been widely used as a material for the production of cables and wires
in the early 70-ies of the last century. Al-Zr alloy provides performance wire for overhead power lines
at temperatures up to 210-250 °?, that not only keeps the load-bearing capacity of lines of power
transmission lines, but also opens the possibility for self-cleaning from icing.
In the future, 3M (USA) has developed with the use of aluminum-zirconium alloys, a new cable
for high voltage overhead power lines, that is, having a composite core of fiber aluminum oxide is able
to transmit two-three times more power than the conventional section of the same cable at the same
time improving the mechanical and strength characteristics. Since 2007, 3M Company in a number
of regions of the Russian Federation, in particular, in the Kuzbass, successfully implemented the new
cables to the domestic power lines, which naturally gave rise to the Russian producers desire for import
substitution of the product.
Earliest known work to create domestic analogues alloys of aluminum-zirconium were held by
MISA and Kirsinsk cable plant, which, together with Irkutsk cable plant enters the UC «Uncomtech».
Given the potentially high demand for the product with the use of aluminum-zirconium alloys and
enormity of the task to create a group of new power transmission lines, UC «Rusal» included this theme
in the list of promising developments. In summer 2010 there was information about the manufacture
of an experimental batch of heat-resistant aluminum alloy in a joint project CJSC «Moscabelmet»
and the Moscow Power Engineering Institute. Then UC «Rusal» attracted SFU for implementation
the program of work on the organization of the production of wire rod at the Irkutsk aluminum
smelter. The technology is based at production wire rod at the suggestion of Siberian specialists put
the combined application of the method of casting and rolling-extruding (CCRE), developed by the
department «Metal Forming» SFU. Experimental work on this installation started on IrkAZ in the
middle of 2012.
Works on development of the rod from aluminum-zirconium alloy were performed on Kandalaksha
aluminum smelter. Under the redevelopment of this company in 2011 started the modernization of the
foundry department which includes the installation of an additional rolling mill for producing wire
# 944 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Juri A. Gorbunov. Development of Rolled and Cabling-Wiring Production from Aluminum Alloys at Plants in Russia
rod. The purpose of the program ? to increase production rod is 50,4 kt per year. At the beginning of
the modernization works planned to be completed in 2013. In addition, when discussing options for the
partial conversion of the Bogoslovsk AS UC «Rusal» also decided to establish a modern production of
wire rod capacity of more than 30 kt per year. In 2013 planned to do most of the project works. In 2014
must be made supply and installation of new equipment. And in early 2015 ? the conclusion of a new
complex of production wire rod for project capacity.
Opportunity to produce cable products using aluminum-zirconium alloys probably has one of
the leaders of the industry Saransk cable plant included recently in «Sevcable-Holding» (utility model
?97203 ? « Bare conductor»). It provides wire rod CJSC «Centrolit» which a few years ago put into
operation modern foundry and rolling equipment purchased abroad.
Most efficiently the task of providing the market with the use of cable products from aluminumzirconium alloy decided Russian-Belgian Company «Sim-Russ-Lamifil» that in December 2012 put
into operation production in Uglich, Yaroslavl region. Cable of this manufacturer different in that
the core is made of aluminum-carbon fiber composite material, instead of aluminum-alumina as in
company «3M». At the end of the first quarter of 2013 and reported in the media in Uglich plant began
commercial sale of the product. In the absence of domestic components for the cable industry, the
company imports them from Belgium what determines a sufficiently high value of the product. At the
next stage, the company plans to establish its own foundry-rolling capacity with output wire rod up to
250 kt per year.
Modern equipment for the production of wire rod possesses plant « Secondary metals and alloys»
(Podolsk) which in 2005 put into operation line «Continuus Properzi». The production of this enterprise
is aimed at providing the steel industry by deoxidizer of steel in the form of wire rod, made from scrap
aluminum. However, according to statements made by management of the plant in the short term,
provides for the possibility to manufacture electrotechnical wire rod and wire rod for the production
of self-supporting insulated wires.
Thus, as for the production of flat rolled and cable products at domestic plants there are common
tendencies associated with the building of modern production facilities and development of new
products competitive with similar products of foreign companies.
However, in the first quarter of 2013 according to UC « Rusal» was a decrease in the consumption
aluminum wire rod for more than 17 %. This is caused by a shortage in funding by the state investment
programs of power grid complex over the protracted process of reorganization of the Federal Grid
Company and the Interregional Distribution Grid Company, which are the main buyers cable and wire
products.
It is noted that at the same time in almost all areas is increasing import of products from aluminum
alloys since rolling products of China and the EU cables and finishing of high-tech components for
the automotive industry. Therefore, it is expected that in 2013 the production of primary aluminum in
Russia will amount to 3856 million tons, down compared with 4116 million tons in 2012. According to
forecasts, in 2013 the volume of imports of products of deep processing of aluminum will grow from
412 to 450 ? 700 kt in terms of aluminum. As a result, the share of imports in total consumption in
Russia could reach 40 % or more.
According to some experts, while maintaining tendency by 2017 imported products of aluminum
is already close to 50 % of Russian needs (up to 600 kt in terms of aluminum). Therefore, along with
# 945 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Juri A. Gorbunov. Development of Rolled and Cabling-Wiring Production from Aluminum Alloys at Plants in Russia
the modernization of existing and development of new production of aluminum semi-finished products
for the Russian industry to the development of competitive markets, the application of production and
the development of measures of state support for domestic producers.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 947-958
~~~
??? 621.743.4
Low-Toxic Core Sands For Mould Cores Pattern ?
Making in a Heated Rig
Evgeny N. Evstifeyev,
Tatyana N. Savuskan and Tatyana A. Lopatukhina*
Don State Technical University
1 Gagarin Square, Rostov-on-Don, 344010, Russia
Received 16.10.2014, received in revised form 24.10.2014, accepted 18.11.2014
The innovative method of physical and chemical analysis was first used for core sand research that,
unlike the method of tests and errors, radically shortens the scope of an experimental work in order
to find the optimal core sands compoundings. Some results of the investigations based on the physical
and chemical analysis for obtaining the compoundings of low ? toxic core sands using hot hardening of
a new generation without containing resins are presented. Such compoundings impart more advanced
technical, economical and ecological indicators to the process of cores moulding using a heated rig.
The development of such mixtures relies on low ? toxic technical lignosulphonates (LTTLS) binders
containing a modifier. The mixture of vat residues of organic synthesis in water having volume
relationship in the proportion of 6:1 was used as a modifier. The search of technological additions
set increasing LTTLS binder properties was conducted. To put into practice the declared purpose
we investigated the additions of marshalit, boric acid and iron minium influences on the mixtures
properties. It was demonstrated that only the joint use of the above ? mentioned three technological
additions may result in an effective influence of each of them on mixtures properties. An additional
introduction of «KO» solution in kerosene turned out to be effective, as well. The given research
results lie in presenting mixtures compoundings based on LTTLS having physical and mechanical
indicators usually characterizing resins mixtures. Some mixtures containing the additions of a wasted
zinc ? chromium catalyst having good ecological properties and being applicable to the cores molding
of a wide range of pig iron and steel castings were elaborated.
Keywords: core sand, heated / cold rig, low-toxic technical lignosulphonate binders, mould cores
pattern-making, technological additions, breaking strength compounding.
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: lpt7@mail.ru
# 947 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny N. Evstifeyev, Tatyana N. Savuskan? Low-Toxic Core Sands For Mould Cores Pattern ? Making in a Heated Rig
????????????? ?????????? ?????
??? ???????????? ???????? ????????
? ??????????? ????????
?.?. ?????????,
?.?. ????????, ?.?. ??????????
??????? ??????????????? ??????????? ???????????
??????, 344010, ??????-??-????, ??. ????????, 1
??? ???????????? ?????????? ?????? ??????? ??????????? ????? ??????-???????????
??????? (???), ???????, ? ??????? ?? ?????? ???? ? ??????, ??????????? ????????? ?????
????????????????? ?????? ?? ?????????? ??????????? ???????? ?????????? ??????. ?
?????? ????????? ?????????? ???????? ??????? ??? ???????? ????????????? ??????????
?????? ???????? ??????????? ?????? ?????????, ?? ?????????? ?????. ??? ????????? ???????
???????? ???????????? ???????? ? ??????????? ???????? ????? ??????????? ???????????????????? ? ????????????? ??????????. ??????? ??? ?????????? ????? ?????? ????????
????????? ??? ? ????????????? ??????????? ???????????????, ?????????? ???????????.
? ???????? ???????????? ???????????? ????? ??????? ???????? ????????????? ??????? ? ????
? ???????? ????????? 6:1. ???????? ????? ????????? ??????????????? ???????, ??????????
????????? ???????? ???. ? ???? ????? ??????????? ??????? ?? ???????? ?????? ???????
?????????, ?????? ??????? ? ????????? ??????. ????????, ??? ?????? ??? ??????????
????????????? ???? ??????????????? ??????? ??????? ?????????? ??????????? ??????? ??????
??????? ?? ???????? ??????. ?????????????? ???????? ??????? ???????? ?? ? ???????? ?????????
????? ???????????. ?????? ???? ???????????? ??????? ?????????? ????????? ????? ?? ??????
??? ? ??????-????????????? ???????????? ???????? ??????. ??????????? ????? ????? ?
???????? ????????????? ????-????????? ????????????, ??????? ????? ??????? ?????????????
?????????????? ? ????????? ??? ???????????? ???????? ??????? ???????????? ???????? ?
???????? ???????.
???????? ?????: ?????????? ?????, ??????????? ????????, ????????? ???, ????????????
????????, ??????????????? ???????, ????????? ?? ??????.
Introdution
One of the most dangerous for the environment operations taking place in the foundry is patternmaking mould cores as from the whole variety of castings production it is pattern-making mould cores
that is associated with the greatest amount of throwing out toxic substances into the atmosphere. In
Russia the foundries at the machine-building plant produce a wide range of cores using toxic organic
binders hardened by heat processing in the drying ovens. We should note that both heated and cold rigs
are used in this process. The cores moulding technology in the heated rig uses some toxic synthetic
resins and their combinations. The disadvantage of this technological process lies in the necessity
of using some expensive and often scarce binders, that fact leading to increasing expenditures on
core sand. Besides this fact, mould cores pattern-making throws out considerable amounts of
phenol, formaldehyde, ammonia, cyanic hydrogen and other toxic compounds into the environment
and surroundings. This becomes the reason of unfavorable sanitary and hygienic labour conditions
appearance. Such production consequences require some additional investments into equipping core
moulding technology with atmosphere protecting appliances. The main peculiarity of core sand hot
# 948 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny N. Evstifeyev, Tatyana N. Savuskan? Low-Toxic Core Sands For Mould Cores Pattern ? Making in a Heated Rig
hardening technology is the application, in the majority of cases, of polymerization catalysts of binders.
As a result of this, there appears the problem of perfecting technical, economic, sanitary and hygienic
indicators for solving the following tasks:
? minimization of toxic synthetic resins content or its complete exclusion from the components
of core sand;
? reduction of binders expenditures several times as little;
? improvement of sanitary and hygienic labour conditions at the foundry throughout different
stages of cores moulding.
We should remark that the problem of indicators perfecting may be solved in different ways
including:
? combination of synthetic resins;
? choice of special catalysts hot hardening;
? development of principally new low ? toxic binding compositions based on low ? toxic
technical lignosulphonates (LTTLS) and technological additions to them that improve physical,
mechanical and technological properties of mixtures produced.
The application of the first and the second ways of solving the problem of indicators improvement
makes it possible to reduce the toxic resins content in mixtures but, nevertheless, such an approach
cannot radically solve the problem of bettering sanitary and hygienic labour conditions. That?s why
the development of low-toxic binding compositions having the resins properties is very actual because
it envisages the prospects of appearing new generation of core sands that will meet the ecological
requirements of modern production.
Initial substance and research methods
In our research we have used LTTLS with different bases ? sodium, sodium together with calcium,
ammonium ? that represent different pulp and paper mills waste products.
We have applied vat residues of organic synthesis of different chemical productions as a modifier
of technical lignosulphonate. We have limited the scope of our research objects taking into account
the grounds that vat residues of organic synthesis should contain substances that are able to form cross
chemical bonds between macromolecules of LTTLS under the conditions of heating core sand. Such
substances, in particular, may be found in the production of vat residues of 1.4-butandiol, ?-butirolacton
fabrications that were applied in the process of obtaining a new modifier representing a mixture of vat
residues of organic synthesis [1]. The mentioned mixture was dissolved in water in volume relationship
looking like vat residues of organic synthesis: ?2? = 6:1 for preparing a modifier.
Bonding LTTLS [2] was prepared by mixing LTTLS with a modifier of vat residues of organic
synthesis for 3 ? 5 minutes to achieve a fluidity state. The modifier sharply decreases viscosity of
technical lignosulphonate and that results in stabilizing a colloid system increasing binder covering
properties.
Core sands were prepared in laboratory runners of LM ? 1 model made of three things: 1) quarts
sand with 1K02A brand from Verkhne-Dneprovsk sand-pit; 2) technological additions and 3) low-toxic
lignosulphonate binder.
Some samples in the form the eights and cylinders for conducting testing were produced
from a mixture by its packing with three blows of laboratory impact testing machine of LU-type.
# 949 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny N. Evstifeyev, Tatyana N. Savuskan? Low-Toxic Core Sands For Mould Cores Pattern ? Making in a Heated Rig
Standard samples were dried at temperature of 250±10 °C in the drying laboratory cabinet of SNOL3.5.3.5.3.5/3-M2 type with an automatic temperature control. To define core strength in a hot state the
standard sample in the form of an eight was, first, heated for 5 minutes at the temperature of 250 °C,
then, it was rapidly placed (during 10 ? 15 seconds) into a clam device of a breakage machine of LRU-1
type. To research physical, mechanical and technological mixtures properties we have used laboratory
equipment of «Tsentrozap» firm.
Core sands research based an the initial
and modified technical lignosulphonates
Some facts concerning «hot» strength of core sands based on the initial and modified technical
lignosulphonates (vat residues of the organic synthesis) amounting to 15 % of different pulp and paper
mills are given in table 1.
As we can see from table 1cores strength in a hot state depends on the base kind and it decreases
in the following sequence for initial technical lignosulphonates:
NH4+ > Na+ > (Na+ + Ca2+)
For modified technical lignosulphonates the dependence of cores strength on the base kind is
quite reverse [3]:
(Na+ + Ca2+) > Na+ > NH4+
Such relationship does not refer to the concentrates of Kondopoga pulp and paper mill because
they contain a great amount of different kinds of additions such as nutrient salts, neutralizing
substances, foam suppressors that are applied in yeast growing and in, the long run, they contain
yeasts itself.
Having analysed table 1 data we may conclude that it is the most preferable to use modified
concentrates of Syas and Kama pulp and paper mill to mould cores in a hot rig. The foundry binders
properties based on technical lignosulphonates concentrates depend mostly on the modifier origin.
Low «hot» cores strength complicates the task of developing low-toxic mixture of hot hardening using
exclusively low-toxic lignosulphonates. To solve this task we should choose such a set of technological
Table 1. Strength of Cores in a Hot State Produced of Core Sand Based on Initial and Modified Technical Lignosulphonates of Different Pulp and Paper Mills
«Hot» Strength of Cores, MPa
Cation of the
Base of Technical
Lignosulphonates
Initial Technical
Lignosulphonates
Modified Technical
Lignosulphonates
Kamsk
Na+
0.44?0.48
0.22?0.24
Kotlass
+
Na
0.54?0.56
0.12?0.14
«Sokol»
Na+
0.60?0.70
0.14?0.16
Name of Pulp & Paper
Mills
Kondopoga
80 %Na + 20 % Ca
2+
0.16?0.18
0.06?0.08
Syas
50 %Na+ + 50 % Ca2+
0.22?0.36
0.25?0.28
NH4+
0.73?0.76
0.06?0.07
Klaipeda
+
# 950 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny N. Evstifeyev, Tatyana N. Savuskan? Low-Toxic Core Sands For Mould Cores Pattern ? Making in a Heated Rig
additions that could present an effective mixture for fabricating cores in a hot rig basing on low-toxic
lignosulphonates. This means that the mixture based on LTTLS should possess low wet strength (not
more than 4.0 kPa) and it should supply cores with a sufficiently high breaking strength not less than
0.5 MPa in a hot state and not less that 1.8-in a cold one.
Water influence on the sands properties
Low ? toxic lignosulphonate binder has a viscosity according to VZ-4 over the range of 80100 s. This binder is of little use for molding cores in a hot rig, such technology demands a binger
having viscosity of 25-60 s (according to VZ-4). That? s why we turned our attention, first of all, to
the research of water amount influence on LTTLS based on technological and physico-mechanical
mixtures properties. LTTLS, together with water in the mixtures compositions, reached 5 %, the time
of binder mixing with sand amounting to 3 minutes. The obtained results are presented in Fig. 1.
Figure 1 shows that even a small amount of water addition to LTTLS sharply reduces binder
viscosity. So, the addition of only 6 % of water reduces binder viscosity 1.5 times as much. However,
this did not result in the reduction of dry substances content in LTTLS. At low viscosity (45 s according
to VZ-4) low-toxic lignosulphonate binder preserved high content of dry substances amounting to
54 %. These two mutually exclusive indicators turned out to be successfully combined in low-toxic
lignosulphonate. Taking this fact into consideration we may admit that low-toxic lignosulphonate
binder is that very substance that having a low viscosity, on one hand, imparts necessary wet strength
to a hot hardening mixture, but, one the other hand, having a great amount of dry substances this kind
of a binder will add a sufficient, for the process,
strength to the hardened cores.
It should be underlined that diluting LTTLS
with water did not result in falling hardened
cores strength (Fig. 1.). On the contrary, 5
and 10-minute samples strength has slightly
increased. We might explain this in the following
way: increasing cores strength is conditioned by
the increase of contacts number of low-viscous
binder with the grains of quarts sand and the
relief of stress relaxation owing to the thickness
diminishing of low-toxic lignosulphonate film.
But low-toxic lignosulphonate binder imparts
low breaking strength to the mould cores (1.1 ?
1.4 MPa). «Hot» cores strength is low, too,
amounting only to 0.3 MPa. Consequently, this
means that low-toxic lignosulphonate greatly
yields to resins.
Finally, as a result of many experiments
Fig. 1.Water influence on low-toxic lignosulphonate
conducted we have found an effective set
binder
viscosity and strength of standard cores hardof technological additions looking like this:
ened at the temperature of (250±10), °?
marshalit ? boric acid ? iron minium, this
# 951 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny N. Evstifeyev, Tatyana N. Savuskan? Low-Toxic Core Sands For Mould Cores Pattern ? Making in a Heated Rig
very sequence giving the possibility to the mixture characteristics based on LTTLS to approach the
properties of resins compositions of hot hardening.
Marshalit influence on mixtures properties
The above-described mixtures obtained on the basis of low-viscous LTTLS had «wetness» effect
that is they possessed seemingly increased humidity in spite of the fact that humidity content in the
mixture was close to the norm being over the rouge of 1.8-2.0 %. Besides that, we were able to watch
the phenomenon of adhesion of these mixtures to the metallic rig and hands skin.
To reduce these negative effects we used marshalit addition (dustlike quartz SiO2). Mixtures
compositions contained 5 % LTTLS having viscosity if 44 s according to VZ-4. The carried out
investigations proved that the marshalit quantity increase reduces mixtures compressive strength. This
phenomenon is directly linked with mixtures fluidity increase.
As a rule, mixtures based on LTTLS are rather «heavy» to the touch. Marshalit additions make
mixtures «lighter» and noticeably reduce the «wetness» sensation. It follows from above-mentioned
statement that marshalit betters technological potentialities of mixtures based on LTTLS and makes
them more suitable for cores moulding in a hot rig.
Marshalit addition to the mixtures containing LTTLS appeared to be useful not only for obtaining
their technological properties but physic-mechanical ones, as well. The strength of 5 and 10 ? minute
samples in comparison with the samples of LTTLS mixtures without marshalit increased to 1.56 and
1.20 MPa, respectively. Cores strength in a hot state increased to 0.4 MPa, too.
Having analysed the results of our investigations we may conclude that marshalit addition
to mixtures with LTTLS is very effective and may serve as the basis for its combining with other
technological additions. Optimal marshalit content in a mixture amounts to 1-2 %.
Boric acid influence on mixtures properties
Boric acid choice (?3??3) as a technological addition to the mixtures with LTTLS is connected
with its ability to melt at the temperature of 170.9 °C. At heating boric acid is gradually losing water
and is changed, first, into metaboric acid (???2) and, then, into boric anhydride (?2?3). Going ?3??3
into ???2 begins at the temperature about 100 °C.
Melting and caking of boric acid results in oxyborate polymeric complexes formation. This enables
to get increasing cores strength in a hot state. However, considerable increase of boric acid in the mixture
composition causes worsening the process of shaking the cores out of casting. That?s why the optimal
boric acid content in the mixture should not exceed 0.3-0.5 %. Boric acid in this concentration interval
influences badly the cores strength in a hot state. It may be explained by the fact that at cores cooling
boric acid crystallization in the places of its localization causes immediate stresses in the film structure of
LTTLS. After this a sharp reduction of cooled cores strength follows.
Iron minium influence on mixtures properties
Iron minium (Fe3O4) as an addition to core sand was selected taking into consideration its ability
to produce heat. Thus, such an addition is expected to speed up the process cores drying.
The research results demonstrate that iron minium addition sharply reduces 3-minute samples
strength. Loss of cores strength takes place, in our opinion, because heat energy is, first of all,
# 952 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny N. Evstifeyev, Tatyana N. Savuskan? Low-Toxic Core Sands For Mould Cores Pattern ? Making in a Heated Rig
accumulated by iron minium particles but not by binders. Under the conditions of short duration cores
heating the particles of Fe3O4 are unable to become an additional conductor of a heat energy.
Iron minium addition influence starts to appear only at 10-minute sample withstanding
the temperature of (250±10) °C. Core strength becomes 1.7 times as much. If 10 ? minute core
withstanding in the drying cabinet corresponds to its 2-3-minute hardening in the hot rig, then we
have to admit that the Fe3O4 addition is useful. In the mixtures iron minium fraction should not
exceed more than 0.5 %.
