close

Вход

Забыли?

вход по аккаунту

?

Богатиков Красицкий Лапко Рагойша Шиманович. - Сборник задач вопросов и упражнений по общей неорганической химии (2003).pdf

код для вставкиСкачать
А.Н.Богатиков, В.А.Красицкий, К.Н.Лапко,
А.А.Рагойша, И.Е.Шиманович
Сборник задач, вопросов и упражнений
по общей неорганической химии.
Учебное пособие
Сборник задач, вопросов и упражнений по общей неорганической химии
[Электронный ресур]: Учебное пособие / А.Н.Богатиков, В.А.Красицкий,
К.Н.Лапко, А.А.Рагойша, И.Е.Шиманович. — Электрон. текст. дан. (1,2 Мб). —
Мн.: Научно-методический центр “Электронная книга БГУ”, 2003. — Режим
доступа: http://anubis.bsu.by/publications/elresources/Chemistry/bogatikov.pdf . —
Электрон. версия печ. публикации, 2002. — PDF формат, версия 1.4 . — Систем.
требования: Adobe Acrobat 5.0 и выше.
МИНСК
«Электронная книга БГУ»
2003
© А.Н.Богатиков, В.А.Красицкий,
К.Н.Лапко, А.А.Рагойша,
И.Е.Шиманович, 2003.
© Научно-методический центр
«Электронная книга БГУ», 2003
www.elbook.bsu.by
elbook@bsu.by
M>D
;;Dy
;
: \ l h j u
:G;h]Zlbdh\<:DjZkbpdbcDGEZidh
::JZ]hcrZB?RbfZgh\bq
J _ p _ g a _ g l u
dZn_^jZobfbb;_ehjmkkdh]h]hkm^Zjkl\_ggh]h
i_^Z]h]bq_kdh]hmgb\_jkbl_lZbfFLZgdZ
aZ\dZn_^jhc^hp_glNNEZo\bq);
dZg^b^Zlobfbq_kdbogZmd^hp_gldZn_^juh[s_cobfbb
;_ehjmkkdh]h]hkm^Zjkl\_ggh]hf_^bpbgkdh]hmgb\_jkbl_lZ
K<LdZq_\
;h]Zlbdh\:G
;
K[hjgbdaZ^Zq\hijhkh\bmijZ`g_gbcihh[s_cg_hj]Zgb
q_kdhcobfbbMq_[ihkh[b_:G;h]Zlbdh\<:DjZkbpdbc
DGEZidhb^j–Fg;=M–k
ISBN 985-445-803-2.
Mq_[gh_ihkh[b_khklZ\e_gh\khhl\_lkl\bbkijh]jZffhcdmjkZh[s_c
b g_hj]Zgbq_kdhc obfbb ^ey klm^_glh\ nZdmevl_lZ nmg^Zf_glZevghc b g_
ljZ^bpbhgghc f_^bpbgu b [bheh]bq_kdh]h nZdmevl_lZ Ihkh[b_ \dexqZ_l
\hijhku ^ey kZfhklhyl_evghc jZ[hlu klm^_glh\ mijZ`g_gby b aZ^Zqb ih
^\Z^pZlvh^ghcl_f_
M>D
;;Dy
ISBN 985-445-803-2
‹Dhee_dlb\Z\lhjh\
‹;=M
IH;S:YOBFBY
=E:<:I
:LHFGH-FHE?DMEYJGH?MQ?GB?
HKGH<GU?IHGYLBYBA:DHGUOBFBB
D \Z`g_crbf ihgylbyf obfbb hlghkylky obfbq_kdbc we_f_gl
Zlhf fhe_dmeZ bhg \_s_kl\h obfbq_kdh_ dhebq_kl\h \_s_kl\Z
fhev
Obfbq_kdbc we_f_gl – hij_^_e_gguc \b^ Zlhfh\ oZjZdl_jb
amxsbckyh^bgZdh\ufaZjy^hfZlhfguoy^_jGZijbf_j\k_kms_kl
\mxsb_\h<k_e_gghcZlhfukaZjy^hfy^jZh[jZamxlobfbq_kdbc
we_f_gl \h^hjh^ G \k_ Zlhfu k aZjy^hf y^jZ – we_f_gl
mjZg (U<gZklhys__\j_fyba\_klghobfbq_kdbowe_f_glh\
:lhf – we_dljhg_cljZevgZyobfbq_kdbg_^_ebfZyqZklbpZkh
klhysZy ba iheh`bl_evgh aZjy`_ggh]h y^jZ b hljbpZl_evgh aZjy
`_gguo we_dljhgh\ :lhfu kh_^bgyxlky ^jm] k ^jm]hf obfbq_kdhc
k\yavx h[jZamy fhe_dmeu beb djbklZeeu \_s_kl\ JZaf_ju b fZkku
Zlhfh\ qj_a\uqZcgh fZeu GZijbf_j fZkku Zlhfh\ m]e_jh^Z b db
kehjh^ZjZ\gukhhl\_lkl\_ggh–26d]b–26d]<obfbb
gZjy^mkZ[khexlgufbagZq_gbyfbfZkkZlhfh\rbjhdhbkihevamxlky
b agZq_gby hlghkbl_evguo Zlhfguo fZkk Hgb h[hagZqZxlky :r (r –
i_j\Zy[md\Zkeh\Z©relativeªqlhagZqbl©hlghkbl_evgucª
Hlghkbl_evgZyZlhfgZyfZkkZ Ar – nbabq_kdZy\_ebqbgZjZ\
gZyhlghr_gbxkj_^g_cfZkkuZlhfh\^Zggh]hwe_f_glZdqZk
lb fZkkugmdeb^Z12K.
?kebfZkkZZlhfZ12KjZ\gZ–26d]lh
ma (12 C) 1,995 ⋅ 10 −26 d]
=
= 1,663 ⋅ 10 −27 d].
12
12
Wlm \_ebqbgm gZau\Zxl Zlhfghc _^bgbp_c fZkku b h[hagZqZxl
kbf\hehf ©uª hl Zg]ebckdh]h ©unitª qlh agZqbl ©_^bgbpZª LZdbf
h[jZahf
1u = 1,663·10–27 d]
GZijbf_jhlghkbl_evgZyZlhfgZyfZkkZdbkehjh^ZjZ\gZ
ma (O) 2,658 ⋅ 10 −26 d]
Ar(O) =
=
= 16 .
1u
1,663 ⋅ 10 − 27 d]
3
Fhe_dmeZ – f_evqZcrZy kihkh[gZy d kZfhklhyl_evghfm kms_
kl\h\Zgbx qZklbpZ khojZgyxsZy \k_ obfbq_kdb_ k\hckl\Z ^Zggh]h
\_s_kl\Z Fhe_dmeufh]mlkhklhylvdZdbaZlhfh\h^gh]hwe_f_glZ
lZd b ba Zlhfh\ jZaguo we_f_glh\ Fhe_dmeu y\eyxlky ghkbl_eyfb
khklZ\Zbobfbq_kdbok\hckl\h[jZah\Zgguobfb\_s_kl\JZaf_jub
fZkkufhe_dmelZd`_qj_a\uqZcghfZeuGZijbf_jfZkkZh^ghcfh
e_dmeu \h^u jZ\gZ –26 d] Ijb ijh\_^_gbb jZkq_lh\ \ obfbb
lZd`_ bkihevamxlky hlghkbl_evgu_ fhe_dmeyjgu_ fZkku h[hagZ
qZxsb_kykbf\hehfMr.
Hlghkbl_evgZyfhe_dmeyjgZyfZkkZ Mr – nbabq_kdZy\_ebqbgZ
jZ\gZy hlghr_gbx kj_^g_c fZkku fhe_dmeu \_s_kl\Z d 1/12 qZklb
fZkkugmdeb^Z 12K
GZijbf_jhlghkbl_evgZyfhe_dmeyjgZyfZkkZ\h^ujZ\gZ
mfhe_dmeu H 2O 2,99 ⋅ 10−26 d]
Mr(H2O) =
= 18 .
=
1u
1,663 ⋅ 10− 27 d]
AgZq_gb_Mr \_s_kl\Z\k_]^ZjZ\ghkmff_agZq_gbcArh[jZamx
sbo_]hwe_f_glh\kmq_lhfqbkeZboZlhfh\\fhe_dme_
Bhg –h^gh-bebfgh]hZlhfgZyqZklbpZh[eZ^ZxsZywe_dljbq_
kdbfaZjy^hf
H^ghZlhfgu_bhguKZ2+ Kl–, Na+, S2–;
fgh]hZlhfgu_bhgu1+4+, SO42–KH3COO–.
Bhgukh_^bgyxlky\khhl\_lkl\bbkboaZjy^Zfbh[jZamyfhe_
dmeubebdjbklZeeu
<_s_kl\h –mklhcqb\Zykbkl_fZqZklbpZlhfh\bhgh\bebfhe_
dmeh[eZ^ZxsZyhij_^_e_ggufbnbabq_kdbfbbobfbq_kdbfbk\hc
kl\Zfb
< gZklhys__ \j_fy ba\_klgh hdheh fbeebhgh\ \_s_kl\ <k_
hgb^_eylkygZ]jmiiu–\_s_kl\Zfhe_dmeyjgh]hbg_fhe_dmeyjgh
]hkljh_gby
D \_s_kl\Zf fhe_dmeyjgh]h kljh_gby hlghkylky \_s_kl\Z kh
klhysb_ ba fhe_dme DZd ijZ\beh wlb \_s_kl\Z h[eZ^Zxl gbadbfb
l_fi_jZlmjZfb ieZ\e_gby ]Zau `b^dhklb b e_]dhieZ\db_ l\_j^u_
\_s_kl\Z Obfbq_kdb_ nhjfmeu lZdbo \_s_kl\ gZau\Zxlky fhe_dm
eyjgufb.
D \_s_kl\Zf g_fhe_dmeyjgh]h kljh_gby hlghkylky \_s_kl\Z \
maeZodjbklZeebq_kdboj_r_lhddhlhjuogZoh^ylkyZlhfubebbhgu
Wlb\_s_kl\ZdZdijZ\behh[eZ^Zxl\ukhdbfbl_fi_jZlmjZfbieZ\
e_gbybijbdhfgZlghcl_fi_jZlmj_\k_]^ZgZoh^ylky\l\_j^hfZ]j_
]Zlghf khklhygbb D lZdbf \_s_kl\Zf kh\_jr_ggh g_ijbf_gbfh ih
4
gylb_ ©fhe_dmeZª <f_klh g_]h bkihevam_lky ihgylb_ ©nhjfmevgZy
_^bgbpZ \_s_kl\Zª Obfbq_kdb_ nhjfmeu \_s_kl\ g_fhe_dmeyjgh]h
kljh_gbyy\eyxlkyijhkl_crbfbbebwfibjbq_kdbfbnhjfmeZfb
NhjfmevgZy_^bgbpZN?keh`gh]h\_s_kl\Zg_fhe_dmeyjgh]h
kljh_gby–mkeh\gZyg_kihkh[gZydkZfhklhyl_evghfmkms_kl\h\Z
gbx ]jmiiZ Zlhfh\ beb bhgh\ khklZ\ dhlhjhc khhl\_lkl\m_l wf
ibjbq_kdhcnhjfme_^Zggh]h\_s_kl\Z
?keb\_s_kl\hg_fhe_dmeyjgh]hkljh_gbykhklhblbaZlhfh\g_
kdhevdbo we_f_glh\ gZijbf_j SiO2_]hnhjfmevghc_^bgbp_cy\ey
_lkymkeh\gZyqZklbpZkhklhysZyba-]hZlhfZSib-oZlhfh\HHgZ
y\ey_lky mkeh\ghc ihlhfm qlh \ djbklZee_ hdkb^Z dj_fgby IV g_l
hl^_evguofhe_dmeSiO2hgkhklhblbafgh`_kl\ZZlhfh\dj_fgbyb
dbkehjh^Z Gh \_kv djbklZee fh`gh mkeh\gh jZa^_eblv gZ ]jmiiu
Zlhfh\\dZ`^hcbadhlhjuo[m^_lh^bgZlhfSib^\ZZlhfZHLZdbf
h[jZahfnhjfmevgZy_^bgbpZhdkb^Zdj_fgbyIV) –mkeh\gZyj_Zev
ghg_kms_kl\mxsZyqZklbpZ©SiO2».
?keb\_s_kl\hg_fhe_dmeyjgh]hkljh_gbyh[jZam_lbhggmxdjb
klZeebq_kdmxj_r_ldmgZijbf_jNaCl_]hnhjfmevghc_^bgbp_c[m
^_l mkeh\gZy qZklbpZ khklhysZy ba h^gh]h bhgZ Na+ b h^gh]h bhgZ
ClØ HgZ y\ey_lky mkeh\ghc ihlhfm qlh \ djbklZee_ oehjb^Z gZljby
g_l fhe_dme NaCl l d hg khklhbl ba bhgh\ Gh \_kv wlhl djbklZee
fh`ghmkeh\ghjZa^_eblvgZ]jmiiubhgh\\dZ`^hcbadhlhjuo[m
^_lbhgNa+bbhgClØKe_^h\Zl_evghnhjfmevghc_^bgbp_coeh
jb^ZgZljbyy\ey_lkymkeh\gZyqZklbpZkhklhysZyba-obhgh\
Dkeh`guf\_s_kl\Zfg_fhe_dmeyjgh]hkljh_gbyg_evayijbf_
gylvihgylb_©hlghkbl_evgZyfhe_dmeyjgZyfZkkZªIhkdhevdmkljmd
lmjgufb_^bgbpZfblZdbo\_s_kl\y\eyxlkyg_fhe_dmeuZmkeh\gu_
nhjfmevgu_ _^bgbpu d gbf ijbf_gbfl_jfbg©hlghkbl_evgZynhj
fmevgZyfZkkZªHgZh[hagZqZ_lkyMf,r(X).
Hlghkbl_evgZy nhjfmevgZy fZkkZ Mf,r(X) – \_ebqbgZ jZ\gZy
hlghr_gbx fZkku h^ghc nhjfmevghc _^bgbpu \_s_kl\Z O d qZklbfZkkugmdeb^Z12K.
AgZq_gb_Mf,r jZ\ghkmff_agZq_gbcArwe_f_glh\kmq_lhfqbkeZ
boZlhfh\\nhjfmevghc_^bgbp_
<Z`g_crbfbdhebq_kl\_ggufboZjZdl_jbklbdZfbex[h]h\_s_
kl\Zy\eyxlky_]hobfbq_kdh_dhebq_kl\hfZkkZbh[t_f
Obfbq_kdh_dhebq_kl\h\_s_kl\Z– nbabq_kdZy\_ebqbgZijh
ihjpbhgZevgZyqbkemkljmdlmjguo_^bgbpZlhfh\fhe_dmebebN?
kh^_j`Zsboky \ ^Zgghc ihjpbb \_s_kl\Z Obfbq_kdh_ dhebq_kl\h
5
\_s_kl\Zh[hagZqZ_lkykbf\hehf«n».?^bgbp_cobfbq_kdh]hdhebq_
kl\Z\_s_kl\Zy\ey_lkyfhev
Fhev – lZdh_ obfbq_kdh_ dhebq_kl\h \_s_kl\Z \ dhlhjhf kh
^_j`blky Â23 _]h kljmdlmjguo _^bgbp l _ klhevdh kdhevdh
kh^_j`blkyZlhfh\\m]e_jh^_12KfZkkhcd]
QbkehÂ23gZau\Z_lkyihklhygghc:\h]Z^jhbh[hagZqZ_lky
kbf\hehfN::
N: = 6,02·1023fhev–1.
FZkkZ \_s_kl\Z \aylh]h \ dhebq_kl\_ fhev gZau\Z_lky fh
eyjghc fZkkhc ^Zggh]h \_s_kl\Z HgZ h[hagZqZ_lky kbf\hehf F b
\ujZ`Z_lky\d]fhevbeb]fhev
FZkkZ\_s_kl\Zqbke_gghjZ\gZijhba\_^_gbx_]hobfbq_kdh]h
dhebq_kl\ZbfheyjghcfZkku
m(X) = n(X) · M(X)
H[t_f]Zahh[jZagh]h\_s_kl\Z\aylh]h\dhebq_kl\_fhevgZ
au\Z_lkyfheyjgufh[t_fhf\_s_kl\Z.Hgh[hagZqZ_lkykbf\hehf
Vfb\ujZ`Z_lky\f3fhevbeb^f3fhev
H[t_f]ZaZijb^Zgghf^Z\e_gbbbl_fi_jZlmj_qbke_gghjZ\_g
ijhba\_^_gbx _]h obfbq_kdh]h dhebq_kl\Z b fheyjgh]h h[t_fZ ba
f_j_ggh]hijbl_o`_mkeh\byo
V(X) = n(X) · Vf(X)
LZdbf h[jZahf obfbq_kdh_ dhebq_kl\h \_s_kl\Z qbkeh _]h
kljmdlmjguo_^bgbpfZkkZbh[t_f^ey]Zah\k\yaZguf_`^mkh[hc
khhlghr_gb_f
m( X ) V ( X ) N ( X )
n( X ) =
=
=
.
M ( X ) Vm ( X )
NA
D\Z`g_crbfaZdhgZfobfbbhlghkylkyaZdhgkhojZg_gbyfZkku
\_s_kl\ZaZdhgihklhygkl\ZkhklZ\Z\_s_kl\ZaZdhgobfbq_kdbowd
\b\Ze_glh\baZdhgu]Zah\h]hkhklhygby
AZdhgkhojZg_gbyfZkku\_s_kl\Z
FZkkZ \_s_kl\ \klmib\rbo \ obfbq_kdmx j_Zdpbx qbke_ggh
jZ\gZfZkk_\_s_kl\h[jZah\Z\rboky\j_amevlZl_j_Zdpbb
K lhqdb aj_gby Zlhfgh-fhe_dmeyjgh]h mq_gby \ oh^_ j_Zdpbb
ijhbkoh^blebrvi_j_jZkij_^_e_gb_Zlhfh\ghg_baf_gy_lkyboh[
s__dhebq_kl\hIhwlhfmh[sZyfZkkZ\k_oZlhfh\lZd`_g_baf_gy
_lkyWlhlaZdhge_`bl\hkgh\_jZkq_lh\ihmjZ\g_gbyfj_Zdpbc
6
AZdhgihklhygkl\ZkhklZ\Z\_s_kl\Z
Ex[h_ keh`gh_ \_s_kl\h fhe_dmeyjgh]h kljh_gby g_aZ\bkbfh
hlkihkh[h\_]hihemq_gbybf__lihklhyggucdZq_kl\_ggucbdheb
q_kl\_gguckhklZ\
Klhqdbaj_gbyZlhfgh-fhe_dmeyjgh]hmq_gby\ijhp_kk_h[jZah
\Zgby fhe_dmeu h[uqgh mqZkl\m_l g_[hevrh_ qbkeh Zlhfh\ dhlhju_
kh_^bgyxlky\k_]^Z\kljh]hhij_^_e_gghfdhebq_kl\_gghfkhhlghr_gbbIhwlhfmdhebq_kl\_gguckhklZ\h[jZamxsbokyfhe_dmeZke_^h\Zl_evgh b khklZ\ h[jZamxsboky \_s_kl\ fhe_dmeyjgh]h kljh_gby
hdZau\Z_lkyihklhygguf<ijhp_kkZo`_h[jZah\ZgbydjbklZeeh\g_fhe_dmeyjgh]hZlhfgh]hbebbhggh]hkljh_gbymqZkl\m_lhq_gv[hevrh_qbkehqZklbpdhlhju_kh_^bgyxlkyg_\k_]^Z\kljh]hhij_^_e_gghf dhebq_kl\_gghf khhlghr_gbb Ihwlhfm dhebq_kl\_gguc khklZ\
h[jZamxsbokyZlhfguobebbhgguodjbklZeeh\fh`_l[ulvi_j_f_gguf\aZ\bkbfhklbhlkihkh[h\boihemq_gbyDhebq_kl\_gguckhklZ\
keh`guo\_s_kl\m^h[gh\ujZ`Zlvq_j_afZkkh\u_^hebwe_f_glh\
FZkkh\Zy^heywe_f_glZ\\_s_kl\_–qbkehihdZau\Zxs__dZ
dmxqZklvhlh[s_cfZkku\_s_kl\ZkhklZ\ey_lfZkkZZlhfh\^Zg
gh]hwe_f_glZFZkkh\Zy^heyh[hagZqZ_lkykbf\hehf©wªb\ujZ`Z
_lky eb[h \ ^heyo _^bgbpu eb[h \ ijhp_glZo gZijbf_j beb
35 FZkkh\u_^hebwe_f_glh\:b<\keh`ghf\_s_kl\_:o<mjZk
kqblu\ZxlkyihnhjfmeZf
x ⋅ Ar ( A)
y ⋅ Ar ( B)
;
.
w( A) =
w( B) =
M r ( Ax B y )
M r ( Ax B y )
IjbwlhfkmffZagZq_gbcfZkkh\uo^he_cwe_f_glh\\oh^ysbo\
khklZ\\_s_kl\Z\k_]^ZjZ\gZbeb
Ijbf_j<uqbkeblvagZq_gbyfZkkh\uo^he_cwe_f_glh\\Zah
lbklhcdbkehl_
J_r_gb_
JZkkqblZ_fagZq_gb_Mrdbkehlu
Mr(HNO2) = Ar(H) + Ar(N) + 2Ar(O) = 1 + 14 + 32 = 47.
JZkkqblZ_fagZq_gbyfZkkh\uo^he_cwe_f_glh\
1 ⋅ Ar (H )
1
w(H ) =
=
= 0,021 = 2,1 %;
M r (HNO 2 ) 47
w( N) =
1 ⋅ Ar ( N)
14
=
= 0,298 = 29,8 % ;
M r (HNO 2 ) 47
w(O) = 100 % − 2,1 % − 29,8 % = 68,1 % .
7
Ijbf_j .Hij_^_eblvijhkl_crmxnhjfmemh^gh]hbahdkb^h\
ZahlZ\dhlhjhffZkkh\Zy^heydbkehjh^ZjZ\gZ
J_r_gb_
ImklvfZkkZhdkb^ZNxOyjZ\gZ]JZkkqblZ_ffZkkuZlhfh\
ZahlZbdbkehjh^Z\hdkb^_
Zm(O) = m(NxOy) · w2 ]Â ]
[m(N) = m(NxOy) – m(O) = ]–] ]
GZc^_fobfbq_kdb_dhebq_kl\ZZlhfh\ZahlZbdbkehjh^Z
m( N )
36,85 ]
=
fhev
Zn(N) =
M ( N ) 14 ]fhev
[n(O) =
m( O )
63,15 ]
=
fhev
M (O) 16 ]fhev
GZc^_ffheyjgh_khhlghr_gb_ZahlZbdbkehjh^Z\hdkb^_
n(N) : n(O fhevfhev fhevfhev
Ke_^h\Zl_evghbkdhfZynhjfmeZhdkb^Z– N2H3.
Ijbf_j . G_ba\_klgh_ \_s_kl\h fZkkhc ] kh`]eb \ ba[uld_
dbkehjh^Z b ihemqbeb m]e_dbkeuc ]Za fZkkhc ] b \h^m fZkkhc
3,6 ]Hij_^_eblvfhe_dmeyjgmxnhjfmemk]hj_\r_]h\_s_kl\Z_keb
hlghkbl_evgZyiehlghklv_]hiZjh\ih\ha^momjZ\gZ
J_r_gb_
Ihkdhevdm \ j_amevlZl_ k]hjZgby \_s_kl\Z h[jZah\Zebkv m]e_
dbkeuc]Zab\h^Z^_eZ_f\u\h^qlh\_]hkhklZ\\oh^ylm]e_jh^\h
^hjh^b\hafh`ghdbkehjh^
JZkkqblZ_ffZkkmm]e_jh^Z\h[jZah\Z\r_fkyKH2:
FKH2 ]fhevÂ]fhev ]fhev
]KH2) kh^_j`Zl ]K
-"x]K x =]K
]KH2)
JZkkqblZ_ffZkkm\h^hjh^Z\h[jZah\Z\r_cky\h^_
FG2H Â]fhev]fhev ]fhev
]G2H kh^_j`Zl ]G
-"m]Km ]G
]G2H
GZc^_fkmffmfZkkm]e_jh^Zb\h^hjh^Z\oh^b\rbo\khklZ\
bkoh^gh]h\_s_kl\Z
m(C) + m(H ]
IhkdhevdmkmffZfZkkKbG]f_gvr_fZkkuk]hj_\r_]h
\_s_kl\Z]^_eZ_f\u\h^qlh\_]hkhklZ\\oh^belZd`_bdbkeh
jh^fZkkZdhlhjh]hjZ\gZmH = 6 – ]
8
Hij_^_ebfijhkl_cr__fheyjgh_khhlghr_gb_KGbH\bk
oh^ghf\_s_kl\_l__]hijhkl_crmxnhjfmem
m(C) m(H) m(O)
n(C) : n(H) : n(O) =
:
:
=
M (C) M (H) M (O)
2,4 ]
0,4 ]
3,2 ]
:
:
=
= 1 : 2 : 1.
12 ]fhev 1 ]fhev 16 ]fhev
LZdbfh[jZahfijhkl_crZywfibjbq_kdZynhjfmeZ\_s_kl\Z–
KG2H
Ke_^m_lhlf_lblvqlhijhkl_crZynhjfmeZ\_s_kl\Zhlh[jZ`Z_l
ebrv ijhkl_cr__ gZbf_gvr__ qbkeh\h_ khhlghr_gb_ Zlhfh\ we_
f_glh\\g_fFhe_dmeyjgZy`_nhjfmeZ\_s_kl\ZhljZ`Z_lj_Zevgh_
qbkehZlhfh\dZ`^h]hwe_f_glZ\fhe_dme_bihemqZ_lkymfgh`_gb_f
bg^_dkh\\ijhkl_cr_cnhjfme_gZhij_^_e_ggh_qbkehjZa
JZkkqblZ_fagZq_gb_fheyjghcfZkkubkoh^gh]h\_s_kl\Zih
_]hhlghkbl_evghciehlghklb
M1(CxHyOz) = 29 · D\ha^ = 29 · ]fhev
JZkkqblZ_fagZq_gb_fheyjghcfZkkubkoh^gh]h\_s_kl\Zih
_]hijhkl_cr_cnhjfme_
M2(CH2O ]fhev
Ihkdhevdm agZq_gb_ F1 [hevr_ agZq_gby F2 \ jZaZ lh ^ey
gZoh`^_gbyfhe_dmeyjghcnhjfmeu\_s_kl\Z\k_bg^_dku\_]hijh
kl_cr_cnhjfme_gm`ghm\_ebqblv\jZaZLZdbfh[jZahfbkdhfZy
nhjfmeZ–K3G6H3.
AZdhgwd\b\Ze_glh\
<_s_kl\Z\klmiZxl\j_Zdpbbbh[jZamxlky\j_amevlZl_j_Zd
pbc\wd\b\Ze_glguodhebq_kl\Zo
<gZqZe_ jZkkfhljbf hij_^_e_gby ihgylbc obfbq_kdbc wd\b\Z
e_gl qbkeh wd\b\Ze_glghklb nZdlhj wd\b\Ze_glghklb fheyjgZy
fZkkZwd\b\Ze_glZfheyjguch[t_fwd\b\Ze_glZbdhebq_kl\h\_s_
kl\Zwd\b\Ze_glZ
Obfbq_kdbcwd\b\Ze_gl–j_ZevgZybebmkeh\gZyqZklbpZ\_s_
kl\Z dhlhjZy \ dbkehlgh-hkgh\ghc j_Zdpbb wd\b\Ze_glgZ l _ obfbq_kdb jZ\ghp_ggZ h^ghfm bhgm G+ Z \ hdbkebl_evgh-\hkklZgh\bl_evghcj_Zdpbb–h^ghfmwe_dljhgm
J_ZevgZy qZklbpZ – fhe_dmeZ Zlhf beb bhg mkeh\gZy qZklbpZ –
hij_^_e_ggZyqZklviheh\bgZlj_lvbl^fhe_dmeuZlhfZbebbhgZ
9
<h[s_fkemqZ_wd\b\Ze_glex[h]h\_s_kl\ZOh[hagZqZ_lkyke_1

