close

Вход

Забыли?

вход по аккаунту

?

Теорема Фалеса

код для вставки
Размещено на http://www.nashashcola.ru/
По свидетельству Апулея:
"Фалес Милетский, несомненно самый
выдающийся из тех знаменитых семи
мудрецов (он ведь и геометрии у греков
первый открыватель, и природы
точнейший испытатель, и светил
опытнейший наблюдатель)".
Биография Фалеса Милетского
Относительно времени жизни
Фалеса существует несколько
версий. Наиболее
последовательно традиция
утверждает, что он родился в
период с 39-й по 35-ю олимпиаду, а
умер в 58-ю в возрасте 78 или 76
лет, то есть прибл. с 624 по 548 до
н. э.. Некоторые источники
сообщают, что Фалес был известен
уже в 7-ю олимпиаду (752—749 до
н. э.); но в целом время жизни
Фалеса сводится на период с 640—
624 по 548—545 до н. э., т.о.
умереть Фалес мог в возрасте от 76
до 95 лет.
Достоверно известно только
то, что Фалес был знатного
рода, и получил на родине
хорошее образование.
Собственно милетское
происхождение Фалеса
ставится под сомнение;
сообщают, что его род имел
финикийские корни, и что в
Милете он был пришельцем
(на это указывает напр.
Геродот).
Сообщается, что Фалес был торговцем и много
путешествовал. Некоторое время жил в Египте, в Фивах и
Мемфисе, где учился у жрецов, изучал причины наводнений.
Предание рисует Фалеса не
только собственно философом
и учёным, но также «тонким
дипломатом
и
мудрым
политиком»;
Фалес
пытался
сплотить
города
Ионии
в
оборонительный союз против
Персии.
Некоторые источники утверждают, что
Фалес жил в одиночестве и сторонился
государственных дел; другие — что был
женат, имел сына Кибиста; третьи — что
оставаясь холостяком, усыновил сына
сестры.
Помнят люди историю эту,
Хоть прошло с той поры много лет.
Шел однажды Фалес из Милета,
А, быть может, шагал он в Милет.
Размышлял он о тайнах природы,
О строенье Земли и небесВедь из всех мудрецов всенародно
Самым умным был признан Фалес.
Предсказал он недавно затменье,
И теперь каждый день его ждал…
Так, задумавшись, он не замети,
Что в колодец случайно упал.
-Я слыву мудрецом не напрасно!Он вскричал.-Знаю я, почему
Среди дня наше солнце погасло,
И весь мир погрузился во тьму!
Упомянутое выше предсказание
солнечного затмения 585 до н. э. —
по-видимому единственный бесспорны
факт из научной деятельности Фалеса
Милетского; во всяком случае сообщается,
что как раз после этого события Фалес
стал известен и знаменит.
Заслуги Фалеса
геометрия
Считается, что Фалес первым доказал несколько геометрических
теорем, а именно:
• вертикальные углы равны;
• треугольники с равной одной стороной и равными углами,
прилегающими к ней, равны;
• углы при основании равнобедренного треугольника равны;
• диаметр делит круг пополам;
Фалес первый вписал прямоугольный
треугольник в круг и в благодарность богам
принёс в жертву быка
Теорема Фалеса с помощью листов бумаги
• Возьмите полоску бумаги, у которой две стороны
параллельны.
• Наметьте произвольный отрезок АВ и через точки А и В
проведите прямые, перпендикулярные краю полоски.
• Согните по намеченным линиям.
Повторите несколько раз сгибы и раскройте
Получили в результате,
А1В1=В1С1=С1Д1=Д1N1
А теперь возьми полоску бумаги, у которой две стороны не
параллельны и проделайте тоже самое
1.
2.
4.
5.
3.
Получили: АВ = BC = CD = BN (совпали при наложении). Сравните
отрезки А1В1, В1С1,C1D1, D1N1
Вывод: Если на одной из двух прямых отложить последовательно
несколько равных отрезков и через их концы провести параллельные
прямые, пересекающие вторую прямую, то они отсекут на второй
прямой равные между собой отрезки.
Теорема Фалеса
Если параллельные прямые, пересекающие
стороны угла, отсекают на одной его стороне
равные отрезки, то они отсекают равные
отрезки и на другой его стороне
О
B1
A1
A2
A3
С1
B2
C2
B3
Доказательство:
Пусть А3ОВ3 – заданный угол, а А1В1, А2В2, и А3В3–
попарно параллельные прямые и А1А2=А2А3. Докажем,
что В1В2=В2В3. Проведем через точку В2 прямую С1С2
параллельную прямой А1А3. По лемме А1А2 =С1В2,
А2А3 = В2С2 и с учетом условия теоремы С1В2 = В2С2.
Кроме того, В1С1В2 = В2С2В33– как внутренние накрест