Compoundings of mixtures based on LTTLS
and a set of mixtures in the form of SiO2 ? H3BO3 ? Fe3O4
Our investigations proved the necessity of joint application of three types of technological
additions. It is this approach that causes an effective influence of each of the additions on the physicomechanical and technological mixtures properties. The above-mentioned set of technological
additions of granular substances provides the mould cores with breaking strength increase up to
1.8-2.3 MPa.
High cores strength may be obtained at the content of H3BO3 amounting in the mixtures up to
0.8-1.0 %. Such amount of boric acid seems to be not achievable in the real production. Taking this
conclusion into account we should orient ourselves to obtaining cores strength of 1.60-1.65 MPa that
corresponds to the fraction of boric acid in the mixure reaching 0.3-0.4 %.
In the final analysis we?ve got a basic compounding of core sand for a heated rig. Its composition
includes the following substances in percentage:
Quartz sand
100
Marshalit
2.0
Iron minium
0.5
Boric acid
0.4
LTTLS binder
5.5
While using this mixture we?ll have maximum core strength that does not exceed 1.60 MPa. Such
strength is sufficient only for cores of a simple configuration. Besides, it is desirable to perfect its
technological properties: to better fluidity, to increase survivability, to reduce hydroscopity.
All our further research was aimed at mixture finishing off according to the requirements of
fabricating complicated cores.
At choosing casting binder of «KO» type as a technological addition we took into consideration
its abilities to be effectively combined with LTTLS binder. To increase the mixture fluidity casting
binder of «KO» type was diluted with kerosene in the volume relationship of 3:2.The results obtained
are given in Fig. 2.
Fig. 2 shows that if a mixture has 0.25-0.35 % of «KO» solution in kerosene, then 10 and 15-minute
isotherms of strength reach their maximum values of 2.85 and 2.63 MPa, respectively. The subsequent
increase of «KO» solution content reduces the strength of these cores.
It is important to note that the speed of cores hardening after introducing a technological «KO»kerosene addition type into the mixture did not reduce. Sufficiently high level of cores «hot» strength is
a good proof of our approach. Furthermore, such an addition reduces mixtures drying in the nozzles and
decreases cores hydroscopity.
# 953 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny N. Evstifeyev, Tatyana N. Savuskan? Low-Toxic Core Sands For Mould Cores Pattern ? Making in a Heated Rig
It is significant to have the compounding of a mixture with minimal additions content that provides
the mixture with sufficient physic-mechanical properties and satisfactory technological properties
displayed in a real production.
Our investigations enabled us to find the working limits in percentage for all mixture compounding
components.
Quartz sand
100
Marshalit
1.5?2.0
Iron minium
0.4?0.5
Boric acid
0.3?0.5
LTTLS binder
4.5?5.5
«KO» solution in kerosene
0.25?0.35
The ingredients mixture content is presented according to the sequence of their introduction into
the runners for mixture preparing.
Physical and mechanical mixture properties are the following:
Humidity, %
1.8?2.1
Gas permeability, units.
200
Breaking strength, MPa, of standard simples in a hot state after 5 minutes at the temperature of
250±10 °C
0.5?0.6
Breaking strength, MPa, of standard samples
hardened at the temperature of 250±10 °C during
5 minutes
1.4?1.7
10 minutes
2.1?2.6
15 minutes
1.8?2.4
Compressive strength of a wet mixture, kPa
3.0?4.0
Fig. 2. The dependence of breaking strength of standard cores made of mixtures with LTTLS and the additions
set of SiO2 ? ?3??3 ? Fe3?4 on their content of «KO» solution in kerosene
# 954 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny N. Evstifeyev, Tatyana N. Savuskan? Low-Toxic Core Sands For Mould Cores Pattern ? Making in a Heated Rig
Having analysed the above ? described mixtures properties we may state that an effective set of
technological additions has been obtained and it provides mixtures based on LTTLS with satisfactory
fluidity and sufficiently high breaking strength in hot and cold states.
VPK ? 402 polyelectrolyte additions influence
on the mixtures survivability
Good results of increasing mixture survivability are connected with some tested technological
additions (bishofite, the solutions of CaCl2, NaNO3 and some others), among which the best effect
producing polyelectrolyte of VPK-402 type (poly N-dimetil-3.5-dimetilenpiperediniya chloride). This
polyelectrolyte is completely diluted in water, the most inferior alcohol, the solutions of acids and
alkalies, it is not inflammable, not dangerously explosive, not toxic and does not have any unpleasant
odour. We have investigated this electrolyte influence on mould cores strength and their hygroscopicity.
The results obtained look like the following.
If we increase the percentage to polyelectrolyte in a mixture up to 0.3 %, the strength of 15-minute
samples, first, decreases, then, sharply increases and after reaching 0.5 % the mould cores strength, in
comparison with an initial mixture without VPK-402, raises 0.4 MPa as much and reaches 2.5 MPa.
It is also important to emphasize that such addition favours gradual increase of «hot» cores strength
up to 0.8 MPa.
VPK-402 substance imparts to the mixture an ability to withstand drying up from its surface.
Survivability of the developed mixture increases 3-4 times as much and as a result of this under the
direct contact with the atmosphere air the mixture can be stored without any noticeable changes during
5-6 hours.
Mixture compounding based on LTTLS having
the indicators of resins mixtures
As it was shown above, the created set of technological additions in the form of such sequence
as «marshalit ? boric acid ? iron minium» functions effectively; if it includes «KO» binder, the latter,
unfortunately, deteriorating the ecological significance of a developed compounding. That?s why we
had to continue the search of substances increasing strength of LTTLS containing moulding cores
using molecules lacing of lignosulphonates.
The waste products of Novocherkassk synthetic mill in the form of zinc ? chromium catalyst
were used as a LTTLS lacing agent, the latter, in terms of oxides, having the following composition in
percentage [4]:
Zinc oxide
Basis
Chromium oxide (III)
29?31
Tungsten oxide
0.05?0.1
Alkali metals oxides, not more than
0.04
Zinc-chromium catalyst waste products in the form of grey powder obtained at methanol production
comprise many tons. The powder participates in ion exchange reactions with LTTLS forming the
element having a mesh structure that increases mould cores strength.
There existed the whole procedure of mould cores mixtures preparation involved in our
experiments. First, quartz sand was being mixed with technological additions for 1 minute. Then,
# 955 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny N. Evstifeyev, Tatyana N. Savuskan? Low-Toxic Core Sands For Mould Cores Pattern ? Making in a Heated Rig
LTTLS was introduced in percentage of 5 % of mixture total amount and, at last, the process of
intermingling was taking place for 3 minutes more.
Table 2 introduces the compoudings of the developed mould cores mixtures ?? 1-5 in comparison
with the composition of mixture ? 6, all the mixtures being obtained using LTTLS without any
technological additions. Physical and mechanical properties of mixtures are given in table 3.
As we may conclude according to table 3 a mixture with the developed set of technological
additions as compared to a mixture without them provides 2-2.27 as much increase of cores in a
hot state strength. It is especially important that such increase of «hot» strength of cores has been
achieved without resins application. Mould cores fabricated of brought forward mixture have «hot»
strength close to that of resins cores, giving the possibility to carry out their hardening in the similar
modes.
Table 3 shows as well that the developed mixture allows us to increase cores strength in a cold
state 1.5-2.0 times as much.
In the process of mould cores fabricating in a heated rig the melt of boric acid, partially,
dissolves the oxides of zinc-chromium catalyst waste producing the corresponding salts that lace them
supplementary by means of the ion exchange reactions with the macromolecules of LTTLS. Such
phenomenon results in the cores strength increase both in hot and cold states.
Table 2. Mixtures based on LTTLS and a set of technological additions
Content of ingredients in mixtures in percentage
Names of mixtures ingredients
?1
?2
?3
?4
?5
?6
94.8
93.3
91.2
89.1
87.6
95.0
Zinc-chromium catalyst waste products
0.7
0.8
1.0
1.2
1.3
?
Marshalit
0.5
1.0
1.5
2.0
2.5
?
Iron minium
0.1
0.3
0.5
0.7
0.9
?
Boric acid
0.4
0.6
0.8
1.0
1.2
?
LTTLS binder
3.5
4.0
5.0
6.0
6.5
5.0
Quartz sand
Table 3. Physical and mechanical properties of cores mixtures based on LTTLS
Mixtures properties indicators
Names of mixtures properties
?1
?2
?3
?4
?5
?6
Wet mixtures compression strength, kPa
4.5
4.7
5.1
5.6
6.0
4.4
Gas impermeability of wet mixture, units
163
156
146
143
134
163
0.56
0.69
0.72
0.86
0.83
0.32
1.42
1.65
1.78
1.88
2.16
2.22
1.93
2.42
2.94
2.12
2.87
3.20
2.06
2.90
3.23
1.20
1.46
1.53
Breaking strength, MPa, of standard samples in a hot
state after 5-minute hardening at the temperature of
250 ± 10 °C
Breaking strength, MPa, of standard samples after
drying at the temperature of 250 ± 10 °C for
5 min
10 min
15 min
# 956 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny N. Evstifeyev, Tatyana N. Savuskan? Low-Toxic Core Sands For Mould Cores Pattern ? Making in a Heated Rig
The put forward mixture compounding has the following composition in percentage [4]:
LTTLS binder
4.0?6.0
Wasted zinc-chromium catalyst
0.8?1.2
Boric acid
0.6?1.0
Marshalit
1.0?2.0
Iron minium
0.3?0.7
Quarts sand
the rest
The optimal content of a wasted zinc-chromium catalyst in the mixture ranges over 0.8 to 1.2 %.
If its content in the mixture is less than 0.8 % and higher than 1.2 %, the cores strength in a hot state
reduces.
The optimal boric acid content in the mixture is 0.6-1.0 %. If the boric acid content is less than
0.6 %, then the strength of the cores in a cold state reduces, but when it is higher than 1.0 %, then the
compressive strength of a wet mixture increases, its sand-blast fluidity worsening.
The mixture based on LTTLS with the proposed technological additions was tested in the foundry
of «Zaporozharmatura» PO with using on automaton of 4532 B model for moulding «Corpus DU-15»
cores. The cores hardening mode did not change that is the hardening time was 60 seconds, hardening
temperature-270 °C. All cores were moulded according to the technological requirements and quality.
They had smooth surface, they were sharp-edged and they demonstrated manipulation strength. To reduce
cores hydroscopity we used a special coating on an organic basis that provided cores with a prolonged
storage and reduced casting burnt-on sand.
Conclusion
1. The research stated the influence of marshalit, boric acid and iron minium on the mixtures
properties and presented a set of technological additions increasing LTTLS bonding properties up
to those of the resins level. In the process of research it was proved that only the joint use of three
technological additions works well for effective putting into practice the influence of each of the additions
on physical, mechanical and technological mixtures properties. A supplementary introduction of an
addition in the form of «KO» binder solution in kerosene turned out to be very effective. Isotherms of
strength of 10 and 15 minute-samples reached their maximum of 2.48 and 2.58 MPa, respectively. As
a result of the research carried out we have the development of fixed mixture compounding based on
LTTLS with physical and mechanical indicators typical of resins mixtures.
2. The developed mixtures compoundings with the addition of wasted zinc-chromium catalyst
resulted in the possibility of excluding from the compounding the mixture of a toxic «KO» binder.
The worked out mixtures compositions are characterized by having physical and mechanical inticators
typical to those of resins mixtures. In addition to these positive moments the advanced mixtures
compositions meet the ecological requirements in their application to modern foundry.
References
[1] Evstifeyev E.N. Some modified technical lignosulphonates for mould cores production using
the method of convection drying. Rostov-on-Don: RSAMA, 2003. 230 p.
[2] The mixture for fabricating casting cores and moulds of the hot hardening: Patent 2017555, RF:
In 22S 1/20. ?5016958 / 02, presented 10.07.91, published 15.08.94. Bulleten ?15. 5p.
# 957 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Evgeny N. Evstifeyev, Tatyana N. Savuskan? Low-Toxic Core Sands For Mould Cores Pattern ? Making in a Heated Rig
[3] Evstifeyev E.N. Low-toxic mixtures for producbng mould cored in a hot or riggin. Rostov-onDon: RSAMA, 2005. 257 p.
[4] Evstifeyev, E.N. Modified lignosulphonates and resins for casting cores and moulds. Rostovon-Don: DSTU Publishing House, 2011. 393 p.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 959-965
~~~
??? 004.4.056.57
Access Matrix as a Passive Element
in the Protection of Information Resources
Igor Z. Krasnov*
Siberian Federal University
79 Svobodny, Krasnoyarsk, 660041, Russia
Received 11.10.2014, received in revised form 03.11.2014, accepted 05.12.2014
In this work the author considers a problem of management of access to information resources of
the enterprises. Formulates the purposes of a control system of access. Defines interrelation of the
purposes of information security and available threats of safety. Suggests to use an access matrix as
a passive element of protection of information resources. Formulates tasks which need to be solved
in any control system of access. Sets a task of a redundancy exception when carrying out measures
of information resources protection. Offers a formation technique of an access matrix. Describes
procedure of information categorization, risk groups identification, formation of access profiles, fixing
of access rights in organization regulating documents.
Keywords: access matrix, information resources, information protection.
??????? ??????? ??? ????????? ???????
?????? ?????????????? ????????
?.?. ???????
????????? ??????????? ???????????
??????, 660041, ??????????, ??. ?????????, 79
? ?????? ?????? ????? ????????????? ???????? ?????????? ???????? ? ??????????????
???????? ???????????. ??????????? ???? ??????? ?????????? ????????. ??????????
??????????? ????? ?????? ?????????? ? ????????? ????? ????????????. ??????????
???????????? ??????? ??????? ??? ????????? ??????? ?????? ?????????????? ????????.
??????????? ??????, ??????? ?????????? ?????? ? ????? ??????? ?????????? ????????.
?????? ?????? ?????????? ???????????? ??? ?????????? ??? ?????? ??????????????
????????. ?????????? ???????? ???????????? ??????? ???????. ????????? ?????????
??????????????? ??????????, ????????? ????? ?????, ???????????? ???????? ???????,
??????????? ???? ??????? ? ???????????????? ?????????? ???????????.
???????? ?????: ??????? ???????, ?????????????? ???????, ?????? ??????????.
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: bk_24@bk.ru
# 959 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Igor Z. Krasnov. Access Matrix as a Passive Element in the Protection of Information Resources
Nowadays information security is determinant of organization robust performance and stability.
Main information protection activity is concentrated on information resources protection from the
perspective of human resource which have an access to main actives of organization.
Clear definition of term ?information security? is one of the basic condition in effective information
security system constructing. Information security system should include access control which based on
information resources categorization and division of user access rights. Information system obviously
should constructed taking into account needs of categorization and access control. This needs could be
taken from analysis and ?configuring? work processes. Business process in organization frequently not
have optimal construction, so there are some access points where information with different privacy
levels is mixed. This situation lids to vulnerability which significantly reduces the effectiveness of
information security system or high costs of security.
Goal of information security includes: elimination or significant reduction of the possibility of
harm to subjects which interests are at risk when object of information security is used, material
damage, moral or accidental or intentional damage, ensuring confidentiality of commercial secret,
personal information and saving IS financing stability [1].
Information security system construction starts at the level of defining of organization business
processes.
Fig. 1 demonstrates an interrelation of information security goals and security threats in the
development, implementation, modification and exploitation of IS.
The main goal of access control system is such rules definition that every subject in IS consists
with well-defined information resource.
This tasks should be solved for this goal:
? Determine critical resources (consist confidential information or processing it) which is used in
organization business process.
? Estimate the result situation of existing users access rights to resources with access matrix.
? Identify redundant access rights.
? Construct the result access matrix which consist of access matrix for business process level and
access matrix for personal access right of every user in the organization (this matrix should be
a part of information security policy).
? Create access profiles for managers, top managers and specialists of every division.
? From time to time inspect users for fair use of entrusted information resources (control results,
identify and analysis a deviation, identify reasons of deviation).
For solving this tasks organization should audit access system to compatibility with security
standards.
Permission matrix use provide organization to use access matrix (permissions table). There is a
fragment of example access matrix (Table 1): strings is subjects identifiers which have access rights in
the IS and rows ? objects (information resources). Every element can include name and size of provide
resource, access rights (read, wright, etc.), link to other IS which specify access rights, link to access
management program.
Internal audit is taken for real state value identification of resources access system. Internal
audit should include a division audit of access rights to information an program resources between
organization users. This type of audit have tasks:
# 960 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Igor Z. Krasnov. Access Matrix as a Passive Element in the Protection of Information Resources
Fig. 1. An interrelation of information security goals and security threats
Table 1. Fragment of permission matrix
Subject
Dir d:\Heap
Program prty
Printer
User 1
?drw
?
w
User 2
r
w
from 9:00 to 17:00
c ? create, d ? delete, r ? read, w ? write, e ? execute.
? compatibility evaluation of access rights division system with modern information security
standards;
? risk analysis of threats possibility to IS outsources;
? development of information secure organizational-administrative documents in inspection
borders;
? setting tasks to IT-staff for provide information security in inspection borders;
? taking part in teaching staff to use and service IS in terms of information security;
? result compatibility evaluation of access rights division system with chosen information
security standard after implementation of information security measures.
According to GOST R ISO/IEC 27001 [2, 3], first of all organization should determine the approach
to risk assessment. Author is considering only qualitative approach to risk assessment in this article
because numerical damage from threat implementation and probability of implementation (numerical
approach) should be evaluated by a special commission.
On the first step organization should identify and evaluate risks. It means:
? to identify assets and owners of this assets;
? to identify risks of this assets;
# 961 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Igor Z. Krasnov. Access Matrix as a Passive Element in the Protection of Information Resources
Table 2. Possible risks
Assets threat
Using rights of the
authorized user
Unauthorized reading,
copying information
Plugging in the
removable media
Disinformation
Impact of threat implementation
Loose of information confidentiality and integrity
Loose of information confidentiality by direct
reception of confidential information
Confidential information leak, computer viruses and
scumware infection
Loose of database and information resources integrity
and availability
Possible
damage
high
high
high
high
Processing
option
avoid the
risk
Avoid the
risk
avoid the
risk
reduce the
risk
Unauthorized
modification of the
access rights
Loose of information confidentiality and integrity by
modification of access rights to read/write
high
reduce the
risk
IS management
interception
Loose of information confidentiality and integrity
and availability by deletion, modification of system
resources
high
reduce the
risk
? to identity an impact of threat implementation in case of information confidentiality, integrity
or availability loss;
? evaluate risks;
? to determine if risk is acceptable or requires processing.
If it is necessary to division access rights between structural divisions or users their functionality
should be identified at the first step. Using interviews with top-management like a base organization
should make a table with to columns:
? Division/post
? Functionality
Investigation resources description
Categorization (classification) of information should be made for purposes of division access rights
to it. The main goal of categorization is to ensure that information security is on the appropriate level.
Access categories (confidential levels are demonstrated in Table 3) and their protection measures should
consider collective use of information or limiting access to it, demage to organiztion if information
unauthorized accessed or broken.
Information owner is responsible for categorization access to his part of it for example to document,
to data file or volume and he is responsible for periodically check this category.
Information assets describing make sure thy have effective protection and it can be useful for the
labour protection, insurance or financial matters (asset management). So organization should identify
their assets in view of their relative value and importance. Uses this information it is possible to ensure
the desired protection levels which corresponding with value and importance of assets. Every asset
should be clearly identified and classified in terms of information security, their owners should be
clearly defined. Standard R R ISO/IEC 27002:2005 (?Information technologies. Security methods.
Practical rules of information security management?) defines the following types of assets:
? information assets;
# 962 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Igor Z. Krasnov. Access Matrix as a Passive Element in the Protection of Information Resources
Table 3. Protected information categories in the organization
?
Category
Abbreviation
1
Confidential
information
CI
2
Information for
internal use
IIU
3
Public
information
PI
Definition
Information which have value to the organization.
Access to this information is restricted lawfully and based on local
normative acts of the organization. Confidential information could
consist: personal data, official secrecy, secrecy, utility model or
industrial design.
All internal information which circulates in the organization
network, loss of this information have no serious consequences. This
information could not be confidential by low but access to it should be
limited.
Information which could not be confidential by low and information
for public access.
? software assets;
? physical assets;
? services (human capital).
Inventory consist of valued assets list definition. This process usually is performed by the assets
owners. The term ?owner? define persons and parts which have responsibilities for management,
development, maintenance, use and protection of assets. This responsibilities should be approved by a
top-management.
For the example of access matrix compilation research with an Active Directory was made. Access
groups to directories (with access rights), programs, Internet and e-mail was created. Every user in this
groups have their own rights in his division.
There can be only two access levels: reading ? only right to view resource contents without rights
to change or delete, modification ? rights to change and delete the resource.
It is important to understand that in every division there are users with different access rights. So
this matrix should be a three-dimensional object where the third dimension is consist of division users
rights.
The intersection of a row and a column shows if anyone in this department has an access right to
this resource:
? ? ? no access
?p? ? only read access
?m? ? modification
There is two risk groups when access matrix is compiled:
? Users groups who shared resource for common goals.
? Wide access rights to resources of one or two users ? this situation should be considered one
more time.
The logical inconsistency of divisions functionality and resource assignment should be identified.
Access rights redundancy should be identified because it rises up the probability of leakage through
the fault of employees.
The result matrices should be compiled with the heads of divisions because they are owners of the
resources and know which employee needs to have access rights.
# 963 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Igor Z. Krasnov. Access Matrix as a Passive Element in the Protection of Information Resources
Table 4. Access profile
Resouce
Rights (read/modification)
Chief accountant
G:\out_buh\Common
m
G:\out_buh\Audit
m
G:\Sap
r
G:\Katalog\dogovora
m
1C Accounting ?Outsource-Accounting?
-
External E-mail
-
General Director deputy
G:\IT\Audit
m
G:\out_buh\Common
m
G:\KT\Buh
m
G:\Sap
r
Redundancy rights consist differences between the initial and final matrices and they are
unnecessary in IS. Redundancy rights rises up the leakage probability of confidential information.
Access profile gives minimal access rights for every appointment which is necessary for employee
duties. You can look at access profile in table 4.
Access profiles pros:
? excludes unreasonable requests to access rights ?just in case?;
? increases an efficiency of consideration of access rights applications from informatization
divisions;
? simplifies a procedure of approval access rights with information security division;
? optimizes an procedure of assigning new user access rights. So the probability of employees
downtime while rights are assigning and financial damage reduced.
