close

Вход

Забыли?

вход по аккаунту

?

Применение символьных вычислений к исследованию дискретных моделей некоторых классов генных сетей.

код для вставкиСкачать
∗
2
1 2 2
1
! " #
"
$
# %
$ &'( )*+,,
- #
"
$
# " #
#
" &'( )*+,,
! " ! #
#
$#
! % &' ()*+
, # $#
' + -#" ' " #
# .
'#$! # #' #
/' %
0! 1
# ." &
#& (2*+ 3 .
# ' '
" # .#
1 %& .#&
+ 4# %
" " ## ! # $#'
!
#' # #! '
$&#
" #
.#+
5 6 " '7 88 " #
1 .#+ , # ()* .# " #"
6 ' #
#7 " ## . + 9 1
# 1
. '
" " ! .#
..#
$$#&" # (: 8 ;*+ <
1 )=>= '+ #
(>* " " . .#& '
! "#
! !$ %"#
& ' () **
+
, , ,,,-, ,. , ,,/- 01
∗
:?
:)
#
+ , (@* #
# '.
' #
.#' $& # #' #
' # #' # # &# '#$+ 5 (@* . #
(A*! ' .# . # #' #' # #
'
+
B
1 #
. 1 #
! .#
(@! A*+ <
&" # .# %
" '#
. # #+
5
! .# . (2*! $&# #' #'
# ' .# .
&
#& # # #
# $&! .
#+ C #! # $#'
%&
#
#
" .
"
" /
0! .# # .# #
# # # .
+ C # ! !
"
.
# $& #
(@! A*+ 5
# .#
# #+ < .#
. .# . . #+ C .# # &# '
+ D . . . '
! #
(@*+
4
" G = G (U, D) E #
# '#$ .
" #
'!
|U| = n+ 9 # i ∈ U .#. & xi ∈ {0, . . . , p − 1}! i = 1, . . . , n! 1 &
#& #F #" p! p ≥ 2! .# # '#& . # G "+
G#$ G " # AG : Γnp → Γnp ,
' # Γnp n $
Γp =
{0, . . . , p − 1}+ # .#
#
# '#$ G+ -&! .# 1 # ! '
" # .+ , #
(@* #
# ' ! # # AG " 1
⎧
⎪
⎪
⎪ xi + 1, x ∈X xj = 0 xi < p − 1,
⎪
j
⎨
i
xj > 0 xi > 0,
AG (xi ) = x1i = ⎪ xi − 1, 6)7
⎪
xj ∈Xi
⎪
⎪
⎩ x , +
i
4# Xi = ∅ .'! xj ∈Xi
xj = 0+ H" x̃ = (x1 , . . . , xn ) E " # # '#$ GF Xi E # U\ {i}! ' # # i! x1i E # i! i = 1, . . . , n! AG (x̃) = x̃1 +
B #+ ) .#
$&# ' # AG ! 6)7+ G#$ #' # # ' " + I E # '#$! # E &
#& 1
1 #+ H
" p = 5+ G#$ .# .
!
:2
# .#
' " .# #
.# # AG ! xj > 0
' 6)7 # JK K " &
#& 6 i ∈ {IV, V} ⇒
xj ∈Xi
.# %
xi > 07F # J &
#& 6
i = I X = ∅ ⇒
xj = 0 .# %
xI < p − 17F # JJ JJJ &
#& 6
xj ∈X
i = II
xj > 0! x = 0! i = III
xj = 0! X = ∅! xj ∈X
xj ∈X
x = 4 = p − 17+
H . . .#"' ' # AG # # '#$ G! # # .# + L
# $& .#
# 6)7 p (@*+
, #
(@! A* #
# # & .# . ! " #' # AG +
, ! " . & # AG + M ) E %
. + M r ! r ≥ 2! #
x̃ = x̃0 ,
x̃1 = AG (x̃) , . . . ,
x̃(r−1) = AG x̃(r−2) ,
AG x̃(r−1) = x̃+
, (@* . 1
.