^mxsbfh[jZahf  ∗ ( X ) ]^_z* –qbkehwd\b\Ze_glghklb
z

Qbkehwd\b\Ze_glghklbz* –qbkehbhgh\G+\dbkehlgh-hkgh\ghcj_Zdpbbbebqbkehwe_dljhgh\\hdbkebl_evgh-\hkklZgh\bl_evghc
j_Zdpbbdhlhjh_wd\b\Ze_glghobfbq_kdbjZ\ghp_gghh^ghcqZklbp_\_s_kl\ZO
1
qbkeh dhlhjh_ ihdZau\Z_l
z∗
dZdZy^heyqZklvj_ZevghcqZklbpuOwd\b\Ze_glgZh^ghfmbhgmG+
\ dbkehlgh-hkgh\ghc j_Zdpbb beb h^ghfm we_dljhgm\hdbkebl_evgh\hkklZgh\bl_evghcj_Zdpbb
NZdlhj wd\b\Ze_glghklb
1

FheyjgZyfZkkZwd\b\Ze_glZ\_s_kl\ZO – M  ∗ ( X ) –fZkkZ
z

h^gh]hfhevwd\b\Ze_glZwlh]h\_s_kl\Z?^bgbpZbaf_j_gby–]fhev
beb d]fhev FheyjgZy fZkkZ wd\b\Ze_glZ \_s_kl\Z O k\yaZgZ k fh
eyjghcfZkkhc\_s_kl\ZOkhhlghr_gb_f
1
 M (X )
.
M  ∗ ( X ) =
z∗
z

K^jm]hcklhjhgufheyjgZyfZkkZwd\b\Ze_glZ\_s_kl\ZOqbk
e_ggh jZ\gZ hlghr_gbx fZkku \_s_kl\Z O d khhl\_lkl\mxs_fm ob
fbq_kdhfmdhebq_kl\mwd\b\Ze_glZ\_s_kl\ZO:
m( X )
1

.
M  ∗ ( X ) =
z
 n  1 ( X )
 z ∗

1

Obfbq_kdh_dhebq_kl\hwd\b\Ze_glZ\_s_kl\ZO – n  ∗ ( X ) –
z

\_ebqbgZqbke_gghjZ\gZyhlghr_gbxfZkku\_s_kl\ZOdfheyjghc
fZkk__]hwd\b\Ze_glZ?^bgbpZbaf_j_gby–fhev
1

Fheyjguch[t_fwd\b\Ze_glZ]ZaZO – Vm  ∗ ( X ) – h[t_fh^
z

gh]h fhey wd\b\Ze_glZ ]Zahh[jZagh]h \_s_kl\Z O ?^bgbpZ baf_j_gby –efhevbebf3fhev
10
Fheyjguch[t_fwd\b\Ze_glZ]ZaZOk\yaZgkfheyjgufh[t_fhf
]ZaZOkhhlghr_gb_f
1
 V (X )
Vm  ∗ ( X ) = m ∗ .
z
z

<lh`_\j_fyfheyjguch[t_fwd\b\Ze_glZ]ZaZOqbke_gghjZ
\_ghlghr_gbxh[t_fZ]ZaZOdkhhl\_lkl\mxs_fmobfbq_kdhfmdh
ebq_kl\m\_s_kl\Z
V (X )
1

V  ∗ ( X ) =
.
z
 n  1 ( X )
 z ∗

Ijbf_j Hij_^_eblv qbkeh wd\b\Ze_glghklb nZdlhj wd\b\Z
e_glghklbwd\b\Ze_glbfheyjgmxfZkkmwd\b\Ze_glZnhknhjghcdb
kehlu\j_Zdpbb
Ca(OH)2 + H3PO4 :&D+324 + 2H2O.
J_r_gb_
GZoh^bfqbkehwd\b\Ze_glghklbz*<^Zgghcj_Zdpbbhlh^ghc
fhe_dmeuG3PO4hls_ieyxlkybhgZG+beb^jm]bfbkeh\Zfbh^ghc
fhe_dme_ dbkehlu wd\b\Ze_glgu obfbq_kdb khhl\_lkl\mxl bhgZ
G+Ihwlhfmqbkehwd\b\Ze_glghklbz*\^Zgghcj_ZdpbbjZ\gh
GZoh^bf nZdlhj wd\b\Ze_glghklb b hij_^_ey_f wd\b\Ze_gl
1 1
dbkehluIhhij_^_e_gbx f wd\ = * = .
2
z
+
WlhagZqblqlhh^ghfmbhgmG \^Zgghcj_Zdpbbkhhl\_lkl\m_l
qZklviheh\bgZfhe_dmeudbkehludhlhjZyby\ey_lky\^Zgghc
j_Zdpbb__obfbq_kdbfwd\b\Ze_glhf
GZoh^bffheyjgmxfZkkmwd\b\Ze_glZdbkehlu
1
 M (H 3PO 4 ) 98
M  ∗ (H 3PO 4 ) =
=
= 49 ]fhev .
2
2
z

Ijbf_jHij_^_eblvwd\b\Ze_glbjZkkqblZlvfheyjgmxfZkkm
wd\b\Ze_glZ]b^jhdkb^ZojhfZ,,,\j_Zdpbb
2Cr(OH)3 + 3H2SO4 = Cr2(SO4)3 + 6H2O.
J_r_gb_
GZoh^bfqbkehwd\b\Ze_glghklbKUHG3:
qZklbpZfKUHG3khhl\_lkl\mxlbhgh\G+,
qZklbp_
x bhgh\
-"11
hldm^Z o AgZqbl qbkeh wd\b\Ze_glghklb ]b^jhdkb^Z ojhfZ z* \
^Zgghcj_ZdpbbjZ\gh
GZoh^bf nZdlhj wd\b\Ze_glghklb KUHG3 b hij_^_ey_f _]h
obfbq_kdbcwd\b\Ze_gl
qZklbpZKUHG3,
bhgZfG+ wd\b\Ze_glgZ
+
-"yqZklbphldm^Zy = 1/3.
bhgmH
WlhagZqblqlh\^Zgghcj_Zdpbbwd\b\Ze_glhf]b^jhdkb^ZojhfZ
,,,y\ey_lkymkeh\gZyqZklbpZ–qZklv_]hnhjfmevghc_^bgbpu
JZkkqblZ_fagZq_gb_fheyjghcfZkkuwd\b\Ze_glZKUHG3:
1
 M (Cr (OH )3 )
M  (Cr (OH)3 ) =
]fhev
3
3

Ijbf_jHij_^_eblvwd\b\Ze_glbjZkkqblZlvfheyjgmxfZkkm
wd\b\Ze_glZ]b^jhdkb^ZfZj]ZgpZII\j_Zdpbb
2Mn(OH)2 + 12KOH + 5Cl2 :.0Q24 + 10KCl + 8H2O.
J_r_gb_
GZoh^bfqbkehwd\b\Ze_glghklb^eyFQHG2:
Ihkdhevdm \ nhjfmevghc _^bgbp_ wlh]h ]b^jhdkb^Z kh^_j`blky
Zlhf fZj]ZgpZ \ kl_i_gb hdbke_gby Z \ nhjfmevghc _^bgbp_
D0Q24 – \ kl_i_gb hdbke_gby ^_eZ_f \u\h^ qlh qZklbp_
FQHG2khhl\_lkl\mxlwe_dljhgh\AgZqblqbkehwd\b\Ze_glghklb
]b^jhdkb^ZjZ\gh
GZoh^bf nZdlhj wd\b\Ze_glghklb ]b^jhdkb^Z b hij_^_ey_f
1 1
_]hobfbq_kdbcwd\b\Ze_gl f wd\ =
= .
z* 5
WlhagZqblqlh\^Zgghcj_Zdpbbwd\b\Ze_glhf]b^jhdkb^ZfZj
]ZgpZ,,y\ey_lkymkeh\gZyqZklbpZ–qZklv_]hnhjfmevghc_^b
gbpu
JZkkqblZ_fagZq_gb_fheyjghcfZkkuwd\b\Ze_glZ]b^jhdkb^Z
1
 M (Mn (OH ) 2 ) 89 ]fhev
M  (Mn (OH ) 2 ) =
]fhev
=
5
5
5

Ijbf_jHij_^_eblvwd\b\Ze_glbjZkkqblZlvagZq_gb_fheyj
ghcfZkkuwd\b\Ze_glZkmevnZlZZexfbgby\j_Zdpbb
Al2(SO4)3 + 3Pb(NO3)2 = 2Al(NO3)3 + 3PbSO4.
J_r_gb_
GZoh^bfqbkehwd\b\Ze_glghklb$O2(SO4)3.
<^Zgghcj_Zdpbbh[f_gZg_ijbgbfZxlmqZklbybhguG+<wlhf
kemqZ_ijbgbfZxlky\h\gbfZgb_^jm]b_bhgukihklhyggufaZjy^hf
12
jZ\gufbeb–<gZr_fijbf_j_wlhbhguNO 3− BamjZ\g_gbyj_
Zdpbb\b^ghqlhh^ghcqZklbp_$O2(SO4)3wd\b\Ze_glgubhgh\12 3− ,
l_qbkehwd\b\Ze_glghklbz*^eykmevnZlZZexfbgbyjZ\ghr_klb
GZoh^bfnZdlhjwd\b\Ze_glghklbbhij_^_ey_fwd\b\Ze_gl
bhgZf12 3− khhl\_lkl\m_lqZklbpZ$O2(SO4)3,
bhgm
-"xqZklbphldm^Zx = 1/6.
WlhagZqblqlh\^Zgghcj_Zdpbbh[f_gZobfbq_kdbfwd\b\Ze_g
lhf kmevnZlZ Zexfbgby y\ey_lky mkeh\gZy qZklbpZ – qZklv _]h
nhjfmevghc_^bgbpu
JZkkqblZ_fagZq_gb_fheyjghcfZkkuwd\b\Ze_glZ
1
 M (Al2 (SO 4 )3 )
M  (Al2 (SO 4 )3 ) =
]fhev
6
6

Ijbf_j Hij_^_eblvwd\b\Ze_glbjZkkqblZlvagZq_gb_fheyj
gh]hh[t_fZwd\b\Ze_glZk_jh\h^hjh^Z\j_Zdpbb
H2S–2 + 8HNO3 :+2S+6O4 + 8NO2 + 4H2O.
J_r_gb_
GZoh^bf qbkeh wd\b\Ze_glghklb G2S Ihkdhevdm \ fhe_dme_
k_jh\h^hjh^Zkl_i_gvhdbke_gbyk_jujZ\gZ–Z\fhe_dme_k_jghc
dbkehlu hgZ jZ\gZ ^_eZ_f \u\h^ qlh fhe_dme_ H2S khhl\_lkl
\mxlwe_dljhgh\WlhagZqblqlhqbkehwd\b\Ze_glghklbz*k_jh
\h^hjh^Z\^Zgghcj_ZdpbbjZ\gh
GZoh^bfnZdlhjwd\b\Ze_glghklbk_jh\h^hjh^Zbhij_^_ey_f
_]hwd\b\Ze_gl
we_dljhgZfkhhl\_lkl\m_l fhe_dmeZG2S,
we_dljhgm
-"xfhe_dmehldm^Zx = 1/8.
Wlh agZqbl qlh obfbq_kdbf wd\b\Ze_glhf k_jh\h^hjh^Z \ ^Zg
ghcj_Zdpbby\ey_lkymkeh\gZyqZklbpZ–\hkvfZyqZklv_]hfhe_dmeu
GZoh^bfagZq_gb_fheyjgh]hh[t_fZwd\b\Ze_glZk_jh\h^hjh^Z
22,4 efhev
1
 V
Vm  (H 2S) = m =
efhev
8
8
8


Ijbf_j G_ba\_klgucf_lZeefZkkhc]kh`]eb\dbkehjh^_
bihemqbebhdkb^f_lZeeZfZkkhc]Hij_^_eblvf_lZee
J_r_gb_
AZibr_fh[smxko_fmj_ZdpbbF_0H 02 :F_ +2 x H −x 2 .
13
< khhl\_lkl\bb k aZdhghf wd\b\Ze_glh\ obfbq_kdh_ dhebq_kl\h
wd\b\Ze_glZ f_lZeeZ jZ\gh obfbq_kdhfm dhebq_kl\m wd\b\Ze_glZ
dbkehjh^Z
m(Me)
m (O 2 )
1
1