Requirements for ensuring control of logical access should be documented according to GOST R
ISO/IEC 27002:2005. The main goal of this measures is not only regulate users actions but establish a
responsibility for a rule violations.
After approving of access division rights by information security policy and establishing
a responsibility activity regulations in accordance with the access matrix should be
embedded.
Conclusion
A developed method of access control was embedded in a number of real objects of region
informatization. This allowed to reduce the information security risks.
References
[1] Andrianov V.V., Marshmallows S.L., Golovanov V.B. etc. Providing business information
security. M.: Alpina Publisher, 2011.
[2] Baldin K.V. Risk management. M.: Penguin Books, 2006.
# 964 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Igor Z. Krasnov. Access Matrix as a Passive Element in the Protection of Information Resources
[3] Astakhov A.M. The art of managing information risk. M.: DMK Press, 2010.
[4] Repin V. Business Processes. Modeling, implementation, management. M.: Mann, Ivanov and
Ferber, 2013.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 966-975
~~~
??? 621.311.243
Article Describes the Features
of Electrical Supply System Settlements
of the Republic of Tyva
Kara-kys V. Kenden* and Vladimir A. Tremyasov
Siberian Federal University
79 Svobodny, Krasnoyarsk, 660041, Russia
Received 29.09.2014, received in revised form 14.10.2014, accepted 15.11.2014
Shown the possibility of using solar energy for autonomous power supply to consumers. Offered an
improved method of determining the power of photovoltaic transducers used in decentralized power
supply system?s taking into account climatic and hardware factors. The conducted research power of
the photoelectric transducer in the climatic conditions of the village in Tyva.
Keywords: Tyva, independent electric power supply, solar radiation, photoelectric transducer, power,
climatic factors.
?????? ???????? ????????????????? ????????????????
? ???????? ??????????? ????????????????
?????????? ????
?.?. ??????, ?.?. ????????
????????? ??????????? ???????????
??????, 660041, ??????????, ??. ?????????, 79
??????????? ??????????? ?????? ???????????????? ?????????? ??????? ??????????
????. ???????? ??????????? ????????????? ????????? ??????? ??? ???????????
??????????????? ????????????. ?????????? ??????????????????? ???????? ???????????
???????? ????????????????? ????????????????, ???????????? ? ??????????????????
???????? ????????????????, ? ?????? ????????????? ? ?????????? ????????. ?????????
???????????? ???????? ?????????????????? ??????????????? ? ????????????? ????????
??????????? ?????? ?????????? ????.
???????? ?????: ????, ?????????? ????????????????, ?????????
????????????????? ???????????????, ????????, ????????????? ???????.
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: Kuca08@mail.ru
# 966 #
????????,
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Kara-kys V. Kenden and Vladimir A. Tremyasov. Article Describes the Features of Electrical Supply System Settlements?
????? ?????????? ?????????? ?????????? ????, ??????????? ??????????????? ?? ????????? ?????????, ??????????? ?????????-?????????????? ????????????? ???????????????? ?
???????? ??????????????? ????????? ?????????????????? ??????? ??????????, ?????????????? ?????????, ???????????? ? ?????????????????? ????????????. ????? ????, ??????????
????????? ???????????? ??????? ???????????? ??????????????????? ??? ?????? ?????????
????????? ?, ??????????????, ????????? ????????? ???????? ?????????????????? ????????? ??-?? ?????????? ??????? ???????????? ????????????, ??????? ????????????? ?????????? ?????????? ? ???????? ????????????? ???????.
????????????? ?????????? ?????????? ? ???????? ?????????? ??????, ????????? ???????? ???????, ??????????, ????????? ? ???????, ??????????????? ???????, ?? ?????????? ???????????????? ????????????????? ? ????????? ?? ????????? ???. ?? ??????????
?????? ???????????? ?????????????? ? ?????????? ?????????? ????, ?? ??????? ??????
?? ?????????? ?????????? ????????? ? ???????????? 12 ????????? ?????????????? (???),
?????????? 18 ?????????, ??????? ???????? ??????????????? ????? 13 000 ??????? ? ?????
??????? ??????????. ????????????? ???????? ?????????????????? ?????????? 4595 ???.
???????? ????????????? ??????????????? ?????????????????? ??? ????? ?????????? ??????. ????????? ?????????, ??????? ??????????? ? ?????????? ????, ???????? ??????
?????????? ??? ? ?????????????? ?? ????????????? ?????????. ?????? ???? ??????? ?????
??????????? ??????????? ??-?? ??????? ????????? ?????????? ??????? ? ?????????? ? ???
?????????.
????????????? ????? ??????????????? ????????? ????????????????? ?????? ???????????????? ?????????? ??????? ???? ????????? ?? ?????????? ? ??????????? ?? ???????, ?
??? ????? ??????????????, ?????????????. ?? ?????? ????????? ????????? ?????????? ????
????????? ? ????? ??????? ???????? ??????. ???????? ?????????? ????????? ????????????
???????????? ????? ????? ???? ???? ? ?????? ??????, ????? ?????? ?????? ??? ??????????
? ????????????????? ??? ??????????. ???????????? ?????? ????????? ???????? ?????????? ??? ????? ??????? ?????????? ? ???????? ??????????? ?????????. ???????? ?????????
?????????? ???????????? ? ?????? ??????? ??????????? ? ??????????, ??????? ????????? ????????? ????????????? ???????? ???????????? ????????? ???????? (???) ?????????????????
???????????????? (???).
??????? ??????? ???????????? ???????? ????????????????? ???????? ?????? ????????
????????? ?????? (??), ??????????? ??????? ????????????? ? ?????????? ???????? ?? ?????????????? ???????? ??? ? ???????? ???????? ?? ??????? ?. ????? ?????????? ????.
????? ??????????????? ????????????????? ??????? (???) ?? ?????????? ??????????
???? ???????? ??????????? ????????? ??????? ????? ???? ???????? ????????? ???????,
?????????? ?? ????????????? ??????????? ?????????????? ??????. ????????? ????????????????? ????????? ?????? ?????????, ??? ???? ???????? ???????????????? ????????? ?? ?????
????????? ???, ?????? ?????????????????.
??? ??????? ???? ???????????????? ??????????? ????????????? ?????????? ???????
??????? ???????? ????????? ???????? E??, ??????????? ?? ?? ? ??????? ??????????? ??????????? [1?4]. ????????????? ?????? ???????? ??????? ????????, ???????????? ?. ?. ?????? [4], ? ?????????????? ??????????? ????????????? ??? ??????? ???? ? ?????? ????????
# 967 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Kara-kys V. Kenden and Vladimir A. Tremyasov. Article Describes the Features of Electrical Supply System Settlements?
????????? ????????, ??????????? ??????? ?????????? ?? ?????? 5 % ????????? ?????????
????????, ?????????? ?? ???, ????????????? ? ?. ?????.
????
,
????????? ?????? ??????? ?????????? ????????? ?? ?????????????? ??????????? E ???
2
??/? , ???????????? ?? ?????????
????
E ???
??
???
( E ???
E ???
) /(1 r? � ra ),
(1)
??
, ??/? 2, ? ????????? ?????? ??????? ?????????? ????????? ??? ?????? ????;
??? E???
???
E??? , ??/? 2, ? ????????? ?????? ?????????? ?????????? ?????????; ra , r? ? ???????? ???????
????????? ? ???????????? ???????????
ra
0,0685 (1 Ba ) � (1,0 k AS ) ,
(2)
??? Ba ? ????????? ??????????? ??????? ????????? ? ?????? ??????????? ?????????, k AS ?
??????????? ????????? ????????? ?????? ???????.
????????????? ??????????? ????? ??????????? (????, ?????, ?????) ????? ??????????????? ????????? ?? ??????? r? [5]. ????????? ????????, ???????? ?? ?????? ???????????,
???????? ????????? ?? ???, ??????? ?????????? ????????? ????????, ???????????? ?? ?????? ??????????? ? ?????????. ?????????? ????????????? ???????????? ???????? ????????????? ???? ? ?? 90 %. ? ??????, ????? ??? ??????????? ???????? ???????, ???? ??????????
???????? ?? ????????? 15 %. ? ????????????? ???????? ??????? ???? ?????????? ????????
?????? ????????? 50?60 %. ??????? ?????? ?? ?????????? ???? ??????????????? ? ??????? 6
???????: ? ?????? ?? ??????. ? ????? ??? ???????????? ?? ???? ????????? ?????? ?????????? ??
???? ??? ?? ????????? ? ?????????? ?? ?????? ??????? ??????. ??????? ???????? ???????
? ?????????? ? ??????? ???????? ????? ???????????? ?????????? ????????? ??????????????
?????????? ???????? ? 1,5?2 ???? ?? ?????????, ????????, ? ??????????? ????????, ??? ????? ????? ?? ?????? ?????. ??????? ???? ???????? ?? 90 % ????????? ????? ??? ???????????
?????????.
????????? ?????? ??????? ?????????? ????????? ??? ?????? ???? ? ?????? ???????????
??
????????????? ??? ??????? ???? E???
, ??/?2,
??
E???
??
? � cos4Z � k ?? � k???
,
(3)
??? ? ? ?????????? ????????? ?????? ?????????? ????????? ? ??????? (????????? ??????????
?=1367 ??/?2); cos?Z ? ??????? ???? ??????? ????? ?? ?????????????? ???????????; k??? ? ??????????? ?????????? ????????? ??????????? ??????? ?????????? ????????? ? ?????????
??
??
1,14 ? ??? ?????? ??????? ? k???
?????; ???????? ??????????? ????????????? k???
0,91 ?
?
?
??? ?????? ??????? ????.
????????? ?????? ?????????? ?????????? ????????? ? ?????? ??????????? ?????????????
, ??/?2,
??? ??? ??????? ???? E???
???
E???
???
E � cos 4Z � k ??? � k ???
,
(4)
???
1,05 ? ??????????? ??????????? ??? ??????? ?????????? ?????????? ?????????, ????? k???
?????????? ?? ?????????????? ??????????? ??? ???? ??????? ????; k??? ? ??????????? ?????????? ????????????? ?????????? ????????? ? ????????? ?????.
# 968 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Kara-kys V. Kenden and Vladimir A. Tremyasov. Article Describes the Features of Electrical Supply System Settlements?
???? ??????? ?? ???????? ????? ?? ??????? ?????????? ????????, ???????? ?? ?????????????? ???????? ????????? ??????. ????????? ?????? ???????????? ????????????
????????, ????? ??? ?????????? ?? ??????, ?. ?. ?? ??????????? ??????????????? ?????????
?????. ????????????? ?? ? ??????????? ???????? ?? ??????? (????????) ???????????? ?????????? ???????????? ?????????????? ?? 10 % ? ?????? ?????? ? ?? 40 % ?????, ?? ?????????
????? ?? ?????????? ? ??? ? ????? ???? ? ????????? ?? ????????????? ???????? [6]. ???????
??????????? ?????? ???????????? ???????????? ??.
?? ?????? ????????????? ?? ????? ??? ?????????????? ??????????? ? ?????????????
?????????. ??? ????? ? ????? ??????????? ???? ??????? ????? ???????? ?????? ?????????.
??? ???? ? ??????? ???????? ???????????? 15 ????????, ? ????? ?? ????? ???????? ??????????
15 ????????. ??????? ????????????? ?????? ?????? ? ??? ???? ??????? ????????? ?????? ?
??????? ?? ??????.
???????? ????????? ?????? ??????? ?????????? ?????????, ????????? ?? ????????? ??????????? ?? E??, ??/?2, ?????
??
???
???
E ?? E????
E????
E????
.
(5)
???????? ????????? ?????? ???????, ?????????? ? ??????????? ????????? ?????????,
??????????? ?? ????????? ???????????, ???????????? ?? ????????:
??
E ????
??
E ????
� cos 4 ???? ;
???
E ????
???
�(
E ???
???
E ????
(6)
1 cos E
);
2
????
E ???
� ????? � (
(7)
1 cos E
),
2
(8)
??? cos?????i ? ??????? ???? ??????? ????? ?? ????????? ???????????, ??????????????? ??
??; P????, ?? ? ??????????? ????????; ? ? ??????????? ???? ??????? ??; ??? ??????? ?. ?????
?????????? ? ?????? ????? ???? = 65°, ? ?????? ???? = 35°.
?? ???. 1 ??????????? ?????? ?????????????? ???????? ??????? ??????? ?????????? ????????? ?? ????????? ??????????? ?? ??? ?. ?????, ?????????? ?? ????????????? ????????. ?????????????? ???????? ????????? ?????? ?????????? ????????? ?? ????????? ??????????? ?? ??? ?. ????? ?????????? ?? 38 ?? 262 ???/?2, ? ????????? ??????? ?????? ??????????
????????? ? 1823 ???/?2.
? ???????? ???????? ???????????? ????????, ??????? ???????? ???????????? ??, ??????????? ? ???????? ?? 0 ?? 120 % ?? ??????? ????????, ????????? ? ??????????? ??????????????? ??? Standard Test Condition (STC). ? ???????? ???????????? ?? ?????????? ?????????
??? ????????? ???????? ????????????? ????????????? ??? STC: ?????? ????????? ???????
1000 ??/?2, ??????????? ????????????????? ????????? ????????? 25 °? ? ????????? ???????
?? ?????? 45° ??? ??????????? ?????, ?????? 1,5. ????? ?? ????????????? ?????????????? ??,
?????????? ??? STC, ? ??????? ???????????? ???? ? ?????????? ???????????, ? ??? ???????
???????? ??.
# 969 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Kara-kys V. Kenden and Vladimir A. Tremyasov. Article Describes the Features of Electrical Supply System Settlements?
300
???, ???/?2
250
200
150
100
50
0
1
2
3
4
5
6
7
8
9
10
11
12
?????
???. 1. ?????????????? ???????? ????????? ?????? ?????????? ????????? ?? ????????? ???????????
??? ?. ?????
?? ?????????????? ???????? ????????? ?????? ?????? ????????????? ??????? ????????? ? ?????????? ???????, ????????? ? ???????????? (??????????? ????????????) ?? ?
????? ?? ?????????? ???????????? ????????? (??????????? ???????). ?? ???. 2 ????????????
??????????? ?????????????? ???????? ?? ?? ????????????? ???????? ? ????? ????? ????.
??????????? ???????? ?? ???????????? ???????? ????????? ? ??? ?????????? ?????????, ??????????? ??? ????????? ???????????? ???????? ?? ? ???????????? ?????????
???????? ????????? ????????? ?? ??????? ??. ?????????? ????????? ???????? ? ???????? ???????????? ???????? ????????? ???????? ???: 18,5 % ? ?????????????? ???????? ?
17,4 % ? ?????????????? ????????. ??????? ??? ?????????????? ????????? ???????????
???, ??? ? ?? ??????????? ???????????? ?????????? ?????????? ????????? ??????? ? ?????????? ??????????, ? ?? ????? ??? ?????????????? ???????????? ?? ???????? ???????. ?????
????, ???? ???????? ????????????? ???????????????????? ??????? ??? ???????????? ?????????? ????? 25 ???, ? ??????? ??????? ??? ??????????? ????? ??? ?? 20 % ??-?? ?????????
?????? ???????????? ????????????????? ?????????. ? ?????????????? ????????? ????????
????????????? ????????? 30 % ?? 15 ???. ???????? ?? ???, ?? ????????? ?? 2013 ?. ????? 70 %
????????????????? ??????? ? ???? ???????????? ? ?????????????? ?????????????? ??, ???
??? ?????????? ?????? ?????????? ????? ????????? ? ???? ??????????? ???????, ??? ???????????? ???????? ????????????? ????? ??????? ? ?? ?????????????.
????? ????????????????? ?????????? ???????? ???????? ?????????????? ????????
?? ????? ???? ??????? ? ?? ????????????? ???????????, ??????? ????? ???????? ? ?????????
????????? ?????? ?? 20 °? ? ?????????? ????? ? ?????????? ?????????? ?????????? ??????????????? ??????????. ? ?????? [7] ???? ????????? ????????? ?? ?? ?? ??????????? ????????? ??? ????????? ???????? ???????. ?? ??????????? ????????? ????????, ??? ???????????
????? ????? ?? ?? ??????????? ??? ?????? ?? ????? 225 ?? ????? ??????? ???????????? ?????? ? ?????????? ?????, ??????????? ??? ???? ???????????? ????????????? ??????????
????????.
???????????? ????????, ????????? ??????? ????????????? ??, ???????? ?? ????????????. ????????? ?? ???????? ??????, ???????? ??? ?????? ????? ??????????? ??????? ???# 970 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Kara-kys V. Kenden and Vladimir A. Tremyasov. Article Describes the Features of Electrical Supply System Settlements?
? ?? E
r?
????
????
r?
U ???
I ??. ???
W????
? ?? ? ????
V?????
???
?????
??????
??????? ??
? ?? E
r?
????
????
r?
W????
I
???
? ?? ? ????
U ??. ???
V?????
? ?? ?????
W????
???. 2. ??????????? ?????????????? ???????? P?? ????????? ?????? ?? ????????????? ? ??????????
???????? ? ????? ????? ????: U???, I??? ? ??????? ?????????? ? ??? ??; U??. ??? ? ?????????? ?????????
???? ? I??. ??? ? ??? ????????? ?????????, ?????????? ? ???????????? ????????; T?? ? ???????????
????????? ??????; T????, P????, W???? ? ???????????, ???????? ? ????????? ???????; V???? ? ???????? ?????,
????
E?? ? ????????? ????????? ???????? ?? ????????? ??????????? ??; E ????
? ??????????? ???? ???????
??, r? ? ??????? ??????????? ???????????, r? ? ??????? ?????????
??????????????? ??. ??????? ?? ??????? ??????? ???????????? ? ?????? ????????? ???
???????????? ?????????? ????????? ????????? ? ????????????? ???????????? ??????? ??
???????????? ?????????? ???? ?? ?????. ????????? ????????? ??-?? ?????, ??????? ???????,
???????? ??????, ???? ? ?. ?. ??????????? ???????????? ??????? (?????, ????? ? ????????? ?
????? ??????? ??). ??? ??????? ?? ??????? ??????????? ????????? ??????????? ?????????,
??????? ????????, ????????, ????? ??????????????.
??? ???????????? ??????? ???? ????????????? ???????? ?? ?????????????? ????????
??? ???????? ?????? ??????? ????????? ?????????????? ?????? ??? 160(24) ????????????
??? «???????????» (?. ??????????) (????. 1).
?????????????? ?????????????? ???????? ?? ? ???????? ????????, ??/?2, ????????????
?? ?????????
???
U ??? � I ??? ,
(9)
??? U???, ?, ? ??????? ??????????; I???, ?, ? ??????? ??? ??:
# 971 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Kara-kys V. Kenden and Vladimir A. Tremyasov. Article Describes the Features of Electrical Supply System Settlements?
??????? 1. ??????????? ?????????????? ????????? ?????? ???-160(24)
????????
????????
???????????? ???????? ????????
160 ??±5 %
??????????? ??????????
24 ?
?????????? ????????? ????
42 ?±5 %
??? ????????? ?????????
5,7±5 %
?????????? ??? ???????????? ????????
34 ?±5 %
??? ??? ???????????? ????????
4,6 ?±5 %
???????
1580x815x43 ??
???
17,5 ??
??????????? ??????????? ??????? ??? ????????????
????? 40?+50 °?
U ???
0,728�U ?? ;
(10)
I ???
0,763� I ?? ,
(11)
??? Uxx, ?, ? ???????? ???????? ?????????? ????????? ???? ??; I??, ?, ? ???????? ???????? ????
????????? ????????? ??.
??? ???????????? ? ?????????? ???????????? ????????? ?? ???????????? ???????? ?????????? (????) ? ????? ????????????? ?????????????? ? ??????? ????? (???????????), ??????? ??????????? ???????????? ? ?????? ??????????? ?????????????. ??????? ????????, ???
?????????? ? ???????????? ???????? ?????????? ????????? ???? ? ??? ????????? ?????????
????? ?????????? ?? ?????????????? ??-?? ??????? ????????????? ???????? ?? ?????? ??.
?? ?????????????? ???????? ?? ? ???????? ???????? ?????? ????? ????????? ??????? ?? ???????????, ??????? ??????? ?? ???? ????????????? ????????: ????????? ???????? ??
??????????????? ???????????, ??????????? ?????????? ?????, ???????? ?????, ?????????
? ???????? ???????. ? ?????? ??????????? ??? ????????? ????????? ?????????????, ? ?????????? ????????? ???? ???????????. ????????????? ??????? ??????????? ?? ???????? ?????????? ???????? ????? ???????, ???????? ?? ??????????? ??????????? ???? ? ?????????? ??
???????????.
? ?????? ????????????? ??????? ? [8] ???????? ????????? ??? ?????????? ?????????
???? Uxx ? ???? ????????? ????????? I??:
U ??
U ?? . ??? 0,1� (TC? ? ???.?? ) ;
(12)
I ??
I ??. ??? 0,01� (? ?? ? ???.?? ) 0,004 �W???? 0,005� ( ??? ? ??? ),
(13)
??? T????? ? ??????????? ??????????? ?????????? ??????, ????????? ? ???????? 38?58 °? ???
Standard Reference Environment (SRE): ?????? ????????? ????, ?????? 800 ??/?2, ??????????
???? ??????? ? ?????????, ??????????? ??????????? ??????? T???..???? = 20 °? ??? ????????
???????? ??????? V???? = 1 ?/?.
?????? ????????? ??????????? ?????? T?? ? ???????? ?? ???????????????? ?????????
???????????? ?????????? ?????????? ? ????????????? ????? [8?12]. ? ????????????? ??????# 972 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Kara-kys V. Kenden and Vladimir A. Tremyasov. Article Describes the Features of Electrical Supply System Settlements?
?????? ?????????? ??????? ?????????????? ??????. ?????????? ?????????? ? ???? ??????
?? ???????? ????????? ??????????? ????????? ????????? ? ??????????? ?? ??????? ???????
(T????, E??, V????) ???? ??????????? ???????????? ?????? ???????? ????????? ??? ??????????? ?????????????? ??????????? T??, °?, ????????? ?????? [13]:
? ??
0,943� ? ???? 0,28 � ??? 1,528�V ???? 4,3 .
(14)
????? ????????????? ???? ???? ????????????? ???????? ?? ??????????? ????????? ?????? ????? ?????? ????????? ? ???????? ???????. ??????????? 7-?????? ?????????? ???????? ?????? [8] ?? ???? ????????????? ???????? ???????? ???????? ?????????????? ????????????? ?????? ? ??????????? ?????????? ??????? ??????????? T??, °?:
? ??