#! .# &# '#$ .&"'
6Gn,k '#$7! " .#.# & ≥ 2 #+ I"
" Gn,k '#$ .#
(@ 8 ))*+
D '#
' #
' ! . . # /#' # .##0!
."
" ' 67 # ()?*+
, 1 #
' ! . (2! @! A*! .1
" .#
# + D # .
# .# " '#
! # # #'
# # #1 #.
'#$ $& 6#"
NOP QRSTT.7+
. % #
"
::
, # ) .# #
#"
! 1 1 #
' # #!
" #
#
# '#
# #
" ##
+ , " " .#
" .##
'#
! ' " #
.#
'#
! ."1 .# .#
"
+
I 2 . 1 %.#
+ 4# #"
# . . ' (@! A* #
2??+ U.#
.#" '#$ #"# .#
# Pij E # " ' i j 6. ' # .# #
2+)+)7+ 9# '! ! . (@*! # #& $&" '#$ )?? # . . 1 #+
5
1 .# #1 ." #
$
&! 1 ' .# # # #
+
I
# #
$& f = {fk }k∈N ,
fk : {0, 1}k → {0, 1}∗ .
5
# .#
! # #
$&! # . 1 k
)7 ' k ∈ N $& fk .# {0, 1} 6 $
.
k
domfk = {0, 1} 7F
27 1
.#'# Mf ## C"#' 6DVC7!
1 .#" $& f F
:7 " .#'# Mf #
k # . k +
D ." fk ∈ f " $
.#
#
$& fk
! 1 )8:+ I
#
#1 $&
fk y #
$& fk ∈ f .# (Mf , k) y ∈
range fk F #
x ∈ {0, 1}k ! y = fk (x)+ <1 #1
#
$&! #1 ." # )8:! # Inv (f )+
W # # L (x1 , . . . , xn ) = β,
β ∈ {0, 1} ,
627
' L (x1 , . . . , xn ) E .#" $# .# X = {x1 , . . . , xn }+ I # 627 #
(α1 , . . . , αn )! αi ∈ {0, 1}! i ∈ {1, . . . , n}! .
#' 627 #1
%
#
/ β = β 0+ X ' # 1
! '# ! :Y
# #+ #
# . # # + X # #! + , # # C (x1 , . . . , xn ) = 1! ' C (x1 , . . . , xn ) E #" $# 69B-7 .# X = {x1 , . . . , xn }+ H . # #
NOP+
!! " #$%
& $
!"
'(
")*
< NOP. # Inv (f ) 1 #! &.
" ' # 9 ()2*+
$ k #$
!
" fk ∈ f !
(Mf , k) !
∗
C x1 , . . . , xq(k) !" !" X = x1 , ..., xq(k) q (·) %
! & '
C x1 , . . . , xq(k) y (
(
!"
!" ( X ∗ ) *
Cy x1 , . . . , xq (k) q (k) < q (k) ! y ∈ range fk !
y ∈/ range
fk & + Cy x1 , . . . , xq (k) ! , Cy x1 , . . . , xq (k) = 1 ( x ∈ {0, 1}k - fk (x) = y &
D
"
# " .#
+ <
! #
#
$#" " C"#' ' # #
#+ , #
():* .# "
'
' #"
'# #'
# 6VBI!
QOZ7 E ! # '# #" " ! C"#'+ U
"
.# ##
.&
#' # #! .##1' '#
#
$
& #' # +
C# ) $##
' #
# #1 #
$
& NOP+ , 1 .
NOP [\
#+ <
! 1 .#
.# ! NOP
.
" /%$$
0 6 .#
7 .#&# . # %#
'#
+ , . )? .#'# .#
# NOP
'#! "
.&! .&# # $#& ()Y*+ - %$$
#
NOP#
"! . ! " .#
#
# ! # " '#
NOP .#
.#! ." # #
6
#
' #1 #! ! .#
#
#
.# #+7+ < #'
." ." NOP. #
#1 #
$& $
! .#
.&
# NOP#
" #
" #.