=
.
n  * (Me) = n  * (O 2 ) =>
1

1

z
z


M  * (Me) M  * (O 2 )
z

z

A^_kv m(Me) –fZkkZf_lZeeZ\klmib\r_]h\j_Zdpbx
m(O2) –fZkkZdbkehjh^Z\klmib\r_]h\j_Zdpbx
1

M  * (Me) –fheyjgZyfZkkZwd\b\Ze_glZf_lZeeZ
z

1

M  * (O 2 ) –fheyjgZyfZkkZwd\b\Ze_glZdbkehjh^Z
z

GZc^_ffZkkmdbkehjh^Z\klmib\r_]h\j_Zdpbx
m(O2) = mhdkb^Z– mf_lZeeZ ]–] ]
GZc^_ffheyjgmxfZkkmwd\b\Ze_glZfhe_dmeyjgh]hdbkehjh
^ZIjbh[jZah\Zgbbhdkb^ZdZ`^Zyfhe_dmeZdbkehjh^Zijbkh_^bgy_l
we_dljhgZbij_\jZsZ_lky\hdkb^-bhgZO 02 :O–2.
Lh]^Z we_dljhgZfkhhl\_lkl\m_lfhe_dmeZH2,
we_dljhgm
-"xfhe_dmehldm^Zx = 1/4.
Wlh agZqbl qlh obfbq_kdbf wd\b\Ze_glhf dbkehjh^Z \ ^Zgghc
j_Zdpbby\ey_lkymkeh\gZyqZklbpZ–q_l\_jlZyqZklvfhe_dmeuGZc
^_fagZq_gb_fheyjghcfZkkuwd\b\Ze_glZdbkehjh^Z
1
 M (O 2 ) 32
M  (O 2 )  =
=
= 8 ]fhev .
4
4
4

Ih^klZ\bf qbkeh\u_ agZq_gby \_ebqbg \ \ujZ`_gb_ aZdhgZ
wd\b\Ze_glh\
1

m(Me) ⋅ M  * (O 2 )
1

z
 = 10 ⋅ 8 ]fhev
M  * (Me) =
m (O 2 )
8,89
z

*
>eyf_lZeeZqbkehwd\b\Ze_glghklbz jZ\ghkl_i_gb_]hhdbk
1

e_gby\kh_^bg_gbbIhkdhevdmM(Me) = M  * (Me) · z*lhijb
z

*
FF_ ]fhev
z =1
*
z =2
FF_ ]fhev
*
FF_ ]fhev
z =3
14
H^gh\Ze_glgh]h f_lZeeZ k fheyjghc fZkkhc ]fhev b ^\mo\Z
e_glgh]hf_lZeeZkfheyjghcfZkkhc]fhevg_kms_kl\m_lLj_o
\Ze_glgucf_lZeekfheyjghcfZkkhc–ZexfbgbcAl).
Ijbf_jIjbjZkl\hj_gbb\dbkehl_f_lZeeZfZkkhc]\u
^_ebeky\h^hjh^h[t_fhfegmHij_^_eblvf_lZee
J_r_gb_
n
AZibr_fh[smxko_fmj_ZdpbbF_0 + nH+ :Men+ + H 02 .
2
<khhl\_lkl\bbkaZdhghfwd\b\Ze_glh\dhebq_kl\h\_s_kl\Zwd
\b\Ze_glZf_lZeeZjZ\ghdhebq_kl\m\_s_kl\Zwd\b\Ze_glZ\h^hjh^Z
Ke_^h\Zl_evgh
m(Me)
V (H 2 )
=
.
1

1

M  * (Me) Vm  * (H 2 )
z

z

A^_kv m(Me) –fZkkZf_lZeeZ
V(H2) –h[t_f\h^hjh^Z
1

M  * (Me) –fheyjgZyfZkkZwd\b\Ze_glZf_lZeeZ
z

1

Vm  * (H 2 ) –fheyjguch[t_fwd\b\Ze_glZ\h^hjh^Z
z

JZkkqblZ_fagZq_gb_fheyjgh]hh[t_fZwd\b\Ze_glZ\h^hjh^Z
Ihkdhevdmfhe_dmeZ\h^hjh^Zh[jZam_lkyihko_f_H+:H 02 lh
jZkkm`^Z_flZd
we_dljhgZfkhhl\_lkl\m_lfhe_dmeZG2,
1
we_dljhgmkhhl\_lkl\m_lxfhe_dmehldm^Zx = .
2
LZdbfh[jZahfwd\b\Ze_glhf\h^hjh^Z\^Zgghcj_Zdpbby\ey_l
ky mkeh\gZy qZklbpZ – iheh\bgZ _]h fhe_dmeu Ihwlhfm fheyjguc
h[t_fwd\b\Ze_glZ\h^hjh^Z[m^_ljZ\_g
22,4
1
 V
= 11,2 efhev .
Vm  (H 2 ) = m =
2
2
2

Ih^klZ\bfagZq_gby\_ebqbg\\ujZ`_gb_aZdhgZwd\b\Ze_glh\
gZc^_ffheyjgmxfZkkmwd\b\Ze_glZf_lZeeZbhij_^_ebff_lZee
1

m(Me) ⋅ Vm  * (H 2 )
1

z
 = 9,58 ⋅ 11,2 ]fhev
M  * (Me) =
V (H 2 )
6,72
z

15
1
 M (Me)
IhkdhevdmF  * (Me) =
lhfheyjgZyfZkkZf_lZeeZ[m
z*
z

1

^_l\ujZ`ZlvkyM(Me) = M  * (Me) ·z*,
z

*
=^_z bebKfijbf_j
FF_ ]fhev
Ijbz* = 1
*
FF_ ]fhev
ijbz = 2
*
ijbz = 3
FF_ ]fhev
H^gh-b^\mo\Ze_glgh]hf_lZeeh\kgZc^_ggufbagZq_gbyfbfh
eyjguofZkkg_kms_kl\m_llj_o\Ze_glgucf_lZeekfheyjghcfZkkhc
]fhev–lblZg7L
Ijbf_jBaoehjb^Zg_ba\_klgh]hf_lZeeZfZkkhc]ihem
q_ggbljZlwlh]h`_f_lZeeZfZkkhc]Hij_^_eblvf_lZee
J_r_gb_
Ihkdhevdm obfbq_kdh_ dhebq_kl\h wd\b\Ze_glZ oehjb^Z f_
lZeeZjZ\ghobfbq_kdhfmdhebq_kl\mwd\b\Ze_glZ_]hgbljZlZlh
m(Me + x Cl −x )
m(Me + x ( NO 3 ) x )
.
=
1

1

M  * (MeCl x ) M  * (Me( NO 3 ) x )
z

z

Ijbj_r_gbbih^h[guoaZ^Zqg_h[oh^bfhihfgblvqlhfheyjgZy
fZkkZwd\b\Ze_glZkeh`gh]h\_s_kl\ZjZ\gZkmff_fheyjguofZkkwd
\b\Ze_glh\ _]h khklZ\guo qZkl_c >himklbf qlh fheyjgZy fZkkZ wd
\b\Ze_glZg_ba\_klgh]hf_lZeeZjZ\gZx]fhevMqblu\Zyqlhfheyj
gZy fZkkZ wd\b\Ze_glZ oehjb^-ZgbhgZ Cl– ]fhev Z fheyjgZy
fZkkZ wd\b\Ze_glZ gbljZl-ZgbhgZ NO 3− jZ\gZ ]fhev b ih^klZ\b\
agZq_gby\_ebqbg\\ujZ`_gb_aZdhgZwd\b\Ze_glh\ihemqbf
18,34
23,64
=
hlkx^Zx ]fhev
x + 35,5 x + 62
Hij_^_ebff_lZee
1