? ???.?? 0,81
8 � (? ???? ? ???.???? ) 0,06 � W???? 0,01 � ????? 0,244 � V???? 0,06
0 � ( ??? ? ??? ).
(15)
?????????? ?????????????? ???????? ??????????? ?? ? ??????? ???? ? ???????????
?????? (14) ? (15) ??? ?. ????? (?????????? ????) ???????????? ? ???? ?????? ?? ???. 3.
??????????? ?????????????? ???????? ?????????? ????????? ? ???????? ?? 0 ?? 20 °?: ?
????? ?? ???????? ???????? ? ????????? ?????????? ?????????? 5?20 °?, ? ? ??????? ?? ??????? ? 0?10 °?. ? ?????? ?????????? ?? ? ??????? ???? ??? ??????? ??????????? ?????? ????????????? ???????????? ???????? (15), ??? ??? ? ??? ??????????? ????? ?????????????
???????, ??? ?????? ?????? ????????? ???????, ???????? ?????, ???????????, ????????? ?
???????? ???????.
??? ?. ????? ?????????? ???? ??? ??????????? ??????????? ?? ???? ????? ?? [14] ???????? ?????????????? ?????????? ??????? T????, °?, ? ????????? ????? V????, ?/?, ? ??????? ????? ????? ? ???????????? ?? ????????????? ???????? ?????????????? ???????? ?????????
???????? ?? ??????????????? ??????????? E??, ???/?2. ????????????? ? ??????????? ????????? ?????????????? ?????? ? ??????? ?????????? ?M = 51,7° ?.?. ? ? M = 94,5° ?.?.
? ???????? ????????? ???????? ??????? ?????????????? ??????????? C?, ??????????
?? ??????? (15), ??? ??? ?????? ????? ??????????????? ? ??????? ????? ????.
???. 3. ?????????????? ???????? ??????????? ??: ???????? ?????? ? ???????? ???, ?????????? ?? (14);
?????????? ?????? ? ???????? ???, ?????????? ?? (15)
# 973 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
???, ???
Kara-kys V. Kenden and Vladimir A. Tremyasov. Article Describes the Features of Electrical Supply System Settlements?
126
124
122
120
118
116
114
112
110
108
1
2
3
4
5
6
7
8
9
10
11
12
?????
???. 4. ?????????????? ???????? ?????????????? ???????? ?? P?? ? ?????? ????????????? ?
?????????? ????????
??? ??????? ?. ????? ? ?????????? ??????????? ??????? ?? ????? 30 ?? 20 °?, ????????
????? ?? 1 ?? 3 ?/? ? ??????? ????? ????? ? ????????? ????????? ???????? ?? ??????????????? ??????????? ?? 38 ?? 262 ???/?2 ? ??????? ???? ?????????????? ?????????????? ????????
????? ?? ????? ???-160(24) ?? ????????????? ???????? ?????????? ?? 117 ?? 125 ??? (???.
4). ? ?????? ????????????? ? ?????????? ???????? ????????????? ???????? ??????????????
????? ?? ???????? ????????? 1436 ???.
??????
1. ? ???????? ???????? ???????????? ?????????????? ???????? ?? ?????????? ?? ??????? ????????, ????????? ? ??????????? ???????????????. ??? ???? ???????? ?????, ??? ??????? ??????? ? ???????? ?? ?????????????????? ?? ???? ?????????? ?????????? ? ????????????? ???????? ?????????, ??????? ????????????? ? ??????????? ?? ?? ??????? ????????
???????? ? ?? ????????? ?? ??? ?????????? ??? ????????????.
2. ? ?????????? ?????????? ????????? ??????????????, ????????? ? ??????????? ???????????? ? ???????????? ??. ??? ?????? ?? ??????? ???????? ???????????? ??????????????
???????, ??? ??? ??? ????? ?????????? ?????????, ???????????? ??????? ???? ?? ???????????? ? ??????? ??????? ???????? ??? ?? ????????? ? ??????????????? ????????. ???
????????? ?? ?? ???????????? ?????????? ?????????? ??????????? ????? ????? ?? ??????,
??????????? ??? ???? ???????????? ????????????? ?????????? ????????. ? ????????????
???????, ????????????? ?? ?????????????? ???????????, ????????????? ?????? ?????? ?
??? ???? ??????? ????????? ?????? ? ??????? ?? ??????. ?? ??????? ??????? ???????????? ?
?????? ????????? ??? ???????????? ?????????? ????????? ????????? ? ????????????? ???????????? ??????? ?? ???????????? ?????????? ???? ?? ?????.
3. ?????????? ??????????????????? ???????? ?????? ???????? ????????? ??????, ??????????? ??????? ????????????? (????????? ???????? ?? ????????? ???????????, ???????????, ???????? ? ????????? ???????, ???????? ?????) ? ?????????? (?????????? ?????????
????, ??? ????????? ????????? ??, ?????? ???????) ???????? ?? ?????????????? ????????
??? ? ???????? ???????? ?? ??????? ?. ????? ?????????? ????.
# 974 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Kara-kys V. Kenden and Vladimir A. Tremyasov. Article Describes the Features of Electrical Supply System Settlements?
?????? ??????????
[1] ??????? ?.?. // ??????-??????????? ????????? ??????. 2006. ? 6. ?. 1. ?. 62?66.
[2] ???????? ?.?. // ??????? ? ???????? ?????????. 2000. ? 3. ?.36?39.
[3] ???????? ?.?., ??????? ?.?., ??????? ?.?. ? ??. ??????? ? ????????????? ????????????? ?????????????? ?????????? ??????? ? ??????. ???.: ?????, 2002. 314 ?.
[4] Bird R.A., Hailstorm R.L. // SERI/TR-642-761, Solar Energy Research Institute (SERINREL).
1981.
[5] ????????????????? ???????????. ??????????? ?????? ?????? ?? ?????????????????
? ??????????? ?????????? ?????. ??????????????? ????. 2001?2011.
[6] ?????? ?.?. ?????????????? ????????? ???????: ???????. ???????????: ???-?? ????,
2007. 432 ?.
[7] Fuentes M.K. // Albuquerque, New Mexico 87185 and Livermor, California 94550: Sandia
National Laboratories, Sand85-0330 UC-63, May, 1987.
[8] ??????? ?.?., ?????? ?.?., ?????? ?.?. // ???????? ???????? ???????????????? ????????????. 2009. ?. 314. ? 4 ?. 142?148.
[9] Kenny R.P., Huld T.A., Iglesias S. // Proceedings of the 21st EU PVSEC, Dresden, Germany,
September 4-8. 2006. P. 2088?2092.
[10] Merten J., Amy E. de le Breteque // Proceedings of the 21st EU PVSEC, Dresden, Germany,
September 4-8. 2006. P 2871?2874.
[11] Muresan C. // Conference in Europe ? From PV technology to energy solution. 7-11 October
2002, Rome, Italy. 2002. P. 737?740.
[12] Nguyen A.M., Artigao A., Cunningram D.W. etc // Proceedings of the 21st EU PVSEC, Dresden,
Germany, September 4-8. 2006. P 2031?2037.
[13] Tamizhani G., Tang Ji Y., Petacci L. // NREL and Solar program review meeting 2003, NREL/
CD-520-33586. P. 936?939.
[14] ?????? ?????? [??????????? ??????] ????? ???????: http://www.pogodaiklimat.ru/
???? ?????????: 16.03.2014.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 976-983
~~~
??? 528.8.854, 528.77
Analysis of the Seasonal Dynamics of Vegetation
on Remote Sensing Data
Elena V. Fedotova*?,b, Artem A. Zholudev?,
Viktor G. Izosimov?, Yuri D. Shpirukc,
Yuri A. Maglinets? and Gennadi M. Tsibul?skii?
a
Siberian Federal University
79 Svobodny, Krasnoyarsk, 660041, Russia
b
V.N. Sukachev Forest Institute SB RAS
50-28 Akademgorodok, Krasnoyarsk, 660036, Russia
c
Department of Agriculture Administration
Sukhobuzimsky District of Krasnoyarsk Krai
44 Komsomolskaya Str., C. Suhobuzimskoe,
Krasnoyarsk region, 663040, Russia
Received 21.10.2014, received in revised form 12.11.2014, accepted 03.12.2014
The use of remote sensing data to study the vegetation dynamics is considered. The methods of medium
and high spatial resolution data processing for mapping of agricultural land and forest are suggested.
The results of the methods application for agricultural and forest areas of Siberia are shown.
Keywords: remote sensing, seasonal dynamics of vegetation.
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: elfed@ksc.krasn.ru
# 976 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Elena V. Fedotova, Artem A. Zholudev? Analysis of the Seasonal Dynamics of Vegetation on Remote Sensing Data
?????? ???????? ???????? ????????????? ???????
?? ?????? ??????
?????????????? ???????????? ?????
?.?. ?????????,?, ?.?. ????????, ?.?. ?????????,
?.?. ???????, ?.?. ?????????, ?.?. ???????????
?
????????? ??????????? ???????????
??????, 660041, ??????????, ??. ?????????, 79
?
???????? ???? ??. ?.?. ???????? ?? ???
??????, 660036, ??????????, ?????????????, 50, ???. 28
?
????? ????????? ????????? ?????????????
?????????????? ?????? ????????????? ????
??????, 663040, ???????????? ????,
?. ?????????????, ??. ?????????????, 44
??????????? ??????? ????????????? ?????? ?????????????? ???????????? ????? ?? ??????? ???
???????? ???????? ????????????? ???????. ?????????? ?????? ????????? ?????? ????????
? ???????? ????????????????? ?????????? ??? ???????????? ?????? ?????????????????????
?????????? ? ?????? ??????????. ???????????? ?????????? ?????????? ??????? ???
???????????????????? ? ?????? ?????????? ??????.
???????? ?????: ????????????? ????????????, ???????? ???????? ????????????? ???????.
????????
? ????? ? ???????????, ??????? ??????????? ? ????????? 20-30 ???, ? ????????? ?? ??????????????? ????? ????????????? ?? ????? ? ???????, ? ????????? ?????? ?????????? ? ?????? ???????? ????????????? ???????? ????????????? ???? ?????? ? ???????????? ? ?????????
??????. ????? ?????????? ?????? ?????????? ????, ???????? ?????????? ? ??????????????
??????? ????????????? ?????? ????????????????????? ??????????, ? ?????????? ???????????? ?????? ???????? ?????????? ???? ??????????? ????????? ?????????? ? ??????? ?????, ?????????? ??????????????? ????, ?????????? ?????? ????????????? ????????.
?????????? ??????????? ?????????? ?? ????????????? ????????? ???????? ????????
?????? ?????????????? ???????????? ????? (???). ?????? ????????? ???????????????????? ????? ? ??????? ?????? ????? ??????? ????????, ??? ??????? ??????? ?????????
?????? ???. ?????? ????????????? ?????? ?????? ??????? ??????????? ?????????? ???????
????? ?????. ??????????? ???????? ???????? ????????? ???????? ? 80-? ????? ???????? ???????? ? ?????????? ?????? ????????????????? NOAA/AVHRR. ???? ?????? ???????????????? ?????????? ?????? (1 ??) ????????? ???????? ?????? ?????????? ????????????????
??????, ????????? ?? ??????????? ?????????? ?????? ???????? ???????? ??????????????
(???????????? ?????? ??????? ????????????? ????????, ? ?????? ??????? ??????????????
??????? ????????????? ???????? (NDVI), ????? ????????. ?????? ?? ??????? ?????????????? ???????????? ?????????????? ? ?????????? ???????? ???? ??????????? ??? ? 1980-?
????? [1]. ?? ?????? ??????? ?????? NDVI NOAA/AVHRR ???? ??????????? ???????? ???# 977 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Elena V. Fedotova, Artem A. Zholudev? Analysis of the Seasonal Dynamics of Vegetation on Remote Sensing Data
?????????? ??????? ????????? ???????????, ???????? ????? ???? ? ?????????????? ?????,
?????????????? ??????????? ?????? ? ???????????????????? ?????? ????????? ????????
??????????.
?????? ??????????? ???????????? ???????? ??????????? ? ???????? ????????? MODIS
(TERRA&AQUA). ??????? MODIS ????????????? ? ??? ????? ? ?? ???????????? ??????????????, ????????? ??????? ?????????? ?????? ? ??????? ??????? ? ??????? ????????????
?????????? ???????, ?????????? ????????? ? ??????? ???????????? ??? ?????????? NDVI, ?
????????? ??? ????? ??????? ???????????????? ??????????? 250 ?. ????????? ?? ??????
MODIS ??????????? ???????? ??????????? ?????? ????????????????? ????????? ?????????
????????? ?????????????? ? ???????? ?????????????? [2].
? ????????? ????? ???????????? ?????????????? ??? ?????? ???? ?????????????? ??????? NDVI ????? ?????????????. ?????? ?????????????? ??????? ?????????? ??
??????, ????????? ??????????? ????????? (???????? ?? ?????????? ?????????? ????????? ?????? ? ??????????? ??????????? MODIS). ?? ?????? NDVI ?????????? ??????
?????? ????????? EVI (Enhanced Vegetation Index ? ?????????? ????????????? ??????),
??????? ????????? ???????? ?????? ???????? ???????? ? ????? ???????????? ??? ??????????? ??????????????, ????????? ??????? ????? ? ????????? ? ????????? EVI ??????????????. ??? ??????? ????? ??????????? ????????? ? ???????? ??????????????
???????????? ????????????? ????? ??????? ???????, ??? ???????? ???????????, ?????????? NDVI, ????????? ?????????????? ??????, ???????????? ?????? ??????????????
?????? [3].
? ????????? ??????????? ???????????? (???) ??? ??????????? ??????? ???????????
???? ?? ?????? ?????? ??????? ? ???????? ????????????????? ?????????? MODIS [4]. ????? ????????????????? ??????? ?? ????????????? ??????????? ????????? ????? ?????????
?? ??????? ???????? ???????? ??????????? ???????????, ?? ?????? ??????? ??????????
?????????? ?????????? ????????????? ????????? ?????????????. ???????? ?????????????
????????? ??????????? ???????? ? ?????????? ???????? ???????????-????????????? ????????????? ???????????? ???????? ??????, ?????????? ?? ?? ?????? ????????? ???????????????????? ?????? ? ???????????? ??????????????. ????????? ???????? ?????? ??????????? ? ??????? ????????? ????????-?????????? ????????? ?????????????, ???????????
???????????????? ?????????????? ???????? ????????? ?????????????. ????????? ????????
????? ????? ???????????????? ?????????? ????? 250 ?.
?? ?????? MODIS ? ??? ??? ??????? ????? ????? ?????????????? ?????????? ????????? [5]. ????? ????????????????? ??????? ?? ????????????? ????????? ?? ??????? ???????
? ?????? ???????? ???????? ??????????? ???????????, ??????????????? ?????????????
????????? ?????????? ? ??????????? ??????????? ?????????????? ???????? ??????????????. ??????????? ??????????? ??????????? ???????????? ?? ?????????? ???????????????
????????? ?????? ?? ?????? ??????????? ?????????? ????????? ???????????-?????????????
????????????? ?????? ??????????? ? ???????, ??????? ? ??????? ?? ??????????. ????????????? ????? ????????????? ??????? ????????? ?? ?????? ????????? ????????-??????????
????????? ?????????????, ??????????? ?????? ?????????????? ???????????? ????????????
????????????? ???????. ????????? ???????? ????? ????? ???????????????? ?????????? ?????
# 978 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Elena V. Fedotova, Artem A. Zholudev? Analysis of the Seasonal Dynamics of Vegetation on Remote Sensing Data
250 ? ? ???????? ?? ??????????? ?????? 2010 ?., ? ?? ????? ??? ????????????? ??????????
????????????? ????????????????? ?????????????? ?? ??????????? ?????? ????????? ????????????? ????? ??????????? ?? ?????????? ??????????.
??????? ?????? ???????? ????????????? ????????? ???????? ?????????????? ?????????? ?? ???????????? ?????? ???????????? ????????? ???????????? ????????? ????????? ????????? ? ????????? ????????????? ??? ???????????????????? ??????, ??? ? ?????? ??????.
????? ????, ???????? ??????? ??????????? ???????? ? ??????? ??????????, ?????????? ???
??????? ????. ????? ???????, ?????? ??????????? ??????? ? ???, ????? ?????????? ?????????
? ????????? ????????? ?????????? ? ???????? ????????? ????????. ?????? ??????????????
???????????? ???????? ?????????? ??????????? ?????????? ??? ??????? ????????? ? ???????? ??????? ???????. ???????? ??? ?? ???????????? ?????????? ????????? ?? ???????????????? ? ????????? ??????????.
????? ??????????? ?????? ??????? ????? ??????????? ????????????? ??????? ? ??????????? ?????? ??? ???????? ? ???????? ????????????????? ??????????.
?????? ????????? ?????? ??? ??? ??????????
? ??????? ??????????? ???????????????????? ??????
????????????? ??????????? ??????? ??? ??????????? ???? ??????? ? ????????? ???????? ????????????:
1) ??????????? ?????? ?????;
2) ??????????? ???? ?/? ??????? ?? ???? ? ????, ??????????? ?????, ??????, ??????, ?
????? ????????? ???????? (???????, ????, ???? ? ?.?.);
3) ?????? ??????????? ???????? ????.
??? ??????? ?????? ?????? ?????????? ????????? ??????????? ??????????? ????????
????????????????? ??????????. ????????? ?????????? ???????????? ?????????? ?????????
???? ?????, ?????? ??????? ? ????????? ?? ??????. ??? ???????? ?????? ???????????? ??????? ???????????, ????? ??? ????? ????????? ????????, ????? ???????????, ????? ????????????? ??????????? ???????????, ????? ??????????-??????? ?? ?????????????? ??????????????
??????? [6, 7].
??? ??????? ?????? ?????? ????? ??????????? ?????? ?????????, ???????????? ?
?????? [4]. ? ?????? ?????? ???????????? ????????, ??????????? ?? ?????? ??????????? ?????
????????????????? ?????????????? ??????? (PVI), ??????????? ??????????? ??????? ?????
???????????? ? ???????????????????? ??????????????? ????? ??????? ?? ???????? ?????????
???????????. ???????? ???????? ????????????? ???????? ?????? ?? ?????? ???????????
????? ?????? MODIS:
1. ?????? ??????????? ?????? ????????? ? ????????????? ?????????? ????????????????? ?????????????? ??????? ???????????????????? ??????? ? ???? ?????????? ??????????????? ??????????? ?? ????????? ? ???????????? ???????????????.
2. ?????? ????????? ???????? ?????????????? ? ????????????? ????? ?????? ????? ???????????? ? ???????????????????? ??????????????.
3. ?????? ????????? ???????? ????????? ? ????????????? ?????? ????????? ??????????
?????????????? ? ??????? ?????????? ???????????? ???????????.
# 979 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Elena V. Fedotova, Artem A. Zholudev? Analysis of the Seasonal Dynamics of Vegetation on Remote Sensing Data
4. ?????? ?????????? ???????? ???????? ?????????????? ? ??????????????? ??????????? ????????????? ???????? ?????????? ????? ?????????? ?????? ???????? PVI.
5. ?????? ?????????? ???????????? ????????? ? ????????????? ??????????? ??????????
??????????? ???????? ??????????? ?? ??? ????? PVI.
6. ?????????? ?????? ????????? ???? ????????? ? ????????????? ?????????? ???????????? ???????? PVI ??????? ??????? ?? ????????????? ????????.
? ????? ? ??? ??? ???????????? ???????? ???????? ?? ??????????? ?????? ??????, ?????????? ???????? ???????? ????????? ????? ?? ???? ?????? ?????????.
?????? ????????? ?????? ???
??? ??????? ???????? ??????? ???????
?????? ?????? ?????????? ? ???????? ??? ???????? ???????????? ?????? ? ????? ??????
????. ?? ?? ????? ??????? ???????????? ? ??????? ?? ??????????????? ????????? ?????????????? ?????, ? ????? ??????????????? ????? ??????? ?????????. ??????? ?? ?????? ????? ?????????? ???????????????? ?????? ?????? ?? ????? ???????? ?????? ?????????.
????????? ???????? ??? ? ??????, ????????????? ?? ???????, ?????????????? ? ????????????? ???????? ?????, ???????????? ??????? ??? ????????????? ?????????????????? ?
?????. ?????? ????????????????? ? ????????????? ??????????????? ?????? ????? ????????
?????? ??? ?????????? ??? ??? ?????? ???????? ??????? ? ??????????? ?????? ??? ???????
????????????????? ?????????? [8-10]. ? ?????? ????? ??????? ??????????:
1) ?????????? ???? ? ???????? ?????, ???????????, ?????? ? ????? ? ?????????? ? ??
?????? ?? 400 ? ??? ?.?.;
2) ???????? ??????????????? ???????? ? ???????? ????? (300-700 ? ??? ?.?.);
3) ???????????? ?????? ???? (?????? 700-1200 ? ??? ?.?.);
4) ?????-??????? ??????????????? ???????? ???? (???????? ?? 1000 ? ??? ?.?.).
??? ?????????? ??????? ??????? ? ??????? ?????? ?????????????? ???????????? (??)
???????? ??????????????? ???????? ???????????? ????????????? ??????????? ???????? ??????
????. ??????? ?????? ????? ??? ?????????????? ??????? ??????? ???????? ????????? ???????? ? ???????????? ? ?????????????, ??????? ???????????? ?? ??????? ???????? ??????
?????? ??????????.
????????????? ?????? ?? ???????? ????????????????? ?????????? (Landsat, Spot) ????
??????????? ???????? ?????????????? ????? ?? ????? ???????????????, ??? ?????????????
??????, ?????? ??????????, ???????, ??? ???? [11]. ?????????????? ????? ?? ????????????
????????? ?????????????? ?? ????????? ??????. ???????????? ???? ?????????? ?? ????????????? ??????? (????) ? ?? ?????? ??????? ????? ?????? ????????? NDVI ?? ?????????
? NDVI ?????????? ????? ? ??????????? ??????????????. ???????? ???? ????? ???????? ??
?????? ???????, ??? ? ???????????? ????, ?? ? ????? ??????? ?????????? ? ??????? ??????.
?????????? ???? ????? ????? ??????? ???????? NDVI ?? ?????? ???????. ?????????????
