close

Вход

Забыли?

вход по аккаунту

?

Образование распознавание свойств смесей веществ и технологий по свойствам компонентов смеси.

код для вставкиСкачать
ОБРАЗОВАНИЕ
РАСПОЗНАВАНИЕ СВОЙСТВ СМЕСЕЙ ВЕЩЕСТВ
И ТЕХНОЛОГИЙ ПО СВОЙСТВАМ КОМПОНЕНТОВ СМЕСИ
МАЗУРОВ Вл.Д.
Рассматриваются задачи прогнозирования и диагностики свойств смесей материалов и технологий на основе методов линейного программирования и распознавания образов. Прогнозирование смеси осуществляется по свойствам компонентов
смеси. Проблема состоит в нелинейной и часто неформализованной зависимости
свойств смеси от свойств компонентов. Поэтому основная модель дополняется процедурами статистического обучения методов классификации и распознавания. Приводятся конкретные примеры задач такого рода.
THE RECOGNITION OF THE PROPERTIES
OF SUBSTANCES AND TECHNOLOGIES ON
THE PROPERTIES OF THE MIXTURE COMPONENTS
Vl.D. Mazurov
The prognosis and diagnosis processes for properties of mixtures are investigated on the
base of optimization and pattern recognition theory. The problem is some non ? formal
dependence of mixture properties from components dependences. Some examples of such
problems are given.
Методы распознавания образов (обуче- ращение к методам распознавания образов.
В работах, выполнявшихся нами совмения методов диагностики на основе статистик) и оптимизации (математического про- стно с геологами и геофизиками [1], метограммирования) применяются к задачам ды распознавания применялись для модеструктуризации сложных систем, их диаг- лирования некоторых пространственных
ностики и управления ими. В данной ста- неоднородностей. В геофизике и геологии
тье рассматривается задача определения применяются эмпирическое моделировасвойств смесей некоторых компонентов (на- ние и диагностика природных систем. Так,
пример, составляющих металлургических в задачах разбиения на однородные класшихт) по свойствам компонентов и свойств сы, в задачах районирования (выделения
комбинированных технологий из некоторых таксонов) природных областей приходится
составляющих элементарных или базисных строить поверхности, разделяющие множетехнологий, с учетом дополнительных фак- ства векторов.
Динамика таксонов вызывается миграциторов. Методы решения этой задачи используют построение допустимого множества ей химических элементов, которая обусловлинейных комбинаций векторов и дискри- лена рядом факторов: физико-химических,
минантный анализ ? построение поверхно- биогеофизических, техногенных. В анализе
сти, разделяющей конечные множества эле- данных надо разделять множества сигнаментов линейного векторного простран- лов, характерных для различных классов
ства. Проблема состоит в том, что свойства смесей векторов.
Задачи оптимизации ? это класс экстресмеси зависят от свойств компонентов нелинейным образом. И часто эта зависимость мальных задач, составленных целевыми
неформализована. Этим и определяется об- функциями многих переменных и системаВЕСТНИК УРАЛЬСКОГО ИНСТИТУТА ЭКОНОМИКИ, УПРАВЛЕНИЯ И ПРАВА
73
РАСПОЗНАВАНИЕ СВОЙСТВ СМЕСЕЙ ВЕЩЕСТВ
И ТЕХНОЛОГИЙ ПО СВОЙСТВАМ КОМПОНЕНТОВ СМЕСИ
МАЗУРОВ Вл.Д.
ми алгебраических уравнений и неравенств.
Отыскивается экстремальное значение целевой функции при этих ограничениях. В
основе методов решения таких задач лежат
методы для задач линейного программирования, в которых целевая (критериальная)
функция аффинна, а система ограничений
составлена из линейных неравенств.
В задачах прогнозирования свойств комбинированного сырья для металлургии [1]