лежащие при параллельных прямых А1В1, А3В3 и
секущей С1С2 , а В1В2С1 = С2В2В3 как вертикальные.
По второму признаку равенства треугольников
В1С1В2 = В3С2В2. Отсюда В1В2 = В2В3.
Теорема доказана.
Теорема Фалеса
Если на одной из двух прямых отложить
последовательно
несколько
равных
отрезков и через их концы провести
параллельные
прямые,
пересекающие
вторую прямую, то они отсекут на второй
прямой равные между собой отрезки.
A1
B1
A2
B2
A3
B3
A4
B4
l1
l2
Доказательство:
Пусть на прямой l 1 отложены равные отрезки A1A2,
A2A3, А3А4 и через их концы проведены параллельные
прямые, которые пересекают прямую
l 2 в точках B1, B2, B3, В4 как рисунке 4. Требуется
доказать, что отрезки B1B2, B2B3, В3В4 равны друг
другу. Докажем, что B1B2=B2B3.
Рассмотрим случай, когда прямые l 1 и l 2
параллельны. Тогда A1A2=B1B2 и A2A3=B2B3 как
противоположные стороны параллелограммов
A1B1B2A2 и A2B2B3A3. Так как A1A2= A2A3, то и
B1B2=B2B3. Теорема доказана.
Применение теоремы Фалеса
к решению задач
Средняя
линия
треугольника,
соединяющая
середины двух данных сторон, параллельна
третьей стороне и равна ее половине.
C
D
E
A
F
B
Доказательство:
Пусть отрезок DE – средняя линия в треугольнике
ABC, т.е. AE = EC, CD = BD. Проведем через точку D
прямую a, параллельную стороне AB. По теореме
Фалеса прямая a пересекает сторону AC в ее
середине и, следовательно, содержит среднюю
линию DE. Значит, средняя линия DE параллельна
стороне AB. Проведем среднюю линию DF. Она
параллельна стороне AC. Тогда по лемме отрезок
ED равен отрезку AF и равен половине отрезка
AB. Теорема доказана.
Задача 1
Дан треугольник АВС. На стороне ВС взята точка Р
так, что ВР=РС, а на стороне АС взята точка Q такая,
что АQ : QС = 5 : 3. Найдите отношение АО : ОР,
если точка О – точка пересечения прямых АР и ВQ.
b
a
c
B
D
O
A
Q
P
C
Решение:
Проведем прямые параллельные ВQ через точки А, Р
и С. Точка D – это точка пересечения прямых АР и с.
По теореме Фалеса параллельные прямые ВQ, b и c,
которые отсекают равные отрезки ВР и РС, отсекают
равные отрезки ОР и РD на прямой АD.
По теореме Фалеса параллельные прямые a, BQ и с,
которые отсекают на прямой АС отрезки в
соотношении 5 : 3, отсекают и на прямой АD отрезки
в соотношении 5 : 3.
То есть AQ : QC= 5:3 и AO : OD = 5:3, а отрезок
OD=2OP. Следовательно, AO : OP = 10:3.
Ответ: 10 : 3.
Задача 2
Разделите отрезок АВ при помощи циркуля и линейки
на n равных частей.
X
A3
A2
A1
A
B1
B2
B3
B
Решение:
Проведем луч AX, не лежащий на прямой AB, и на нем
от точки A отложим последовательно n равных
отрезков АА1, А1А2, …,Аn-1An , т.е. на столько равных
отрезков, на сколько равных частей нужно разделить
данный отрезок AB. Проведем прямую AnB (точка Аn –
конец последнего отрезка) и построим прямые,
проходящие через точки A1, A2,…, An-1 и
параллельные прямые прямой AnB. Эти прямые
пересекают отрезок AB в точках B1, B2, …, Bn-1,
которые по теореме Фалеса делят отрезок AB
на n равных частей.
Задача 3
Разделите данный отрезок АВ на два отрезка АХ и ХВ,
пропорциональные данным отрезкам P1Q1 и P2Q2.
P1
M
Q1
P2
Q2
D
C
A
X
B
Решение:
Проведем какой-нибудь луч АМ, не лежащий на
прямой АВ, и на этом луче отложим последовательно
отрезки АС и CD, равные отрезкам P1Q1 и P2Q2.
Затем проведем прямую BD и прямую, проходящую
через точку С параллельно прямой BD. Она по
теореме Фалеса пересечет отрезок АВ в искомой
точке Х.
«Ищи что-нибудь одно мудрое,
выбирай что-нибудь одно доброе, так
ты уймешь пустословие болтливых
людей». Таков девиз первого
древнезападного философа, его
философское завещание.
Дата смерти первого философа
неизвестна. Диоген Лаэртский пишет:
"Умер Фалес, глядя на гимнастические
состязания, от жары, жажды и
старческой слабости. На гробнице его
написано: Эта гробница мала, но слава
над ней необъятна: В ней пред тобою
сокрыт, многоразумный Фалес".
Размещено на http://www.nashashcola.ru/
Спасибо за внимание!
Автор
cat
cat25   документов Отправить письмо
Документ
Категория
Презентации по литературе
Просмотров
209
Размер файла
1 358 Кб
Теги
фалеса
1/--страниц
Пожаловаться на содержимое документа