???? ???????? ???????????? ????????? ??? ????????? ?? ?????????? ?????, ??? ????? ???
???? ????? ??? ???????????? ?????????? ????????????-?????????? ????????????.
????? ????????? ????? ????????? ????????? ????? (??? ????, ??????, ???????, ?????????????? ?????? ??????), ????????? ????????, ??????? ?? ????? ????????? ??????? ?????
# 980 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Elena V. Fedotova, Artem A. Zholudev? Analysis of the Seasonal Dynamics of Vegetation on Remote Sensing Data
??????? ?? ?????? ??. ??? ??????? ?????? ?????? ????? ???????????? ??? ? ?????????
????? ????????? ??????????? ?????? ??? ??????? ????, ???????? ??????, ??? ??????????,
????????. ??????? ????? ????????????? ????? ????????? ? ???????????? ?????????????? ????? ????????????? ???????, ????????, ????.
?????????? ????????????
? ???????? ????????? ??????? ??? ??????? ????? ?? ??????????? ???? ???? ???????
?????????? ?????????????? ??????. ??????????? ????????? ?????? ????????????????????
????????, ?????????????? ??????? ?????????????? ?????? ?. ???????????. ??? ????
???????????? ?????????? ??????? ???????? ????????????????? ?????????? SPOT-6, Landsat-7 ? DMC UK. ??????? ?????????-?????????????? ????????? ???? ???????? ???????
????? 1200 ?????. ??? ????????????? ???????? ????????? ??????, ??????????? ?? ???????????
??????? ??????? ???????????, ??????? ??????????? ????? ENVI EX. ?? ???. 1 ???????????
????????? ?????????????, ?? ??????? ???????? ??????? ?????.
?? ???? ??????????, ???????? ? [12], ???????? ???????? ?????? «??? ???? ?????????????? ??????», ?????? ??????????? ????? ???????. ?? ?????? ?????????? ???????????? ???????? ????????? ?? ???????? ???????????????????? ??????, ?????????????? ????????? (??
?????? 2013 ? 2014 ??.), ?????????? ? ??????????????????, ?????? ??????????????? ???????.
????????? ?????????? ???????: ????????, ??? ????? 20 % ???????????????????? ?????? ?? ???????????? ? ???????????????????? ???????; ?????????? ?????????? ???????????? ???????, ?
????? ?????, ???????? ??? ????????? ?????????????? ??? ????????? ???????????? ??????.
?????? ???????? ??????? ??????? ????????? ??? ????? ?????????? ???????. ??? ?????? ?????????? ????????? ?????? ? ????? ??????? ??????, ??? ??? ????????????????????
??????, ??? ??? ??? ??????? ???? ????? ????????, ???????, ? ?????????????? ??????? ??????
?????????? ??????? ????. ?????? ?????? ?????????? ????? ?? ????????? (???????????? ?
????????????-??????????), ? ?? ???. 2 ?????????? ????? ????????? ?????????? ????? ????????? ??????????? ???????????.
???. 1. ?????????? ??????? ????? ??? ????????????? ????????? ENVI EX
# 981 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Elena V. Fedotova, Artem A. Zholudev? Analysis of the Seasonal Dynamics of Vegetation on Remote Sensing Data
???. 2. ?????-????? ??????? ??????? ????????? ??????????? ???????????
??????????
? ?????? ?????? ?????? ???????????? ?????? ????? ?????? ????????????????????? ?????????? ? ??????? ????? ?? ?????????, ??????????? ??????? ????? ?????????? ??????????
?????? ?????????? ?? ????????? ??????? ?? ???????????? ??????. ?????????? ???????????
? ??????????? ??????????? ????????? ?????????????? ??????? ????????????? ?????? ???
???????? ? ???????? ????????????????? ??????????, ?????????? ????, ??? ??? ???????? ???
?????? ?????????? ???????, ???????? ? ?????????????? ?? ???? ??? ? ??? ???. ???? ?????
????? ????? ????????? ?? ???? ????????????? ?????? ?? ????????? ? ???????????? ???????
??????, ?? ??? ??????????? ????????? ? ????????????? ????? ?????????? ????? ????? ??????????? ?????? ???.
??? ????????? ?????? ???? ? 13-07-98005 ? ?????? ???? «???????????? ???????
???? ????????? ??????? ? ??????- ??????????? ????????????» 2014 ?.
?????? ??????????
[1] Justice C. O. // Int. J. Remote Sensing, 1985. Vol. 6. ? 8. P. 1271?1318.
# 982 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Elena V. Fedotova, Artem A. Zholudev? Analysis of the Seasonal Dynamics of Vegetation on Remote Sensing Data
[2] Justice C. // IEEE Transactions on Geoscience and Remote Sensing. 1998. Vol. 36(4). P. 1228?
1249.
[3] Woodcock C.E., Ozdogan M., Gutman G. etc. Trends in land cover mapping and monitoring //
Land Change Science, Chapter 21. P. 367?377.
[4] ???????? ?.?., ????? ?.?., ????????? ?.?., ?????? ?.?. // ???????????? ??????. 2011.
?. 35. ? 1. ?. 103?114.
[5] http://smiswww.iki.rssi.ru/default.aspx?page=317
[6] http://www.envisoft.ru/envi.html
[7] http://www.envisoft.ru/idl.html
[8] ???????? ?.?., ?????????? ?.?., ??????? ?.?. ? ??. // ????????? ? ????????? ???????.
2000. ? 4. ?. 117?123.
[9] Kharuk V.I., Ranson K.J., Burenina T.A., Fedotova E.V. // Int. J. Remote Sensing. 2003. Vol. 24.
? 1. P. 23?37.
[10] ???????? ?.?., ????????? ?.?., ???????? ?.?., ???????? ?.?. // ???????????. 2005.
? 1. ?. 12?18.
[11] ???????? ?.?., ??????????? ?.?., ???????? ?.?. // ????????? ? ????????? ???????.
2011. ? 1. ?. 92?100.
[12] ???????? ?.?., ??????? ?.?., ??????? ?.?. ? ??. // ??????????? ???????? ?????????????? ???????????? ????? ?? ???????. 2012. ?. 9. ? 3. ?. 316?323.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 984-989
~~~
??? 004.032, 528.88
The Model of Submission of Information
on the State and Dynamics
of Lands of Agricultural Purpose
Ksenia V. Shatrova*,
Yuri A. Maglinets and Gennadi M. Tsibul?skii
Siberian Federal University
79 Svobodny, Krasnoyarsk, 660041, Russia
Received 21.10.2014, received in revised form 11.11.2014, accepted 03.12.2014
The model describing a state and dynamics of lands of agricultural purpose (LAP) is formulated. The
questions of receiving, classification, representation and processing of measurements of parameters
of model allowing to carry out complex estimation of LAP are considered.
Keywords: geographic information systems, support of a decision making, remote sensing of Earth,
space data, estimation of lands of agricultural purpose.
?????? ????????????? ??????????
? ????????? ? ???????? ??????
????????????????????? ??????????
?.?. ???????,
?.?. ????????, ?.?. ??????????
????????? ??????????? ???????????
??????, 660041, ??????????, ?????????, 79
?????????????? ??????, ??????????? ????????? ? ???????? ?????? ?????????????????????
?????????? (????). ??????????? ??????? ?????????, ?????????????, ?????????????
? ????????? ????????? ?????????? ??????, ??????????? ???????????? ???????????
?????????? ????.
???????? ?????: ????????????????? ???????, ????????? ???????? ???????, ?????????????
???????????? ?????, ???????????????? ??????, ?????????? ?????? ?????????????????????
??????????.
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: kshatrova@sfu-kras.ru
# 984 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Ksenia V. Shatrova, Yuri A. Maglinets? The Model of Submission of Information on the State and Dynamics of Lands?
????????
?????? ?????????? ?????? ????????????????????? ?????????? ????? ????? ??? ???????????? ?????????? ? ??????? ?? ???????????? ?????????? ?????????? ?????????? ?????????
????????? ? ??? ??? ???? ??????? ? ?????????? ??????? ???????? ????????? ????????? ?????????? ????????. ????? ?? ???????? ?????????????? ???????????? ?????????? ???? ??????
???????? ?????????? ???????? ?????? ??? ?? ?????????? ????????? ????????????? [1, 2].
??????? ????????? ???????? ?????????? ?????? ?????????? ????, ?????????????? ?
??????????, ????? ??????????, ??? ?????? ?????? ???????? ? ???????????? ???????????? ??????? ???????????? ??????????? ? ????????????????????? ??????? (??) ???????? ?????????,
????????????? ??????? ????? ????????? ? ??????????? ?? ???????????? ???????? ?????? ?
?????????? ???? ????????, ??????????? ???? ???????? ????????? ? ?.?.
? ?? ?????????? ??? ??????? ? ??????????? ?????, ???????????????? ???????????? ??
?????????? ?????? [3]. ?????? ?????? ????????? ???????? ???? ????? ????????????; ???????????? ????????? ?????????? ?? ?????????? ????? ????????? ? ???????????????????? ????? ?????? ??????????. ????????, ??????? ????? ???? ???????????? ??? ?????????? ????????? ???????? ?????????? ????????????????????? ?????????????, ? ????? ?????? ?? ?????????
????? ????? ? ?????? ?????????????? [2-7]. ?? ?????? ??????? ????? ????????? ? ??????????? ???????????? ???????????? ??? ?????????? ???? ?????????? ?????????? ?????? ???
?????? ????????, ??????? ?? ??????????? ????, ?? ?????? ???????? ??????????, ??????
???? ????????: ??????????? ??????, ??????????? ??????? ???????? ??????, ??????????? ??
??????????? ?????????????, ??????????? ?????????? ? ??????????? ????????? ? ??????????
??????, ?????????????? ????????? ???????????? ????????????? ? ???????? ??????.
????? ???????, ????????? ?????????? ????? ??????? ???? ??? ?????????????? ??????
??? ??????????? ?????? ????????? ???????? ??????? ? ??????? ?????????? ????????? ????????????? ? ????????? ????????.
????????? ?????? ????????: ?) ?????????????? ?????????? ? ?????? ?????????? ???????
?????????? ???? ? ????? ?????????????? ??????; ?) ?????? ?????????? ?????? ? ?????????
?????????? ???????? ?? ?????????; ?) ???????? ????????? ?????????? ?????? ?? ??????????
?????? ?? ??????? ??????? ?????? ??????????? ???????????? ???????????.
?????????????? ?????? ?????????? ??????? ?????????? ????
???????? ???????? ?????????? ?????? ????????????????????? ?????????? ???????? ???????????????????? ?????? (??). ?? ?????? ??? ?????????? ?????? ?????? ?????????????????
??????. ????? ???????, ?? ?????? ?????????????? ??????? «??????????????????? ??????»
(???) ? ????????? ????????? ? ?????????? ???????? ???. ????? ?? ????? ???? ?????? ???
?????????? ?????? ????????? ? ????????? [8], ???????????????: ?) ????????? ??????? ? ???
????????? ? ??????????? ?????????; ?) ?????????????? ??????? ? ??? ????? ? ???????????????? ?????????????; ?) ?????????? ?????????????? ???????; ?) ?????????? ??????????????
??????? ????? ? ?????????????? «?????? ? ?????».
????????? ?? ????? ???? ???????????? ?? ?????? ??????? ?? ???????? ????? ? ?????,
??????????? ? ?????????????; ??????? ???????????????????? ??????, ????????? ? ???????????????? ??; ????????????? ? ??????????? ?? ????????????? ???????? ????????????? ? ??.
# 985 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Ksenia V. Shatrova, Yuri A. Maglinets? The Model of Submission of Information on the State and Dynamics of Lands?
?????? ??? ?????????????? ?????????? ? ???? ? ??????????????? ??????, ??????????? ????????????? ??????????, ?? ??????? ?????????????? ???????????????????? ???????????? ? ?????? ??????????????? ???????? ? ?????? ?????????????? ? ?????? ?? ????????????.
?????? ?????????? ??? ?????????????? ?? ???????? ????????? ?? ??? ????????????????????
?????????.
?????????? ?????????????? ?? ????? ???? ???????????? ?? ????????? ??????:
? ?????????????? ?????????????? ? ????? ?? ??? ???????????????????? ???????
(???);
? ?????????????? ?????;
? ?????????????? ??????????????.
? ????? ?????? ?? ??? ??????????????????? ?????? ????? ???? ?????? ??? ??????????
???????????, ????????????? ??????????? ? ??????? ??????. ????? ???????? ???????? ???????? ??????, ?????? ??? ??????? ???????????????? ?????? ????? ??? ????? ??????????
????????. ?? ???????? ?????????? ????? ??????? ???????, ??? ??????? ??????, ????????????
?????????????? ???????, ??????? ?????? ??? ??????? ????, ??????????? ? ???? ??????? ???????????.
? ????????? «?????» ???????? ?????? ????????? ? ???????????????? ? ?????????????????? ??????, ????????? ????????????? ????????, ????????? ?????????, ????????? ???? ? ?????, ????????? ?????, ?????????????? ???????????, ???????? ? ????????? ??????????. ??????
????????? ????????? ???????????? ????????????? ???? ?? ???? 27593-88(2005) [9]. ? ????????? «??????????????» ??????????????? ???? ??????? ? ??????????, ?????????? ???????????,
? ????? ?????????? ??? ??????????????? ??????? ? ????????????, ??????????????, ????????????? ? ??.
? ???????? ??????????????? ??????? ????? ??????? ???????: ?) ????????????? ???????,
?) ??????? ??????????????, ?) ?????????????? ?????????????? ???????.
? ????????? «??????» ?? ??????????? ? ??? ??? ???? ????????????? ?????, ???????????
??????????????, ???????? ?? ???????? ? ?????? ?????? ????: ?????? ???????????, ????????, ???????, ?????????????? ??????????? ????????? ???? ? ??.
? ?????????????? ?? ?????????? ????????? ? ????????????? ???????, ?????????????? ???????? ??? ?????????? ????????? ??? ??????? ???????????????????? ????????????.
????????? «????????????? ???????????» ???????? ???????? ?? ??????? ??????? ?????,
??????????????, ?????????????, ??????????????????? ???????????.
?????????????? ?????? ??????????? ? ???? ???????? ?????????????? ????????? ???????, ??????????? ???????????? ???????? ???????? «??» ? ?????????? ????? ?? ??????????????? ??????, ?????? ?? ??????? ????????????? ??? ??? ???? ??????? ??.
????????????? ? ????????? ??????
??? ????????????? ???? ??????? ? ????? ?????? ?????????????? ?????? ????? ????
??????? ? ???????? ??????? ????????, ? ??? ????? ??????????????????? ????????, ??????????? ????????, ????????? ???????? ? ????????? ????? ????. ?? ????????????? ?????? ???????? ??????? ???????? ????? ???? ??????????? ??? ????? ??? ????????? ? ????? ???????????,
??????????? ??? ????????? ?????. ???, ????????, ??? ?????????? ??????????? ????? ??# 986 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Ksenia V. Shatrova, Yuri A. Maglinets? The Model of Submission of Information on the State and Dynamics of Lands?
???????? ??????? ???????? ?????????? ????????, ??? ????????????? ? ??????? ?????????.
????? ??????? ?? ?????????? ????????? ? ????????? ?????????? ??????????? ?????????
??? ??????????? (????????? ??????, ????????? ?????????????, ????????? ???????????? ??????????). ??? ???? ??????? ??????? ? ??????? ????????? ????????????: ??????????? ?
?????????????? ???????? ? ?????? ???? ???????. ? ???????? ???????? ?????? ??? ????? ????????? ????????? ????????????????? ????, ?????????? ??????? ??????????????? ??????????, ?????? ???????????? ????????, ???????? ???????????? ? ?????????? ?? ?????????.
?????????????-?????????????? ????????? ????????????? ? ????????? ?????????????
???? ?????????? ????? ???? ???????????? ?? ?????? ?????????? ??????????? ??? ??????,
???, ??? ?????? ??????????? [1].
????????? ???? ?????????????? ????????? ????? ???????????????? ????????? ???????:
? ???????, ????????? ?????????? ???????? ??? ?????????? ???? ?????? ????????????
????;
? ???????, ????????? ?????????? ???????? ??? ???????????????????? ???????;
? ???????, ????????? ?????????? ?????????? ?? ???????????;
? ??????? ?? ????????? ?????????? ?? ??????? ??????;
? ???????, ????????? ????????????? ????? ??????????;
? ??????????????? ???????.
? ????????? ????????? ?????????? ?????? ?????????? ??????? ?? ????????? ??????????????????? ??????.
????????????? ?????? ???????????? ???????????
???? «???????????», ??????????? ???? «????» ? «?????? ??????????????» ? ?????????????? ??????, ??????????? ???? ?? ???????? ? ?????????? ???? ???????? ? ???????????? ???????????. ??????????????? ?????????????? ????????? ?????????? ?? ??????? ???????????? ?????????? ????? ????? ??????????????????? ???????? ? ???????? ???????????
????????????.
? ???????? ???????? ?????? ???????????? ??? ?????????, ??? ? ????????? ????: ??????????????? ?????????, ?????? ?????????????? ???????????? ?????, ?????????? ??????? ???????????? ?????????? ? ??.
????????????? ??????? ?????? ?????????????? ?? ?????? ?????????? ????????????? ?????? ? ???? ?????????? ?????, ?????? ?????? ??????? ???????? ????????????? ????????, ??????????????? ???????????????? ??????, ??????????????? ????? ????????????? ??????.
? ???????? ????? ?????????????? ????? ????????? ??? ???????, ??????? ???????? ????????
????????? ????????????? ????????, ???????? ?????????????? ? ??.
??????????? ????????? ?????? ???????????? ???? (????? ??? ???????? ?????? ? ??????,
???????? ?????? ? ???????, ???????? ????????), ????????????? ???????? ??????????? ??????????????? ???? A*. ? ???????? ?????????????? ?????? ???????????? ????????, ????????????
????????? ???????????? ?? ???. ???, ???? ? ???????? ?????????????? ????? ??????? ???????????? ???????? ???????? ????????? ????????????? ???????? ?? ??????? ???? ???????????, ??
????????? ??????????? ??????????? ??? (le /2)(1/v1 + 1/v2), ??? le ? ????? ????? ?????? ???????,
# 987 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Ksenia V. Shatrova, Yuri A. Maglinets? The Model of Submission of Information on the State and Dynamics of Lands?
? v1 ? v2 ? ????????, ? ???????? ???????????? ???????? ???????????? ????? ???????????????
???? ????????? (???.). ???? ???????? v1 ? v2 ????? 0, ?? ????????? ??????????? ????????????
??? +?, ????? ???????, ??????????? ????? ????, ??????? ????? ???????????? ?????????.
???????? ????? ????????
??? ?????????????? ??????????? ??????? ?????????? ???????? ???? ???????, ????????? ?? ???????????????? ??????? ???????, ????????????? ????????? ??????????? ? +?, ???
??????? ????????????? ???????? ????? ????? ???? ?????. ???????????? ??? ????????? ????????? ?????? ??????? ????? ???? ??????????? ? ??????????? ?? ???????????????? ??? ??????? ??? ??? ???? ?????????? ??????. ? ???????? ???????? ????????? ????????? ?????, ???
???????? ?????? (??? ????????? ????????), ???????? ? ???????????? ?????????????, ???
??????????? ? ?.?. ??? ????????? ???????????? ????? ???? ?? ?? ?????? ?????????????????
????????, ? ? ??????????? ?? ????????? ??????: ????? ??????????? ???????? ????, ????, ?????????? ??????????? ?????? ? ???????? ?????????????, ? ?. ?.
?????????????? ?????? ???????? ??????????? ????????? ??? ????????????? ?????? ??
????????? ??????????, ????? ????????? ??????? ???? ?? ?????? ? ????? ?????? ?????????????
?? ?????????, ?? ? ? ?????? ?????????????, ????????????? ? ?????? ?????????, ????????????
??????????? ?????????? ? ???????? ?????????????? ???????.
??????????
? ?????? ???????????? ?????????????? ?????? ???????????? ?????????? ????. ??????
???????? ???? ???????????? ?????. ?????? ???? ????? ????? ?????????????? ????????,
????? ??? ?????????? ????????, ????????? ????????? ??????????, ????????? ? ??????
?????????. ?????????? ????????? ?????????? ????????? (????????? ? ???????????? ??????????) ? ?????? ??????? ????????? ????????????: ??????????? ? ?????????????? ???????? ???????? ? ???????? ????????? ???????? ??????. ?????????????-??????????????
????????? ????????????? ? ????????? ????????????? ???? ?????????? ????? ???? ???????????? ?? ?????? ?????????? ??????????? ??? ??????, ???, ??? ?????? ???????????. ???????????? ????????????? ???????? ?????????? ????????? ????. ???????? ?????????? ?????
?????????? ???????????? ??????????? ????. ?????? ????? ???? ???????????? ??????????
??? ?????????? ????????????????? ??????? ?????????? ???????? ?????? ???????? ??????
# 988 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Ksenia V. Shatrova, Yuri A. Maglinets? The Model of Submission of Information on the State and Dynamics of Lands?
????????????? ???? [1], ? ????? ??? ?????????? ???????????? ?????????????????? ???????
???????????? ??????????? ????????????? ??????? ????????????? ????.
?????? ????????? ??? ????????? ?????? 2014 ?. ???? «???????????? ??????? ????
????????? ??????? ? ??????-??????????? ????????????» ? ???? ? 13-07-98005.
?????? ??????????
[1] ???????? ?.?., ??????? ?.?., ??????? ?.?. ? ??. // ??????????? ????????
?????????????? ???????????? ????? ?? ???????. 2012. ?. 9. ? 3. ?. 316?323.
[2] ??????? ?.?., ?????????? ?.?., ????????? ?.?., ?????? ?.?. // ??????????? ????????
?????????????? ???????????? ????? ?? ???????: ????????? ??????? ??????. ????????
????????? ????. ?.: ??? ???, 2009. ?. 292?304.
[3] ?????? ?.?. // ???????? ??????????? ?????????. 2010. ? 3 (35).
[4] ??????? ?.?. // ??????? ?????????. ???. ???????????? ?????. 2011. ???. 17. ? 21 (116).
?. 191?202.
[5] ?????? ?.?., ????? ?.?., ?????? ?.?. // ????????? ?????????? ?????????
??. ?.?. ?????????, 2014. ???. 73. ?. 19?53.
