close

Вход

Забыли?

вход по аккаунту

?

Гармонический анализ дробных обмоток.

код для вставкиСкачать
621.313.3.045
.
,
.
.
,
.
.
-
.
,
.
,
Z
p
.
m
,
.
Wdmkz
Z
k z mp
q
Q
,
d
.
Q=Z/(kzm), m –
m
, kz –
2m
2
,
k
.
,
k
-
=p,
,
q.
R
(
)
)
[1],
-
k
5.4-5.7].
[3,
k ,
15
.
,
,
,
,
.
.
W1mkz
Wdmkz
-
-
k ,
W1mkz
Wdmkz .
-
,
kD
mk z
q sin
.
.
PQ
,
(1)
,
PQ
R
R
.
n–
mQn 1
d
,
,
R–
(2)
-
.
.
(
Q d
.
( =d)
(
k
)
,
Z
,
)
,
k .
©
ISSN 2074-272X.
-
.
,
mk z q
–
.
1mkz
sin
-
,
,
W1mkz
)
-
.
-
t kz
.
(
-
m
-
30
,
.
[2].
,
.
,
.
.
.
k
[1].
,d–
1
,
(
(1),
.
. 2013.
2
.
29
,
,
.
.
-
,
.
, . .
[2], -
,
,
,
p
,
.
.
k
(1)
,
.
=
,
PQ
,
k
.
= T.
,
(Q)
-
W1mkz
= ,
,
-
= / = /T.
-
.
=d
.
,
k ,
.
-
= / .
-
[4].
.
[3]
-
[2].
,
Wdmkz
q,
.
2m
-
d
.
(
Q
,
-
-
.
,
.
d
-
,
),
.
,
,
,
2m
d
-
= /T,
–
=1, 2, 3, 4, …,
,
d
.
.
,
,
-
d
2m
-
(kz=2)
Z.
=1, 3, 5, 7, …
d=2.
,
,
k
,
.
-
.
.
k ,
,
Wdmkz
,
-
(2).
,
,
Q
,
2m
d,
,
d,
Z0=kzmQ.
p
-
n),
.
,
(
d
:
(2),
(
R
n.
.
m
n)
-
Q
.
W1mkz
,
( =1),
-
[4, 5].
:
(1).
,
-
-
(2)
,
R
.
,
30
,
n1 –
R–
ISSN 2074-272X.
mQn1 1
,
d
(2')
,
-
.
. 2013.
2
, . .
-
-
k
.
,
Q
,
2
kz
R
2
kz
ZR
k
2
k z mQ
(
2
.
kz
0
.
k D k z mQ n2
Q
k D 2 k z mQ n 2
=2 /(mkZQ)
kD
0
kD
k
0
(1)
sin
kD
mk z
Q sin
R
mk z Q
Q sin
mk z Q
kD
Q
kz
(3)
.
k
. 1,
k =f 0)
kz
,
0.
,
.
,
-
,
,
(3)
Q
0=f
, . .
0
k
mm
Q,
-
(5).
(1)
1
,
-
.
(3)
k
.
q sin
,
,
sin
-
m
, .
kD
.
)
-
0R
mk z
(1')
,
mk z q
Q
kz
Q sin
M
M1 M 3
0
.
0R
(3')
mk z Q k z
(2', 3', 4,5)
,
0=1,
.
M1
mk z
kD
(1)
d 1
:
"0"
,
(3)
-
,
2
sin
(
2
0
sin
M3
,
cos
0
sin
M1
0.
0,
3
:
.
Q 1
1
kz
-
0)
2m
,
(3)
k .
k =f
mm
2
0
M
. 2,
0)
,
,
"+1", "–1"
(4).
k =f
,
)
k
.
Q,
,
(
0
(5)
-
. 1.
.
0
.
0
kD
0
(4)
0),
-
,
k
k z mQ n 2
,
0
-
-
k
)
0
R
sin
mk z
–
2, 3, 4, 5, 6, 7,…
-
Wdmkz.
1 k z mQ n2 1
n2=1, 2, 3, 4,… –
NZ
2N Z
k z mQ n 2 ,
.
,
Wdmkz.
k 0,
-
,
Q
NZ
d
-
ISSN 2074-272X.
k
0
-
,
2mQ / k z .
NZ
-
[6-8]
k
.
0
. 2013.
2
31
k =f
,
)
. 3.
. 2.
k =( )
k =f 0)
(q=5/4)
-
k
.
(
)
. 2,
,
.
.
. 1.
k =f 0)
( , q=4)
( , q=5)
-
. 3, .
Q=q
,
k =f
)
,
k
,
-
0
d
.
.
3, .
,
(1')
(3')
,
(1')
,
,
,
(4). (
k =f
/
/d
,
,
.)
0).
m
,
–
k =f
2m
.
q
,
d
.
-
.2
Q.
k =f
)
k =f
0)
2m
Q (q=5/4),
n3 –
2m
m
k =f )
/d
.
.
0
.
-
k
Wdmkz,
-
-
k
k
,
–
(7, 1', 4, 5)
.1,
(4)
32
)
(7)
,
,
-
k =f
0
(6)
0,
–
. 3.
,
(d=4)
2k z mQn3
2k z mQn3
d
,
k
.3
. 3,
k .
-
k
,
d
0),
,
2NZ
-
,
.
k =( )
-
0
-
ISSN 2074-272X.
Wdmkz
-
,
,
–
q=Q.
. 2013.
2
,
,
,
.
1.
.
.–
.:
2.
, 1933. – 364 .
.
, 1959. – 766 .
.:
3.
.–
