close

Вход

Забыли?

вход по аккаунту

?

Недетерминированное моделирование гидродинамических процессов с использованием модуля ANSYS DesignXplorer..pdf

код для вставкиСкачать
УДК 519.245
НЕДЕТЕРМИНИРОВАННОЕ МОДЕЛИРОВАНИЕ ГИДРОДИНАМИЧЕСКИХ
ПРОЦЕССОВ С ИСПОЛЬЗОВАНИЕМ МОДУЛЯ ANSYS DESIGNXPLORER
А.В. Кретинин, Д.Н. Галдин, Д.П. Шматов
Рассмотрен алгоритм недетерминированного математического моделирования гидродинамических процессов
в проточной части центробежного насоса средствами пакета конечно-элементного анализа ANSYS в сочетании с
методами робастной оптимизации, что позволяет получить оптимизированную геометрию проточной части насоса,
обеспечивающую максимальную гидродинамическую эффективность с учетом возможных отклонений факторов
Ключевые слова: оптимизация, ANSYS, параметрическое моделирование, гидродинамические процессы
Введение
На этапе разработки технического задания
(ТЗ), в результате решения задачи идентификации расчетного алгоритма на насосепрототипе формируется работоспособная методика расчета. В дальнейшем методика используется для предварительной расчетной
проработки возможности создания насоса согласно параметрам, заданным в ТЗ на разработку.
На этапе эскизного проектирования проводится комплекс исследовательских испытаний, количество которых зависит от «новизны» проектируемого насоса и от возможности
использования максимального количество готовых решений из известных конструкций для
подобных или близких к подобным насосов.
При исследовательских испытаниях решаются следующие задачи: исследования
структуры потока в элементах насосов; исследования внешних характеристик (гидродинамических критериев) опытных насосов; исследования вибрационных характеристик; исследования кавитационно-эррозионных характеристик элементов проточной части; исследование и моделирование пульсаций давления в
насосах.
Проводимая на этапе опытной эксплуатации оптимизационная доводка представляет
собой комплекс решений, базирующихся на
основе теоретических положений, использования подобных конструктивов других насосов,
«случайных» изменений геометрических характеристик и т.д.
Примерный алгоритм доводки состоит из
следующих шагов:
- верификация расчетных моделей по результатам гидравлических испытаний; идентификация математической модели;
- разработка усовершенствованной методики расчета и оптимизации магистральных
нефтяных насосов; назначение варьируемых
параметров, определяющих геометрию элементов проточной части, и диапазонов их изменения; формирование оптимизационных
математических моделей гидродинамических
процессов в проточной части магистральных
нефтяных насосов для отдельных элементов
проточных частей и насосов в целом;
- выполнение оптимизации по множеству
критериев для составных частей проточной
части насоса и всего насоса как единое целое;
многокритериальная оптимизация заключается
в генерировании равномерно-распределенной
последовательности в факторном пространстве
и в проведении расчетов в этих точках и оптимизации перебором; создание проектов насосов, учитывающих результаты, полученные в
ходе решения задач оптимизации.
Формализация процесса оптимизационного поиска
Использование возможностей математического моделирования гидродинамических
процессов в проточной части центробежного
насоса используя возможности программы конечно-элементного анализа ANSYS совместно
с методиками нелинейного программирования
позволяет получить оптимизированную геометрию проточной части насоса, обеспечивающую максимальную гидродинамическую
эффективность.
Cчитается, что основными элементами
проточной части являются подвод, рабочее
колесо, в ряде случаев лопаточный направляющий аппарат и отвод насоса. Варьируемыми
параметрами для отдельных элементов проточной части могут быть назначены следующие факторы.
Кретинин Александр Валентинович – ВГТУ, д-р техн.
наук, профессор, тел 8(473) 252-34-52, e-mail avkvrn@mail.ru
Галдин Дмитрий Николаевич – ВГТУ, ассистент, тел.
8(473) 252-34-52, e-mail: dmgaldin@yandex.ru
Шматов Дмитрий Павлович - ВГТУ, канд. техн. наук,
доцент, тел. 8(473) 234-64-84, e-mail: shmdm@ya.ru