[6] ??????? ?.?., ?????? ?.?. // ??????????????? ?????? 2011. ? 3. ?. 5?12.
[7] ??????? ?.?. // ???????????? ? ??????????? ?????. 2010. ? 4. ?. 216?219.
[8] ??????? ?.?., ???????? ?.?. ???????? ?.?., ?????????? ?.?. // ??????????? ????????
?????????????? ???????????? ????? ?? ???????: ????????? ???????????? ???????? ??????.
????. ?.: ??? ???, 2013. ?. 65.
[9] ???? 27593-88(2005) ?????. ??????? ? ???????????; ????. 01.07.1988. ??????, 2005.
?. 9.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 990-997
~~~
??? 624.131.542
Investigation of the Influence
of Penetration Slit at its Foundation Rainfall
and the Stress State of Subgrade
Snezhana V. Platonova*
Siberian State Industrial University
42 Kirova, Novokuznetsk, 654007, Russia
Received 28.09.2014, received in revised form 14.10.2014, accepted 05.12.2014
In article the is intense-deformed condition of the soil basis of the slot-hole bases is considered at
their various depth ?????????.
Keywords: the slot-hole bases, plasticity of a ground basis.
???????????? ??????? ???????????
???????? ?????????? ?? ??? ??????
? ??????????? ????????? ?????????? ?????????
?.?. ?????????
????????? ??????????????? ?????????????? ???????????
??????, 654007, ???????????, ??. ??????, 42
? ?????? ??????????????? ??????????-??????????????? ????????? ?????????? ?????????
??????? ??????????? ??? ????????? ??????? ?? ?????????.
???????? ?????: ??????? ??????????, ???????????? ?????? ?????????.
? ???????? ???????????? ?????? ??????????????????????????? ????????????????? ????? [1]. ?????? ?????? ??????? ???????? ????????? ? ???????????? ??? ??????? ??????? ??????????. ? ????????? ????? ?????????????? 426 ??????????? ?????????, ???????????? 240
??????; ???????????? ????????? ????? ??-????????? ?????????? ??? ?????????????? ???????? ??? ? ???????????? ???????????. ???????? ?????????? ?????????? ?????????; ???
?????? ??????? ???????? ??????????? ???????? ? ?????? ??????????? ????????? ???????
???????????? ???????? ? ? ????????? ????? ?? ????????? ? ???????????. ????????? ???????
?????? ??????????? ?? ???? ????????? ??????????? ??????? ???????? ?? ????????, ??????
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: forsnesha@yahoo.com
# 990 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
??? ??????????? ?????????? ??? ????????? (?? ??????? ??? ????????????, ????????? ? ???????????? ? ??????? [2]). III????????? ????????? ???? ?????? ????? b = 0.98 ?, ???????
???? ?? 0.14 ?; ????????? ?????????? ? ???? ????????? ??? ??????????? di = hi = 0.6 ? (hmin),
1.2 ? (hCP), 1.8 ? (hmax).
??????? ??????????? ????????? (?.?.) ????????? ? ???????????????? ????????? ?????
? = 5 ? 10 ???, v = 0,25ч0,40, ? = 15ч40?, ? = 0ч0,04 ???, ? = 20 ??/?3 (????? ?, v, ?, ? ? ? ? ?????????????? ?????? ??????????, ??????????? ????????, ???? ??????????? ??????, ?????????
? ???????? ??? ??????).
??????? ??????????? ?????? ?? ???????? ??????? ???????? ???? ??????????? ?????????????? (???. 1). ??? ????? ????????? ??????? ?????????? ?????? ??? ????????? ? = 5 ???
? 10 ??? ? ????????????? ???????? hi ????????? ??????????? ?????????????; ??? ???????
????????? ?????????? ??????????? ???????? ??????: ?????????? ? ??????? ? ??????? ?????????? ? = 5 ???, ?????????? ? ? ??????? ? ? = 10 ???.
??? ?????????? ????????? ?? ?????????? ? = 5ч10 ???, v = 0,4, ? = 20 ??/?3, ? = 0,04 ???,
? = 15° ??? ??????????? ??????????? hmin ???????????????? ??????????? ?.?., ??????????????? «?????» ????????? ?min = 103 ??/?2
? «???????» ? ?max = 292 ??/?2. ??? ????????? hmax ??????????? ?.?. ? ????????cp
?
?? ?min = 116 ??/?2, ?max = 286 ??/?2. ??
????? ???????? ??????????? ????????,
??????????????? ?????????? ?????????? ?????????? ? ?????????? ???????????? ?????????? ? ??????, ???????
????????? ????????????? ??????? ???????????? ???????? ??????? ?????????? ? ???????????? ?????????? ?
??????.
?? ???. 2 ???????? ????? ????????????? ????????????? ??????????
V1 V z V z / ? CP ? V 3 V x V x / ? CP
1
2
'
2
1'
S
???. 1. ??????? ?????? ??????? ???????????:
1 ? 2 ? ?????????? (hmax) ?? ?????? I (? = 5 ???) ? II
(? = 10 ???) ??????????????; 1? ? 2? ? ??????????
(hmin) ?? ?????? I ? II
# 991 #
????? ??????????? ???????????? ??? ??????? ???????????, ???????????? ?? ???????? hmin ? hmax, ?1 ? ?3 ? ??????????,
????????? ?????????? ?????????? ???
????? ???????????? ???? ??????, ??? ? ??????? ???????? ?? ?????? ??????? ????????
??????????. ??? ???????????????? ????????? ?????? ?????????? (?? ?????????
???????? ? ???????????? ???? ??????) ?
??????????? V1 ??????? ???????? ???
????? V1g J x z , ? ? ??????????? V 3 ?
V 3g J x z x Q /(1 Q ) .
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
???????????? ????????????? ?????????? ??? ??????????? ?????????? ?? ???????? hmin,
????? ???????? ??????? ?????????? ????????? ?????????? V1 ?? ??????? z/b»0.5. ?????
?????????? V 3 ????? ???????? ?????????. ????????? ???? V1 ? V 3 ? ?????? II ??????????
????????? ????.
??? ??????? ????????? ????????? ???? ??????????? ????????? (???. 2, ??????? ?; b?,
????? I ? II), ????? ??????????? ?????????? ?????????? V1 ?? ???????, ?????? ?????????
???????? ?? ??????? z/b»0.5 ???????????. ????????? ????? V 3 ????? ??????????? ??????
V1 ???????? ? ??? ???? ????????, ??? ? ??????? z/b»2 ??????????? ????????? ?????????? ???????? ?????????? ?? ??????? (?? ???? ??????? ??????????? ?????? ??????? ????????? ??-
?????). ????????? ?????????? ?????????? ?1? ?3 ?? ??????? 0.2<z/b<0.8 ??????????? ????????
????????, ??????????? ??? ???????? ??????? ???? ???????? ??????????.
????????? ????????????? ?????????? V1 ??? ????? ? ??????? ????????? (????? I ? II,
hmin), ????? ???????? ???????? ????????? ?? ???? ? ??? ???? ????????, ??? ??? ???????
?????? ?????????? (????? II, ? = 10 ???) ?? ??????? z/b»0.5 ????? ????? ??????? ????????
??????????, ????????? ?????????? ?????????? ?? ????? ??????? ?????? ?????b
?????. ? ??????? z/b»1.8 ???????? ?????
????? V 3 ? ?????? ?????? I ??????, ??? ?
Pcp
?????? II, ?.?. ??????? ????? ????? ??? ??????? «???????» ?????? ???????? ???????????? ??????????, ????? ????????, ???
? ????? ??????? («???????») ?????? II.
???????? ????????????? ??????????
V1 ? V 3 (?????? I ? II) ??? ??????????? ?
??????? ????????????? (hmax = 1.2 ? 1.8?)
? ???????????? ????????? ????? ??, ??? ?
??? ?????? hmin = 0.6 ?.
? ?????????????? ?????????? ????
???? ??? «?????» ???????? ???????? ??-??
????????? ???????????? ?????????? ?????????? ? ?????? ?????????? ??????????
V1 ? V 3 ?????????????? ????????????: ??????????? ???????????? ?????????? ???
????????? ?????? ? ?????????????? ? ???
???????? ?????????? ??????????. ?? ???
???? z = b ???????? ?????????? V1 ? V 3
?????? ??????? ?? ???? ???????? ?? ???
????????? ??????????.
???????? ??????????? ????????????? ????????????? ?????????? ?X/P??,
( ?'? / ??? ), ?Z /P?? ( ?'Z / ??? ) ? ???????????
'
?XZ /P??, ( W ?Z / ??? ) ?????????? ???????-
h?
dL
V
t?
h?
V
b
b'
b'
b
?'
?'
?
?
z
b
???. 2. ????????????? ?????????? V1 ? V 3 ?????
??????????? ????????? ??????? ??????????? ???
?? ??????????? h min (?) ? h max(?): : ????? I, : ????? II
# 992 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
b
PCP
a) z=0; Pmax
b) z=0; P min
V
d
x/b
x/b
x/b
V
V
a) z=1; Pmax
b) z=1; P min
x/b
V
???. 3. ????????????? ?????????? V1 ? V 3 ?? ????????
h min (?) ? h max(?): : ????? I, : ????? II
z = z/b = 0 ? z = 0.5 ??? ??????????? ???????????
??? ?? ??????????? ???????? ?????????? ??? «?????» ? «???????» ????????? ???, ????????
? ??????? (???. 4), ????? ???????? ?????????? ???????????? ?????????????? ?????????????
?????????? ?????????? ? ??????? I ? II.
??? ????? ?? ???. 4 (????? I, «?????» ????????), ????????????? ???????? ??????????
'
? Z / ??? ??? ???????? ??????? ???? ?????????? ????????? ??????, ??? ??? ???????? ?????????? ??????, ??? ??????? ? ??????????? ????????? ???????????? ?????????? ??? ???????? ??????? ?? ??????? ?? ???????? ?????? ??????, ??? ??? ?????????? ???????, ??? ???
????? ?????????. ????????????? ?????????? ?Z /P?? ??? ???????? ??????? ????? ??????????
????? ????????????? ?????????, ???????? ?Z /P?? ????????? ??????????? ?? ???? ???????? ??
??? ?????????. ?????????? ?X/P?? ?? ???????? ?????? ??????? ?????? ? ???????? ???????
???????????, ? ????? ????????????? ?? ???? ?????? ??????. ????? ???????? ?? ?????????
??????????? ????????? ? ??????? ????????? ??????? «????????» ?????? ? ???????????. ????????????? ?????????? ?X/P?? ?????? ?????????? ?????????? ????? ????????????, ????????
???? ????????????? ?? ???????; ?????????? ????????????? ?????????? ? '?' / ??? . ??????????? ?????????? ?? ???????? ?????? ?????? ?XZ /P?? ?? ??????? ???????????, ??? ????? ?????
????????? ????????? «????????» ?????? ? ???????????. ?????? ?????????? ?????????? ?????
???????? ?????? ?????????? ??????????? ?????????? W'?Z / ??? ??????????? ???????????, ?
'
/ ??? ? ???????? ?????????????, ??? ????????? ????????? ?????????? ?????? ?????????? W'?Z
?? ????????? (??? ???????????? ?????????? ?? ??????? ?????????? ?Z ???? ??????? ??????).
????????????? ?????????? ? ?????? I ??? «???????» ????????? (???. 4) ?????????? ?????????? ???? ? ??? ???? ????????, ??? ???????? ?X/P?? ?? ???????? ?????? ?????? ?? ???????
# 993 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
?) ????? I,(?=5???)
103
2
?
290
x/
x/
2
?
2
103
?
290
2
/
?
x/
x/
/
/
/
/
/
/
/
/
/
x/
?) ????? II, (?=10???)
103
?
2
290
2
?
2
103
?
290
2
/
?
x/
x/
x/
x/
/
/
/
/
/
/
/
/
/
x/
???. 4. ????????????? ?????????? ?????????? ??? ??????????? ?????????? h min: ? ? ????? I ? ? = 5 ???,
j = 15?, ? = 0.04 ???; ? ? ????? II ? ? = 10 ???, j = 15?, ? = 0.04 ???
???????????; ??? ?????? ?? ??????? «????????» ?????? ? ??????????? ????????? ???? ????
????? ???????????? ?????.
????????????? ?????????? ? ? ?????? II ??? ??? «?????», ??? ? ??? «???????» ?????????
? ???????????? ????????? ?????????? ?????????? ???? ??? ?????? I.
??? ?????????? ??????????? ??????? ?????????? ???????? ????????????? ??????????
?? ??????? ??????? ?????????? ??????????? (???. 5).
?????? ???????????? ????????????? ?????????? ???????? ??? ???????? ?????? ? ??????
?????????? ????????? ????? ????????? ????????? ????????? ????? ??? ?????? ????????? ??????????? ?????????? ? ???????? ??????? ??? ?????????.
?????????? ?????????? ????????????????? ???????????? ?? ????????? ?????????? ?
????????? ??????????? ???????????, ??????????? ? ??????????? ????????? ? ???????????
?????????????? ?????????-????????????? ????????? ??. ?.?. ????????? ? 1966-1967 ??. [4].
????? ?? ???????????? ????????? ????????????? ?????????? ???????? ????????? ? ??????# 994 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
?) ????? I,(?=5???)
153
?
296
x/
x/
?
297
2
?
153
2
?
296
2
/
?
2
x/
?
2
/
/
/
/
/
/
?) ????? II, (?=10???)
2
?
120
2
?
297
2
/
120
x/
/
/
x/
/
x/
x/
x/
x/
x/
/
/
/
/
/
/
/
/
x/
/
x/
???. 5. ????????????? ?????????? ?????????? ??? ??????????? ?????????? h max: ? ? ????? I ? ? = 5 ???,
j = 15?, ? = 0.04 ???; ? ? ????? II ? ? = 10 ???, j = 15?, ? = 0.04 ???
??? ????? ???????? 2.2Ч0.76Ч1.2 ?. ? ???????? ????????? ???????????? ?????? ????? ? ???????? ????? 16.4 ??/?3 ? ??????? ? ? ???????? ????? 17.6 ??/?3.
?? ??????????? ?????? ????????? ????? ?????????? ?????????? ????????, ????????
????????? ???????? ??????????? ???????? ??? ???????? ????? (???) ? ???????????? ????????
???????? ?? ?????? ?????????? (?), ?.?. ??????????? ??????????????? ??????? ???????? ???????? ???????????? ?????? ?? ????????? ?????????. ??? ????????? ??????? ????????????? ???????? ???????? ?????????? ??????????, ?? =
???
. ????????? ???????? ???????????
?
???????? ??? ???????? ?????????? ? ???????? ? ?? ?????? ?????????? ????????????? ???# 995 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
??????? 1. ???????????? ???????? ???????? ?????? ? ? ? ???????? ?? ??????????
??
??
?min
????? II (? = 10 ???)
?max
?min
??
?max
?min
??
?max
?min
?max
??????????? ?????????? hmin
0,300 0,120 1,100
??????????? ?????????? hmax
0,190 0,140 1,220 1,230 0,190 0,140 1,220 1,390
????? ?????????
1,310 0,300 0,130 1,100 1,300
??????? ?????
?????? ?????
??????????? ?????????? hmin
0,214 0,214 3,250 2,260
-
-
-
-
??????????? ?????????? hmax
0,267 0,372 2.280 1,880 0,270 0,446 2,480 1,830
?????
???????????
??????????
???????
(III-?????????)
??????? ????????
????? I (? = 5 ???)
???????????
?.?. ??????? [4]
(?-?????????)
?????
?????????
???????????? ????????
????????
???? ???????? ???????? ????? ??????? ?????? ?????????? ?? ?????. ??? ????????? ???????
????????????? ???????? ???????? ????????, ?? =
???
.
?
????????? ????????????? ? ? ? ???? ?? ????????? ? ????. 1.
????????????????? ???????????? [4] ????????, ??? ? ???????????? ??????? ????????
? ??????????? ??????????? ??????????? ?????????? ???????????? ? ?, ?.?. ??? ???????
???? ?? ?????????????? ????????? ???????????, ? ???? ???????? ?, ?????????????? ???????? ??????, ???????????, ??????????? ??, ??????????????, ???????????. ???????? ?????????????? ??????????? ? ??????????? ??????????? (????. 1), ??? ??????????? ????????
??????????? ???????? ???????? ??????? ?????? ? ? ???????????, ?? ??? ???? ????????????? ??????????? ???????? ???????? ???????? ??. ???????? ????????????? ? ? ? ?? ??? III?????????? ?? ?????????? hmin<hCP<hmax ????????????? ?? ????????? ? ????????????? ?
????. 1.
??????:
? ??????? ???????? ????????????? ???????? ???????????? ?????????? ???????? ???
???????? ????? III-?????????? ??????????? ?????? ???????? ???????? ???????? ??
??????? ???????? ?? ????????? ? ?????;
? ??????? ???????? ????????????? ???????? ???????????? ?????????? ???????? ???
????????? ?????? III-?????????? ?????? ???????? ???????? ???????? ?? ??????? ???????? ?? ????????? ? ?????;
? ? ??????????? ??????????? ???????????? ???????? ???????? ? ? ? ???????????
???????? ???????????, ? ???????????? ?? ??? ???? ?????????????, ??? ?? ??????????? ? ???????? ??????? ? ?????????????? ??????????? ??????????? (?????
?.?. ???????);
# 996 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
? ???????? ????????????? ????????????? ???????? ??????? ?????????? ? ?????????
????? ??????????? ????????? ??????????? ??????????? ?????????? ?????????????
?????????? ??? ???????????? ???????????? ? ??? ???? ????????, ??? ?? ???????
z ?0.5 ??????????? ????????? ???????? ??????????, ????????????? ???????? ????????????????? ?????????? ???????? ??? ????????? ??????? ????.
??? ?????, ??? ????????????? ?????????????? ???????? ????????? ????????? ????????????? ? ? ? ?? ??? ???????? ???????????? ??????????, ????????????? ?? ???????? ?????????
???? ????????????? ? ????????? ???????????? ??????????, ?????????? ????????? ????????????????? ???????????? ??? ??????????? ???????.
?????? ??????????
[1] ?????? ?.?. ????? ???????? ????????? ? ???????????. ?.: ?????, 1987. 224 ?.
[2] ?? 22.13330.2011 ????????? ?????? ? ??????????. ????????????????? ???????? ????
2.02.01-85. ?.: ??????????, 2000. 40 ?.
[3] ?? 52-101-2003. ???????? ? ?????????????? ??????????? ??? ???????????????? ?????????? ???????? [??????????? ??????] // ?????????????? ??????? ? ?????????????.
[4] ?????? ?.?., ?????????? ?.?. // ???. ?????. ????????????? ? ???????????. 1969. ? 4.
?. 31?35.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 998-1004
~~~
??? 625.72.001.63
Consideration of the Influence
of Local Road Network Condition on the Social,
Economic and Industrial Development
of Ulus, the Republic of Sakha (Yakutia)
Viktor I. Zhukov and Sergey V. Kopylov*
Siberian Federal University
79 Svobodny, Krasnoyarsk, 660041, Russia
Received 18.09.2014, received in revised form 04.10.2014, accepted 21.11.2014
On the basis of currently available methods for optimizing the road network it has been revealed that
in the conditions of Yakutia the technical category of the road and construction of paved roads can not
be always reliably determined. Under the conditions of Yakutia it is proposed to use the population
quality of life as the main criterion while developing the design of the local road network. The necessity
of the construction of paved roads, taking into account the climatic factors has been justified. And also
we have proposed a system of criteria that would define the social and equitable regional development
with the help of the local road network.
Keywords: local road network, out transport effect, winter road, the population quality of life of the
population.
???? ??????? ????????? ??????? ???????? ????
?? ??????????, ????????????????
? ????????????? ???????? ??????
?????????? ???? (??????)
?.?. ?????, ?.?. ???????
????????? ??????????? ???????????
??????, 660041, ??????????, ??. ?????????, 79
?? ?????? ???????????? ? ????????? ????? ??????? ??????????? ???????? ???? ????????,
??? ? ???????? ?????? ?? ?????? ??????? ????? ???? ?????????? ??????????? ?????????
?????? ? ????????????? ????? ? ??????? ?????????. ? ???????? ?????? ??? ??????????????
??????? ???????? ???? ?????????? ????????? ???????? ????? ????????? ??????? ???????
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: kopylovsergey@inbox.ru
# 998 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Sergey V. Kopylov. Consideration of the Influence of Local Road Network Condition on the Social, Economic?
?????????. ?????????? ????????????? ????????????? ????? ? ??????? ????????? ? ??????
????????-????????????? ????????, ?????????? ??????? ?????????, ??????? ?????????? ??
????????? ???????????? ???????? ?????????? ??? ?????? ??????? ???????? ????.
???????? ?????: ??????? ???????? ????, ??????????????? ??????, ??????????? ??????,
???????? ????? ?????????.
? ????????? ?????????? ?? ?????????? ?????????? ???? (??????) ??????????? ?????? ??
??????. ??? ????????? ???????? ?????? ???? ?????? ????? ?????. ????? ????, ??? ???????????? ????????????? ????????????? ???? ??????? ????????????? ????? ?? ?????? ??????????
????? ?????? ???????? ? ???????????????? ???????? ?????????.
? ?? ?? ????? ?????? ?????????? ?????????? ?? ????? ???? ????? ?? ????? ??????????????? ? ???????????? ????????? ??????????. ?? ???? ??????????????? ????? ??????????, ???
????????? ???????? ????, ??????? ??????????? ?? ???. 1.
???????????????? ????????????? ????????????-???????? ???? ?????? ???????????
?? (?) ? ????? 2012 ?. ?????????? 25 127 ??. ??????? ???????? ????? 37 % ???? ????.
???????? ???? ??????????????? ????????? ? 68 % ? ?????????? ?? ???????????. ?????
85 % ?????????? ?????????? ???????? ?????? ? ?????????????? ????????? ???? ?????????? ???? ????? ?????? ???????????????? ? ???????????? ?????????? ???????????. ?
?? ?? ????? ?? ???? ?????????? ????????? ?? 88 % ??????? ???????????? ??????? ? ?????.
?? 629 ???????? ?????????? ??????? ?????? 48 ??????? ? ???????? ???????? ???????? ?
??????? ?????????.
?? ?????????? ?????? ???????????? ???????? ?????? ?? (?) ????????, ??? ?? ?????