IhkdhevdmM(Me) = M  * (Me) · z*,
z

]^_ z* – kl_i_gv hdbke_gby f_lZeeZ \ kh_^bg_gbb lh ijb
z* = 1 Ü FF_ = ]fhevÜ ]fhev–f_lZeeg_kms_kl\m_l
ijbz* = 2 · FF_ ]fhevÜ ]fhev–f_lZeedZ^fbc&G
16
AZdhg:\h]Z^jh
<jZ\guoh[t_fZojZaebqguo]Zah\ijbh^bgZdh\uo\g_rgbomkeh
\byo^Z\e_gbbbl_fi_jZlmj_kh^_j`blkyh^bgZdh\h_qbkehfhe_dme
Ijbj_r_gbbaZ^Zqbkihevamxlkyke_^kl\bybawlh]haZdhgZ
IjbghjfZevguomkeh\byo–^Z\e_gbbdIZbl_fi_jZ
lmj_ hK beb D fhev ex[h]h ]ZaZ aZgbfZ_l h[t_f ijbf_jgh
jZ\guc e Hg gZau\Z_lky fheyjguf h[t_fhf ]ZaZ ijb ghjfZev
guo mkeh\byo b h[hagZqZ_lky V om . ?^bgbpu baf_j_gby – efhev beb
f3fhev
Fheyjguch[t_f]ZaZqbke_gghjZ\_ghlghr_gbxh[t_fZ]ZaZd
khhl\_lkl\mxs_fmobfbq_kdhfmdhebq_kl\mwlh]h\_s_kl\Z
Vm =
V (X )
.
n( X )
Hlghkbl_evgZy iehlghklv ]ZaZ O ih ]Zam Y – Dy(X) – [_ajZa
f_jgZy\_ebqbgZjZ\gZyhlghr_gbxfheyjguofZkk^Zgguo]Zah\
DY ( X ) =
M (X )
.
M (Y )
HgZihdZau\Z_l\hkdhevdhjZa]ZaOe_]q_bebly`_e__]ZaZY_kebboh[t_fuh^bgZdh\uGZijbf_jhlghkbl_evgZyiehlghklvZffbZdZih\h^hjh^m
M ( NH 3 ) 17 ]fhev
= 8,5.
DH 2 ( NH 3 ) =
=
M (H 2 )
2 ]fhev
?keblj_[m_lkygZclbagZq_gb_hlghkbl_evghciehlghklb]ZaZO)
ih \ha^mom lh fheyjgmx fZkkm ]ZaZ O ^_eyl gZ kj_^gxx fheyjgmx
fZkkm\ha^moZF\ha^kjjZ\gmx]fhevGZijbf_jhlghkbl_evgZy
iehlghklvoehjh\h^hjh^Zih\ha^mom
D\ha^(HCl) =
36,5 ]fhev
M (HCl)
= 1,259.
=
M \ha^ (kj.) 29 ]fhev
Kj_^g_cfheyjghcfZkkhc]Zah\hckf_kbFkjgZau\ZxlfZkkmkf_
kb h[t_f dhlhjhc ijb g m jZ\_g e HgZ k\yaZgZ k fheyjgufb
fZkkZfb]Zah\khhlghr_gb_f
Fkjkf_kb 3(O) · F(O) + 3(Y) · M(Y).
A^_kv3Xb3Y) –h[t_fgu_^heb]Zah\\kf_kbF(XbM(Y) –fh
eyjgu_fZkku]Zah\H[t_fgZy^hey]ZaZ3\kf_kb–\_ebqbgZjZ\
17
gZy hlghr_gbx h[t_fZ ]ZaZ O d h[t_fm kf_kb DZd b fZkkh\Zy^hey
hgZfh`_l\ujZ`Zlvky\^heyo_^bgbpubeb\ijhp_glZo
Iehlghklv]ZaZ!–\_ebqbgZqbke_gghjZ\gZhlghr_gbx_]h
fheyjghcfZkkudfheyjghfmh[t_fm
!(X) =
M (X )
.
Vm
GZijbf_jiehlghklv\ha^moZijbgmjZ\gZ
! \ha^
M \ha^. (kj.)
29 ]fhev
]e
=
Vm
22,4 efhev
AZdhg;hcey–FZjbhllZ
Ijbihklhygghcl_fi_jZlmj_h[t_f^Zgghcihjpbb]ZaZh[jZlghijhihjpbhgZe_g_]h^Z\e_gbx
Wlh agZqbl qlh ijb m\_ebq_gbb ^Z\e_gby ]ZaZ \ hij_^_e_ggh_
qbkehjZa_]hh[t_fmf_gvrZ_lky\hklhevdh`_jZaIhwlhfmijhba
\_^_gb_^Z\e_gby]ZaZgZ_]hh[t_fijbihklhygghcl_fi_jZlmj_y\ey
_lky\_ebqbghcihklhygghc
p1V1 = p2V2 = const.
Ijbf_j Ijb ^Z\e_gbb dIZ h[t_f ]ZaZ jZ\_g e <u
qbkeblvagZq_gb_h[t_fZ^Zgghcihjpbb]ZaZijb^Z\e_gbbdIZ
J_r_gb_
BamjZ\g_gby;hcey-FZjbhllZ\ujZabfV2bgZc^_f_]hagZq_gb_
V2 =
p1V1 98,5 ⋅ 10,4
=
= 6,3 e .
p2
162,6
AZdhg=_c-ExkkZdZ
Ijb ihklhygghf ^Z\e_gbb h[t_f ^Zgghc ihjpbb ]ZaZ ijyfh
ijhihjpbhgZe_g_]hZ[khexlghcl_fi_jZlmj_
WlhagZqblqlhijbm\_ebq_gbbZ[khexlghcl_fi_jZlmju]ZaZ\
hij_^_e_ggh_ qbkeh jZa _]h h[t_f m\_ebqb\Z_lky \h klhevdh `_ jZa
Ihwlhfm hlghr_gb_ h[t_fZ ]ZaZ d _]h Z[khexlghc l_fi_jZlmj_ ijb
ihklhygghf^Z\e_gbby\ey_lkyihklhygghc\_ebqbghc
V1 V2
=
= const .
T1 T2
18
Ijbf_jIjbl_fi_jZlmj_ hKh[t_f]ZaZjZ\_ge<u
qbkeblvagZq_gb_h[t_fZ^Zggh]h]ZaZijbl_fi_jZlmj_18 hK
J_r_gb_
JZkkqblZ_fZ[khexlgu_agZq_gbyl_fi_jZlmju
ZT1 = t1 + 273 = 18 + 273 = 291 K;
[) T2 = t2 + 273 = 118 + 273 = 391 K.
Ba mjZ\g_gby =_c-ExkkZdZ \ujZabf V2 b jZkkqblZ_f _]h agZ
q_gb_
VT
6,72 ⋅ 391
V2 = 1 2 =
= 9,03 e .
T1
291
H[t_^bg_gguc]Zah\ucaZdhg
Ijhba\_^_gb_\_ebqbgu^Z\e_gby^Zgghcihjpbb]ZaZgZ\_ebqbgm
_]hh[t_fZhlg_k_ggh_dagZq_gbxZ[khexlghcl_fi_jZlmju_klv
\_ebqbgZihklhyggZy
p0V0 p1V1
=
= const .
T0
T1
WlhmjZ\g_gb_gZau\Z_lkymjZ\g_gb_fDeZi_cjhgZ?]hqZklhbk
ihevamxl^eyjZkq_lZh[t_fZ]ZaZijbghjfZevguomkeh\byo_kebba
\_klgh_]hagZq_gb_ijb^jm]bomkeh\byo
Ijbf_jIjbl_fi_jZlmj_hKb^Z\e_gbbdIZh[t_f]Z
aZjZ\_ge<uqbkeblvagZq_gb_h[t_fZ]ZaZijbghjfZevguomk
eh\byo
J_r_gb_
Ba mjZ\g_gby h[t_^bg_ggh]h ]Zah\h]h aZdhgZ \ujZabf V0 b jZk
kqblZ_f_]hagZq_gb_
T p V 273 ⋅ 68,8 ⋅120,4
V0 = 0 1 1 =
= 70,2 e .
p0T1
101,3 ⋅ 318
?kebobfbq_kdh_dhebq_kl\h]ZaZjZ\ghfhevlhagZq_gb_^jh
pV
[b
y\ey_lky ihklhygghc \_ebqbghc b gZau\Z_lky mgb\_jkZevghc
T
]Zah\hc ihklhygghc R < kemqZ_ dh]^Z ^Z\e_gb_ ]ZaZ \ujZ`Z_lky \
dIZ Z h[t_f – \ ebljZo lh R ijbgbfZ_l agZq_gb_ jZ\gh_
8,314 >`fhev · KKmq_lhfwlh]h^eyfhev]ZaZfh`ghaZibkZlv
pV
= R bebpV = RT.
T
19
?keb`_obfbq_kdh_dhebq_kl\h]Zahh[jZagh]h\_s_kl\ZjZ\ghn
fhevlh
pV = nRT.
WlhmjZ\g_gb_gZau\Z_lkymjZ\g_gb_fDeZi_cjhgZ – F_g^_e__\Z.
m
^Zggh_mjZ\g_gb_fh`ghaZibkZlv\\b^_
Mqblu\Zyqlh n =
M
m
pV =
RT .
M
Hgh k\yau\Z_lfZl_fZlbq_kdb^Z\e_gb_]ZaZ_]hh[t_ffZkkmb
l_fi_jZlmjm >Zggh_ mjZ\g_gb_ iha\hey_l \uqbkeblv ex[mx ba \oh
^ysbo\g_]h\_ebqbg_kebba\_klguhklZevgu_\_ebqbgu
Ijbf_j<uqbkeblvagZq_gb_fheyjghcfZkku\_s_kl\Z_keb
_]hiZjufZkkhc]ijbl_fi_jZlmj_ oKb^Z\e_gbbdIZaZ
gbfZxlh[t_fjZ\gucfe
J_r_gb_
Ba mjZ\g_gby DeZi_cjhgZ-F_g^_e__\Z \ujZabf M b jZkkqblZ_f
__agZq_gb_
mRT 2,6 ⋅ 8,314 ⋅ 360
=
= 78 ]fhev
M=
pV
83,2 ⋅ 1,2
AZdhgiZjpbZevguo^Z\e_gbc]Zah\
H[s__ ^Z\e_gb_ kf_kb ]Zah\ g_ \klmiZxsbo \ obfbq_kdh_ \aZb
fh^_ckl\b_ jZ\ghkmff_iZjpbZevguo^Z\e_gbcdZ`^h]hbagbo
Pkf_kb j(1)j(2) + … j(n).
IZjpbZevgh_ ^Z\e_gb_ ]ZaZ j – ^Z\e_gb_ dhlhjh_ ijhba\h^be
[uwlhl]Za_keb[uhgh^bgijbl_o`_mkeh\byoaZgbfZe\_kvh[t_f
]Zah\hckf_kb
IZjpbZevgh_^Z\e_gb_]ZaZ\kf_kbijhihjpbhgZevgh_]hh[t_f
ghc^he_
j(1) = Jkf_kb 3(1).
Ijbf_j H[s__ ^Z\e_gb_ kf_kb khklhys_c ba ZahlZ fZkkhc
14 ]bdbkehjh^ZfZkkhc]jZ\ghdIZ<uqbkeblvagZq_gbyiZj
pbZevguo^Z\e_gbc]Zah\\kf_kb
J_r_gb_
Ihkdhevdm \ kf_kb h[t_fgu_ ^heb ]Zah\ qbke_ggh jZ\gu bo
fhevguf^heyflh\^ZgghfkemqZ_iZjpbZevgu_^Z\e_gby]Zah\[m
^mlijhihjpbhgZevgubofhevguf^heyf
Ü
20
JZkkqblZ_fobfbq_kdh_dhebq_kl\hdZ`^h]hba]Zah\
14 ]
fhev
n(N2) =
28 ]fhev
n(O2) =
8]
fhev
32 ]fhev
JZkkqblZ_fagZq_gbyfheyjguo^he_c]Zah\\kf_kb
n( N 2 )
0,5 fhev
$(N2) =
=
= 0,666 .
n(kf_kb) 0,75 fhev
Ke_^h\Zl_evghfheyjgZy^heydbkehjh^Z$H2jZ\gZ
$(O2) = 1 – 0,666 = 0,334.
JZkkqblZ_fagZq_gbyiZjpbZevguo^Z\e_gbc]Zah\
p(N2) = $(N2) Â Pkf_kb = 0,666 ÜdIZ dIZ
p(O2) $(O2) Â Pkf_kb = 0,334 ÜdIZ dIZ.
Ijbf_j < khkm^_ h[t_fhf e kf_rZeb dbkehjh^ h[t_fhf
3,5 egZoh^b\rbckyih^^Z\e_gb_fdIZbZahlh[t_fhfegZ
oh^b\rbcky ih^ ih^ ^Z\e_gb_f dIZ <uqbkeblv iZjpbZevgu_
^Z\e_gby]Zah\bh[s__^Z\e_gb_ihemq_gghckf_kb
J_r_gb_
IhmjZ\g_gbx;hcey-FZjbhllZjZkkqblZ_fgh\u_^Z\e_gby]Z
ah\ihke_bokf_rb\Zgbyl_iZjpbZevgu_^Z\e_gby
p (O ) ⋅ V (O ) 125 ⋅ 3,5
p 2 (O 2 ) = 1 2 1 2 =
= 72,92 dIZ ;
V2
6
p2 ( N 2 ) =
p1 ( N 2 ) ⋅ V1 ( N 2 ) 105 ⋅ 5,5
=
= 96,25 dIZ .
V2
6
GZc^_fh[s__^Z\e_gb_kf_kb
Pkf_kb = p(1) + p(2) dIZdIZ dIZ
Ijbf_j<[Zeehg_h[t_fhfeijbl_fi_jZlmj_ oKkh
^_j`Zlkydbkehjh^fZkkhc]m]e_dbkeuc]ZafZkkhc]bZahl
g_ba\_klghcfZkku<uqbkeblvagZq_gb_fZkkuZahlZ\kf_kb_keb__
^Z\e_gb_jZ\ghdIZ
J_r_gb_
Ba mjZ\g_gby DeZi_cjhgZ – F_g^_e__\Z \ujZabf ^Z\e_gb_ b
jZkkqblZ_f_]hagZq_gby^eydbkehjh^Zbm]e_dbkeh]h]ZaZ
21
mRT
;
VM
27,2 ⋅ 8,314 ⋅ (273 + 19)
= 46,35 dIZ .
p (O 2 ) =
44,5 ⋅ 32
55 ⋅ 8,314 ⋅ (273 + 19)
= 68,16 dIZ .
p(CO 2 ) =
44,5 ⋅ 44
JZkkqblZ_fiZjpbZevgh_^Z\e_gb_ZahlZ\kf_kb
p(N2) = Pkf_kb– p(CO2) – p(O2) = 139,05 – 68,16 – dIZ
JZkkqblZ_fagZq_gb_fZkkuZahlZ\kf_kb
pVM
24,5 ⋅ 44,5 ⋅ 28
=
= 12,58 ] .
m( N 2 ) =
RT
8,31 ⋅ (273 + 19)
Ijbf_j<]Zahf_lj_gZ^\h^hcijbl_fi_jZlmj_ hKkh^_j
`blkydbkehjh^h[t_fhfeih^^Z\e_gb_fdIZJZkkqblZlv
agZq_gb_h[t_fZkmoh]hdbkehjh^Z\]Zahf_lj_ijbgm_keb^Z\e_
gb_gZkus_ggh]h\h^ygh]hiZjZijboKjZ\ghdIZ
J_r_gb_
JZkkqblZ_fagZq_gb_iZjpbZevgh]h^Z\e_gbyqbklh]hdbkehjh
^Z\kf_kb
j(O2) = P(cf_kb– p(H2O) = 102,455 – dIZ
Ba mjZ\g_gby h[t_^bg_ggh]h ]Zah\h]h aZdhgZ \ujZabf Vh b
jZkkqblZ_f_]hagZq_gb_
T pV
273 ⋅ 99,291⋅ 5,2
V0 = 0 1 1 =
= 4,67 e .
p0T1 101,3 ⋅ (273 + 25)
p=
1.
2.
3.
4.
<hijhku^eykZfhklhyl_evghcih^]hlh\db
Knhjfmebjmcl_hij_^_e_gbyihgylbcobfbq_kdbcwe_f_glZlhf
fhe_dmeZbhg\_s_kl\h
Cdhevdh obfbq_kdbo we_f_glh\ ba\_klgh \ gZklhys__ \j_fy"
< q_f aZdexqZxlky jZaebqby f_`^m obfbq_kdbf we_f_glhf b
ijhkluf \_s_kl\hf" DZdb_oZjZdl_jbklbdbijbkmsbwe_f_glmZ
dZdb_–ijhklhfm\_s_kl\m"
QlhoZjZdl_jbamxlhlghkbl_evgZyZlhfgZybhlghkbl_evgZyfhe_
dmeyjgZy fZkku" Qlh y\ey_lky Zlhfghc _^bgbp_c fZkku" DZdh_
agZq_gb_hgZijbgbfZ_lbdZdh[hagZqZ_lky"
Ihq_fmqbkehijhkluo\_s_kl\a]hjZa^h[hevr_qbkeZba
\_klguo obfbq_kdbo we_f_glh\" Q_f h[mkeh\e_gh y\e_gb_ Zeeh
ljhibb"
22
5. Q_f hlebqZxlky \_s_kl\Z fhe_dmeyjgh]h kljh_gby hl \_s_kl\
g_fhe_dmeyjgh]h kljh_gby"DZdb_nbabq_kdb_k\hckl\Zijbkmsb
l_f b ^jm]bf \_s_kl\Zf" DZdb_ qZklbpu y\eyxlky bo kljmdlmj
gufb_^bgbpZfb"
6. Q_f hij_^_ey_lky obfbq_kdh_ dhebq_kl\h \_s_kl\Z" Knhjfmeb
jmcl_hij_^_e_gb_ihgylbyfhevDZdh\nbabq_kdbckfukeihklh
ygghc:\h]Z^jhbq_fmjZ\gh__agZq_gb_"
7. Qlhij_^klZ\ey_lkh[hcfheyjgZyfZkkZ\_s_kl\Z"DZdhgZk\yaZ
gZkfZkkhc\_s_kl\Zb_]hobfbq_kdbfdhebq_kl\hf"DZdb_agZ
q_gbyijbgbfZ_lfheyjgZyfZkkZb\dZdbo_^bgbpZohgZ\ujZ`Z
_lky"
8. QlhlZdh_fheyjguch[t_f]ZaZ"DZdhgk\yaZgkh[t_fhf]ZaZb
_]hobfbq_kdbfdhebq_kl\hf"Ihq_fmmjZaguo]Zah\ijbh^bgZ
dh\uomkeh\byoagZq_gb_fheyjgh]hh[t_fZijbf_jghh^bgZdh\h"
9. Knhjfmebjmcl_aZdhgkhojZg_gbyfZkku\_s_kl\ZDZdfh`ghbg
l_jij_lbjh\Zlv wlhl aZdhg k lhqdb aj_gby Zlhfgh-fhe_dmeyjgh]h
mq_gby"
10. Knhjfmebjmcl_aZdhgihklhygkl\ZkhklZ\Z\_s_kl\ZDdZdbfkh
_^bg_gbyf hg ijbf_gbf b ihq_fm" DZdb_ \_s_kl\Z hlghkylky d
\_s_kl\Zf ihklhyggh]h Z dZdb_ – d \_s_kl\Zf i_j_f_ggh]h kh
klZ\Z"Ijb\_^bl_ijbf_ju
11. Q_fhlebqZxlkywfibjbq_kdb_ijhkl_crb_nhjfmeu\_s_kl\hl
fhe_dmeyjguobklbgguonhjfme"
12. Knhjfmebjmcl_aZdhgwd\b\Ze_glh\>Zcl_hij_^_e_gbyihgylbyf
wd\b\Ze_gl qbkeh wd\b\Ze_glghklbnZdlhjwd\b\Ze_glghklbfh
eyjgZyfZkkZwd\b\Ze_glZfheyjguch[t_fwd\b\Ze_glZ
13. DZdb_ qZklbpu gZau\Zxlky j_Zevgufb Z dZdb_ – mkeh\gufb"
Ijb\_^bl_ijbf_ju
14. Ihq_fmwd\b\Ze_glZfbh^gh]hblh]h`_\_s_kl\Zfh]ml[ulvjZa
gu_qZklbpu"Ihykgbl_gZdhgdj_lguoijbf_jZo
15. Ihq_fm fheyjgZy fZkkZ wd\b\Ze_glZ h^gh]h b lh]h `_ \_s_kl\Z
fh`_lbf_lvjZagu_agZq_gby"
16. Knhjfmebjmcl_aZdhg:\h]Z^jhD\_s_kl\Zf\dZdhfZ]j_]Zlghf
khklhygbbhgijbf_gbfbihq_fm"
17. Knhjfmebjmcl_\Z`g_crb_ke_^kl\bybaaZdhgZ:\h]Z^jhDZdb_
mkeh\by kqblZxlky ghjfZevgufb b q_fm jZ\_g fheyjguc h[t_f
]ZaZijbwlbomkeh\byo"<dZdbo_^bgbpZohg\ujZ`Z_lky"
18. QlhoZjZdl_jbam_lhlghkbl_evgZyiehlghklvh^gh]h]ZaZih^jm]h
fm ]Zam" DZd jZkkqblu\Z_lky iehlghklv ]ZaZ b dZdh\ __ nbabq_kdbckfuke"
23
19. Qlh oZjZdl_jbam_l kj_^gyy fheyjgZy fZkkZ kf_kb ]Zah\" DZd hgZ
jZkkqblu\Z_lky"Q_fmjZ\gZkj_^gyyfheyjgZyfZkkZ\ha^moZ"
20. Knhjfmebjmcl_ aZdhgu ;hcey – FZjbhllZ b =_c-ExkkZdZ aZib
rbl_bofZl_fZlbq_kdb_\ujZ`_gby
21. Knhjfmebjmcl_h[t_^bg_gguc]Zah\ucaZdhgbaZibrbl__]hfZ
l_fZlbq_kdh_\ujZ`_gb_<dZdbojZkq_lZohgbkihevam_lky"
22. AZibrbl_mjZ\g_gb_DeZi_cjhgZ–F_g^_e__\ZDZdh\nbabq_kdbc
kfuke mgb\_jkZevghc ]Zah\hc ihklhygghc" DZdb_ agZq_gby hgZ
fh`_lijbgbfZlvbhlq_]haZ\bkbl__\_ebqbgZ"
23. DZdh_^Z\e_gb_gZau\Z_lkyiZjpbZevguf^Z\e_gb_f]ZaZ"DZdhgh
k\yaZghkh[sbf^Z\e_gb_f]Zah\hckf_kb"Knhjfmebjmcl_aZdhg
iZjpbZevguo^Z\e_gbc]Zah\
AZ^Zqb^eyj_r_gby
1. =Zah[t_fhfeijbghjfZevguomkeh\byobf__lfZkkm]
