close

Вход

Забыли?

вход по аккаунту

?

Исследование влияния дефектов структуры на динамику двумерной XY-модели в низкотемпературной фазе.

код для вставкиСкачать
.
.
-
. 2010.
4.
. 76–81.
544.344
. .
,
. .
,
. .
.
. .
XY-
*
:
-
.
,
,
,
-
.
,
-
,
,
.
-
[1].
,
,
-
,
,
,
.
–
-
TKT
–
[2].
,
.
n=2
,
.
[3]
-
.
.
,
,
.
[4],
«
*
047,
© . .
10-02-00507, 10-02-00787
, . .
, . .
, 2010
»
-
2.1.1/930 2010-1.1-121-011-3815.2010.2.
...
,
.
,
i
-
,
77
i-
–
.
-
,
-
,
.
,
Si (
),
,
,
,
,
-
,
-
.
[– , ]
' = + s[2
r,
[0, 1], s –
r –
],
-
(0, 1),
,
-
,
-
50 %
TKT.
.
H,
T<TKT,
[5,6],
H
-
0,
,
H > 0,
-
W = exp(- H/T),
.
-
r
(0,1),
XY-
T TKT
.
-
XY-
pi p j S i S j ,
W,
,
-
.
(MCS/s),
N
-
.
:
J
-
r
.
H
.
-
,
(1)
,
i, j
,
J>0 –
, Si –
-
i-
,
,
pi =1,
i-
(
-
)
,
-
.
,
p i =0,
,
.
N = L2
L = 256.
,
-
(
A).
-
-
H
J
cos(
i, j
i
j
) pi p j
(2)
-
cimp (
p = 1 – cimp).
. .
78
,
. .
,
. .
[7]
L.
C
pi pi r S i S i
.
r
(3)
-
L
:
C ( L)
R
,
C ( L / 2)
(4)
. 1.
<…>
p=0.8
,
[…] –
-
.
L = 16, 32, 48
(4)
p = 0.9.
p = 0.8
10
-
50
10000 MCS/s.
. 1–2.
.
,
,
-
,
.
,
. 2.
p = 0.9
1
,
p = 0.8
,
L1 > L2,
-
L1
–
16 – 32
32 – 48
16 - 48
–
R(L1) > R(L2),
R(L1) < R(L2).
,
(
L2
TKT / J
0.497
0.470
0.486
)
2
.
p = 0.9
. 1–2
p = 0.8
L1
p = 0.9,
.
.
.3–
-
L2
16 – 32
32 – 48
16 – 48
TKT / J
0.673
0.692
0.680
3
,
-
(p = 1)
p
TKT / J
1
0.9
0.8
0.893(5)
0.681(9)
0.485(5)
...
79
-
XY:
1
pN
A(t , t w )
pi S i (t ) S i (t w )
. (5)
i
p = 0.8, 0.85, 0.9, 0.95, 0.98
tw = 1000,
tw = 10000 tw = 50000 MCS/s
T /J = 0.1
T /J = 0.4.
t–tw
30000 MCS/s
1000000 MCS/s.
T
100
100
.
. 3
. 3.
T=0.4
tw=1000 MCS/s: 1 p=0.98, 2 –
p=1
t tw ~ tw
p = 0.98
-
p = 0.98
p=1
T / J = 0.4
tw = 1000 MCS/s.
-
,
.
,
T
(T )
-
T /2 J
(T ) / 2
s
(1 t / t w ) 2
t / tw
A(t)
A
,
S
t tw
tw .
.4
–
A(t , t w ) ~ t
,
:
t tw
.
-
,
(7)
tw
(8)
[8]
,
,
,
,
-
tw :
(T ) / 4
-
T / J = 0.4
tw = 10000 MCS/s
:
A(t , t w ) ~ (t t w )
t tw
-
, (6)
tw
tw
(T) /2
.
t tw
(T ) / 2
= 0,0409(2).
(T ) / 4
(T ) –
.
t tw
A(t)
TKT [8]:
1
A(t , t w ) ~
(t t w )
-
A(t,tw) = 1-a(t-tw),
-
t tw
T / J = 0.4
-
A(t,tw)
tw
-
A
t tw
= 0,0389(5)
tw 1000 MCS/s
A = 0,0206(1)
t tw
tw 1000 MCS/s,
(7)
(8).
A(t , t w ) ~ t
t tw
tw –
A
.
. .
80
,
. .
,
. .