# $# (); 8 )@*+ B %
' " .#.
%$$
NOP. ! # 6 #.
7 ## .&"! " " #+
:;
+ ,$!$ !$
* #$-
* AG "
" #%*
.$!$ #$%
$
!"
'(
")*
, # #
#
# # .#
. # AG . .#&." " 1 . # #+
W ."
" #
.#&# ' # ()2 8 )A*+ D " & .
#
# ()2* ' # #& '#$ 6 σ1 7 # #" .
6 σ2 7+
<.# $& f A =
fkA
.# k∈N
+ D ' #"' k $& fkA .
.#" x ∈ {0, 1}k + , σ1 σ2 .
x = x |x + W "! x #
" AG
z̃ ' " ' 6. .#7! ' x .# σ1 #& '#$ G! x " .#
σ2 ' # # '#$ G 6# z̃ ! 1 n & !
' n E # '#$ G7+
X x #
AG # ! $&
A
fk .#
?! x #
AG
# z̃ ! fkA # z̃ 1 = AG (z̃)+
B . "! .# # #" #
'#
."
# $& +
A
A
I
# .#" f = fk
+ .
k∈N
A
A
$& g = gk
! .# 1 #
k∈N
gkA (x
k
∈ {0, 1} ) =
0,
1,
fkA (x) = 0 ∨ (fkA (x) = 0)&(z̃ 1 = z̃),
(fkA (x) = 0)&(z̃ 1 = z̃).
<! g A # '#
.
" # $& + 4
" Mg E DVC.#'#! 1 $&
' + B.# # ) 1 $
+
$ k ! " gkA ∈ gA !
(Mg , k) ! #$
∗
C !" !" X = x1 , . . . , xq(k) q (·) % !
./0 ( X ∗ ) & '
C (
* C1 x1 , . . . , xq (k) q (k) < q (k) ! x ∈ {0, 1}k x = x |x x AG x & 1 !
#$ C1 x1 , . . . , xq (k) ( ! ( !
! x x &
/"$.$ 0#%$ $1
4 "
. # " '#! %
# . .##+ 4# 1 "
+ I
.#'#
Mg {0, 1}k .#
" :>
k
#! # ' " '! ' 1
x ∈ {0, 1}
# ():*+ 4# %
.#! .# X = {x1 , . . . , xk }! #1 + , .# 1
.# .1 .## M
()=*+ <
.
' # . "
#"
.
"
.##
M
.#
# C1 x1 , ..., xq (k) = 1+ 4# %
k
.
' " '! '
{0, 1} # .
# # C1 x1 , . . . , xq (k) = 1+ X %
k
.
! & + , ' {0, 1} #
.#
# .
#! 1'
# C1 x1 , . . . , xq (k) = 1+
, ' #"
E " # .# #
# ' ! + + #& '#$ G! . #
#! 1 . # AG + D
"! .
"
x1 , . . . , xs E # # #" .
! # . #' # AG + H #& '#$ G+ C# 2 $
#
! .
.
" 1 #+ ,.#! #
" '#
.# # AG x1 , . . . , xs .
" ! 1 s #
9B-])+ <1 .# # %
.
#! #1 #& '#$ G 6#1 # x 7+ D
.#
# 9B- = 1! # #' .
# x +
<
! NOP. . " # " . # AG ! # '#$ G 2?? # '##
#+ , . %.#
.#
NOP. " #
" #& '#$ 6. . 7 )?? # 6.# %
." 1 " .
$#7+
< NOP. .# # .# !
' .1" # #
# NOP+ 4# .
# 6.##! .# .# . 7 $#& # .#
"! 9B- .#11 '#
+ < 1 # . '#
+
2 34566 !! " .$!$$ #$%
!"