<uqbkeblvagZq_gb_fZkkuh^ghcfhe_dmeu^Zggh]h]ZaZ
2. Fhe_dmeZ\_s_kl\Zbf__lfZkkmjZ\gmx–25d]Hij_^_
eblvagZq_gb_fZkkuwlh]h\_s_kl\Z_keb_]hobfbq_kdh_dhebq_
kl\hjZ\ghfhev
3. Q_fmjZ\ghobfbq_kdh_dhebq_kl\h\_s_kl\Z_keb_]hfZkkZjZ\gZ
]ZfZkkZh^ghcfhe_dmeuwlh]h\_s_kl\ZjZ\gZ–25 d]?
4. Cdhevdhfhe_dmekh^_j`blky\[_gahe_fZkkhc]\hdkb^_k_
juIVfZkkhc]\ZffbZd_h[t_fhfeijbgm"
5. KdhevdhZlhfh\kh^_j`blky\ijhiZg_h[t_fhfegmhd
kb^_nhknhjZVfZkkhc]\h^_fZkkhc]hahg_h[t_fhf
13,44egmf_^ghfdmihjhk__keb_]hobfbq_kdh_dhebq_kl\h
jZ\ghfhev"
6. Kdhevdh bhgh\ kh^_j`blky \ kmevnZl_ Zffhgby fZkkhc ] \
]b^jhdZj[hgZl_ dZevpby fZkkhc ] \ gbljZl_ ]b^jhdkh[Zjby
fZkkhc]\Zp_lZl_fZ]gby_keb_]hobfbq_kdh_dhebq_kl\h
jZ\ghfhev"
7. =Za hlghkbl_evgZy iehlghklv dhlhjh]h ih \ha^mom jZ\gZ kh
^_j`blky\khkm^_h[t_fhfeijbl_fi_jZlmj_hKb^Z\e_gbb
1,038·105IZ<uqbkeblvagZq_gb_fZkku]ZaZ
8. Hij_^_eblv fZkkm iZjh\ lhemheZ \ ihf_s_gbb h[t_fhf f3
ijbl_fi_jZlmj_hK_kebbo^Z\e_gb_jZ\ghIZ
9. <uqbkeblv fZkkm ba\_klgydZ ijb ijhdZeb\Zgbb dhlhjh]h \u^_
eblkym]e_dbkeuc]ZaaZgbfZxsbch[t_fjZ\guceijbl_f
i_jZlmj_hKb^Z\e_gbbIZ
24
10. Bah[jZapZl_ogbq_kdh]hoehjZlZdZebyfZkkhc][ueihemq_g
dbkehjh^ h[t_f dhlhjh]h ijb l_fi_jZlmj_ hK b ^Z\e_gbb
111,9 dIZjZ\_ge<uqbkeblvagZq_gb_fZkkh\hc^hebijbf_
kb\bkoh^ghfh[jZap_oehjZlZdZeby
11. Ihke_\aju\Zkf_kb\h^hjh^Zkdbkehjh^hfh[sbfh[t_fhfe
gmhklZekydbkehjh^h[t_fhfegm<uqbkeblvagZ
q_gbyh[t_fguo^he_c]Zah\\bkoh^ghckf_kb
12. BakdhevdboZlhfh\khklhylfhe_dmeujlmlb_kebagZq_gb_hlgh
kbl_evghciehlghklb__iZjh\ih\ha^momjZ\gh"
13. Ijbg_dhlhjhcl_fi_jZlmj_iehlghklviZjh\k_juihZahlmjZ\gZ
Ba kdhevdbo Zlhfh\ khklhbl fhe_dmeZ k_ju ijb mdZaZgghc
l_fi_jZlmj_"
14. <[Zeehg_\f_klbfhklvxegZoh^blkydbkehjh^ih^^Z\e_gb
_f Â7 IZ b ijb l_fi_jZlmj_ hKDZdhch[t_faZcf_ldb
kehjh^ijbgm"Q_fmjZ\gZfZkkZ]ZaZ\[Zeehg_"
15. KlZevghc [Zeehg gZiheg_g Zahlhf ih^ ^Z\e_gb_f Â7 IZ ijb
l_fi_jZlmj_ hKIj_^_evgh^himklbfh_^Z\e_gb_dhlhjh_\u
^_j`b\Z_l[ZeehgjZ\ghÂ7IZDZdh\ZfZdkbfZevgZyl_fi_
jZlmjZ^hdhlhjhcfh`ghgZ]j_lv[Zeehg"
16. <khkm^h[t_fhfebadhlhjh]h[ueij_^\Zjbl_evgh\udZqZg
\ha^mo ijb l_fi_jZlmj_ hK \\_eb \h^hjh^ h[t_fhf e b
Zahl h[t_fhf e gZoh^b\rb_ky ijb g m <uqbkeblv ^Z\e_gb_
\gmljbkhkm^Z
17. =Zahh[jZagucm]e_\h^hjh^fZkkhc]kf_rZgk]_eb_fh[t_f
gZy^heydhlhjh]h\ihemq_gghckf_kbjZ\gZIjbl_fi_jZ
lmj_ hK b ^Z\e_gbb Â5 IZ ^ZggZy kf_kv aZgbfZ_l h[t_f
jZ\guceHij_^_eblvnhjfmemm]e_\h^hjh^Zkh^_j`Zs_]hky\
kf_kb
18. < \ha^mo_ iZjpbZevgu_ ^Z\e_gby ]Zah\ jZ\gu ZahlZ – IZ
dbkehjh^Z–IZZj]hgZ–IZm]e_dbkeh]h]ZaZ–IZ
<uqbkeblvagZq_gbyh[t_fguo^he_cwlbo]Zah\\\ha^mo_
19. G_ba\_klguc ]Za khklZ\Z WG3 fZkkhc ] ijb l_fi_jZlmj_
26 hKb^Z\e_gbbdIZaZgbfZ_lh[t_fjZ\guce<u
qbkeblvagZq_gb_fZkkh\hc^hebwe_f_glZW\]Za_
20. Hlghkbl_evgZy iehlghklv ]Zahh[jZagh]h \_s_kl\Z ih dbkehjh^m
jZ\gZ<uqbkeblvfZkkm^Zggh]h\_s_kl\Z_keb
Z _]hh[t_fijbl_fi_jZlmj_ hKb^Z\e_gbbdIZkhklZ\
ey_le
[ _]hobfbq_kdh_dhebq_kl\hjZ\ghfhev
\ qbkeh_]hfhe_dmejZ\ghÂ22.
25
21. <uqbkeblvagZq_gb_h[t_fZgmwd\bfheyjghckf_kb\h^hjh^Z
kdbkehjh^hf\dhlhjhcfZkkZ\h^hjh^ZjZ\gZ]
22. <uqbkeblv agZq_gb_ fZkku ZlhfZ we_f_glZ O _keb ]Zahh[jZagh_
ijhklh_\_s_kl\hO2fZkkhc]ijbl_fi_jZlmj_hKb^Z\e_
gbbdIZaZgbfZ_lh[t_fjZ\guce
23. DZdhch[t_fijbl_fi_jZlmj_ hKb^Z\e_gbbÂ5IZaZgbfZ_l
]Za fZkkhc ] _keb agZq_gb_ _]h hlghkbl_evghc iehlghklb ih
\h^hjh^mjZ\gh"
24. H[t_fgZy^heyk_jh\h^hjh^Z\kf_kbkg_ba\_klguf]Zeh]_gh\h^hjh
^hf jZ\gZ Z fZkkh\Zy ^hey \h^hjh^Z we_f_glZ \ kf_kb jZ\gZ
<uqbkeblvagZq_gb_iehlghklb^Zgghckf_kbijbgm
25. Kf_kvf_lZgZm]Zjgh]h]ZaZbwlZgZh[sbfh[t_fhffegm
kh`]eb\ba[uld_dbkehjh^Z\j_amevlZl_q_]hh[jZah\Zebkvm]e_
dbkeuc]Zah[t_fhffegmb\h^ZfZkkhc]<uqbkeblv
agZq_gb_hlghkbl_evghciehlghklbbkoh^ghckf_kbih\ha^mom
26. Kf_kv ijhiZgZ f_lZgZ b hdkb^Z m]e_jh^Z II h[sbf h[t_fhf
0,5 egmkh`]eb\ba[uld_dbkehjh^Z\j_amevlZl_q_]hh[jZah
\Zekym]e_dbkeuc]Zah[t_fhfegm<uqbkeblvagZq_gb_
h[t_fghc^hebijhiZgZ\bkoh^ghckf_kb
27. JZkkqblZlv agZq_gb_ h[t_fZ \ha^moZ g m g_h[oh^bfh]h ^ey
ihegh]h k]hjZgby kf_kb \h^hjh^Z k Zp_lbe_ghf h[sbf h[t_fhf
egm_kebhlghkbl_evgZyiehlghklv^Zgghckf_kbih\h^h
jh^mjZ\gZ
28. Kf_kvf_lZgZwlbe_gZbZp_lbe_gZkh`]eb\ba[uld_dbkehjh^Z\
j_amevlZl_ q_]h h[jZah\Zebkv m]e_dbkeuc ]Za h[t_fhf e
g m b \h^Z fZkkhc ] <uqbkeblv agZq_gb_ fZkku bkoh^ghc
kf_kb
29. FZkkZ dhe[u _fdhklvx fe aZiheg_gghc g_ba\_klguf ]Zahf
ijbl_fijZlmj_hKb^Z\e_gbbdIZjZ\gZ]FZkkZ
lhc `_ dhe[u aZiheg_gghc \ha^mohf ijb l_o `_ mkeh\byo jZ\gZ
]<uqbkeblvagZq_gb_fheyjghcfZkkug_ba\_klgh]h]ZaZ
30. FZkkZ dhe[u aZiheg_gghc g_ba\_klguf ]Zahf ijb l_fi_jZlmj_
19 hKb^Z\e_gbbdIZjZ\gZ]FZkkZwlhc`_dhe[u
aZiheg_gghcijbl_o`_mkeh\byo\ha^mohfjZ\gZ]FZkkZ
dhe[u aZiheg_gghc \h^hc jZ\gZ ] <uqbkeblvagZq_gb_fh
eyjghcfZkkug_ba\_klgh]h]ZaZ
31. <kf_kb]Zah\boh[t_fgu_^hebjZ\gum]e_dbkeh]h]ZaZ– 20 %;
m]Zjgh]h]ZaZ–\h^hjh^Z–\h^ygh]hiZjZ–<u
qbkeblvagZq_gb_fZkku^Zgghckf_kb_keb__h[t_fijbl_fi_
jZlmj_hKb^Z\e_gbbdIZjZ\_ge
26
32. <khkm^_h[t_fhfekf_rZeb\h^hjh^h[t_fhfegZoh^b\
rbckyih^^Z\e_gb_fdIZkf_lZghfh[t_fhfegZoh^b\rbfkyih^^Z\e_gb_fdIZ<uqbkeblvagZq_gb_^Z\e_gbyihemq_gghckf_kbQ_fmjZ\gZ__hlghkbl_evgZyiehlghklvih]_ebx"
33. < kf_kb m]e_dbkeh]h b m]Zjgh]h ]Zah\ bo iZjpbZevgu_ ^Z\e_gby
jZ\gukhhl\_lkl\_gghdIZbdIZ<uqbkeblvagZq_gb_
h[t_fZ dhlhjuc [m^_l aZgbfZlv mdZaZggZy kf_kv fZkkhc ]
ijbl_fi_jZlmj_hKb^Z\e_gbbdIZ
34. < aZdjulhf khkm^_ h[t_fhf f3 ijb l_fi_jZlmj_ hK gZoh
^blkykf_kvkhklhysZybam]e_dbkeh]h]ZaZfZkkhcd]dbkeh
jh^Z fZkkhc d] bf_lZgZfZkkhcd]<uqbkeblvagZq_gby
iZjpbZevguo^Z\e_gbc]Zah\\kf_kb
35. <]Zahf_lj_gZ^\h^hcijbl_fi_jZlmj_hKb^Z\e_gbbIZ
gZoh^blky dbkehjh^h[t_fhfeDZdhch[t_f\h^hjh^Zgm
ijhj_Z]bjm_lkdbkehjh^hfba]Zahf_ljZ_keb^Z\e_gb_gZkus_g
gh]h\h^ygh]hiZjZijbhKjZ\ghIZ"
36. <khkm^_h[t_fhfe[ueZijb]hlh\e_gZkf_kvbaZahlZh[t_fhf
egZoh^b\r_]hkyih^^Z\e_gb_fdIZbdbkehjh^Zh[t_fhf
eIh^dZdbf^Z\e_gb_fgZoh^bekydbkehjh^^hijb]hlh\e_gby
kf_kb_keb__h[s__^Z\e_gb_jZ\ghdIZ"
37. G_ba\_klgucf_lZeejZkl\hjbeb\ba[uld_kheyghcdbkehlu\j_
amevlZl_ q_]h h[jZah\ZeZkv khev fZkkhc ] b \u^_ebeky ]Za
h[t_fdhlhjh]hijbl_fi_jZlmj_ hKb^Z\e_gbbdIZkhklZ
\beeHij_^_eblvf_lZeeb\uqbkeblvagZq_gb__]hfZkku
38. F_lZee fZkkhc ] \ul_kgbebajZkl\hjZk_jghcdbkehlu\h^h
jh^h[t_fhfekh[jZggucgZ^\h^hcijbl_fi_jZlmj_hK
b^Z\e_gbbdIZ<uqbkeblvagZq_gb_fZkkuh[jZah\Z\r_cky
ijb wlhf kheb _keb ^Z\e_gb_ gZkus_ggh]h \h^ygh]h iZjZ ijb
mdZaZgghcl_fi_jZlmj_jZ\ghdIZ
39. F_lZeefZkkhc]\ul_kgbebajZkl\hjZdbkehlu\h^hjh^h[t_fhffekh[jZggucgZ^\h^hcijbl_fi_jZlmj_hKb^Z\e_gbb
dIZ Hij_^_eblv bkoh^guc f_lZee _keb ^Z\e_gb_ gZkus_ggh]h\h^ygh]hiZjZijbmdZaZgghcl_fi_jZlmj_jZ\ghdIZ
40. JZkkqblZlv agZq_gb_ fheyjghc fZkku wd\b\Ze_glZ f_lZeeZ b
hij_^_eblvf_lZee_keb_]hfZkkh\Zy^hey\hdkb^_jZ\gZ
41. G_ba\_klguc f_lZee fZkkhc ] h[jZam_l oehjb^ fZkkhc
24,75 ]<uqbkeblvfZkkm^Zggh]hf_lZeeZg_h[oh^bfh]h^eyih
emq_gby\h^hjh^Zh[t_fhfeijbl_fi_jZlmj_hKb^Z\e_
gbbdIZ
27
42. GZ\hkklZgh\e_gb_hdkb^Zg_dhlhjh]hf_lZeeZfZkkhc]aZljZ
q_g \h^hjh^ h[t_f dhlhjh]h ijb l_fi_jZlmj_ hK b ^Z\e_gbb
dIZjZ\_gfe<uqbkeblvagZq_gb_fheyjghcfZkkuwd
\b\Ze_glZf_lZeeZbhij_^_eblvf_lZee
43. Hdkb^ g_ba\_klgh]h f_lZeeZ fZkkhc ] ij_\jZlbeb \ kmevnZl
wlh]h`_f_lZeeZfZkkhc]JZkkqblZlvfZkkmoehjb^Zf_lZe
eZdhlhjucfh`ghihemqblvbabkoh^gh]hhdkb^ZfZkkhc]
44. Hij_^_eblv wd\b\Ze_gl jZkkqblZlv agZq_gby fheyjghc fZkku b
fheyjgh]h h[t_fZ wd\b\Ze_glZ g m k_jh\h^hjh^Z \ dZ`^hc ba
j_Zdpbc
Z) 2H2S + (CuOH)2SO4 = 2CuS + H2SO4 + 2H2O;
[) 2H2S + O2 = 2H2O + 2S;
\) 2H2S + 3O2 = 2H2O + 2SO2;
]) H26G2SO4 = 4H2O + 4SO2
45. Hij_^_eblv wd\b\Ze_gl b jZkkqblZlv agZq_gb_ fheyjghc fZkku
wd\b\Ze_glZkmevnZlZZexfbgby\dZ`^hcbaj_Zdpbc
Z) Al2(SO4)3 + 12KOH = 2K3[Al(OH)6] + 3K2SO4;
[) Al2(SO4)3 + Al(OH)3 = 3Al(OH)SO4;
\) Al2(SO4)3 + 2KOH = 2Al(OH)SO4 + K2SO4.
46. JZkkqblZlv agZq_gb_ obfbq_kdh]h dhebq_kl\Z wd\b\Ze_glZ nhk
nhjghcdbkehlu\dZ`^hcbaj_Zdpbc_keb__fZkkZ\dZ`^hfkem
qZ_jZ\gZ]
Z) 4H3PO4 + Ca3(PO4)2 = 3Ca(H2PO4)2;
[) 2H3PO4 + (CaOH)3PO4 = 3CaHPO4 + 3H2O.
47. >ey hkZ`^_gby \k_]h oehjZ kh^_j`Z\r_]hky \ oehjb^_ f_lZeeZ
fZkkhc]bajZkoh^h\ZggbljZlk_j_[jZfZkkhc]<u
qbkeblvagZq_gb_fheyjghcfZkkuwd\b\Ze_glZf_lZeeZbhij_^_
eblv^Zggucf_lZee
48. G_ba\_klgucf_lZeefZkkhc]\ul_kgy_lbajZkl\hjZdbkeh
lu\h^hjh^h[t_fhfegmWlhl`_f_lZeelZdhc`_fZk
kuiheghklvxj_Z]bjm_lkkhevxk\bgpZfZkkhc]Hij_^_
eblv g_ba\_klguc f_lZee b \uqbkeblv agZq_gb_ fheyjghc fZkku
wd\b\Ze_glZkhebk\bgpZ
49. Ijb ijhimkdZgbb k_jh\h^hjh^Z q_j_a jZkl\hj kh^_j`Zsbc oeh
jb^ g_ba\_klgh]h f_lZeeZ fZkkhc ] h[jZah\Zeky hkZ^hd
kmevnb^Z wlh]h `_ f_lZeeZ fZkkhc ] Hij_^_eblv g_ba\_kl
gucf_lZeeb\uqbkeblvagZq_gb_h[t_fZgmijhj_Z]bjh\Z\r_
]hk_jh\h^hjh^Z
50. JZkkqblZlvagZq_gb_fZkkuZexfbgbyg_h[oh^bfh]h^eyihegh]h
\ul_kg_gbyjlmlbbajZkl\hjZ\dhlhjhfobfbq_kdh_dhebq_kl\h
wd\b\Ze_glZgbljZlZjlmlbIjZ\ghfhev
28
51. Ijbk]hjZgbbf_lZeeZfZkkhc]h[jZah\Zekyhdkb^wlh]hf_
lZeeZ fZkkhc ] Hij_^_eblv kl_i_gv hdbke_gby f_lZeeZ \
ihemq_gghfhdkb^_
52. G_ba\_klgucf_lZeefZkkhc]kh_^bgy_lkykdbkehjh^hffZk
khc]Lhl`_f_lZeefZkkhc]kh_^bgy_lkykh^gbfba]Zeh]_
gh\fZkkhc]Hij_^_eblvobfbq_kdb_nhjfmeuh[jZamxsboky
ijbwlhfhdkb^Zb]Zeh]_gb^Z
53. < j_amevlZl_ \aZbfh^_ckl\by hdkb^Z f_lZeeZ k k_jghc dbkehlhc
h[jZah\Zebkvkj_^gyykhevfZkkhc]b\h^ZfZkkhc]Hi
j_^_eblvfZkkmgbljZlZf_lZeeZdhlhjucfh`ghihemqblvbabk
oh^gh]hhdkb^ZfZkkhc]
54. F_lZee fheyjgZy fZkkZ wd\b\Ze_glZ dhlhjh]h jZ\gZ ]fhev
\ul_kgbe ba jZkl\hjZ k_jghc dbkehlu \h^hjh^ h[t_fhf fe
g m<uqbkeblvfZkkmf_lZeeZ\klmib\r_]h\j_ZdpbxbfZkkm
h[jZah\Z\r_ckykheb
55. FheyjgZyfZkkZwd\b\Ze_glZg_dhlhjh]hwe_f_glZjZ\gZ ]fhev
<uqbkebl_
Z agZq_gb_fZkkh\hc^hebdbkehjh^Z\hdkb^_wlh]hwe_f_glZ
[ agZq_gb_h[t_fZ\h^hjh^Zgmg_h[oh^bfh]h^ey\hkklZgh\e_gbymdZaZggh]hhdkb^ZfZkkhc]
56. FZkkh\u_ ^heb ]Zeh]_gZ \ ]Zeh]_gb^_ f_lZeeZ b dbkehjh^Z \ hd
kb^_lh]h`_f_lZeeZjZ\gukhhl\_lkl\_gghbHi
j_^_eblvobfbq_kdmxnhjfmem]Zeh]_gb^Zf_lZeeZ
57. G_ba\_klgucf_lZee:fZkkhc]\ul_kgbebajZkl\hjZkhebf_
lZee;fZkkhc]dhlhjuc\k\hxhq_j_^v\ul_kgbebajZk
l\hjZ dbkehlu \h^hjh^ h[t_fhf e ijb l_fi_jZlmj_ hK b
^Z\e_gbbdIZHij_^_eblvf_lZeeu:b;
58. Hij_^_eblv ijhkl_crmx nhjfmem \_s_kl\Z \ khklZ\ dhlhjh]h
\oh^ylgZljbck_jZbdbkehjh^
59. Hij_^_eblvijhkl_crmxnhjfmem\_s_kl\ZijbiheghfjZaeh`_
gbbdhlhjh]hh[jZah\ZebkvZffbZdfZkkhc]\h^ZfZkkhc]
bm]e_dbkeuc]Zah[t_fhfegm
60. G_ba\_klgh_hj]Zgbq_kdh_\_s_kl\hfZkkhc]kh`]eb\dbkehjh^_
b ihemqbeb m]e_dbkeuc ]Za h[t_fhf e g m b \h^m fZkkhc
]Hij_^_eblvfhe_dmeyjgmxnhjfmembkoh^gh]h\_s_kl\Z_k
ebhlghkbl_evgZyiehlghklv_]hiZjh\ih\h^hjh^mjZ\gZ
61. Ijb iheghf k]hjZgbb g_ba\_klgh]h \_s_kl\Z fZkkhc ] \ db
kehjh^_[uebihemq_gum]e_dbkeuc]ZafZkkhc]\h^ZfZkkhc
] b Zahl h[t_fhf e g m Hij_^_eblv fhe_dmeyjgmx
nhjfmem \_s_kl\Z _keb hlghkbl_evgZy iehlghklv _]h iZjh\ ih
\ha^momjZ\gZ
29
62. H^ghba\h^hjh^guokh_^bg_gbcZahlZkh`]eb\dbkehjh^_bih
emqbeb\h^mfZkkZdhlhjhc\jZaZ[hevr_fZkkuh[jZah\Z\