. 6.
. 4.
tw = 10000,
t–tw = 50000 MC/s,
T = 0.4,
tw = 10000 MCS/s
:
:
1 – p = 0.8, 2 – p = 0.85,
3 – p = 0.9, 4 – p = 0.95
. 4
,
-
1 – T / J=0.4, p = 0.95; 2 – T / J = 0.4, p = 0.9;
3 – T / J = 0.4, p = 0.85; 4 – T / J = 0.4, p = 0.8;
5 – T / J = 0.1, p = 0.95; 6 – T / J = 0.1, p = 0.9;
7 – T / J = 0.1, p = 0.85; 8 – T / J = 0.1, p = 0.8
.6
T / J = 0.1
.
-
T / J = 0.4
.
.
.5
,
.
,
tw
.
,
-
,
-
( , ).
-
( , ),
( , )
.
[6]
-
-
(r-r')
:
C (r
. 5.
T = 0.4,
t = 50000 MCS/s,
p = 0.9
:
1 – tw = 1000 MCS/s,
2 – tw = 10000 MCS/s,
3 – tw = 50000 MCS/s
r ' ) ~| r r ' |
=T/2 J
S
C
(9)
= pure(T) =
,
-
1.
=
imp(T,
)=
pure(T)
(p)
(p),
cimp = 1 – p << 1
...
(p)
(1 + 2.73(1 – p) +
+ 1.27(1 – p)2).
,
-
imp (T,
) = T / 2 J S( , )
A(t , t w ) ~ t
t tw
–
ldif
S = 0.558(38)
T = TKT 0.89.
T > TKT.
=0
. 4
-
t tw
tw
-
,
= 0.1
S
tw .
-
[9]
-
, = 1),
,
A
tw
ldif ~ ( J S(t – tw))1/2,
= 0.987(18)
-
A(t,tw) = 1 – a(t–tw),
S
S
-
,
.
S(
tw ,
A(t,tw)
t tw
,
=
:
t tw
[5],
81
–
Rimp,
, Rimp –
.
= T / 2 J S( , )
S.
-
p
«
T / J = 0.1
T / J = 0.4.
-
»
.
.
4
p
t tw
p=0.8
p=0.85
p=0.9
p=0.95
tw
T/J=0.1
0.0130(3)
0.0118(2)
0.0106(2)
0.0101(1)
T/J=0.4
0.0527(3)
0.0494(3)
0.0443(2)
0.0425(2)
,
,
-
,
[3].
-
[1] Calabrese P., Gambassi A. // J. Phys. A. 2005.
V. 38. P. R133.
[2] Lei X. W., Zheng B. Short-time critical dynamics
and ageing phenomena in two-dimensional XY
model // Phys. Rev. E. 2007. V. 75. P. 040104.
[3]
. .,
. .,
. .
XY//
. 2010.
2. . 55–58.
[4] Harris A. B. // J. Phys. C. 1974. V. 7. P. 1671.
[5] Berche B., Farinas-Sanchez A. I., Holovatch Yu.,
Paredes R. // Eur. Phys. J. B. 2003. V. 36. P. 91.
[6] Kapikranian O., Berche B., Holovatch Yu. // eprint. 2006. arXiv:cond-mat / 0611712.
[7] Tomita Y., Okabe Y. // Phys.Rev. B. 2002. V. 65.
P. 184405.
[8] Berthier L., Holdsworth P.C.W., Sellitto M. Nonequlibrium critical dynamics of the twodimensional XY model // J. Phys. A. 2001. V. 34.
P. 1805.
[9]
. .,
. .,
. .
XY//
. 2010.
2. . 83–86.
Документ
Категория
Без категории
Просмотров
3
Размер файла
2 235 Кб
Теги
динамика, низкотемпературной, структура, фазе, влияние, дефектов, двумерной, исследование, модель
1/--страниц
Пожаловаться на содержимое документа