???? ????? ?????? 2 % ????? ?????? ??????????? ?????????, 8 % ? ????????? ? 90 % ?????????? ?????? ????? ??????????? ?????????, ??? ???????? ????????????? ???. 2.
????????? ?????? ????????????? ???? ????????????? ????? ?????????? ?????????
?????????-????????????? ??????????? ? ?????????? ?????????? ? ??????. ?? ???????????
????? ???????? ??????? ???????? ?????? ???????????? ???????, ??????? ? ???????? ??
???????? ??????????. ? ?????????, ?????????? ??????? ? ???????-???????????? ??????? ??
?????? ??? ? ???????, ??????????? ????? ? ?????, ?? ? ??? ? ?????????????, ?????????????
??????? ????????????????? ? ??????????????.
???. 1. ????????? ???????? ???? ????????????? ????? ? ??????? ?????????, ??/1000 ??????????
# 999 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Sergey V. Kopylov. Consideration of the Influence of Local Road Network Condition on the Social, Economic?
III ???????????
????????? 2 %
V ???????????
????????? 90 %
IV ???????????
????????? 8 %
???. 2. ??????????? ????????? ?????
?????????? ??????????? ???? ????? ? ??????? ????????? ???????? ??????? ???????????? ???????? ? ????????????? ? ?????????? ???????? ??????????. ????? ?? ???????
?????? ??????????? ??????????? ????? ??????? ? ????????? ?????? ???????????? ???????????????, ? ?? ??????? ? ???????, ??? ????????? ?????? [1, 2]. ???, S. Curtis ? ????? ?????
«???????? ? ???????????» ???????, ??? ??????? ? ??????? ?? ????????? ???????????????
???????? ??????????? ???????? ????????? [3]. ????? ?????? ??????? ? ???????? ???? ? ????????? ???????????? ????. ???????? ????????? ??????? ???? ?? ?? ??????? ?? ????????????
???????????, ???????, ? ???? ???????, ???????? ??????? ????????? ?????????? ??????????? ??????.
???????????? ??????????????? ? ???????? ???????????? ???? ???????????? ?????????????? ???????? ??????. ????? 90 % ???????? ?????????? ??????? ?????????? ?? ????? ?????????????? ????? ?? ??????? ? ??????? ?????????. ??? ????????????? ???????????? ??????? ??
????????? ?? ????????? ???????, ??????? ????? ? ??? ???? ????, ??? ?? ??????? ? ??????? ????????? [4]. ?????????????? ?????????? ??????? ?????????? ?????????? ?? ????????? 7 %.
?????????? ???????????? ?????????????? ???????? «?????????» ????????????, ???
???????????? ????????????? ? ?????????? ????????? 100 % [5], ?. ?. ?? ????? ?????? ?? ???????? ??????, ??? ??????????? ??? ????????? ????? ?? ?????? ????????.
? ?????? ??????? ????????? ???????? ??????????????? ??????????? ???? ????? ?????????? ???????. ? ?????????????? ??????? (???, ?????? ? ?????) ??? ????????? ?????????????? ??????? ???????? ???? ? ??????? ?????????, ??????? ?????????? ??? ??????????
?????? ? ???????????? ????????? ????? 500 ???????. ???????????? ???? ?? ???????? ?????????????? ????? ?? ????? ??????????? ???????? ? ???? ??????? ????????? ???????????,
?????????? ???????????? ????????? ? ??????????????? ??????? ??????????????. ??????
? ???? ?????? ???????????? ??????????? ?????????? ?? ?????? ??????? ????????????????
?????, ?? ? ? ?????? ??????? ???????? ??????? ? ?????? ? ????? ? ??? ? ?????????????, ??? ?
? ?????????? ?????.
? ????????? ????? ??? ?????????????? ???? ????? ???????????? ?????????? ????? ?????
????????, ??? ????????????? ????????????? ????????; ??????? ?? ??????????????? ?????? ?
??????????; ??????? ?? ?????????????, ?????? ? ?????????? ??????; ?????????? ????? ?????????????????? ????????; ????? ? ???? ????? ?????????????????? ????????; ???????????? ????????, ??????????? ??????????? [6, 7].
# 1000 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Sergey V. Kopylov. Consideration of the Influence of Local Road Network Condition on the Social, Economic?
?????????????? ?????? ?????????????????? ??????????, ? ???????? ?????? ?????????? ????? ??????? ????????? ???????????? ???? ??????? ?????. ????????, ?? ?????? ????????????????????? ??????????? ????????? ?????? ?? ?????? ??????? ????? ???? ??????????
????????????? ?????? ?????????, ????????????? ????????, ?????? ????????????? ?????? ?
?????? ????????, ???????? ?? ?????????? ????????? ??????. ?? ??? ???? ?????? ??????,
????? ????????????? ???????? ???????? ?? ????????? ???????????? ??????, ?????????? ????
????????????? ????????????? ?????? ?? ?????? ??????? ???????? ??? ???????? ?????? ??????
?????????. ? ????????????? ????????????? ?????? ??????? ????????? ?? ?????? ??????? ???
?? ??????????.
??? ?????????????? ? ????????????? ????????????? ????? ? ?????? ?????????? ????????? ??????????? ????????-????????????? ???????. ?????? ??????????? ?? ???? ??????????? ? ????????? ????? ??????? ??????????? ???????? ???? ????????? ?? ??? ????????????????????? ????????. ??????? ? ???, ??? ?????? ??????????????? ??? ???????? ?
?????????????? ????????-?????????????? ?????????. ??? ??????? ?????? ???????????
?????? ????? ?????????????? ??????????? ???? ????????????? ?????. ????? ????, ??????????????? ????????????? ??????????? ???????? ??????? ??????? ???? ????????? ?? ?????????????????????? ???????? ??????????.
??????????? ?? ???? ?????? ?????????? ???????? ???????????? ? ????????????? ????? ?????????? ?????? ????????????? ?????, ??????? ??????????????? ??? ?????????????
??????????? ????????. ? ?? ?? ????? ???????????? ??????????? ???????? ???? ???????????? ?????????? ?? ????????????. ???????? ??????? ????????????? ??? ???????? ?????
????????? ??? ??????????? ????????? ????????? ?????? ????????????? ????? ? ???????
????????.
68 % ????? ?????? ? ??? ???????????. ???? ?? ????? ??????: ????? 80-90 % ?????????
???? ?????????? ????? ??????? ?? ????? ? ????????????, ?????? ??????, ????????????, ???????? ? ?????????? ????????????. ??? ??? ???????? ? ?????????? ????????? ???????? ??????, ???????? ????????????????????? ??????? ? ?????????, ???????????? ? ??????, ??????
???????????? ??? ??????? ?????????? ?????????? ??????, ??????????? ????????????????
???????? ? ?????????????? ?????????????, ???????????? ???????????????, ???????????,
??????????? ???????????. ????????? ??????? ?? ?????????? ???????????? ?????????? ????? 900 ??? ???. [8].
?? ????, ?????? ?????? ????? ???? ?????????? ? ???????????? ???????, ?????? ???
??? ???????? ????????? ??????. ????? ????, ?? ??????? ?????? ??????????? ??????????? ??
70 % ???????????? ??????, ???????? ???????????? ??????? ???????????????????, ????????????????, ????????????????, ?????????????? ? ?????? ????????. ??? ???? ?????? ???????? ??????????? ????????? ???????????, ? ???????????? ?????? ?????????? ??? ??????
???????? ????? 6 ?.
??? ?? ????? ??? ???????????? ???????? ???? ??????? ????????????? ????? ???????????? ????????? ?????? ???????????? ???????. ?????? ????????? ???????????? ?????? ?????
?????????? ????????? ???????? ???????????????? ???????. ?????? ???? ?? ??????? ??????
?????????? ? ??????? ??? ???????? ???????????????? ??????? ? ?????????? ???? ????? ?????????????? ?????? ???????????????, ????????? ??????????? ?????? (??????????, ????????# 1001 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Sergey V. Kopylov. Consideration of the Influence of Local Road Network Condition on the Social, Economic?
????????, ???????????????????? ? ?????????????) ? ?????? ???????? ? ?????????? ????????? ???????-???????????????? ????????????? ?????? ????? ?? ????????? ??????? ????????
?????. ??? ???? ?????????? ???????????? ??????? ???????? ????? ?? ??????????, ?????? ?
?????????????, ? ?????? ? ??????? ????? ?????? ???????.
?????????? ????????? ???????????????? ??????? ??????. ??? ???????????? ????????
???????? ????????? ???????????????? ??????? ??? ???????? ?????? ??????? ????????? ????
??????? ????? ?? ?????????-????????????? ??????? ??????????? ?????.
?????????? ???? (??????) ???????? ???????, ??????, ????????? ????????????, ???????????? ??????, ????? ? ????, ???????? ?????????? ? ?????? ???????? ?????????. ??????
???????? ????????? ??? ???????????? ???????? ???? ??????? ????? ?????? ????????? ???????, ?????? ?????????? ???????? ? ??????? ????? ?????????.
??? ?????????? ????????? ? ????????? ????? ????????? ????????????? ????? ??????????? ??????? ?????, ??? ??????? ?????? ??????, ?????????? ?? ????? ??????????, ?????
???????? ????????? ??????????????? ???????, ??????????????? ????????????, ??? ????????????? ? ??????? ????? ?? ???????? ?? ?? ???????????? ??????????????? ? ????????????? (?. ?. ???????????? ??????????? ?????? ????????????????? ??????? ? ??????? ?????????
??????). ???? ????? ??????? ???????? ???????? ?????????, ???? ????????????? ?????????,
???????? ?????????, ????????? ?????????, ??????????????? ?????????? ? ?.?. ????? ?????????? ????????? ??????????? ???????????????? ??????? ?? ????????? ? ???? ??????? ????????????? ?????.
??????????? ??????. ???????????? ??????????, ??? ? ??????????? ???????, ??? ????
??????? ????????????? ????? ?????????? ???????, ? ??????????? ??????????? ???????????
61 % ????????? ??? ???????, ??? ????????? ????????? ?? ?????????? ?? ?????? 40 ?? [8]. ???
?????????? ?????????? ???? (??????) ????? ?????????? ? ????????? ????? ?? ?????????.
??????????? ??????? ??????? ?? ???? ????????? ??????????, ??? ??-?? ???????????? ????????????? ?????????????? ???????? ????????? ?????? ????? ???????????????. ????????, ??
??????????? ????? ? ??????????? ??????????? ??????????? 21 % ????? ?? ?????? ?????
?????????, ???????????? ? ??????? ?? ?????? 40 ??. ? ? ??????? ?? ?????? 10 ?? ?????????
??????????? ????? 12 % ?????????.
??? ?????, ? ???????? ?????????? ?? ?????????? ?????? 40 ?? ?? ?????????????, ????
? 3-4 ???? ???? ?????????? ?? ??????????? ???????, ??? ???????????? ????? ????? ??????????? ??????????? ? ?????????? ? ???????? ?????????. ? 80 % ??????? ?????????? ?????? ??????????? ???????? ??????????? ???????? ? ??????????? ??????? ?? ??????? ??????????????
????????? ?????? ????????????? ??-?? ?????????? ????? ? ??????? ?????????, ??? ????????
???????????? ????, ??? ?? ????????? ???????. ?? ??????? ? ?????????? ????? ????????
????? ????????????? ?? ????????? 70-80 ??/? ????? 13 % ?????????, ????????? ?? ????????????? ?? ????????? ???????, ??? ??????? ???????? ? ?????? ???????? ??????? ????? ?????????
15-20 ??/?, ??? ??????????? ???????? ?? ????? ????????????.
??????? ??? ???? ????????? ???????????? ?????????? ? 40 ?? ?? ????????????? ? ?????? ?????????? ??????????. ??? ???? ????? ?????????? ???? ??????? ????????? ????????
???????????????, ???????????? ?????????? ????????? ?????? ? ?????? ?????? ????????? ? ?????? ??????? ????????? ??? ? ??????? ????? ???????? ??????????????.
# 1002 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Sergey V. Kopylov. Consideration of the Influence of Local Road Network Condition on the Social, Economic?
?????????. ????? ?????? ??????? ???????????? ??????????? ?? ????????? ?????????.
??????????? ? 12 % ??????? ??????? ?? ?????????? ???????????? ???????????. ? ?????? ??? ??????????? ?????????? ?? 4,5 ?? 24 %. ?? ??????????? ??????, ?? ??????????? ????? ???????
???????????, ????????? ?? ???????????? ???????????, ?????????? 15 %.
???????????? ??????????. ?????? ??????? ??????? ???????????? ??????????? ?? ???????????? ?????????? ? ??????????? ?????????. ???, ???????????? ?????????? ?????????
? 30-???????? ???? ??????????? ?? ????? ??????????????? ???????? ? ????????? ??? ????,
??? ?? ?? ?????????. ???????????? ??????????? ????????? ?????????? ? 12 ??? ??????
????????????????? ??????????. ????, ??????? ? ?????????? ???????? ??????????, ?????????? ???????????? ? ??????? ?????? ? ??????. ???? ????????????? ?? ????????? ????
??? ????????? 17 %, ? ?????????? ??????????? ????????? ?????????? 47 ??. ? ???, ? ????
???????, ????? ? ?????? ??????????????? ???? ????????? ? ?????? ???????????? ??????? ????????? ? ??????????.
??????????? ???? ???????????. ?????? ???????? ??????????? ???????? ???? ?????????, ???????????? ??? ??????????? ??? ???????????. ???????? ??????? ???????? ?? ??????
?????? ? 90 % ????????? ?????????? ?????????? ???????????? ?????????????. ????? 800 ???.
??????? ????????? ? ??????????????? ???????????? ????????, ??-?? ??????? ????????? ???????????? ????????? ??????????????? ??????? ?????. ????????? ? ?????????? ????? ??????????? ???????? ???????????? ?????????????? ???? ?????? ?? ???????, ?????????? ?????????????? ????? ??? ??????????????? ????????? ?????????? ????????????? ? ?????????
??????? ?? ????????? ???????????? ????????? ?????.
?????????? ?????????. ?????????? ??????????????? ???? ????? ? ??? ???????? ????????????? ????? ?????? ???????????, ??? ? ??????????????????? ? ???????? ? ?????????????
?????????? ?????????, ?????? ?? ???????? ??-?? ??????????????? ????????, ???????? ??????
?????????????? ???????????, ???????? ?????????????? ????? ? ???????????? ? ?.?. ?? ?????? ???????? ?????????? ???????????? ?????????? ? ????????? ????????? ?????????? ????
(??????) ???????????, ??? ? ????????, ?? ???????????? ?????????????? ???????? ? ???????
?????????, ???? ???????????? ???????? ? ????????????? ????????? ????????? 70 %, ?????
????????? ???????? ????????? ??????? ?? ?????????? ?????????. ?? ????????????? ????????? ????? ?????? ?????? ???????, ? ??? ????? ????????? ??????, ??????? ???????? ???????? ??????, ???????????????? ??????????????, ????? ???????? ????????????, ?????????
??????????????? ??????????. ??-?? ????? ?????????? ????????? ????????? ????????????
?????, ????????? ??????? ?? ??????????? ?????? ? ??????? ???, ? ?????? ? ????, ?????????
???? ?????????. ??????? ?????????????? ?????? ???????? ?????????? ??????? ? ????????
???????? ? ???????? ? ??????? ?????????, ?? ??????????? ????????, ? ????????? ???? ???
????? ?????????? ?????????? ???????? ?? 2,5 ?? 12 ???? ???. [8]. ????????? ???????? ?????????? ??????? ??? ??????? ??????? ???? ??? ??????? ??????? ? ???????????. ??????? ????????? ????? ?? ???? ??? ??????????? ?? ?????? ? ???????? ???????????? ????????, ?? ? ?
?????????? ?????? ? ?????? ? ?????? ????????.
? ????? ? ?????????????? ?? ?????????? ??????? ?????????, ??????? ????????????
?????????? ?? ???????? ??????? ???????? ???? ? ????????????? ??????????? ? ?????? ??????? ????????-????????????? ??????? ??????????.
# 1003 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Sergey V. Kopylov. Consideration of the Influence of Local Road Network Condition on the Social, Economic?
??? ???????? ??????? ?????? ?? ???????? ??????? ???????? ???? ???????? ??? ??????
?????????.
I. ???????? ???????????????? ???????:
1) ???????? ??????????????? ?????????;
2) ???????? ?????????????? ?????????;
3) ??????? ????????? ?????????;
4) ???????????? ??????????;
5) ??????????????? ?????????;
6) ??????????? ???????? ? ???? ??????;
7) ??????????? ????? ? ???????;
8) ????????????? ???????? ????????????;
9) ???????? ????????? ??????.
II. ????????, ??????????? ????????????? ??????? ????? ??? ?????????????? ? ????????
???? ??????? ????????????? ?????:
1) ???????????????? ????????????;
2) ??????? ?????? ????????;
3) ??????? ??????????? ? ??????????????;
4) ????? ????????????? ? ?????? ????????-???????? ???????;
5) ??????? ????? ?????? ??????????? ? ???????????? ??????.
??????????? ????????? ????????? ? ???????? ????????? ?????????? ????????????.
?????? ??????????
[1] ???????????? ?.?. ?????? ????????? ? ?????? ?????: ????. ???????. ???: ?????,
2010. ?. 563-567.
[2] ???????? ?.?. // ???????? ??????????? ?????????. 2011. ? 3 (39). ?. 34.
[3] Curtis S.E. Health and Inequality: Geographical Perspectives. London, 2001.
[4] ????????? ?. // ?????????? ?????????? ?????????. 2007. ? 1. ?. 34.
[5] ?????????? ?.?. // ???????????? ???????? ? ?????????? ?????????. 2003. ? 1.
?. 822.
[6] ???? 2.05.02-85*. ????????????? ??????. ????? ??????????????. ?.: ??????????,
1986. 510 ?.
[7] ????? ?.?. ?????????????? ??????????? ????? ????????????? ?????. ?.: ?????????,
1969. 144 ?.
[8] ???????? ?.?. // ?????? ???????? XII ????????????? ????????-?????? «?????? ?????? XXI ????». ??????, 2012. ?. 18.
??? ?????????????, ???
??????????? ? ?.?. ??? ????????? ???????????? ????? ???? ?? ?? ?????? ?????????????????
????????, ? ? ??????????? ?? ????????? ??????: ????? ??????????? ???????? ????, ????, ?????????? ??????????? ?????? ? ???????? ?????????????, ? ?. ?.
?????????????? ?????? ???????? ??????????? ????????? ??? ????????????? ?????? ??
????????? ??????????, ????? ????????? ??????? ???? ?? ?????? ? ????? ?????? ?????????????
?? ?????????, ?? ? ? ?????? ?????????????, ????????????? ? ?????? ?????????, ????????????
??????????? ?????????? ? ???????? ?????????????? ???????.
??????????
? ?????? ???????????? ?????????????? ?????? ???????????? ?????????? ????. ??????
???????? ???? ???????????? ?????. ?????? ???? ????? ????? ?????????????? ????????,
????? ??? ?????????? ????????, ????????? ????????? ??????????, ????????? ? ??????
?????????. ?????????? ????????? ?????????? ????????? (????????? ? ???????????? ??????????) ? ?????? ??????? ????????? ????????????: ??????????? ? ?????????????? ???????? ???????? ? ???????? ????????? ???????? ??????. ?????????????-??????????????
????????? ????????????? ? ????????? ????????????? ???? ?????????? ????? ???? ???????????? ?? ?????? ?????????? ??????????? ??? ??????, ???, ??? ?????? ???????????. ???????????? ????????????? ???????? ?????????? ????????? ????. ???????? ?????????? ?????
?????????? ???????????? ??????????? ????. ?????? ????? ???? ???????????? ??????????
??? ?????????? ????????????????? ??????? ?????????? ???????? ?????? ???????? ??????
# 988 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Ksenia V. Shatrova, Yuri A. Maglinets? The Model of Submission of Information on the State and Dynamics of Lands?
????????????? ???? [1], ? ????? ??? ?????????? ???????????? ?????????????????? ???????
???????????? ??????????? ????????????? ??????? ????????????? ????.
?????? ????????? ??? ????????? ?????? 2014 ?. ???? «???????????? ??????? ????
????????? ??????? ? ??????-??????????? ????????????» ? ???? ? 13-07-98005.
?????? ??????????
[1] ???????? ?.?., ??????? ?.?., ??????? ?.?. ? ??. // ??????????? ????????
?????????????? ???????????? ????? ?? ???????. 2012. ?. 9. ? 3. ?. 316?323.
[2] ??????? ?.?., ?????????? ?.?., ????????? ?.?., ?????? ?.?. // ??????????? ????????
?????????????? ???????????? ????? ?? ???????: ????????? ??????? ??????. ????????
????????? ????. ?.: ??? ???, 2009. ?. 292?304.
[3] ?????? ?.?. // ???????? ??????????? ?????????. 2010. ? 3 (35).
[4] ??????? ?.?. // ??????? ?????????. ???. ???????????? ?????. 2011. ???. 17. ? 21 (116).
?. 191?202.
[5] ?????? ?.?., ????? ?.?., ?????? ?.?. // ????????? ?????????? ?????????
??. ?.?. ?????????, 2014. ???. 73. ?. 19?53.
[6] ??????? ?.?., ?????? ?.?. // ??????????????? ?????? 2011. ? 3. ?. 5?12.
[7] ??????? ?.?. // ???????????? ? ??????????? ?????. 2010. ? 4. ?. 216?219.
[8] ??????? ?.?., ???????? ?.?. ???????? ?.?., ?????????? ?.?. // ??????????? ????????
?????????????? ???????????? ????? ?? ???????: ????????? ???????????? ???????? ??????.
????. ?.: ??? ???, 2013. ?. 65.
[9] ???? 27593-88(2005) ?????. ??????? ? ???????????; ????. 01.07.1988. ??????, 2005.
?. 9.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 990-997
~~~
??? 624.131.542
Investigation of the Influence
of Penetration Slit at its Foundation Rainfall
and the Stress State of Subgrade
Snezhana V. Platonova*
Siberian State Industrial University
42 Kirova, Novokuznetsk, 654007, Russia
Received 28.09.2014, received in revised form 14.10.2014, accepted 05.12.2014
In article the is intense-deformed condition of the soil basis of the slot-hole bases is considered at
their various depth ?????????.
Keywords: the slot-hole bases, plasticity of a ground basis.
???????????? ??????? ???????????
???????? ?????????? ?? ??? ??????
? ??????????? ????????? ?????????? ?????????