r_]hky ijb wlhf ZahlZ Hij_^_eblv ijhkl_crmxnhjfmembkoh^
gh]h\_s_kl\Z
63. Ijb l_jfbq_kdhf jZaeh`_gbb h^gh]h ba hdkb^h\ fZj]ZgpZ [ueb
ihemq_gu hdkb^ fZj]ZgpZ Mn3O4 fZkkhc ] b dbkehjh^ h[t_
fhf e g m Hij_^_eblv ijhkl_crmx nhjfmem bkoh^gh]h
hdkb^Z
64. Iehlghklv]Zahh[jZagh]h[hjh\h^hjh^Zqbke_gghjZ\gZiehlghklb
ZahlZ baf_j_gu ijb h^bgZdh\uo mkeh\byo Hij_^_eblv _]h ob
fbq_kdmxnhjfmem_kebfZkkh\Zy^hey[hjZ\g_fjZ\gZ
65. < hj]Zgbq_kdhf \_s_kl\_ fZkkh\u_ ^heb we_f_glh\ khklZ\eyxl
m]e_jh^Z – \h^hjh^Z – oehjZ – IZju
^Zggh]h\_s_kl\ZfZkkhc]ijbl_fi_jZlmj_hKb^Z\e_gbb
dIZ aZgbfZxl h[t_f jZ\guc e Hij_^_eblv obfbq_
kdmxnhjfmem\_s_kl\Z
66. Hij_^_eblv ijhkl_crmx nhjfmem \_s_kl\Z \ dhlhjhffZkkh\u_
^heb we_f_glh\ jZ\gu dZebc – ojhf – dbkehjh^ – 38,10 %.
67. <g_ba\_klghf\_s_kl\_fZkkh\Zy^hey[hjZjZ\gZ\h^hjh
^Z–bZahlZ–IZjuwlh]h\_s_kl\ZfZkkhc]ijb
l_fi_jZlmj_ hKb^Z\e_gbbdIZaZgbfZ_lh[t_fjZ\guc
eHij_^_ebl_fhe_dmeyjgmxnhjfmemkh_^bg_gby
68. G_ba\_klgh_kh_^bg_gb_\h^hjh^ZkZahlhffZkkhc]kh`]eb\
ba[uld_ dbkehjh^Z \ j_amevlZl_ q_]h h[jZah\Zebkv \h^Z fZkkhc
] b Zahl h[t_fhf fe g m Hij_^_eblv fhe_dmeyjgmx
nhjfmembkoh^gh]h\_s_kl\Z_kebiehlghklv_]hiZjh\ijbgm
jZ\gZ]e
69. G_ba\_klgh_ hj]Zgbq_kdh_ \_s_kl\h fZkkhc ] kh`]eb \ ba
[uld_ dbkehjh^Z \ j_amevlZl_ q_]h h[jZah\Zebkv m]e_dbkeuc ]Za
fZkkhc ] b \h^Z fZkkhc ] Hij_^_eblvfhe_dmeyjgmx
nhjfmem bkoh^gh]h \_s_kl\Z _keb hlghkbl_evgZy iehlghklv _]h
ih\h^hjh^mjZ\gZ
70. G_ba\_klgh_ [jhfkh^_j`Zs__ \_s_kl\h fZkkhc ] kh`]eb \
ba[uld_dbkehjh^Z\j_amevlZl_q_]hh[jZah\Zebkvm]e_dbkeuc]Za
fZkkhc ] b \h^Z fZkkhc ] ;jhf kh^_j`Zsbcky \ bk
oh^ghf\_s_kl\_fZkkhc][ueiheghklvxi_j_\_^_g\[jh
fb^k_j_[jZfZkkZdhlhjh]hhdZaZeZkvjZ\ghc]Hij_^_eblv
fhe_dmeyjgmx nhjfmem \_s_kl\Z _keb hlghkbl_evgZy iehlghklv
_]hiZjh\ihdbkehjh^mjZ\gZ
30
71. Ijbl_jfbq_kdhfjZaeh`_gbbhdkb^ZfZj]ZgpZIVfZkkhc]
\u^_ebekydbkehjh^bh[jZah\Zeky^jm]hchdkb^fZj]ZgpZfZkkhc
]DZdh\ZnhjfmeZihemq_ggh]hhdkb^Z"
72. G_ba\_klgh_ k_jhkh^_j`Zs__ \_s_kl\h fZkkhc ] kh`]eb \
ba[uld_dbkehjh^Z\j_amevlZl_q_]hh[jZah\Zebkvm]e_dbkeuc]Za
fZkkhc]b\h^ZfZkkhc]<kyk_jZkh^_j`ZsZyky\bk
oh^ghf \_s_kl\_ fZkkhc ] [ueZ i_j_\_^_gZ iheghklvx \
kmevnZl[ZjbyfZkkZdhlhjh]hhdZaZeZkvjZ\ghc]Hij_^_
eblv fhe_dmeyjgmx nhjfmem bkoh^gh]h \_s_kl\Z _keb hlghkb
l_evgZyiehlghklv_]hiZjh\ih\ha^momjZ\gZ
73. DZdhch[t_fhahgbjh\Zggh]hdbkehjh^Z\dhlhjhfh[t_fgZy^hey
hahgZjZ\gZg_h[oh^bf^eyihegh]hk`b]ZgbyijhiZgZh[t
_fhfegm"
74. KieZ\ f_^b k k_j_[jhf fZkkhc ] jZkl\hjbeb \ ba[uld_ jZk
l\hjZ Zahlghc dbkehlu Ba ihemq_ggh]h jZkl\hjZ [ueZ \u^_e_gZ
kf_kvgbljZlZk_j_[jZkljb]b^jZlhfgbljZlZf_^bIIh[s_cfZk
khc]<uqbkeblvagZq_gbyfZkkh\uo^he_cf_lZeeh\\bkoh^
ghckf_kb
75. FZkkh\u_^hebdZ^fbybpbgdZ\bokieZ\_jZ\gukhhl\_lkl\_ggh
bDZdZyfZkkZwlh]hkieZ\Z^he`gZ[ulvjZkl\hj_gZ\kh
eyghc dbkehl_ k p_evx ihemq_gby \h^hjh^Z h[t_fhf e ijb
l_fi_jZlmj_oKb^Z\e_gbbdIZ"
=E:<:II
HKGH<GU?DE:KKU
G?HJ=:GBQ?KDBOKH?>BG?GBC
<k_\_s_kl\Z^_eylkygZijhklu_bkeh`gu_IjhklufbgZau\Z
xlky\_s_kl\Zkhklhysb_baZlhfh\h^gh]hwe_f_glZZkeh`gufb –
khklhysb_baZlhfh\^\mobeb[he__we_f_glh\
GZa\Zgbyijhkluo\_s_kl\dZdijZ\behkh\iZ^ZxlkgZa\Zgbyfb
khhl\_lkl\mxsboobfbq_kdbowe_f_glh\gZijbf_jeblbc[hjk_jZ
Bkdexq_gb_khklZ\eyxlm]e_jh^gZa\Zgbyijhkluo\_s_kl\dhlhjh
]h –ZefZa]jZnbldZj[bgnmee_j_gZlZd`_ZeehljhigZyfh^bnbdZ
pbydbkehjh^Z–hahg
Keh`gu_g_hj]Zgbq_kdb_\_s_kl\ZihkhklZ\mih^jZa^_eyxlkygZ
^\mowe_f_glgu_[bgZjgu_bfgh]hwe_f_glgu_kh_^bg_gby
Kh]eZkghijbgpbimkbkl_fZlbq_kdhcghf_gdeZlmjuobfbq_kdZy
nhjfmeZ keh`gh]h \_s_kl\Z jZa^_ey_lky gZ mkeh\gh we_dljhiheh`b
l_evgmxbmkeh\ghwe_dljhhljbpZl_evgmxkhklZ\eyxsb_I_j\Zykh
klZ\eyxsZyklZ\blky\nhjfme_ke_\ZZ\lhjZy–kijZ\Z
31
GZa\Zgb_keh`gh]h\_s_kl\ZqblZ_lkykijZ\ZgZe_\hl_\gZqZ
e_ gZau\Z_lky _]h we_dljhhljbpZl_evgZy khklZ\eyxsZy \ bf_gbl_ev
ghfiZ^_`_ZaZl_fwe_dljhiheh`bl_evgZy\jh^bl_evghfiZ^_`_
;bgZjgu_kh_^bg_gby
GZa\Zgby[bgZjguokh_^bg_gbch[jZamxlkybaeZlbgkdh]hdhjgy
gZa\Zgby [he__ we_dljhhljbpZl_evgh]h we_f_glZ k kmnnbdkhf -b^- b
jmkkdh]h gZa\Zgby f_g__ we_dljhhljbpZl_evgh]h we_f_glZ \ jh^b
l_evghf iZ^_`_ ?keb f_g__ we_dljhhljbpZl_evguc we_f_gl fh`_l
gZoh^blvky \ jZaebqguo kl_i_gyo hdbke_gby lh kl_i_gv hdbke_gby
mdZau\Z_lky\kdh[dZojbfkdbfbpbnjZfb
=Zeh]_gb^u: NaCl – oehjb^ gZljby +, – bh^b^ \h^hjh^Z 2)2 –
nlhjb^dbkehjh^Z,,)H%U2 –[jhfb^`_e_aZ,,
Hdkb^u Al2O3 – hdkb^ Zexfbgby 34O10 – hdkb^ nhknhjZ 9
KH – hdkb^ m]e_jh^Z ,, )H2O3 – hdkb^ `_e_aZ ,,, Hdkb^u kh^_j
`Zsb_]jmiimZlhfh\2 22 − (–H–H–gZau\Zxlkyi_jhdkb^ZfbG2H2 –
i_jhdkb^\h^hjh^Z<ZH2 –i_jhdkb^[Zjby
OZevdh]_gb^u(kmevnb^uk_e_gb^ul_eemjb^u): CuS –kmevnb^
f_^b,,&X26_–k_e_gb^f_^b,1D2Te –l_eemjb^gZljby
:gZeh]bqgh gZau\Zxlky b ^jm]b_ [bgZjgu_ kh_^bg_gby gZijb
f_jnhknb^ulbiZ&D3P2; dZj[b^u – CaC2; ]b^jb^u – MgH2 b^jm]b_
Bkdexq_gb_fbamdZaZgguoijZ\bey\eyxlky\h^hjh^gu_kh_^b
g_gbyg_f_lZeeh\ijhy\eyxsb_k\hckl\ZdbkehlBogZa\Zgbyh[jZ
amxlkyihijZ\beZfijbgyluf^eydbkehlkfgb`_
LjZ^bpbhgghd[bgZjgufkh_^bg_gbyfhlghkyl\_s_kl\Zbf_x
sb_\k\h_fkhklZ\_djhf_Zlhfh\dZdh]heb[hwe_f_glZbhggu_ijhba\h^gu_ \h^hjh^guo kh_^bg_gbc ZahlZ 1+4+ – Zffhgbc 1+4Cl –
oehjb^ Zffhgby 1+ −2 – Zfb^ .1+2 – Zfb^ dZeby 1+2– – bfb^
Na2NH –bfb^gZljby
D ik_\^h[bgZjguf kh_^bg_gbyf hlghkyl _s_ jy^ \_s_kl\ kh
^_j`Zsbomklhcqb\u_]jmiibjh\dbZlhfh\jZaguowe_f_glh\gZijb
f_jpbZgb^-bhgu– CN Ø\bkfmlbe– BiO+klb[be– SbO+.
Ih nmgdpbhgZevguf ijbagZdZf [hevrbgkl\h mdZaZgguo [bgZj
guokh_^bg_gbcy\eyxlkykheyfbbebkhe_ih^h[gufbkh_^bg_gbyfb
djhf_hdkb^guob\h^hjh^guokh_^bg_gbc
Hdkb^u ih^jZa^_eyxlky gZ g_khe_h[jZamxsb_ [_ajZaebqgu_ b
khe_h[jZamxsb_G_khe_h[jZamxsb_hdkb^ug_\aZbfh^_ckl\mxlgbk
dbkehlZfbgbkhkgh\ZgbyfbCO, NO, N22Khe_h[jZamxsb_hdkb
^u^_eylkygZhkgh\gu_dbkehlgu_bZfnhl_jgu_.
32
Fgh]hwe_f_glgu_kh_^bg_gby
D wlhfm lbim g_hj]Zgbq_kdbo \_s_kl\ hlghkblky [hevrbgkl\h
kh_^bg_gbcdhlhju_bf_xl\k\h_fkhklZ\_we_dljhhljbpZl_evgu_b
we_dljhiheh`bl_evgu_khklZ\eyxsb_kh^_j`Zsb_[he__h^gh]hwe_
f_glZ
Hkgh\Zgby Hkgh\Zgbyfb gZau\Zxlky keh`gu_ \_s_kl\Z kh
klhysb_baZlhfh\f_lZeeZbh^ghcbebg_kdhevdbo]b^jhdkh]jmii
Hgb y\eyxlky l\_j^ufb djbklZeebq_kdbfb \_s_kl\Zfb Hkgh\
gh_obfbq_kdh_k\hckl\hhkgh\Zgbc–kihkh[ghklv\aZbfh^_ckl\h\Zlv
k dbkehlZfb b dbkehlgufb hdkb^Zfb k h[jZah\Zgb_f khe_c Hkgh\Z
gbys_ehqguo/L1D.5E&Vbs_ehqgha_f_evguof_lZeeh\&D
6U%DjZkl\hjbfu\\h^_bgZau\Zxlkys_ehqZfbKbkl_fZlbq_kdb_
gZa\Zgbywlh]hlbiZkh_^bg_gbckhklhylbakeh\Z]b^jhdkb^bgZa\Z
gbywe_f_glZ\jh^bl_evghfiZ^_`_kmdZaZgb_f_]hkl_i_gbhdbke_
gby_kebwlhg_h[oh^bfh
LiOH –]b^jhdkb^eblby
<ZHG2 –]b^jhdkb^[Zjby
Fe(OH)3 – ]b^jhdkb^`_e_aZ(III); Re(OH)4 –]b^jhdkb^j_gby(IV).
DbkehluWlhkeh`gu_\_s_kl\Zkhklhysb_badbkehlguohklZl
dh\bh^gh]hbebg_kdhevdboZlhfh\\h^hjh^Zkihkh[guoaZf_sZlvky
gZZlhfuf_lZeeh\
Dbkehlu\_kvfZjZaghh[jZagudZdihZ]j_]Zlghfmkhklhygbx]Z
ahh[jZagu_ `b^db_ l\_j^u_ lZd b ih nbabdh-obfbq_kdbf k\hckl
\Zf ;hevrbgkl\h dbkehl ohjhrh jZkl\hjbfh \ \h^_ Bo \Z`g_cr__
obfbq_kdh_ k\hckl\h – kihkh[ghklv h[jZah\u\Zlv kheb ijb \aZbfh
^_ckl\bbkhkgh\Zgbyfbbhkgh\gufbhdkb^Zfb
Qbkeh Zlhfh\ \h^hjh^Z \ fhe_dme_ dbkehlu kihkh[guo aZf_
sZlvkygZf_lZeegZau\Z_lkyhkgh\ghklvxdbkehlu. HNO3 –h^ghhk
gh\gZy+2SO4 –^\mohkgh\gZy+3PO4 –lj_ohkgh\gZy+4P2O7 –q_lu
j_ohkgh\gZy&+3COOH –h^ghhkgh\gZydbkehlu
G_hj]Zgbq_kdb_dbkehlu^_eylkygZkh^_j`Zsb_dbkehjh^hdkh
dbkehlulbiZ+nW2mb[_kdbkehjh^gu_lbiZGnXm]^_W–dbkehlh
h[jZamxsbcwe_f_glO –Zlhfu]Zeh]_gh\oZevdh]_gh\bg_dhlhjuo
^jm]bowe_f_glh\nbm –dhebq_kl\hkhhl\_lkl\mxsboZlhfh\
Ijh^mdluaZf_s_gby\fhe_dmeZohdkhdbkehlZlhfh\dbkehjh^Z
gZ]jmiim–H–H–gZau\Zxlkyi_jhdkhdbkehlZfb(H2SO5Zijh^mdlu
aZf_s_gbydbkehjh^ZgZZlhfuk_ju– lbhdbkehlZfb(H3PS4).
LjZ^bpbhggh_gZa\Zgb_hdkhdbkehlukhklhblba^\mokeh\–ijb
eZ]Zl_evgh]h hl dhjgy gZa\Zgby dbkehlhh[jZamxs_]h we_f_glZ b
]jmiih\h]hkeh\Z©dbkehlZªgZijbf_jk_jgZydbkehlZ[hjgZydbkeh
33
lZ?kebwe_f_glh[jZam_lg_kdhevdhdbkehllhjZaebqb_f_`^mgbfb
j_]mebjm_lky k ihfhsvx kmnnbdkh\ ijbkh_^bgy_fuo d dhjgx jmk
kdh]hgZa\Zgbywe_f_glZ-g-, -\-beb-_\-ijb\ukr_cbeb_^bgkl\_g
ghckl_i_gbhdbke_gbyb-h\-, -bkl-, -gh\Zl-, -gh\Zlbkl-ijbijhf_
`mlhqguobgbarbokl_i_gyohdbke_gby
Khebij_^klZ\eyxlkh[hcijh^mdluaZf_s_gbyZlhfh\\h^hjh^Z\
dbkehl_gZf_lZeebeb]jmiiuHG–\hkgh\ZgbbgZdbkehlguchklZlhd
< aZ\bkbfhklb hl kl_i_gb aZf_s_gby bhgZ \h^hjh^Z \ dbkehlZo
bebHG–]jmiiu\hkgh\Zgbyoh[jZamxsb_kykhebdeZkkbnbpbjmxlky
gZdbkeu_kheb]b^jhkheblbiZ1D+623, Mg(HCO3)2, kj_^gb_ihegh_
aZf_s_gb_GbHGlbiZ)H2(SO4)3, Na2CO3bhkgó\gu_]b^jhdkhkh
eblbiZ)H2+&O&X2+2CO3.
JZaebqZxllZd`_^\hcgu_khebh[jZah\Zggu_^\mfyf_lZeeZfbb
h^gbfdbkehlgufhklZldhf.$O624)2, KCr(SO4)2), kf_rZggu_h[jZ
ah\Zggu_ h^gbf f_lZeehf b ^\mfy dbkehlgufb hklZldZfb &D&O2&O
beb &D2&O2 6U+6&O b dhfie_dkgu_ kheb >$J1+3)2]ClO4,
K3[Fe(CN)6]).
;hevrbgkl\h g_hj]Zgbq_kdbo khe_c ij_^klZ\eyxl kh[hc kh_^b
g_gbykbhgghcdjbklZeebq_kdhckljmdlmjhcbhlghkbl_evgh\ukhdb
fbl_fi_jZlmjZfbieZ\e_gbybdbi_gbyFgh]b_khebohjhrhjZkl\h
jbfu\\h^_
LjZ^bpbhggu_gZa\Zgbykhe_ckhklZ\eyxlkybagZa\ZgbcZgbhgh\
\ bf_gbl_evghf iZ^_`_bgZa\ZgbcdZlbhgh\\jh^bl_evghfiZ^_`_
GZa\Zgb_ZgbhgZ\dexqZ_ldhj_gvjmkkdh]hbebeZlbgkdh]hgZa\Zgby
dbkehlhh[jZamxs_]h we_f_glZ k ^h[Z\e_gb_f kmnnbdkZ khhl\_lkl
\mxs_]hlhcbebbghckl_i_gbhdbke_gbywe_f_glZ
?keb dbkehlhh[jZamxsbc we_f_gl bf__l lhevdh h^gm kl_i_gv
hdbke_gbylh^h[Z\ey_lkykmnnbdk-Zl-:
Na2CO3 –dZj[hgZlgZljby K2SiO3 –kbebdZldZeby
?kebdbkehlhh[jZamxsbcwe_f_glbf__l^\_kl_i_gbhdbke_gby
lh ijb \ukr_c kl_i_gb hdbke_gby ^h[Z\ey_lky kmnnbdk -Zl- Z ijb
gbar_c-bl-:
CaSO4 –kmevnZldZevpbyMgSO3 –kmevnblfZ]gby
IjbgZebqbbZgbhgh\khhl\_lkl\mxsboq_luj_fkl_i_gyfhdbk
e_gby dbkehlhh[jZamxs_]h we_f_glZ bo gZa\Zgby h[jZamxlky lZdbf
h[jZahf ^ey h[hagZq_gby \ukr_c kl_i_gb hdbke_gby bkihevamxlky
ijbklZ\dZi_j-bkmnnbdk-Zl:
KBr+7O4 – i_j[jhfZldZeby
34
aZl_f\ihjy^d_mf_gvr_gbykl_i_g_chdbke_gby[_aijbklZ\dbkmnnbdk-Zl:
KBr+5O3 –[jhfZldZeby
kmnnbdk-bl:
KBr+3O2 –[jhfbldZeby
^eygZbf_gvr_ciheh`bl_evghckl_i_gbhdbke_gby–ijbklZ\dZ– ]b
ih-bkmnnbdk-bl:
KBr+1O – ]bih[jhfbldZeby
Ijbihkljh_gbbljZ^bpbhgguogZa\Zgbcdbkeuokhe_cdgZa\Zgbx
ZgbhgZkj_^g_ckheb^h[Z\ey_lkyijbklZ\dZ]b^jh-bqbkeh\ZyijbklZ\
dZ_kebdhebq_kl\hZlhfh\\h^hjh^Z\Zgbhg_[hevr__^bgbpu
DGKH3 – ]b^jhdZj[hgZldZeby
Fe(H2PO4)2 – ^b]b^jhnhknZl`_e_aZII).
=b^jhdkhkheb ljZ^bpbhggh gZau\Zxl ^h[Z\e_gb_f d gZa\Zgbx
dZlbhgZijbklZ\db]b^jhdkh-:
(CuOH)2CO3 –dZj[hgZl]b^jhdkhf_^bII);
Al(OH)2NO3 –gbljZl^b]b^jhdkhZexfbgbybl^
GZa\Zgby ^\hcguo b kf_rZgguo khe_c kljhylky h[uqguf h[jZ
ahf ?^bgkl\_ggZy hkh[_gghklv ijb ibkvf_gghc aZibkb – wlh ihklZ
gh\dZ^_nbkZ^eyjZa^_e_gby^\hcghcqZklbdZlbhgZbebZgbhgZ
^\hcgu_kheb
KCr(SO4)2 –kmevnZlojhfZIIIdZeby;
kf_rZggu_kheb Ca(ClO)Cl – oehjb^-]bihoehjbldZevpby
AlNO3SO4 – kmevnZl-gbljZlZexfbgby
LjZ^bpbhggu_ gZa\Zgby kj_^gbo khe_c gZb[he__ mihlj_[bl_evguohdkhdbkehlijb\_^_gugb`_