'(
")*
, 1 # QRSTT. .. # .# #$& .#
'# (2?! 2)*! ' .# # Inv (f )+
5." ! ! .##! (22*! .
"! '#
k
$& gkA ! gkA ∈ g A ! .#" {0, 1} " .#
S gkA $&" %
{&, ∨, ¬}+ L
'
) %
' #
! $& ## #
A
S gk ! k ∈ N ! # . k + , .
:@
S gkA .# X = {x1 , . . . , xk }! #1
+ , . S gkA .# y +
4 S gkA ..
" .
#
" QRSTT.#
B gkA 1 $&
(2:! 2Y*+ 4#1
' . ! .
# B gkA .# # # ! # 6. AG #& '#$7
A
! / 0 E " .
B gk # #
" # /)0+ B
.
! '#
# .#&# .
# B gkA .# # + W '! #! . # # ." ##
! 1
." '#
.
# QRSTT.#
1 $& .#.! P = NP (2;*+
, . . # . AG ! $& .
#
# # 6)7! .# QRSTT. "
.# '#$ # ≤ 100 6+ 1 #7+ 4#
! ." 1 " .
$# .
&
'#
. 1
" . #"
+
2 345645
! , # .# #"
%.#
. #
' ! . (@! A*+ W # .
. #! .# #' # # %
! #& '#$ . .
+ , %.#
."" " .
$#
O^_^ `:Na 6Jbc dea 2 T_e P@2;? 2fgh! 2 fi Q! jbkel^ K^c :2ic7+
"! ' & " #
) 2 ! .
" # !
#1 ' ! ' .
# 1
# #
$& .#'# 6 #
# ) 27+ 5
.#
' +
" !-
" $!!
$$
#$-
*
4# #"
. ' ! # $&
.#
# 6.#' $&7 6)7 (@*+
. . 1 # # " " .#
'# #"
#
(@*+
U
#"
" $'##
$# # :+
n
6+ (@*7+
$ +
," *
7 8/9& ! &
/& + x̃ = (x1 , . . . , xn) p( ( , xi = 0 xi = p − 1 i = 1, . . . , n&
:A
/ 0
.1 2 3 # Pij 4
$ 5 1/ 4
5 16 45 17 45
:& + x̃ = (x1 , . . . , xn) p( s > 1 ỹ = (y1, . . . , yn) yi =
0, xi = 0,
i = 1, . . . , n,
s − 1, xi = p − 1,
s( &
4# $
# . .#
. . # ! ' 6)7! ' # ! ' 6p = 27
⎧
xj > 0,
⎪
⎨ 0, xj ∈Xi
AG (xi ) = x1i =
6:7
⎪
xj = 0
⎩ 1, xj ∈Xi
6.# Xi = ∅ ! xj ∈Xi
xj = 07+
, %.#
! #"
# .#
! .""
$&" '#$! '## # . 1 .#
+ , #& '#$ n # ' '" . 6
.
"7F %
aij .#" i, j ∈ {1, . . . , n}! i = j ! .#
/)0 $# # " Pij 6# " 1
' # # i # # j 7 /?0 # " 1 − Pij + B #+ 2
.# .## ' )? #! # '## +
!! " "( !-
" $!!
$$
C# : " %$$
.# . .
.#" ' 2+
:=
U
$
" ! ." # . . $##
.# . # #
.#
.## 6.# %
#
.
." #"
# 27+
I
# ' " p = 2! $&# # .
6:7+ , %
' #
' n ∈ N # AG #
$&
AG : {0, 1}n → {0, 1}n .
n
4
" x1 , . . . , xn E .#! #1 # {0, 1} + L
# 6:7! "! # x̃ = (x1 , . . . , xn ) . # AG ' " '! ' # #
⎧ ⎪
⎪
⎪
x1 ≡ & xj1 = 1,
⎪
⎪
⎪
xj1 ∈X1
⎪
⎪
⎪
⎪
⎪
⎨ x ≡
& xj2 = 1,
2
6Y7
xj2 ∈X2
⎪
⎪
⎪
⎪
.