.
. – .:
, 1989. – 400 .
.
, 2006. – 652 .
.
4.
.:
5.
.,
.
2008. – 350 .
6.
.,
.,
. "
:
k =( )
k =f 0)
(q=4/5)
.
-
,
,
–
.
,
.
.
(
:
;
Q.
Wdmkz
,
-
–
(7).
-
,
.
ISSN 2074-272X.
,
Wm
-
.
.-
.
". –
Bibliography (transliterated): 1. Rihter R. Obmotki yakorej mashin
peremennogo i postoyannogo tokov. - M.: ONTI, 1933. - 364 s.
2. Livshic-Garik M. Obmotki mashin peremennogo toka. - M.:
Gos`energoizdat, 1959. - 766 s. 3. Zherve G.K. Obmotki `elektricheskih
mashin peremennogo toka. - L.: `Energoatomizdat, 1989. - 400 s.
4. Ivanov-Smolenskij A.V. `Elektricheskie mashiny. T.1. - M.: Izdatel'skij dom M`EI, 2006. - 652 s. 5. Vol'dek A.I., Popov V.V. `Elektricheskie mashiny. Mashiny peremennogo toka. Uchebnik dlya
vuzov. - SPb:Piter, 2008. - 350 s. 6. Soroker T.G., Mordvinov Yu.V.
Sostavlenie shem i raschet obmotochnyh ko`efficientov simmetrichnyh
petlevyh obmotok mnogofaznogo peremennogo toka // Vestnik `elektropromyshlennosti. - 1955. 2. - S. 16-21. 7. Zaharov M.K. O nekotoryh
osobennostyah prostranstvennogo raspredeleniya magnitodvizhuschih sil
simmetrichnyh obmotok peremennogo toka // Nauchnye zapiski Odesskogo
politehnicheskogo instituta. - T.25. - 1960. - S. 38-47. 8. Degtev V.G.,
Radimov I.N. Analiz namagnichivayuschih sil obmotok peremennogo
toka// Resp. mezhved. nauch.-tehn. sb. "`Elektromashinostroenie i `elektrooborudovanie". - Kiev: Tehnika, 1975. - 20. - S.122- 128.
12.12.2012
,
d.
k )
//
2. – . 16-21.
20. – .122- 128.
k )
-
NZ
-
//
. – .25. – 1960. – . 38-47.
.
//
.
, 1975. –
,
.
.
8.
. 3.
.
.–
. – 1955. –
7.
. .1. –
65058,
, .
(063)9779569
e-mail:kem.deg@gmail.ru
.,
.,
,1
Degtev W.G.
Fractional windings harmonic analysis.
Investigation results for multiphase windings of a united variety
that includes windings with fractional and integer number of
slots per pole and phase are given. An algorithm of the specified
windings distribution coefficients calculation by random orders
harmonics is introduced. An analytic ratio of the windings harmonic composition correspondence allowing representing the
structure of the united variety as a set of homologous chains is
determined.
Key words – fractional windings, distribution factor, winding
factor, homologous chains, symmetric components method,
universal algorithm.
. 2013.
2
33
Документ
Категория
Без категории
Просмотров
4
Размер файла
213 Кб
Теги
анализа, обмоток, дробных, гармонические
1/--страниц
Пожаловаться на содержимое документа