по свойствам компонентов надо прогнозировать свойства шихт. В частности, в черной металлургии важно прогнозировать
прочность шихт. Действительно, металлургические предприятия имеют коксохимические цехи и агломерационные фабрики.
Для доменного процесса важен химический
состав кокса.
Многие задачи в этой области связаны
с разделением и дифференциацией смесей, моделируемых элементами многогранных множеств, с определением расстояний между множествами. Смесь
вектoров x(i), i = 1,?,m есть вектор
х(а) = а1 х(1) + ?+ am x(m), a = [a1,?,am],
(a,v) = 1, x(i) ? 0, v = [1,?,1].
Свойства смеси как некоторые такие же
комбинации свойств составляющих как правило не имеют места. При таком представлении множество всех теоретически возможных смесей есть выпуклая оболочка векторов a(i). Двойственное представление
множества осуществляется через систему
линейных неравенств. В этом случае мы
используем опоры множеств. Геометрически прозрачное понятие опоры множества
используется в дискриминантном анализе. Перейдем к деталям.
Пусть М ? множество в линейном пространстве L. Если А содержит М, то А ?
опора множества М. Для f F (F ?некоторый класс отображений L ? R) f ? опорой
множества М назовём множество
{x: f(x) < 0} M.
Опоры множеств используются как опо-
74
ры прецедентных множеств в дискриминантном анализе.
Задача опорных множеств сводится к решению сопряженных неравенств (то есть
мы ищем определенную функцию f): f(x) >
0 (x M), f(x) < 0 (x N).
Для случая, когда F ? множество аффинных функций, методы опорных множеств
исследованы С. Н. Черниковым. Для задач
дискриминантного анализа этот аппарат
исследован Вл. Д. Мазуровым и М. Ю. Хачаем.
Пусть L ? линейное пространство, L* сопряженное пространство, A, B содержатся как подмножества в допустимом множестве D ? подмножестве пространства L. Рассмотрим задачу дискриминантного анализа DA(A,B,F), F ? подмножество пространства L*. Эта задача состоит в нахождении
функции f из F, разделяющей множества А
и В. Например, F ? конус в L. В частном
случае L = Rn, L* = Rn. F = Rn+. Далее проводим сведение этой задачи к системе линейных неравенств и, в частности, к конечномерной системе. Затем можно рассмотреть комитетные решения этой задачи. Заметим, что из этой формулировки вытекает, что дискриминантный анализ можно представить как обобщение
задачи математического программирования. Потому обобщение, что вместо критериальной функции от f мы записали
более общее условие, что f принадлежит
множеству F. Если F ? линейное пространство, то задача сводится к системе
линейных неравенств (возможно, бесконечномерной). Линейные неравенства в
бесконечномерных пространствах изучены Фань-Цзи. Бесконечные системы линейных неравенств изучены С.Н. Черниковым.
Для определения множеств смесей и их
разделимости используются такие конструкции, как расстояния между множествами и фейеровские процессы вычисления
расстояний.
Если М ? подмножество векторов про-
ВСЕРОССИЙСКИЙ НАУЧНО-АНАЛИТИЧЕСКИЙ ЖУРНАЛ
ОБРАЗОВАНИЕ
странства Rn, то слабофейеровский сдвиг
из вектора х в вектор у таков, что
d(y,z)
d(x,z) (для всех z из М).
Здесь d - символ расстояния.
Смесь векторов х(1),?,х(m) есть вектор:
a(1)x(1) + ?a(m)x(m), a(1) + ?+ a(m) = 1,
a(i) ? 0 (I = 1,?,m).
И мы имеем два множества смесей: А и
В; А ? все смеси из векторов х(1),?,х(m), B
? все смеси из y(1),?,y(k). Анализ этих данных опирается на дискримиантный анализ.
Расстояние между множествами А и В определяется формулой
d(A,B) = inf {|x-y|: x A, y B}.
?
?