LjZ^bpbhggh_ gZa\Zgb_ dbkehlu
NhjfmeZ
LjZ^bpbhggh_ gZa\Zgb_ kj_^g_c kheb
;hjgZy
H3BO3
;hjZlu
M]hevgZy
H2CO3
DZj[hgZlu
F_lZdj_fgb_\Zy
H2SiO3
F_lZkbebdZlu
Hjlhdj_fgb_\Zy
H4SiO4
HjlhkbebdZlu
Furvydh\Zy
H3AsO4
:jk_gZlu
Furvydh\bklZy
H3AsO3
:jk_gblu
NhknhjgZy
H3PO4
NhknZlu
>bnhknhjgZy
H4P2O7
>bnhknZlu
NhknhjbklZy
H3PO3
Nhknblu
35
LjZ^bpbhggh_ gZa\Zgb_ dbkehlu
NhjfmeZ
LjZ^bpbhggh_ gZa\Zgb_ kj_^g_c kheb
Nhknhjgh\ZlbklZy
H3PO2
=bihnhknblu
:ahlgZy
HNO3
GbljZlu
:ahlbklZy
HNO2
Gbljblu
Ojhfh\Zy
H2CrO4
OjhfZlu
>bojhfh\Zy
H2Cr2O7
>bojhfZlu
K_jgZy
H2SO4
KmevnZlu
K_jgbklZy
H2SO3
Kmevnblu
FZj]Zgph\Zy
HMnO4
I_jfZg]ZgZlu
FZj]Zgph\bklZy
H2MnO4
FZg]ZgZlu
Oehjgh\ZlbklZy
HClO
=bihoehjblu
OehjbklZy
HClO2
Oehjblu
Oehjgh\ZlZy
HClO3
OehjZlu
OehjgZy
HClO4
I_joehjZlu
AZ^Zqb^eyj_r_gby
76. GZibkZlv nhjfmeu hdkb^h\ khhl\_lkl\mxsbo mdZaZgguf
]b^jhdkb^Zf+4SiO4, Cu(OH)2, H3AsO3, H6TeO6, Fe(OH)3.
77. KhklZ\vl_mjZ\g_gbyj_Zdpbckihfhsvxdhlhjuofh`ghhkms_
kl\blvij_\jZs_gby
Z) Ba :%D2:%D&O2 :%D123)2 :%D624;
[) Mg :0J624 :0J2+2 :0JO :0J&O2 .
78. DZdb_bamdZaZgguo]Zah\\klmiZxl\obfbq_kdh_\aZbfh^_ckl\b_
kjZkl\hjhfs_ehqb+&O+2S, NO2, N2, Cl2, CH4, SO2, NH3"GZib
kZlvmjZ\g_gbykhhl\_lkl\mxsboj_Zdpbc
79. DZdb_ kheb fh`ghihemqblvbf_y\k\h_fjZkihjy`_gbb&X624,
AgNO3, K3PO4, BaCl2"GZibkZlvmjZ\g_gbyj_ZdpbcbgZa\Zlvih
emq_ggu_kheb
80. KdZdbfbai_j_qbke_gguogb`_\_s_kl\[m^_lj_Z]bjh\Zlvkhey
gZydbkehlZ<2O3, Zn(OH)2, CaO, AgNO3, SiO2, H3PO4"KhklZ\blv
mjZ\g_gbykhhl\_lkl\mxsboj_Zdpbc
81. DZdb_ ba mdZaZgguo \_s_kl\ j_Z]bjmxl k ]b^jhdkb^hf gZljby
HNO3, CaO, CO2, CuSO4, Cd(OH)2, P4O10"KhklZ\blvmjZ\g_gbyj_
Zdpbc
82. GZibrbl_ mjZ\g_gby j_Zdpbc k\b^_l_evkl\mxsbo h[ hkgh\guo
k\hckl\Zo)H2&V2O, HgO, Bi2O3.
36
83. GZibrbl_mjZ\g_gbyj_Zdpbc^hdZau\Zxsb_dbkehlgucoZjZdl_j
SeO2, SO3, Mn2O7, P4O6, CrO3.
84. GZah\bl_ kheb: SbCl2NO3, (Fe(OH)2)2CrO4, (AlOH)SO4, Cd(HS)2,
Ca(H2PO4)2.
85. GZibkZlv mjZ\g_gby j_Zdpbc h[jZah\Zgby 0J2P2O7, Ca3(PO4)2,
Mg(ClO4)2, Ba(NO3)2\j_amevlZl_\aZbfh^_ckl\by
Zhkgh\gh]hbdbkehlgh]hhdkb^h\
[hkgh\Zgbybdbkehlgh]hhdkb^Z
\hkgh\gh]hhdkb^Zbdbkehlu
]hkgh\Zgbybdbkehlu
86. GZa\Zlv kheb =Q&+3COO)2, NaH2SbO4, K2H2P2O7, Al(OH)2NO3,
Na2Cr2O7, Ba(HSO3)2, CrOHSO4, NaHS.
87. Ijb\_^bl_ ijbf_ju hdkb^h\ dhlhju_ ijb \aZbfh^_ckl\bb k \h
^hc h[jZamxl ^\_ dbkehlu DZd \aZbfh^_ckl\mxl k jZkl\hjhf
]b^jhdkb^ZdZevpby12O3; N2O5; NO2?
88. Hkms_kl\bl_ ij_\jZs_gby q_j_a ijhf_`mlhqguc ijh^mdl
FeCl3 : Fe2O3; Al(CH3COO)3 : Al2O3; CuSO4 : CuO; MnBr2 : MnO.
DZdfh`gh^eyh^gh]hblh]h`_we_f_glZbah^gh]hhdkb^Zihem
qblv^jm]hcgZijbf_j&X2ba&X2O)H2ba)H2O3; P4O10ba34O6;
0Q2ba0Q2O7; NO2ba12"
89. GZdZdhfjZaebqbb\k\hckl\Zofh`_l[ulvhkgh\ZghjZa^_e_gb_
ke_^mxsbohdkb^h\%D2b0J23E2b=Q26L22b1D220Q2b
=Q2)H2b6L22?
90. Q_fhij_^_ey_lkyhkgh\ghklvdbkehl"Ijb\_^bl_ijbf_judbkehl
jZaghchkgh\ghklbbgZibrbl_bo]jZnbq_kdb_nhjfmeuDZdke_
^m_ljZkkfZljb\Zlvkljh_gb_fhe_dmeunhknhjbklhcdbkehlubk
oh^ybolh]hqlhhgZ\_^_lk_[ylhevdhdZd^\mohkgh\gZy"
91. GZ ijbf_j_ f_lZ- hjlh- ihebnhknhjguo dbkehl ihdZ`bl_ q_f
hlebqZxlkywlbnhjfmeu^jm]hl^jm]ZbijbdZdbomkeh\byoijh
bkoh^ylbo\aZbfhij_\jZs_gby"
92. DZdb_ kh_^bg_gby h[jZamxlky ijb l_jfbq_kdhf jZaeh`_gbb ke_
^mxsbo dbkehl beb ^_ckl\bb gZ gbo \h^hhlgbfZxsbo kj_^kl\
HNO2; HClO; H3PO3; H2WO4; H3AsO4; HBO2; H2B4O7; HAsO3;
H2S3O10?
93. KdZdbfbbai_j_qbke_gguo\_s_kl\\aZbfh^_ckl\m_lkheygZydb
kehlZ&D212O3; AgNO3; SO3; Pb(NO3)2; CuSO4; FeS; FeO; Cu; Zn?
94. Hkgh\gu_k\hckl\ZdZdh]h]b^jhdkb^Z\ujZ`_gukbevg__bihq_
fm $V2+3 beb %L2+3; Sn(OH)2 beb 6Q2+4; Fe(OH)2 beb
Fe(OH)3; Ba(OH)2beb%H2+2?
37
95. Hij_^_ebl_fZkkm]b^jhdkb^ZgZljbydhlhjucfh`_l[ulvihem
q_gbafhjkdhckhebfZkkhclijbmkeh\bbqlhfZkkh\Zy^hey
oehjb^ZgZljby\g_ckhklZ\ey_l
96. GZc^bl_ fZkkh\mx ^hex ]b^jhdkb^Z gZljby ij_\jZlb\r_]hky \
dZj[hgZlaZkq_lih]ehs_gby&22\ha^moZ_kebfZkkZ]b^jhdkb^Z
\hajhkeZk^h]Q_fmjZ\_gh[t_fgmih]ehs_ggh]h
ijbwlhfKH2?
97. < dZdhf h[t_fghf hlghr_gbb ^he`gu [ulv kf_rZgu jZkl\hju
G3JH4b1D2+h^bgZdh\hcfheyjghcdhgp_gljZpbb^eyihemq_
gby]b^jh-b^b]b^jhnhknZlZgZljby"
98. GZibrbl_ mjZ\g_gby j_Zdpbc dhlhju_ ihke_^h\Zl_evgh ijhl_
dZxlijbihkl_i_gghf^h[Z\e_gbb
Z1D2+djZkl\hjm]b^jhkmevnZlZpbgdZ
[k_jghcdbkehludk\_`_hkZ`^_gghfm]b^jhdkb^mZexfbgby
99. GZibrbl_mjZ\g_gbyj_Zdpbcijbihfhsbdhlhjuoi_j_qbke_g
gu_ gb`_ kheb fh]ml [ulv i_j_\_^_gu \ kj_^gb_ &X2+2SO4,
Ca(HCO3)2, [Al(OH)2]2SO4, [Cr(OH)2]2SO4, FeOHSO4, (BiOH)SO4.
100. DZdb_ ba khe_c <ZClNO3, KNa2PO4, Pb(CH3COO)2, (BiO)2SO4,
Fe(OH)2NO3 \aZbfh^_ckl\mxl k Z H2SO4 [ NaOH" GZah\bl_
bkoh^gu_ kheb b ijh^mdlu \hafh`guo j_Zdpbc gZibrbl_ bo
]jZnbq_kdb_nhjfmeu
101. DZdbfbkihkh[Zfbfh`ghihemqblvbah^ghckheb^jm]mx
[) CuCl2 :&X624,
Z) Pb(NO3)2:3E624,
]) K2CrO4 :%D&U24,
\) Fe2(SO4)3 :)H&O3,
_) BaCO3 :%D&O2?
^) NaAlO2 :$O2(SO4)3,
102. GZibrbl_mjZ\g_gbyj_Zdpbcdhlhju_ijhl_dZxl\\h^ghfjZk
l\hj_f_`^m)H6b+&O&X2+2CO3b+2SO4, Ca(HCO3)2b1D2+
NaHSO4b1+3, Al(H2PO4)3b&D2+2.
103. L_jfbq_kdbfjZaeh`_gb_fdZdbokhe_cfh`ghihemqblvljbhd
kb^Z\jZaguoZ]j_]Zlguokhklhygbyo"
104. GZibrbl_mjZ\g_gbyj_Zdpbcdhlhju_ijhl_dZxl\\h^ghfjZk
l\hj_ f_`^m ke_^mxsbfb \_s_kl\Zfb &D2+2 b 122; NH3 b
SO2; CaCl2 b 1D2HPO4; H2SO4 b )H2+624; CaHAsO3 b %D2+2;
Mg(HCO3)2b&D2+2; KAl(SO4)2b.2+1+4Cr(SO4)2b%D&O2.
105. Ijb ihfhsb dZdbo j_Zdpbc fh`gh hkms_kl\blv ke_^mxsb_ i_
j_oh^uhlh^gh]h\_s_kl\Zd^jm]hfm
Z) KAl(SO4)2 :$O&O3 :$O2O3;
[) Fe2(SO4)3 :)H123SO4 :)H&O3 :)H2O3;
\) Fe2(SO4)3 :)H2O3 :)H2:1+4)2Fe(SO4)2 :)H&O3;
]) Fe :)H&O2 :)H&O3 :)H2+624 :)H&O624 :)H2O3 :)H
^) Zn :=Q6:=Q2:=Q2+2SO4 :=Q&O2 :=Q
38
=E:<:,,,
WG?J=?LBD:OBFBQ?KDBOJ?:DPBC
L_jfh^bgZfbdZbamqZ_laZdhghf_jghklbh[f_gZwg_j]b_cf_`^m
kbkl_fhcb\g_rg_ckj_^hc\hafh`ghklvgZijZ\e_gb_bij_^_eukZ
fhijhba\hevgh]hijhl_dZgbyobfbq_kdboijhp_kkh\
Kbkl_fZ – kh\hdmighklv \_s_kl\ beb qZklbp hl^_e_gguo hl
\g_rg_c kj_^u JZaebqZxl ]hfh]_ggu_ b ]_l_jh]_ggu_ kbkl_fu =h
fh]_ggu_ kbkl_fu khklhyl ba h^ghc nZau ]_l_jh]_ggu_ kbkl_fu –
ba ^\mo beb [he__ nZa NZaZ – wlh qZklv kbkl_fu h^ghjh^gZy \h
\k_o__lhqdZoihobfbq_kdhfmkhklZ\mbk\hckl\Zfbhl^_e_ggZyhl
^jm]bonZakbkl_fuih\_joghklvxjZa^_eZ
Obfbq_kdZy kbkl_fZ oZjZdl_jbam_lky hij_^_e_ggufb iZjZf_l
jZfb. D iZjZf_ljZf kbkl_fu hlghkylky l_fi_jZlmjZ L ^Z\e_gb_ j,
h[t_fVfZkkZmbdhgp_gljZpbyk
L_jfh^bgZfbq_kdh_khklhygb_kbkl_fuhibku\Z_lkynmgdpbyfb
khklhygby dhlhju_ h^ghagZqgh hij_^_eyxlky q_j_a iZjZf_lju kh
klhygby j, V b L Baf_g_gb_ ohly [u h^gh]h ba gbo \e_q_l aZ kh[hc
baf_g_gb_\k_onmgdpbckhklhygbykbkl_fuIhke_^gb_g_aZ\bkylhl
imlbb\j_f_gbijhp_kkZijb\h^ysbokbkl_fm\^Zggh_khklhygb_D
nmgdpbyf khklhygby gZau\Z_fuo lZd`_ l_jfh^bgZfbq_kdbfb ih
l_gpbZeZfbhlghkylky
U –\gmlj_ggyywg_j]by
G –wglZeviby
S –wgljhiby
G –wg_j]by=b[[kZk\h[h^gZywg_j]by
<gmlj_ggyy wg_j]by kbkl_fu U – wlh __ ihegZy wg_j]by kh
klhysZy ba dbg_lbq_kdhc b ihl_gpbZevghc wg_j]bb \k_o qZklbp kbk
l_fu fhe_dme Zlhfh\ y^_j we_dljhgh\ Ihkdhevdm iheguc mq_l
\k_o khklZ\eyxsbo g_\hafh`_g ihwlhfm ijb l_jfh^bgZfbq_kdhf
bamq_gbb kbkl_fu ^hklZlhqgh agZlv ebrv baf_g_gb_ __ \gmlj_gg_c
wg_j]bbijbi_j_oh^_bah^gh]hkhklhygbyU1\^jm]h_U2):
∆U = U2 – U1.
;hevrbgkl\h obfbq_kdbo j_Zdpbc b^_l ijb ihklhygghf ^Z\e_gbb
(bah[Zjgu_ ijhp_kku b kbkl_fZ fh`_l h[f_gb\Zlvky wg_j]b_c l_iehlhc4khdjm`Zxs_ckj_^hcbkh\_jrZlvjZ[hlm:ijhlb\kbe\g_rg_]h^Z\e_gbybebgZh[hjhlgZ^kbkl_fhcfh`_l[ulvkh\_jr_gZjZ[hlZ
∆U = Q + A .
39
<h[s_f\b^_jZ[hlZ
A = p(V2 –V1) = p∆V.
?keb gZ^ kbkl_fhc kh\_jrZ_lky jZ[hlZ lh hgZ kqblZ_lky iheh
`bl_evghc Z _keb kbkl_fZ kZfZ kh\_jrZ_l jZ[hlm lh lZdZy jZ[hlZ
kqblZ_lkyhljbpZl_evghc:
A = –p∆V.
Ihwlhfm\gZr_fkemqZ_j = const):
∆U = Qp – p∆V
beb
hldm^Z
U2 – U1= Qj – p(V2 – V1),
Qp = (U2+ pV2) – (U1+ pV1).
Nmgdpby U + pV h[hagZq_ggZy q_j_a G gZau\Z_lky wglZevib_c.
WglZeviby_klvnmgdpbykhklhygbybbf__ljZaf_jghklvwg_j]bbd>`
Qp = H2 – H1 = ∆H.
L_ieh\hc wnn_dl j_Zdpbb ijb ihklhygghf ^Z\e_gbb b l_fi_jZ
lmj_khhl\_lkl\m_lbaf_g_gbxwglZevibbkbkl_fu\oh^_j_ZdpbbHg
aZ\bkblhlijbjh^uj_Z]_glh\bijh^mdlh\bonbabq_kdh]hkhklhygby
mkeh\bc L, j ijh\_^_gby j_Zdpbb Z lZd`_ hl dhebq_kl\Z \_s_kl\
mqZkl\mxsbo\j_Zdpbb
H[uqgh l_jfh^bgZfbq_kdb_ \_ebqbgu hij_^_eyxl ijb klZg
^Zjlguo mkeh\byo: j dIZbL D hK
KlZg^ZjlgZywglZevibyj_Zdpbbh[jZah\Zgbyfhev^Zggh]h\_s_
kl\Z ba ijhkluo \_s_kl\ gZoh^ysboky \ klZg^Zjlguo khklhygbyo gZau\Z_lkyklZg^ZjlghcwglZevib_ch[jZah\Zgbywlh]h\_s_kl\ZgZijbf_j
∆f H 0298 (CO2) = – d>`fhev ∆f H 0298 (HgO) = –90,9 d>`fhev Wg
lZevibyh[jZah\Zgbyijhkluo\_s_kl\\klZg^Zjlghfkhklhygbbijb
gbfZ_lkyjZ\ghc.
Obfbq_kdb_mjZ\g_gby\dhlhjuomdZaZgubaf_g_gbywglZevibb
l_ieh\u_wnn_dluj_ZdpbcgZau\Zxlkyl_jfhobfbq_kdbfb mjZ\g_
gbyfb:
beb
K]jZnblH] →KH]; ∆G 0298 = –d>`
K]jZnblH] →KH]d>`
?keb\j_amevlZl_j_Zdpbbl_iehlZ\u^_ey_lkyQ > lhwglZeviby
kbkl_fuihgb`Z_lkyûH < LZdZyj_ZdpbygZau\Z_lkywdahl_jfbq_k40
dhc J_Zdpby ijhl_dZxsZy k ih]ehs_gb_f l_iehlu Q < l _ k ih\ur_gb_fwglZevibbkbkl_fuûH > gZau\Z_lkywg^hl_jfbq_kdhc.
Hkgh\gufaZdhghfl_jfhobfbby\ey_lkyaZdhg=_kkZ l_ieh
\hcwnn_dlj_Zdpbbhij_^_ey_lkylhevdhgZqZevgufbdhg_qgufkh
klhygb_fkbkl_fubg_aZ\bkblhlimlbi_j_oh^Zkbkl_fubah^gh
]hkhklhygby\^jm]h_.
Ke_^kl\b_baaZdhgZ=_kkZ klZg^Zjlgucl_ieh\hcwnn_dlj_
ZdpbbjZ\_gkmff_klZg^Zjlguol_iehlh[jZah\Zgbyijh^mdlh\j_
Zdpbb aZ \uq_lhf kmffu klZg^Zjlguo l_iehl h[jZah\Zgby bkoh^
guo\_s_kl\kmq_lhfkl_obhf_ljbq_kdbodhwnnbpb_glh\
∆G 0298 j-pbb ∑∆f G 0298 ijh^–∑∆f G 0298 bko
Ijbf_j Ihevamykv ^Zggufb h klZg^Zjlguo wglZevibyo h[jZ
ah\Zgby\_s_kl\\j_Zdpbb0Jd + CO ] = 2MgOd + C]jZnbl\uqbk
eblv∆Gh j_Zdpbb
J_r_gb_
Bkoh^ybalZ[ebqguo^ZgguoihwglZevibyfh[jZah\Zgby&22b
0J2 b mqblu\Zy qlh klZg^Zjlgu_ wglZevibb h[jZah\Zgby \_s_kl\
jZ\gugmexgZoh^bf\_ebqbgmklZg^ZjlghcwglZevibbj_Zdpbb
∆ G 0298 =2∆f G 0298 (MgO) – ∆f G 0298 (CO2) =
= –601,8 .2 + 393,5 = –d>`fhev
Ijbf_j Bkoh^y ba l_iehlu h[jZah\Zgby ]Zahh[jZagh]h ^bhd
kb^Zm]e_jh^Z&22) = –d>`fhevbl_jfhobfbq_kdh]hmjZ\g_
gbyK]jZnbl + 2N2O ] KH] + 2N]; ∆G 0298 = –d>`<uqbkeblv
l_iehlmh[jZah\Zgby12O].
J_r_gb_
hldm^Z
∆G 0298 j-pbb ∆f G 0298 (CO2) + 0) – (2∆fG 0298 (N2O) + 0),
2∆fG 0298 (N2O) = ∆f G 0298 (CO2) – ∆G 0298 j-pbb
–393,5 – (– d>`
Ke_^h\Zl_evgh∆f G 0298 (N22 d>`fhev
GZijZ\e_gb_\dhlhjhfkZfhijhba\hevghijhl_dZ_lobfbq_kdZy
j_Zdpbyhij_^_ey_lkykh\f_klguf^_ckl\b_f^\monZdlhjh\l_g
^_gpb_c d i_j_oh^m kbkl_fu \ khklhygb_ k gZbf_gvr_c \gmlj_gg_c
wg_j]b_c\kemqZ_bah[Zjguoijhp_kkh\–kgZbf_gvr_cwglZevib_c
l_g^_gpb_c d ^hklb`_gbx gZb[he__ \_jhylgh]h khklhygby l _
khklhygby dhlhjh_ fh`_l [ulv j_Zebah\Zgh gZb[hevrbf qbkehf
jZ\gh\_jhylguokihkh[h\fbdjhkhklhygbc
41
F_jhci_j\hcbawlbol_g^_gpbc^eybah[Zjguoijhp_kkh\kem
`blbaf_g_gb_wglZevibb\obfbq_kdhcj_ZdpbbhljbpZl_evgucagZd
∆GmdZau\Z_lgZmf_gvr_gb_Ziheh`bl_evguc–gZ\hajZklZgb_wg
lZevibbkbkl_fu