37
Для рабочего колеса: число лопаток; угол
установки лопатки на входе по покрывному
диску; угол установки лопатки на выходе из
рабочего колеса; коэффициент прочностного
запаса вала насоса; коэффициент соотношения
диаметру вала к диаметра ступицы; отношение
толщины лопатки к диаметру рабочего колеса
на выходе.
Для лопаточного направляющего аппарата
(НА): колличество лопаток; угол изгиба лопатки на входе; угол изгиба лопатки на выходе;
толщина лопатки; внешний диаметр НА; внутренний диаметр НА; ширина НА.
Для отвода насоса: ширина проточной части на входе; диаметр на входе; коэффициент
диффузорности; коэффициент расширения для
переводного канала; угол установки "языка"
отвода; пропускная характеристика спиральной части.
Задача оптимизации проточной части является задачей многокритериальной условной
оптимизации, при этом ограничениями являются кавитационный запас и конструктивные
параметры, а критериями оптимизации являются гидравлический КПД насоса, кавитационный запас и радиальная сила на ротор.
Робастный анализ
Случайные отличия геометрических размеров и формы компонентов насосных агрегатов, обусловленные технологией изготовления
и качеством проведения обработки поверхностей (дефекты литья, отклонение геометрии
проточной части от чертежей, различия толщин лопаток, диаметров на входе и выходе,
щелей в уплотнениях, завышенная шероховатость и наплывы в проточной части и т.д.),
приводят к различиям между фактическими
характеристиками и паспортными.
В проточной части насосного агрегата
наибольшее влияние оказывают следующие
отклонения: наружного диаметра колеса, ширины выходного канала, угла выхода лопатки,
толщины лопатки на выходе, расстояния от
«языка» отвода до рабочего колеса, геометрия
языка, площадь сечения спиральной части отвода.
Робастный анализ (Robust Design – надежное проектирование) основывается на двух
положениях:
1. Исследование физических моделей агрегатов с целью получения экспериментальных данных для создания математических моделей.
2. В случае если экспериментальные данные не доступны, проводят многопараметрическую обработку результатов, полученных в
ходе расчетов, с исследованием зависимостей
показателей агрегата при решении установленной задачи.
Базой для описанных положений является
статистическая обработка полученных результатов.
Робастное проектирование позволяет снизить чувствительность функциональности изделия к разбросу случайных величин. В результате достигается:
- снижение зависимостей от случайных
параметров;
- повышение допустимых отклонений при
производстве компонентов;
- создание более надёжной конструкции;
- учет различий входных параметров.
Рассмотрим пример построение расчетного блока для недетерминированного анализа с
использованием встроенного инструмента
DesignXplorer “Анализ 6 сигм”.
По результатам вычислительного эксперимента в ANSYSCFX были получены
нейросетевые зависимости гидравлического
КПД насоса и радиальной силы на ротор от
углов установки лопасти на входе и выходе
для насоса МНН 7500/249
Для
формирования
зависимостей
 г  f NET  1s ,  2  и Fр  f NET  1 s ,  2  была применена типовая структура многослойного персептрона (MLP) со скрытым слоем, выходом и
двумя входами. При обучении MLP использовался алгоритм Левенберга-Маркардта. В итоге образованы два персептрона с тремя нейронами в скрытом слое, параметры которых
представлены в таблице.
Далее
разобрано
функционирование
сформированного персептрона. Выход сети
был рассчитан по следующей формуле
3
y  x   3 w j j  x   b0 ,
(1)
j 1
здесь x – вектор входов (в данном случае
двухмерный  1s , 2  ); (x) – функция активации; b0 – порог выходного нейрона; j – номер
нейрона в скрытом слое; wj – веса соединений
выходного нейрона с j-м нейроном скрытого
слоя.
38
Параметры аппроксимационного персептрона  г  f NET  1s ,  2 
Номер
нейрона j
Порог bj
Вес v1j
Вес v2j
Вес wj
Порог b0
1
2
3
1.729297
1.101144
0.5139975
-5.073048
-1.403757
5.311493
-2.289221
0.9236118
-1.20721
24.72034
18.81839
46.67931
0.1368938
Логистическая сигмоида
как функция активации:
 j  x 
используется
1