В качестве конкретного примера рассмотрим задачу прогнозирования свойств смесей веществ. В этой сфере существует потребность в конкретных методах повышении надежности прогнозирования. Так, в
распознавании свойств шихт в черной металлургии нами был применен метод комитетов распознавания образов с хорошим
практическим внедрением.
Задача, близкая к рассмотренной (но
со своими особенностями), ? прогнозирование свойств композитных материалов. Эта проблема важна в изучении и использовании новых материалов, в атомной промышленности, в космонавтике и
других современных технологиях. Строение этих материалов может быть самым
различным ? это и слоистое строение, и
волокнистое, и пористое. Однако их можно изучать с некоторой общей точки зрения ? что они представляют собой смеси
мелкозернистых компонент. Здесь, как
правило, применяется метод усреднения
[3]. Трудная формализуемость этой процедуры вытекает из того обстоятельства,
что физические параметры смеси разрывны и сильно изменяются при переходе от
одной составляющей к другой. При этом
информация может быть неполной. В этом
случае выход может быть найден на пути
использования методов распознавания образов и нейронных сетей.
Смешивание технологий используется
также в следующих ситуациях. В целом
ряде промышленных отраслей (металлургической, металлообрабатывающей, химической, нефтеперерабатывающей) используются методы получения линеек
продуктов из одного вида сырья. Задача
анализа этих ситуаций выглядит следующим образом.
Есть некоторое комплексное сырье. Из
него производится ряд видов продукции в
заданных пропорциях. Из m(i) единиц продукции соответствующих видов составляется ассортиментный набор. Существуют n
технологий обработки сырья. Надо найти
неотрицательные числа x(i) ? доли сырья,
используемые по этим технологиям. Выбор
эффективной смеси связан с нахождением
оптимальной по некоторым критериям комбинации компонентов. Максимизируется
число ассортиментных наборов. Получается задача линейного программирования.
Так как зависимость свойств смеси от
свойств компонент часто неформализована,
то методы линейного программирования
дополняются методами дискриминантного
анализа.
ЗАКЛЮЧЕНИЕ
Методы опорных множеств, используемые в дискриминантном анализе, применяются для решения задач диагностики
смесей веществ и технологий. Диагностика осуществляется на основе методов дискриминантного анализа и математического программирования. Приводятся примеры конкретных задач прогнозирования и
диагностики смесей материалов и технологий.
ВЕСТНИК УРАЛЬСКОГО ИНСТИТУТА ЭКОНОМИКИ, УПРАВЛЕНИЯ И ПРАВА
75
РАСПОЗНАВАНИЕ СВОЙСТВ СМЕСЕЙ ВЕЩЕСТВ
И ТЕХНОЛОГИЙ ПО СВОЙСТВАМ КОМПОНЕНТОВ СМЕСИ
МАЗУРОВ Вл.Д.
ЛИТЕРАТУРА
1. Мазуров Вл.Д. (ред.) Метод комитетов в распознавании образов. УНЦ АН СССР,
1974.
2. Мазуров Вл.Д., Хачай М.Ю.. Комитетные конструкции. Известия Уральского государственного университета. 1999 № 14. Серия ?Математика и механика?.
3. Attoush Hedy. Homogeneisation. Sem. Bourbaki, 1987 ? 88.
4. Мазуров Вл.Д. Метод комитетов в оптимизации и классификации. М.: Наука, 1990.
5. Еремин И.И. Теория линейной оптимизации. Екатеринбург: УрО РАН, 1998.
6. Ky Fan. On systems of linear inequalities. University Notre Dame ? 1954.
7. Черников С.Н. Линейные неравенства. М.: Наука, 1968.
76
ВСЕРОССИЙСКИЙ НАУЧНО-АНАЛИТИЧЕСКИЙ ЖУРНАЛ
Документ
Категория
Без категории
Просмотров
6
Размер файла
140 Кб
Теги
компонентов, технология, смеси, свойства, образования, распознавание, веществ, смесей
1/--страниц
Пожаловаться на содержимое документа