.
.
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩ xn ≡ & xjn = 1,
xjn ∈Xn
.# i ∈ {1, . . . , n} : Xi = ∅ 1 # .#
xi = 1+
H . # 6Y7 . . 1 # 1 9B- C .# X = {x1 , . . . , xn }
x1 ∨
∨
xj1 ∈X1
xj1 ·
&
xj1 ∈X1
(x1 ∨ xj1 ) · ... · xn ∨
∨
xjn ∈Xn
xjn ·
&
xjn ∈Xn
(xn ∨ xjn ) .
6;7
<
! .# .
" 6
&
():*7 .#! C (x1 , . . . , xn ) #
O(n2 )+
8 " . $ AG
# /11 1/ 19
;
?
$
?$
;
:
$
" <=> 1/
1@A
1
.1
/99A71
1A
1@7
.
.A
//16AB
1@
16/
/
.A
..C.79
16
16C
A
.9
AA@@@
1B
1B/
@
.7
.@/A@
1C
1C/
6
//
.1.9B
17
1C/
.1
A.
../@.
19
179
.A
A7
.76C9
Y?
4 9B- .#
.&# NOP
#
+ , %.#
." NOP#
" b^c 2+?
6+ (2>*7+ W '## # '#$ 2?? # . ;? ' .#
# Pij . 0.2 ?+= ' 0.1+ , + )
.# # # .! " " 6. 1 # 7 . + <
! '##
. .# #+ X $&
" '#$ n # . #'#$ .
"! ! #
6:7! .
"! 1 ' n . ! .# i . ! i ∈ {1, . . . , n}! .
#! # i #
&! " #
+ D $
." .## ##
"' %.#
.#
' . '#$ 2?? # ' 2?? .
##
" .## Y? #
#
b^c 2+?+
34566 !! " "( !-
" $$
#$-
*
4 #
#
$& # S
⎧
⎪
⎨
U1 (x1 , . . . , xn ) = 1,
...
⎪
⎩
Um (x1 , . . . , xn ) = 1
n
.
" $& χS : {0, 1} → {0, 1}! $#
U1 (x1 , . . . , xn ) · . . . · Um (x1 , . . . , xn ) .
-
$& " #
#
$& n
.#" # α ∈ {0, 1} # S m
X B E QRSTT.#
$& χS ! # S
.# .
# QRSTT B #" # /)0+ 5 #+ :
! .
# QRSTT # /)0 " # .
6 "
/?07! # .# "! 1 '# ! #
6 # .# .
$'##
! 1
# '
.#
" ?! )7+
C #! .
# QRSTT.#
B #
#
$
& #! .1 . ' # ! #! 1 %
. ! .# .
#
B #" & 6.%
/ 0 #
# QRSTT
.#
7+ , 1 .
" # ! 1 # B ! ." '#
/Ncne_bc0 W#
(2:*+
, 1 # %.#
." QRSTT#
" #
! ##
5DCo < ILB (2@*! # .# #
6Y7+ I"
%.#
.# + 2 6 '
.#
# / #0 Pij = 0.5 .# # # . # 2? 7+
Y)
A )*+,,
#
" 4@5 .1 Pij = 0.5 4 $ .5
8 " / $ AG 4.5 $
)*+,,
D 61
C1
71
91
.11
: )*+,, < 10 E ∼ 1 ∼ 2.5 ∼ 9 ∼ 15 "! . #
QRSTT. " .#'#
NOP
.+ U
! QRSTT'#$ #
# ! 9B-+ #' #! . .
# QRSTT! "! . $#& . #
#'
# +
" !-
" $$
#$-
* 7$
*
("(
X1 . #
' E ! .# 6
"
.
7 # #
#+ D
# #
# (A*+ -& .#
# %
# '
" . "
.