0.6142. Для угла лопасти на выходе принималось: математическое ожидание равно 19.198
градуса, среднеквадратичное отклонение равно 0.9599. По завершению расчетов видно, что
при математическом ожидании КПД равном
0.95304 КПД может варьироваться в пределах
от 0.9458 до 0.95811, т.е. разброс составляет
около 1.4 % по КПД. На рисунке приведены
параметры распределения КПД насоса.
1  exp t j  x, b j 

.
(2)
где bj – это порог j - го нейрона скрытого
слоя, а функция tj(x,bj) имеет вид
3
t j  x, b j    vij xi  b j ,
(3)
i 1
здесь vij – вес соединения j-го нейрона скрытого слоя с i-м входом.
При использовании параметров персептрона, входные переменные приводятся в диапазон [0;1] согласно следующим минимаксным формулам:
x1  0.1142857  1s  1.328571 ;
(4)
x2  0.1142857   2  2.014286 .
Используя формулу (1) определяем выход
сети, объединенный с искомым значением
гидравлического КПД следующей зависимостью
г 
 y  x   43.36238 
.
Параметры распределения выходного параметра - КПД
насоса
(5)
Из чего следует, что в результате численного эксперимента получена нейросетевая поверхность отклика   f   ,   , достовер46.60267
г
NET
1s
Заключение
В ходе опытной эксплуатации (доводке)
производится: составление банка 3D-моделей
компонентов конструкции опытного образца;
сравнение данных полученных в результате
конечно-элементного расчёта с экспериментальными данными опытной эксплуатации
насосного агрегата; определение численных
моделей по расчету внешних характеристик
опытного насоса; формирование улучшенной
методики расчета..
Во время этапа опытной эксплуатации
опытного образца насоса выполняется:
- создание базы альтернативных вариантов конструкций компонентов проточной ча-
2
ная при   11; 21 ,   17; 27  . Высокое зна1s
2
чение точности приближения даёт возможность использовать нейросетевую аппроксимационную зависимость в качестве имитационной модели для прогнозирования гидравлического КПД проектируемого центробежного
насоса.
Недетерминированный расчет проводился
в предположении, что угол лопасти на входе
является нормальной случайной величиной,
математическое ожидание равно 12.284 градуса, среднеквадратичное отклонение равно
39
Работа выполнена при поддержке Минобрнауки РФ в рамках проекта "Создание высокотехнологичного
производства
магистральных нефтяных насосов нового поколения с использованием методов многокритериальной оптимизации и уникальной экспериментальной базы" (Договор № 02G25.31.0100)
сти насосного агрегата (геометрий подводов,
профилей лопаток рабочих колес, отводов) с
рассчитанными критериями эффективности
функционирования (кавитационный запас,
КПД, радиальная сила воздействующая на ротор), соответствующих требованиям Паретооптимальности, то есть выполняется такое
требование, что для каждого варианта конструкции проточной части невозможно подобрать другого, который приводил бы к всех
критериев одновременно. В случае возникновения осложнений опытной эксплуатации, связанных с несоответствием по какому-либо
критерию, инженеру-конструктору доступен
альтернативный вариант для решения этих
проблем;
- Создание базы оптимизационных математических моделей ключевых компонентов
проточной части насосных агрегатов, учитывающих технологические погрешности, которые могу возникнуть в процессе изготовления
(т.н. стохастические алгоритмы), основанных
на методах компьютерной динамики жидкости
и на методах нелинейной оптимизации. Выполнение
робастной
оптимизации,
т.е.определение параметров компонентов конструкции проточной части, которые обеспечивают заданную эффективность насоса, «нечувствительных» к допустимым дефектам при
изготовлении. Во время этапа технического
проектирования проведение робастной оптимизации невозможно ввиду недоступности
статистических данных об имеющихся технологических погрешностях до появления опытного образца.
Литература
1. Валюхов С.Г., Булыгин Ю.А., Кретинин А.В.
Численное моделирование гидродинамических процессов в проточной части магистрального нефтяного насоса
// Разработка, производство и эксплуатация турбо-, электронасосных агрегатов и систем на их основе: Труды VI
Международной
научно-технической конференции
«СИНТ’11». – Воронеж: ИПЦ «Научная книга», 2011. –
С.61-65
2. Валюхов С.Г., Кретинин А.В. Математическое
моделирование гидродинамических процессов в проточной части центробежного насоса с использованием
нейросетевых алгоритмов / Насосы. Турбины. Системы.
2011, № 1. С. 53-60.
3. Sergey Valyuhov, Alexander Kretinin and Alexander
Burakov (2011). Neural Network Modeling of Hydrodynamics Processes, Hydrodynamics - Optimizing Methods and
Tools, Harry Edmar Schulz (Ed.), ISBN: 978-953-307-712-3,
InTech, Available from:
http://www.intechopen.com/articles/show/title/neuralnetwork-modeling-of-hydrodynamics-processes
4. Валюхов С.Г., Кретинин А.В. Оптимизация геометрии рабочего колеса центробежного нефтяного насоса
с использованием инструментов ANSYS // Материалы
международной конференции "Воронежская зимняя математическая школа С.Г. Крейна -2014". - Воронеж: ИПЦ
«Научная книга», 2014. – С. 76-83
5. Валюхов С.Г., Кретинин А.В., Галдин Д.Н., Баранов С.С. Оптимизационное проектирование проточной
части магистрального нефтяного насоса с использованием turbo инструментов ANSYS / Насосы. Турбины. Системы. 2015, № 1. С. 56-70.
Воронежский государственный технический университет
NON-DETERMENISTIC SIMULATION OF HYDRODYNAMIC PROCESSES
WITH USE OF ANSYS DESIGNXPLORER MODULE
A.V. Kretinin, D.N. Galdin, D.P. Shmatov
Use the opportunities of mathematical modeling of hydrodynamic processes in turbine setting of the of the centrifugal
pump by means of the package of finite element analysis ANSYS in conjunction with methods of nonlinear programming
allows to the optimized geometry of turbine setting, which provides maximum power efficiency of the pump
Key words: optimization, ANSYS, parametric modeling, hydrodynamic processes
40
Документ
Категория
Без категории
Просмотров
5
Размер файла
395 Кб
Теги
процессов, моделирование, designxplorer, недетерминированных, использование, гидродинамической, pdf, ansys, модуль
1/--страниц
Пожаловаться на содержимое документа