?.?. ?????????
????????? ??????????????? ?????????????? ???????????
??????, 654007, ???????????, ??. ??????, 42
? ?????? ??????????????? ??????????-??????????????? ????????? ?????????? ?????????
??????? ??????????? ??? ????????? ??????? ?? ?????????.
???????? ?????: ??????? ??????????, ???????????? ?????? ?????????.
? ???????? ???????????? ?????? ??????????????????????????? ????????????????? ????? [1]. ?????? ?????? ??????? ???????? ????????? ? ???????????? ??? ??????? ??????? ??????????. ? ????????? ????? ?????????????? 426 ??????????? ?????????, ???????????? 240
??????; ???????????? ????????? ????? ??-????????? ?????????? ??? ?????????????? ???????? ??? ? ???????????? ???????????. ???????? ?????????? ?????????? ?????????; ???
?????? ??????? ???????? ??????????? ???????? ? ?????? ??????????? ????????? ???????
???????????? ???????? ? ? ????????? ????? ?? ????????? ? ???????????. ????????? ???????
?????? ??????????? ?? ???? ????????? ??????????? ??????? ???????? ?? ????????, ??????
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: forsnesha@yahoo.com
# 990 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
??? ??????????? ?????????? ??? ????????? (?? ??????? ??? ????????????, ????????? ? ???????????? ? ??????? [2]). III????????? ????????? ???? ?????? ????? b = 0.98 ?, ???????
???? ?? 0.14 ?; ????????? ?????????? ? ???? ????????? ??? ??????????? di = hi = 0.6 ? (hmin),
1.2 ? (hCP), 1.8 ? (hmax).
??????? ??????????? ????????? (?.?.) ????????? ? ???????????????? ????????? ?????
? = 5 ? 10 ???, v = 0,25ч0,40, ? = 15ч40?, ? = 0ч0,04 ???, ? = 20 ??/?3 (????? ?, v, ?, ? ? ? ? ?????????????? ?????? ??????????, ??????????? ????????, ???? ??????????? ??????, ?????????
? ???????? ??? ??????).
??????? ??????????? ?????? ?? ???????? ??????? ???????? ???? ??????????? ?????????????? (???. 1). ??? ????? ????????? ??????? ?????????? ?????? ??? ????????? ? = 5 ???
? 10 ??? ? ????????????? ???????? hi ????????? ??????????? ?????????????; ??? ???????
????????? ?????????? ??????????? ???????? ??????: ?????????? ? ??????? ? ??????? ?????????? ? = 5 ???, ?????????? ? ? ??????? ? ? = 10 ???.
??? ?????????? ????????? ?? ?????????? ? = 5ч10 ???, v = 0,4, ? = 20 ??/?3, ? = 0,04 ???,
? = 15° ??? ??????????? ??????????? hmin ???????????????? ??????????? ?.?., ??????????????? «?????» ????????? ?min = 103 ??/?2
? «???????» ? ?max = 292 ??/?2. ??? ????????? hmax ??????????? ?.?. ? ????????cp
?
?? ?min = 116 ??/?2, ?max = 286 ??/?2. ??
????? ???????? ??????????? ????????,
??????????????? ?????????? ?????????? ?????????? ? ?????????? ???????????? ?????????? ? ??????, ???????
????????? ????????????? ??????? ???????????? ???????? ??????? ?????????? ? ???????????? ?????????? ?
??????.
?? ???. 2 ???????? ????? ????????????? ????????????? ??????????
V1 V z V z / ? CP ? V 3 V x V x / ? CP
1
2
'
2
1'
S
???. 1. ??????? ?????? ??????? ???????????:
1 ? 2 ? ?????????? (hmax) ?? ?????? I (? = 5 ???) ? II
(? = 10 ???) ??????????????; 1? ? 2? ? ??????????
(hmin) ?? ?????? I ? II
# 991 #
????? ??????????? ???????????? ??? ??????? ???????????, ???????????? ?? ???????? hmin ? hmax, ?1 ? ?3 ? ??????????,
????????? ?????????? ?????????? ???
????? ???????????? ???? ??????, ??? ? ??????? ???????? ?? ?????? ??????? ????????
??????????. ??? ???????????????? ????????? ?????? ?????????? (?? ?????????
???????? ? ???????????? ???? ??????) ?
??????????? V1 ??????? ???????? ???
????? V1g J x z , ? ? ??????????? V 3 ?
V 3g J x z x Q /(1 Q ) .
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
???????????? ????????????? ?????????? ??? ??????????? ?????????? ?? ???????? hmin,
????? ???????? ??????? ?????????? ????????? ?????????? V1 ?? ??????? z/b»0.5. ?????
?????????? V 3 ????? ???????? ?????????. ????????? ???? V1 ? V 3 ? ?????? II ??????????
????????? ????.
??? ??????? ????????? ????????? ???? ??????????? ????????? (???. 2, ??????? ?; b?,
????? I ? II), ????? ??????????? ?????????? ?????????? V1 ?? ???????, ?????? ?????????
???????? ?? ??????? z/b»0.5 ???????????. ????????? ????? V 3 ????? ??????????? ??????
V1 ???????? ? ??? ???? ????????, ??? ? ??????? z/b»2 ??????????? ????????? ?????????? ???????? ?????????? ?? ??????? (?? ???? ??????? ??????????? ?????? ??????? ????????? ??-
?????). ????????? ?????????? ?????????? ?1? ?3 ?? ??????? 0.2<z/b<0.8 ??????????? ????????
????????, ??????????? ??? ???????? ??????? ???? ???????? ??????????.
????????? ????????????? ?????????? V1 ??? ????? ? ??????? ????????? (????? I ? II,
hmin), ????? ???????? ???????? ????????? ?? ???? ? ??? ???? ????????, ??? ??? ???????
?????? ?????????? (????? II, ? = 10 ???) ?? ??????? z/b»0.5 ????? ????? ??????? ????????
??????????, ????????? ?????????? ?????????? ?? ????? ??????? ?????? ?????b
?????. ? ??????? z/b»1.8 ???????? ?????
????? V 3 ? ?????? ?????? I ??????, ??? ?
Pcp
?????? II, ?.?. ??????? ????? ????? ??? ??????? «???????» ?????? ???????? ???????????? ??????????, ????? ????????, ???
? ????? ??????? («???????») ?????? II.
???????? ????????????? ??????????
V1 ? V 3 (?????? I ? II) ??? ??????????? ?
??????? ????????????? (hmax = 1.2 ? 1.8?)
? ???????????? ????????? ????? ??, ??? ?
??? ?????? hmin = 0.6 ?.
? ?????????????? ?????????? ????
???? ??? «?????» ???????? ???????? ??-??
????????? ???????????? ?????????? ?????????? ? ?????? ?????????? ??????????
V1 ? V 3 ?????????????? ????????????: ??????????? ???????????? ?????????? ???
????????? ?????? ? ?????????????? ? ???
???????? ?????????? ??????????. ?? ???
???? z = b ???????? ?????????? V1 ? V 3
?????? ??????? ?? ???? ???????? ?? ???
????????? ??????????.
???????? ??????????? ????????????? ????????????? ?????????? ?X/P??,
( ?'? / ??? ), ?Z /P?? ( ?'Z / ??? ) ? ???????????
'
?XZ /P??, ( W ?Z / ??? ) ?????????? ???????-
h?
dL
V
t?
h?
V
b
b'
b'
b
?'
?'
?
?
z
b
???. 2. ????????????? ?????????? V1 ? V 3 ?????
??????????? ????????? ??????? ??????????? ???
?? ??????????? h min (?) ? h max(?): : ????? I, : ????? II
# 992 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
b
PCP
a) z=0; Pmax
b) z=0; P min
V
d
x/b
x/b
x/b
V
V
a) z=1; Pmax
b) z=1; P min
x/b
V
???. 3. ????????????? ?????????? V1 ? V 3 ?? ????????
h min (?) ? h max(?): : ????? I, : ????? II
z = z/b = 0 ? z = 0.5 ??? ??????????? ???????????
??? ?? ??????????? ???????? ?????????? ??? «?????» ? «???????» ????????? ???, ????????
? ??????? (???. 4), ????? ???????? ?????????? ???????????? ?????????????? ?????????????
?????????? ?????????? ? ??????? I ? II.
??? ????? ?? ???. 4 (????? I, «?????» ????????), ????????????? ???????? ??????????
'
? Z / ??? ??? ???????? ??????? ???? ?????????? ????????? ??????, ??? ??? ???????? ?????????? ??????, ??? ??????? ? ??????????? ????????? ???????????? ?????????? ??? ???????? ??????? ?? ??????? ?? ???????? ?????? ??????, ??? ??? ?????????? ???????, ??? ???
????? ?????????. ????????????? ?????????? ?Z /P?? ??? ???????? ??????? ????? ??????????
????? ????????????? ?????????, ???????? ?Z /P?? ????????? ??????????? ?? ???? ???????? ??
??? ?????????. ?????????? ?X/P?? ?? ???????? ?????? ??????? ?????? ? ???????? ???????
???????????, ? ????? ????????????? ?? ???? ?????? ??????. ????? ???????? ?? ?????????
??????????? ????????? ? ??????? ????????? ??????? «????????» ?????? ? ???????????. ????????????? ?????????? ?X/P?? ?????? ?????????? ?????????? ????? ????????????, ????????
???? ????????????? ?? ???????; ?????????? ????????????? ?????????? ? '?' / ??? . ??????????? ?????????? ?? ???????? ?????? ?????? ?XZ /P?? ?? ??????? ???????????, ??? ????? ?????
????????? ????????? «????????» ?????? ? ???????????. ?????? ?????????? ?????????? ?????
???????? ?????? ?????????? ??????????? ?????????? W'?Z / ??? ??????????? ???????????, ?
'
/ ??? ? ???????? ?????????????, ??? ????????? ????????? ?????????? ?????? ?????????? W'?Z
?? ????????? (??? ???????????? ?????????? ?? ??????? ?????????? ?Z ???? ??????? ??????).
????????????? ?????????? ? ?????? I ??? «???????» ????????? (???. 4) ?????????? ?????????? ???? ? ??? ???? ????????, ??? ???????? ?X/P?? ?? ???????? ?????? ?????? ?? ???????
# 993 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
?) ????? I,(?=5???)
103
2
?
290
x/
x/
2
?
2
103
?
290
2
/
?
x/
x/
/
/
/
/
/
/
/
/
/
x/
?) ????? II, (?=10???)
103
?
2
290
2
?
2
103
?
290
2
/
?
x/
x/
x/
x/
/
/
/
/
/
/
/
/
/
x/
???. 4. ????????????? ?????????? ?????????? ??? ??????????? ?????????? h min: ? ? ????? I ? ? = 5 ???,
j = 15?, ? = 0.04 ???; ? ? ????? II ? ? = 10 ???, j = 15?, ? = 0.04 ???
???????????; ??? ?????? ?? ??????? «????????» ?????? ? ??????????? ????????? ???? ????
????? ???????????? ?????.
????????????? ?????????? ? ? ?????? II ??? ??? «?????», ??? ? ??? «???????» ?????????
? ???????????? ????????? ?????????? ?????????? ???? ??? ?????? I.
??? ?????????? ??????????? ??????? ?????????? ???????? ????????????? ??????????
?? ??????? ??????? ?????????? ??????????? (???. 5).
?????? ???????????? ????????????? ?????????? ???????? ??? ???????? ?????? ? ??????
?????????? ????????? ????? ????????? ????????? ????????? ????? ??? ?????? ????????? ??????????? ?????????? ? ???????? ??????? ??? ?????????.
?????????? ?????????? ????????????????? ???????????? ?? ????????? ?????????? ?
????????? ??????????? ???????????, ??????????? ? ??????????? ????????? ? ???????????
?????????????? ?????????-????????????? ????????? ??. ?.?. ????????? ? 1966-1967 ??. [4].
????? ?? ???????????? ????????? ????????????? ?????????? ???????? ????????? ? ??????# 994 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
?) ????? I,(?=5???)
153
?
296
x/
x/
?
297
2
?
153
2
?
296
2
/
?
2
x/
?
2
/
/
/
/
/
/
?) ????? II, (?=10???)
2
?
120
2
?
297
2
/
120
x/
/
/
x/
/
x/
x/
x/
x/
x/
/
/
/
/
/
/
/
/
x/
/
x/
???. 5. ????????????? ?????????? ?????????? ??? ??????????? ?????????? h max: ? ? ????? I ? ? = 5 ???,
j = 15?, ? = 0.04 ???; ? ? ????? II ? ? = 10 ???, j = 15?, ? = 0.04 ???
??? ????? ???????? 2.2Ч0.76Ч1.2 ?. ? ???????? ????????? ???????????? ?????? ????? ? ???????? ????? 16.4 ??/?3 ? ??????? ? ? ???????? ????? 17.6 ??/?3.
?? ??????????? ?????? ????????? ????? ?????????? ?????????? ????????, ????????
????????? ???????? ??????????? ???????? ??? ???????? ????? (???) ? ???????????? ????????
???????? ?? ?????? ?????????? (?), ?.?. ??????????? ??????????????? ??????? ???????? ???????? ???????????? ?????? ?? ????????? ?????????. ??? ????????? ??????? ????????????? ???????? ???????? ?????????? ??????????, ?? =
???
. ????????? ???????? ???????????
?
???????? ??? ???????? ?????????? ? ???????? ? ?? ?????? ?????????? ????????????? ???# 995 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
??????? 1. ???????????? ???????? ???????? ?????? ? ? ? ???????? ?? ??????????
??
??
?min
????? II (? = 10 ???)
?max
?min
??
?max
?min
??
?max
?min
?max
??????????? ?????????? hmin
0,300 0,120 1,100
??????????? ?????????? hmax
0,190 0,140 1,220 1,230 0,190 0,140 1,220 1,390
????? ?????????
1,310 0,300 0,130 1,100 1,300
??????? ?????
?????? ?????
??????????? ?????????? hmin
0,214 0,214 3,250 2,260
-
-
-
-
??????????? ?????????? hmax
0,267 0,372 2.280 1,880 0,270 0,446 2,480 1,830
?????
???????????
??????????
???????
(III-?????????)
??????? ????????
????? I (? = 5 ???)
???????????
?.?. ??????? [4]
(?-?????????)
?????
?????????
???????????? ????????
????????
???? ???????? ???????? ????? ??????? ?????? ?????????? ?? ?????. ??? ????????? ???????
????????????? ???????? ???????? ????????, ?? =
???
.
?
????????? ????????????? ? ? ? ???? ?? ????????? ? ????. 1.
????????????????? ???????????? [4] ????????, ??? ? ???????????? ??????? ????????
? ??????????? ??????????? ??????????? ?????????? ???????????? ? ?, ?.?. ??? ???????
???? ?? ?????????????? ????????? ???????????, ? ???? ???????? ?, ?????????????? ???????? ??????, ???????????, ??????????? ??, ??????????????, ???????????. ???????? ?????????????? ??????????? ? ??????????? ??????????? (????. 1), ??? ??????????? ????????
??????????? ???????? ???????? ??????? ?????? ? ? ???????????, ?? ??? ???? ????????????? ??????????? ???????? ???????? ???????? ??. ???????? ????????????? ? ? ? ?? ??? III?????????? ?? ?????????? hmin<hCP<hmax ????????????? ?? ????????? ? ????????????? ?
????. 1.
??????:
? ??????? ???????? ????????????? ???????? ???????????? ?????????? ???????? ???
???????? ????? III-?????????? ??????????? ?????? ???????? ???????? ???????? ??
??????? ???????? ?? ????????? ? ?????;
? ??????? ???????? ????????????? ???????? ???????????? ?????????? ???????? ???
????????? ?????? III-?????????? ?????? ???????? ???????? ???????? ?? ??????? ???????? ?? ????????? ? ?????;
? ? ??????????? ??????????? ???????????? ???????? ???????? ? ? ? ???????????
???????? ???????????, ? ???????????? ?? ??? ???? ?????????????, ??? ?? ??????????? ? ???????? ??????? ? ?????????????? ??????????? ??????????? (?????
?.?. ???????);
# 996 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Snezhana V. Platonova. Investigation of the Influence of Penetration Slit at its Foundation Rainfall and the Stress State?
? ???????? ????????????? ????????????? ???????? ??????? ?????????? ? ?????????
????? ??????????? ????????? ??????????? ??????????? ?????????? ?????????????
?????????? ??? ???????????? ???????????? ? ??? ???? ????????, ??? ?? ???????
z ?0.5 ??????????? ????????? ???????? ??????????, ????????????? ???????? ????????????????? ?????????? ???????? ??? ????????? ??????? ????.
??? ?????, ??? ????????????? ?????????????? ???????? ????????? ????????? ????????????? ? ? ? ?? ??? ???????? ???????????? ??????????, ????????????? ?? ???????? ?????????
???? ????????????? ? ????????? ???????????? ??????????, ?????????? ????????? ????????????????? ???????????? ??? ??????????? ???????.
?????? ??????????
[1] ?????? ?.?. ????? ???????? ????????? ? ???????????. ?.: ?????, 1987. 224 ?.
[2] ?? 22.13330.2011 ????????? ?????? ? ??????????. ????????????????? ???????? ????
2.02.01-85. ?.: ??????????, 2000. 40 ?.
[3] ?? 52-101-2003. ???????? ? ?????????????? ??????????? ??? ???????????????? ?????????? ???????? [??????????? ??????] // ?????????????? ??????? ? ?????????????.
[4] ?????? ?.?., ?????????? ?.?. // ???. ?????. ????????????? ? ???????????. 1969. ? 4.
?. 31?35.
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Journal of Siberian Federal University. Engineering & Technologies 8 (2014 7) 998-1004
~~~
??? 625.72.001.63
Consideration of the Influence
of Local Road Network Condition on the Social,
Economic and Industrial Development
of Ulus, the Republic of Sakha (Yakutia)
Viktor I. Zhukov and Sergey V. Kopylov*
Siberian Federal University
79 Svobodny, Krasnoyarsk, 660041, Russia
Received 18.09.2014, received in revised form 04.10.2014, accepted 21.11.2014
On the basis of currently available methods for optimizing the road network it has been revealed that
in the conditions of Yakutia the technical category of the road and construction of paved roads can not
be always reliably determined. Under the conditions of Yakutia it is proposed to use the population
quality of life as the main criterion while developing the design of the local road network. The necessity
of the construction of paved roads, taking into account the climatic factors has been justified. And also
we have proposed a system of criteria that would define the social and equitable regional development
with the help of the local road network.
Keywords: local road network, out transport effect, winter road, the population quality of life of the
population.
???? ??????? ????????? ??????? ???????? ????
?? ??????????, ????????????????
? ????????????? ???????? ??????
?????????? ???? (??????)
?.?. ?????, ?.?. ???????
????????? ??????????? ???????????
??????, 660041, ??????????, ??. ?????????, 79
?? ?????? ???????????? ? ????????? ????? ??????? ??????????? ???????? ???? ????????,
??? ? ???????? ?????? ?? ?????? ??????? ????? ???? ?????????? ??????????? ?????????
?????? ? ????????????? ????? ? ??????? ?????????. ? ???????? ?????? ??? ??????????????
??????? ???????? ???? ?????????? ????????? ???????? ????? ????????? ??????? ???????
*
© Siberian Federal University. All rights reserved
Corresponding author E-mail address: kopylovsergey@inbox.ru
# 998 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Sergey V. Kopylov. Consideration of the Influence of Local Road Network Condition on the Social, Economic?
?????????. ?????????? ????????????? ????????????? ????? ? ??????? ????????? ? ??????
????????-????????????? ????????, ?????????? ??????? ?????????, ??????? ?????????? ??
????????? ???????????? ???????? ?????????? ??? ?????? ??????? ???????? ????.
???????? ?????: ??????? ???????? ????, ??????????????? ??????, ??????????? ??????,
???????? ????? ?????????.
? ????????? ?????????? ?? ?????????? ?????????? ???? (??????) ??????????? ?????? ??
??????. ??? ????????? ???????? ?????? ???? ?????? ????? ?????. ????? ????, ??? ???????????? ????????????? ????????????? ???? ??????? ????????????? ????? ?? ?????? ??????????
????? ?????? ???????? ? ???????????????? ???????? ?????????.
? ?? ?? ????? ?????? ?????????? ?????????? ?? ????? ???? ????? ?? ????? ??????????????? ? ???????????? ????????? ??????????. ?? ???? ??????????????? ????? ??????????, ???
????????? ???????? ????, ??????? ??????????? ?? ???. 1.
???????????????? ????????????? ????????????-???????? ???? ?????? ???????????
?? (?) ? ????? 2012 ?. ?????????? 25 127 ??. ??????? ???????? ????? 37 % ???? ????.
???????? ???? ??????????????? ????????? ? 68 % ? ?????????? ?? ???????????. ?????
85 % ?????????? ?????????? ???????? ?????? ? ?????????????? ????????? ???? ?????????? ???? ????? ?????? ???????????????? ? ???????????? ?????????? ???????????. ?
?? ?? ????? ?? ???? ?????????? ????????? ?? 88 % ??????? ???????????? ??????? ? ?????.
?? 629 ???????? ?????????? ??????? ?????? 48 ??????? ? ???????? ???????? ???????? ?
??????? ?????????.
?? ?????????? ?????? ???????????? ???????? ?????? ?? (?) ????????, ??? ?? ?????
???? ????? ?????? 2 % ????? ?????? ??????????? ?????????, 8 % ? ????????? ? 90 % ?????????? ?????? ????? ??????????? ?????????, ??? ???????? ????????????? ???. 2.
????????? ?????? ????????????? ???? ????????????? ????? ?????????? ?????????
?????????-????????????? ??????????? ? ?????????? ?????????? ? ??????. ?? ???????????
????? ???????? ??????? ???????? ?????? ???????????? ???????, ??????? ? ???????? ??
???????? ??????????. ? ?????????, ?????????? ??????? ? ???????-???????????? ??????? ??
?????? ??? ? ???????, ??????????? ????? ? ?????, ?? ? ??? ? ?????????????, ?????????????
??????? ????????????????? ? ??????????????.
???. 1. ????????? ???????? ???? ????????????? ????? ? ??????? ?????????, ??/1000 ??????????
# 999 #
Copyright ??? «??? «??????» & ??? «A???????? K????-C?????»
Sergey V. Kopylov. Consideration of t
1/--страниц
Пожаловаться на содержимое документа