+ C '#$! 1 #' # # ' ! " .
# #+ D # 6. w 7 .#' $
& .# ! ' 6)7 6 Xi = ∅! xj = 07
xj ∈Xi
Y2
Aw
G (xi ) =
D
⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩
xi + 1, xi − 1, xj ∈Xi
xj ∈Xi
xj = 0 xi < p − 1,
xj > 0 xi > 0,
.
xi ,
# # 6. b7 .#' $& 1 6
xj = 07
Xi = ∅! xj ∈Xi
AbG (xi ) =
⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩
xi + 1, xi − 1, xj ∈Xi
xj ∈Xi
xj = 0 xi < p − 1,
xj > 0 xi > 0,
6>7
.
xi ,
B ' # .#
# : .#
.
. #! .#' $& # 6p = 27
⎧
xj > 0,
⎪
⎨ 0, xj ∈Xi
w
AG (xi ) =
⎪
xj = 0,
⎩ 1, AbG
6 Xi = ∅! xj ∈Xi
xj = 0!
(xi ) =
xj ∈Xi
xj ∈Xi
⎧
⎪
⎨
0, ⎪
⎩
1, xj ∈Xi
xj ∈Xi
xj > 0,
6@7
xj = 0
xj = 07+
#! .1 . '
.! .
+ D # .
! &
' 6Y7+ D # #! # 6@7! ! 1
1 ⎧ ⎪
⎪
⎪
x1 ≡ ∨ xj1 = 1,
⎪
⎪
xj1 ∈X1
⎪
⎪
⎪
⎪
⎪
⎪
⎨ x ≡ ∨ x
= 1,
2
j2
xj2 ∈X2
6A7
⎪
⎪
⎪
...
⎪
⎪ ⎪
⎪
⎪
⎪
⎪
⎪
∨ xjn = 1.
⎩ xn ≡
xjn ∈Xn
D %
#
x1 ∨
∨
xj1 ∈X1
xj1
&
xj1 ∈X1
(x1 ∨ xj1 ) · ... · xn ∨
∨
xjn ∈Xn
xjn
&
xjn ∈Xn
(xn ∨ xjn ) = 1.
6=7
C #! .# .# 6A7 6=7 6
! .# .# 6Y7 6;77 .
" .#! .# .# #
" O (n2 )+
, + : .# #"
%.#
. . .
"
.
# ." NOP
.+
Y:
8 " A $ AG
# /11 $
#
"
;
?
$
?$
;
:
$
" <=> 1/
1@/
1
.A
BCB.
1A
166
.
.@
./@A
1@
17/
1
..
76B
16
.A/
1
..
./@@
1B
.9.
1
C
.@7.
1C
/@9
1
7
.B7C
17
A16
1
B
.C@C
19
A77
.
@
.666
4# # .
" #+ , %.#
#
#
" ! # # #" # &
! " + 4#
# /# " '0 ?+2 ?+=+ D ' # '##" ;? + , + : .# # # .! " " 6. 1 # 7 .
+ 5 #"
%.#
! . .
' #
# " . .#
!
' #
" #
. . # .# " #+ W '! " ##
" #
# # .#1 + 4# ."
## ## 6.## . # 7 "
" . ! # " .#" # (A*+
+ ,$!$ $
$) -
$' .$!$&%
$!!
$$
4# #"
%.#
. .
# #& '#
$! 1 # ! . . #+
W " .#. ! . #'
n
n
' # AG : {0, 1} → {0, 1} + C#
" '#$ G! .#
1 #+ # '# ! .# %.#
."" # ' '#$+
# 2! #& G .
" 1 #
$& # .##
" .
.#'# #! # .#
. . 1 # 9B- CG + D ! .#' $
& # 6)7! & 1
.#1
E 1
# .
" /.# 0! ." #
# '#$+
4 %
1 .##+
YY
I
# # AG : {0, 1}3 → {0, 1}3 .
C#
.
#
" #& '#$ G! 1' #! .#.! ' . y = (y1 , y2 , y3 ) , z = (z1 , z2 , z3 )+
H. #& '#$ G .# ⎛
⎞
⎜
⎝
0
a12 a13
a21 0
a23 ⎟
⎠,
a31 a32 0
aij ∈ {0, 1} ,
i, j = 1, 2, 3.
I Y 1 .
' " $&" '#$! %
#&+
I"
# AG .
.#"' # x̃ ∈
{0, 1}3 ! x̃ = (x1 , x2 , x3 )! .
" 1 6#"
#1 #
# x̃1 = (x11 , x12 , x13 )7
x11 = (a21 · x2 ∨ a21 ) · (a31 · x3 ∨ a31 )
x12 = (a12 · x1 ∨ a12 ) · (a32 · x3 ∨ a32 )
x13 = (a13 · x1 ∨ a13 ) · (a23 · x2 ∨ a23 )
x11 = (x2 ∨ a21 ) · (x3 ∨ a31 )
x12 = (x1 ∨ a12 ) · (x3 ∨ a32 ) .
x13 = (x1 ∨ a13 ) · (x2 ∨ a23 )
∼
4#.!
# AG . y =
(y1, y2 , y3 ) , z = (z1 , z2 , z3 )+ C' .
#& '#$ G # #
⎧
⎪
(y1 ≡ (y2 ∨ a21 ) · (y3 ∨ a31 )) = 1,
⎪
⎪
⎪
⎪
⎪
⎪
(y2 ≡ (y1 ∨ a12 ) · (y3 ∨ a32 )) = 1,
⎪
⎪
⎪
⎪
⎨ (y ≡ (y ∨ a ) · (y ∨ a )) = 1,
3
1
13
2
23
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩
(z1 ≡ (z2 ∨ a21 ) · (z3 ∨ a31 )) = 1,
(z2 ≡ (z1 ∨ a12 ) · (z3 ∨ a32 )) = 1,
(z3 ≡ (z1 ∨ a13 ) · (z2 ∨ a23 )) = 1.
C #& '#$ G ' ' .
" .#
" 6. "
.
' ." # 27 # + < .# .# ' . NOP .
" 6/&
0 ():*7
.#+
, + Y .# #"
%.#
. #& $&" '#$ ' )?? # .#'
1
2
3
@ F! #
"
$
# Y;
8 " @ $ " #
"
$
# .11 #
" 4.5
:
$ 4Pij 5
16
19
196
.
;
" <=> 1/7 1@A 1@C
1/C
D .G.A .1G/7 @G.C
.11
;
6B7 .@16 9B@ BB.B
;
" <=> ./67 @/9C //C6 B1/7
" ;
A9AB AB./6 .1@7. 96.6.7
" $& 6)7 . 1 #+ 4#
# /# " '0 .# ?+;! ?+=! ?+=;+ D '
'##" ;? + D ' '##' '#$
" . + B . #
" NOP CG = 1! # # " .
"
#
#& G+ D .#
# Pij ! )! #
CG = 1 " " #+ < .# Pij = 1 NOP
#! 1 #& .' #'#$ .
"+
5 .#
#"
! # #
#
#
. ! . # #
#& $
&"' '#$+ B" #
" #& .' '#$ 6
1 9B- # 2 7+ "!
#& .' #'#$ .
" n #! 1' 6)7! " . n .
6
# #7 ." # ! ." ! . (A*+ , 1 #
#
#"
" ! .
#1' ##
" .# '#
+
<. #
" '#
. . # 6
+ + &# $&# ' 7 .
.#
"
" #
'#$
#
#
" "' 6 #7+ I#
.#.
#
' ! # '#$
#
# #' #' # + C #
#! ! /
. '#$0 ! ! . # " #" ' +
4#! .# . #
' ##
' '#
.# .#"
'#$
#
# + 4# %
. .#.'
#"# "
. '#$! /0 $& #! # #' .#
# +
Y>
D "' #
#
#' . .#.'
.
# .
&#' # # ' ! .#
#
'#$! . # # .1 ."
NOP QRSTT#
+ C # # .
1
" %$$
# . . ! & #! .# # .
# $&+
" H.I (JK LMNOEMONK PQR SOQEMTUQ US VUWXYKZ [KM\UN]L ^^ &_'` )Ka /11A
bUY @6 [U / c .BCG/6B
H/I $
^ % =d <
;; 0
:d e :d =- ;F d= /117 CBC HAI ! "# $% f #
"
^^ ; /11A 8 B g /4.@5 ; B@G71
H@I &'( ) *+ " #, f $
^^ d= 8 /11@ g B ; ABG@6
H6I -# ! &'( ) #, ? ^^ h
/11@ 8 @@
; //CBG//96
HBI ./00 12 `KMPiUYTE LMPiTYTMj PQR KXTkKQKLTL TQ NPQRUWYj EUQLMNOEMKR kKQKMTE QKML ^^
l (JKUN +TUY .9B9 bUY // [U A c @ACG@BC
HCI !,3, 4- 4# 5, % =
" ! #
"
^^ :
8 %
g .@ /116 ; /1BG/./
H7I 4# &, F #
"
^^ 8 /116 V /.AG/.C
H9I 4# # 46 $ "
#
" ^^ :
8 m
$
# /117 g /4A5 ; .7G/.
H.1I 4# - d
$ #
"
^^ : /117 8 .A2 :
<=m d$> ; # g A4675 D __ ; A.GAC ;
?
# n:$
#"
o
H..I 4# # 46 $ #
" ^^ ? pb__ ?
n;
$ ! o =- ;F d= /117
; ABG@/
H./I !7, -8 - :$
?- ?
.97/
H.AI 8
" #
" "
$
^^ %
;
# : / - 0m /117 ; C1G97
Y@
H.@I 19:;< HJMMX-^^\\\LPMYTaKUNkI
H.6I = 6 >+' - ? &'( #
^^ : /117 8 .A
g B ; .A@G.61
H.BI = 6 8
&'(
^^ % /117 g . ; @AG61
H.CI = 6 =
^^ : /117 8 9 ; .17G..7
H.7I @+#, A 3'B & <
" d ?- ? .976
H.9I C ! F ^^ f eF? d= ;;; .9B7 8 7 ; /A@G/69
H/1I &', D !,5,3 6 @'# - :#" - `URKY VJKE]TQk
?- ?q=?F /11/
H/.I !, )6 E' ) :#" ^^ ;
# /116 : .1 ; ..@G.CA
H//I &, F G, H I I d %
?- ?q=?F
/11. 966 H/AI JKL9 M rNPXJiPLKR PYkUNTMJWL SUN iUUYKPQ SOQEMTUQ WPQTXOYPMTUQ ^^ _sss (NPQLPEM
VUWXOM .97B bUY A6475 c BCCGB9.
H/@I ;N $O POQRNS P 'YkUNTMJWL PQR ,PMP &MNOEMONKL TQ bt&_,KLTkQ- *+,,uUOQR
PMTUQL PQR 'XXYTEPMTUQL +KNYTQ2 vKTRKYiKNk2 [K\ wUN]- &XNTQkKNbKNYPk .997 /BC X
H/6I "
!
#
" ^^ d= 8 /119 g 6
; @CGB.
H/BI ;;19 HJMMX-^^WTQTLPMLK^`TQT&PMJMWYI
H/CI %3T A'T 4 $
!
#
" ^^ :
8 m
# /119 g .4B5 ; ..6G./9
Документ
Категория
Без категории
Просмотров
3
Размер файла
428 Кб
Теги
классов, вычисления, символьные, дискретное, сетей, применению, генные, некоторые, моделей, исследование
1/--страниц
Пожаловаться на содержимое документа