F_jhc \_jhylghklb g_mihjy^hq_gghklb [_kihjy^dZ khklhygby
kbkl_fu \ l_jfh^bgZfbd_ ijbgylh kqblZlv wgljhibx S – \_ebqbgm
ijhihjpbhgZevgmx eh]Zjbnfm qbkeZ jZ\gh\_jhylguo fbdjhkhklhy
gbcq_j_adhlhju_fh`_l[ulvj_Zebah\Zgh^Zggh_fZdjhkhklhygb_
S = k . ln W.
?^bgbpZbaf_j_gbywgljhibb–>`fhevÜK.
Wgljhiby\hajZklZ_lijbi_j_oh^_\_s_kl\ZbadjbklZeebq_kdh]h
khklhygby \ `b^dh_ b ba `b^dh]h \ ]Zahh[jZagh_ ijb jZkl\hj_gbb
djbklZeeh\ijbjZkrbj_gbb]Zah\ijbobfbq_kdbo\aZbfh^_ckl\byo
ijb\h^ysbodm\_ebq_gbxqbkeZqZklbpbij_`^_\k_]hqZklbp\]Z
ahh[jZaghfkhklhygbbGZijhlb\\k_ijhp_kku\j_amevlZl_dhlhjuo
mihjy^hq_gghklv kbkl_fu \hajZklZ_l dhg^_gkZpby ihebf_jbaZpby
k`Zlb_ mf_gvr_gb_ qbkeZ qZklbp khijh\h`^Zxlky mf_gvr_gb_f
wgljhibb
Ijbf_jG_ijhba\h^y\uqbke_gbchij_^_eblvagZdbaf_g_gby
wgljhibb\ke_^mxsboj_Zdpbyo
NH4NOd = N2O]G2H];
(1)
(2)
G]H] G2H];
G]H] G2H`.
(3)
J_r_gb_
<j_Zdpbbfhev\_s_kl\Z\djbklZeebq_kdhfkhklhygbbh[
jZam_l fhev ]Zah\ ke_^h\Zl_evgh ûS1 > < j_Zdpbyo b mf_gvrZ_lkydZdh[s__qbkehfhe_clZdbqbkehfhe_c]Zahh[jZaguo
\_s_kl\lZdqlhûS2 < bûS3 < IjbwlhfûS3bf__l[he__hljbpZ
l_evgh_agZq_gb_q_fûS2lZddZdS(H2O`) < S(H2O]).
>ey wgljhibb kijZ\_^eb\h ml\_j`^_gb_ ZgZeh]bqgh_ jZkkfhl
j_gghfm \ur_ ^ey ∆G: baf_g_gb_ wgljhibb kbkl_fu \ j_amevlZl_
obfbq_kdhcj_Zdpbb∆6jZ\ghkmff_wgljhibcijh^mdlh\j_ZdpbbaZ
\uq_lhfkmffuwgljhibcbkoh^guo\_s_kl\DZdbijb\uqbke_gbb
wglZevibbkmffbjh\Zgb_ijhba\h^ylkmq_lhfkl_obhf_ljbq_kdbodh
wnnbpb_glh\
KlZg^ZjlgZywgljhibyijhkluo\_s_kl\\hlebqb_hlwglZevibbh[jZah\Zgbyijhkluo\_s_kl\g_jZ\gZgmex
42
Nmgdpb_ckhklhygbyh^gh\j_f_gghhljZ`Zxs_c\ebygb_h[_bo
mihfygmluo\ur_l_g^_gpbcgZgZijZ\e_gb_ijhl_dZgbyobfbq_kdbo
ijhp_kkh\ kem`bl wg_j]by =b[[kZ (k\h[h^gZy wg_j]by k\yaZggZy k
wglZevib_cbwgljhib_ckhhlghr_gb_f
G = H – TS,
]^_L –Z[khexlgZyl_fi_jZlmjZ
DZd \b^gh wg_j]by =b[[kZ bf__l lm `_ jZaf_jghklv qlh b wg
lZevibybihwlhfmh[uqgh\ujZ`Z_lky\>`bebd>`
>eybah[Zjgh-bahl_jfbq_kdboijhp_kkh\l_ijhp_kkh\ijhl_
dZxsboijbihklhygguol_fi_jZlmj_b^Z\e_gbbbaf_g_gb_wg_j]bb
=b[[kZjZ\gh
∆G =∆H – T∆S.
DZdb\kemqZ_∆Hb∆S, baf_g_gb_wg_j]bb=b[[kZ ∆G \j_amev
lZl_ obfbq_kdhc j_Zdpbb (wg_j]by =b[[kZ j_Zdpbb jZ\gh kmff_
wg_j]bc =b[[kZ h[jZah\Zgby ijh^mdlh\ j_Zdpbb aZ \uq_lhf kmffu
wg_j]bc=b[[kZh[jZah\Zgbybkoh^guo\_s_kl\kmffbjh\Zgb_ijhba
\h^ylkmq_lhfqbkeZfhe_cmqZkl\mxsbo\j_Zdpbb\_s_kl\
Wg_j]bx =b[[kZ h[jZah\Zgby \_s_kl\Z hlghkyl d fhex wlh]h
\_s_kl\Zbh[uqgh\ujZ`Zxl\d>`fhevijbwlhf∆G0 h[jZah\Zgby
gZb[he__ mklhcqb\hc fh^bnbdZpbb ijhklh]h \_s_kl\Z ijbgbfZxl
jZ\ghcgmex.
Ijbihklhygkl\_l_fi_jZlmjub^Z\e_gbyobfbq_kdb_j_Zdpbbfh]mlkZfhijhba\hevghijhl_dZlvlhevdh\lZdhfgZijZ\e_gbbijbdhlhjhfwg_j]by=b[[kZkbkl_fumf_gvrZ_lky∆G < 0)Wlh_klvmkeh\b_
ijbgpbibZevghc\hafh`ghklbhkms_kl\e_gby^Zggh]hijhp_kkZ
< ijb\_^_gghc lZ[ebp_ ihdZaZgZ \hafh`ghklv b mkeh\by ijhl_
dZgbyj_ZdpbbijbjZaebqguokhq_lZgbyoagZdh\∆Gb∆S.
AgZd baf_g_gby nmgdpbb
∆/
∆S
∆G
–
+
–
+
+
–
–
+
–
+
±
±
IjbgpbibZevgZy \hafh`ghklv
b mkeh\by ijhl_dZgby j_Zdpbb
<hafh`gZijbex[hcl_fi_jZlmj_
IjbgpbibZevghg_\hafh`gZ
<hafh`gZijbgbadbol_fi_jZlmjZo
<hafh`gZijb\ukhdbol_fi_jZlmjZo
Ijbf_j . Ihevamykv kijZ\hqgufb ^Zggufb mklZgh\blv \ha
fh`ghebijbl_fi_jZlmjZobD\hkklZgh\e_gb_hdkb^ZlblZ
gZ,9^hk\h[h^gh]hf_lZeeZihko_f_
TiOdK]jZnbl = TidKH]?
43
AZ\bkbfhklvx∆Ghb∆Shhll_fi_jZlmjuij_g_[j_qv
J_r_gb_
AgZq_gbyûG 0h[j \d>`fhevijbD^eyTiO2 (–bCH
(–Lh]^Z^eyjZkkfZljb\Z_fhcj_ZdpbbûG 0298 = –137,1·2 – (–888,6) =
d>`IhkdhevdmûG 0298 !\hkklZgh\e_gb_TiO2 ijbDg_
\hafh`gh
>eyjZkq_lZûG 02500 \hkihevam_fkymjZ\g_gb_fûG = ûHo – TûSo.
Ijb wlhf \ khhl\_lkl\bb k mdZaZgb_f \ mkeh\bb aZ^Zqb bkihevam_f
agZq_gbyûGh bûSoijbD>eyjZkq_lZûHobûSoj_Zdpbcg_h[oh
^bfhgZclb\lZ[ebp_agZq_gbyûG 0h[j ^eyTiO2 (–bKH–110,5),
ZlZd`_agZq_gbySo^eyTiO2KTibKH
Lh]^Z^eyjZkkfZljb\Z_fhcj_Zdpbb
ûHo = –110,5 · 2 – (– d>`
ûSo = 30,6 + 197,5 · 2 – 50,3 – 5,7 · 2 = –>`D
L_i_jvgZoh^bfûG 02500 j_Zdpbb\ujZ`ZyûSo\d>`D
ûG 02500 = ûG 02500 – TûS 02500 = 722,9 – 2500 · 363,9/1000 =
= 722,9 – 909,8 = –d>`
LZdbf h[jZahf ûG 02500 < lZd qlh \hkklZgh\e_gb_ TiO2 ]jZnb
lhfijbD\hafh`gh
<hijhku^eykZfhklhyl_evghcih^]hlh\db
1. >Zcl_ hij_^_e_gb_ ihgylbyf kbkl_fZ nZaZ kj_^Z fZdjh- b
fbdjhkhklhygb_.
2. DZdb_kbkl_fugZau\Zxlky]hfh]_ggufbZdZdb_–]_l_jh]_ggufb"
3. DZdb_^\ZnZdlhjZhij_^_eyxlkZfhijhba\hevgh_ijhl_dZgb_ob
fbq_kdboj_Zdpbc\^ZgghfgZijZ\e_gbb"
4. GZah\bl_ hkgh\gu_ l_jfh^bgZfbq_kdb_ \_ebqbgu oZjZdl_jb
amxsb_khklhygb_kbkl_fuIhq_fmhgbghkylgZa\Zgb_nmgdpbc
khklhygby?
5. JZkkfhljbl_ kfuke ihgylbc \gmlj_ggyy wg_j]by kbkl_fu b wg
lZeviby Ijb\_^bl_ ijbf_ju j_Zdpbc m dhlhjuo ∆Η > ∆U b
∆U > ∆Η.
6. DZdb_ nZdlhju hij_^_eyxl \_ebqbgm baf_g_gbywglZevibbj_Zd
pbb"DZdaZ\bkblwlZ\_ebqbgZhlwg_j]bbZdlb\Zpbbimlbbmkeh
\byijhl_dZgbyijhp_kkZijbkmlkl\bydZlZebaZlhjh\"
44
7. Fh]ml eb [ulv wdahl_jfbqgufb ijhp_kku ^bkkhpbZpbb fhe_dme
gZ Zlhfubhguwg^hl_jfbqgufb–ijhp_kkuh[jZah\Zgbyfhe_
dmebaZlhfh\jZ^bdZeh\ba^jm]bofhe_dme"
8. H[tykgbl_ kfuke ihgylby wglZeviby h[jZah\Zgby \_s_kl\Z.
Knhjfmebjmcl_ mkeh\by klZg^ZjlbaZpbb wlhc oZjZdl_jbklbdb
Q_fhlebqZxlkyklZg^Zjlgu_mkeh\byhlghjfZevguo"
9. Knhjfmebjmcl_aZdhg=_kkZDZdZyk\yavf_`^ml_ieh\ufwnn_d
lhf wglZevib_c j_Zdpbb b wglZevibyfb h[jZah\Zgby bkoh^guo
\_s_kl\bijh^mdlh\j_Zdpbb"
10. Q_f h[tykgy_lky kZfhijhba\hevgh_ ijhl_dZgb_ g_dhlhjuo j_Zd
pbckih]ehs_gb_fl_ieZ∆Η>0)?
11. >Zcl_h[tykg_gb_ihgylbywgljhiby.
12. G_ ijh\h^y jZkq_lZ hij_^_ebl_agZdbaf_g_gbywgljhibb\oh^_
ke_^mxsboijhp_kkh\
Z+2 ] + O ] = 2H2O ];
[+2S ] + 3O ] = 2 H2O ` + 2 SO ];
\ MgO d + CO ] = MgCO d;
]e_^→\h^Z→iZj
^) CH3COOH (j-j) = CH3COOØ++.
13. >Zcl_hij_^_e_gb_ihgylbywg_j]by=b[[kZ.
14. DZdh\hkhhlghr_gb_f_`^m\_ebqbghcbaf_g_gbywg_j]bb=b[[kZ
b\_ebqbgZfbbaf_g_gbywglZevibbbwgljhibbkbkl_fu"
15. Ihq_fm∆Gfh`_ljZkkfZljb\ZlvkydZddjbl_jbckZfhijhba\hev
ghklbijhl_dZgbyobfbq_kdhcj_Zdpbb"<hafh`guebkemqZbdh
]^Zj_Zdpbbk∆G < ijZdlbq_kdbg_b^ml">Zcl_h[tykg_gb_
16. Mqblu\ZyjhevwglZevibcgh]hbwgljhibcgh]hnZdlhjh\bl_fi_
jZlmju\hij_^_e_gbb\_ebqbgu∆G\u^_ebl_q_luj_h[sbolbiZ
j_Zdpbc jZaebqZxsboky \hafh`ghklvxbl_fi_jZlmjgufbmkeh
\byfbijhl_dZgby
AZ^Zqb^eyj_r_gby
106. Qlh gZau\Zxl l_ieh\ufb wnn_dlZfb j_Zdpbc" < dZdbo kemqZyo
mjZ\g_gbyobfbq_kdboj_ZdpbcgZau\Zxll_jfhobfbq_kdbfb"
107. DZdb_mkeh\bykhklhygbykbkl_fuijbgbfZxl\l_jfh^bgZfbd_\
dZq_kl\_klZg^Zjlguo"DZdbfbkbf\heZfbboh[hagZqZxl"
108. QlhgZau\Zxl\gmlj_gg_cwg_j]b_ckbkl_fu"Ihq_fm\l_jfh^b
gZfbq_kdbojZkq_lZobkihevamxlg_Z[khexlgu_agZq_gby\gml
j_gg_c wg_j]bb U Z __ baf_g_gb_ ∆U ijb i_j_oh^_ kbkl_fu ba
h^gh]hkhklhygby\^jm]h_"
45
109. DZdbf mjZ\g_gb_f hij_^_ey_lky wglZeviby b __ baf_g_gb_" DZ
dhc aZdhg y\ey_lky hkgh\guf aZdhghf l_jfhobfbb" >Zcl_ _]h
nhjfmebjh\dm
110. DZdhcnmgdpb_ckhklhygbyoZjZdl_jbam_lkyl_g^_gpbykbkl_fud
^hklb`_gbxlZdgZau\Z_fh]hgZb[he__\_jhylgh]hkhklhygbydh
lhjhfm khhl\_lkl\m_l fZdkbfZevgZy [_kihjy^hqghklv jZkij_^_
e_gbyqZklbp"
111. DZdbaf_gy_lkywgljhibykbkl_fukih\ur_gb_fl_fi_jZlmju\
j_Zdpbyokbgl_aZbjZaeh`_gby\_s_kl\"
112. DZd baf_gy_lky wgljhiby kbkl_fu ijb bkiZj_gbb dhg^_gkZpbb
m\_ebq_gbb^Z\e_gbynZah\uoi_j_oh^Zo"
113. DZdbfb h^gh\j_f_ggh ^_ckl\mxsbfb nZdlhjZfb hij_^_ey_lky
gZijZ\e_gghklvobfbq_kdh]hijhp_kkZ"
114. Ijbkh_^bg_gbb]`_e_aZkk_jhc\u^_ebehkvd>`JZk
kqblZlvl_iehlmh[jZah\Zgbykmevnb^Z`_e_aZ
115. Hij_^_eblv klZg^Zjlgmx wglZevibx ∆G 0298 h[jZah\Zgby JG3,
bkoh^ybamjZ\g_gby
2PH]H] J2HdG2H`; ∆Gh = –d>`
116. Bkoh^ybal_ieh\h]hwnn_dlZj_Zdpbb
KZHdJ2Hd KZ3JH4) d; ∆Gh = –d>`
hij_^_eblv∆G 0298 h[jZah\ZgbyhjlhnhknZlZdZevpby
117. KjZ\gblv∆G 0298 j_Zdpbb\hkklZgh\e_gbyhdkb^Z`_e_aZIIIjZa
ebqgufb\hkklZgh\bl_eyfbijbD
Z)H2Od + 3H2 = 2 Fed + 3H2O ];
[)H2OdK]jZnbl = 2 Fed KH];
\)H2OdKH] = 2 Fed KH].
118. <uqbkeblvagZq_gb_∆Gh ^eyijhl_dZxsbo\hj]Zgbaf_j_Zdpbc
ij_\jZs_gby]exdhau
ZK6G12H d K2G5HG`KH ];
[K6G12H dH ] KH]G2H`.
DZdZybawlboj_ZdpbcihklZ\ey_lhj]Zgbafm[hevr_wg_j]bb"
119. G_ ijhba\h^y \uqbke_gbc mklZgh\blv agZd ∆Sh ke_^mxsbo
ijhp_kkh\
Z1+] = N] + 3H];
[KHd KH];
\12] + O] = 2NO];
]+2S] + 3O] = 2H2O` + 2SO];
^K+3OH]+ 3O] = 4H2O]KH].
46
120. G_ijhba\h^y\uqbke_gbcmdZaZlv^eydZdbobai_j_qbke_gguo
ijhp_kkh\baf_g_gb_wgljhibbiheh`bl_evgh
Z0J2d + H] = Mgd + H2O`;
[K]jZnblKH] KH];
\KG3KHHG\h^g KG3KHH-\h^gG+\h^g;
]G&O]H] = 2Cl]G2H];
^1+4NOd = N2O])G2H].
121. MklZgh\blv ijhl_dZgb_ dZdbo ba gb`_ke_^mxsbo j_Zdpbc \ha
fh`gh\klZg^Zjlguomkeh\byo
Z1] + ½ H] = N2O];
[+&O]H] = 2Cl]G2H`;
\)H2OdKH] = 2FedKH].
122. MdZaZlvdZdb_baj_Zdpbch[jZah\Zgbyhdkb^h\ZahlZbijbdZdbo
l_fi_jZlmjZo\ukhdbobebgbadbofh]mlijhl_dZlvkZfhijhba
\hevgh
Z1]H] = 2N2O] ; ∆Gh298 > 0
[1]H] = 2NO]; ∆Gh298 > 0
\12] + O] = 2NOd;
∆Gh298 < 0
]12] + NO] = N2Od;∆Gh298 < 0
123. Hij_^_ebl_agZq_gby∆Gh298, ∆Ηh298 b∆Sh298 ^eygb`_ijb\_^_gguo
j_ZdpbcbmklZgh\bl_l_fi_jZlmjgu_mkeh\bybohkms_kl\e_gby
\ijyfhfgZijZ\e_gbb
Z1L2d +Pb d =Nid + PbOd;
[1+] = 3H] + N];
\&D&2d = CaOdKH].
124. Ih baf_g_gbx klZg^Zjlghc wglZevibb b wgljZibb j_Zdpbb \u
qbkeblvbaf_g_gb_wg_j]bb=b[[kZ
H] + F] = 2HF]
125. Hp_gblv l_jfh^bgZfbq_kdmx \hafh`ghklv ijhl_dZgby \ klZg
^Zjlguomkeh\byoj_Zdpbb
N] + 2H2O` = NH4NOl.
126. Bkihevamy kijZ\hqgu_ ^Zggu_ hij_^_eblv dZdZy ba j_Zdpbc
l_jfh^bgZfbq_kdb\hafh`gZ\klZg^Zjlguomkeh\byo
a) CaCO3(l) = CaO(l) + CO2(]);
[) CO2(]) + CaO(l) = CaCO3(l);
\) Ca(OH)2(l) + CO2(]) = CaCO3(l) + H2O(`).
127. Hp_gblv ijbgpbibZevgmx \hafh`ghklv hkms_kl\e_gby j_Zdpbb
f_`^m dhfihg_glZfb Zlfhkn_ju Z ijb klZg^Zjlguo mkeh\byo
[ijbih\ur_gghcl_fi_jZlmj_
1) N] + O] :NO]; NO];
2) N2(]) +H2O(`) :1+4NO2(l);
3) N2(]) + H2O(`) + O2(]) :1+4NO3(l);
4) N2(]) + H2O(`) + O2(]) :+123(`).
47
=E:<:IV
HKGH<UOBFBQ?KDHCDBG?LBDB
OBFBQ?KDH?J:<GH<?KB?
NZdlhju\ebyxsb_gZkdhjhklvobfbq_kdhcj_Zdpbb
Kdhjhklv ]hfh]_gghc j_Zdpbb – wlh \_ebqbgZ qbke_ggh jZ\gZy
baf_g_gbxdhgp_gljZpbbh[uqghfheyjghcex[h]hmqZklgbdZj_Zd
pbb\_^bgbpm\j_f_gb
Kj_^gyykdhjhklvj_Zdpbbvkj \bgl_j\Ze_\j_f_gbhlt1 ^h t2 hi
c −c
∆c
j_^_ey_lkykhhlghr_gb_f vkj = 2 1 =
.
t 2 − t1
∆t
Hkgh\gu_ nZdlhju \ebyxsb_ gZ kdhjhklv ]hfh]_gghc obfbq_
kdhcj_Zdpbb
–ijbjh^Zj_Z]bjmxsbo\_s_kl\
–dhgp_gljZpby^Z\e_gb__keb\j_ZdpbbmqZkl\mxl]Zau
–l_fi_jZlmjZ
–dZlZebaZlhj
<k_obfbq_kdb_j_ZdpbbihklZ^bcghklbih^jZa^_eyxlkygZwe_
f_glZjgu_ b keh`gu_ ;hevrbgkl\h obfbq_kdbo j_Zdpbc ij_^klZ\
eyxlkh[hckeh`gu_ijhp_kkuijhl_dZxsb_\g_kdhevdhklZ^bcl_
khklhysb_bag_kdhevdbowe_f_glZjguoijhp_kkh\
>ey we_f_glZjguo j_Zdpbc kijZ\_^eb\ aZdhg ^_ckl\mxsbo
fZkk kdhjhklv we_f_glZjghc obfbq_kdhc j_Zdpbb ijb ^Zgghc l_f
i_jZlmj_ijyfhijhihjpbhgZevgZijhba\_^_gbxdhgp_gljZpbcj_Z]b
jmxsbo\_s_kl\\kl_i_gyojZ\guokl_obhf_ljbq_kdbfdhwnnbpb
_glZf
>eyj_Zdpbb\h[s_f\b^_Z:bB :__kdhjhklvkh]eZkghaZ
dhgm^_ckl\mxsbofZkk\ujZ`Z_lkykhhlghr_gb_f
v = kc a ( A)c b ( B ) ,
]^_ k:bk<– fheyjgu_dhgp_gljZpbbj_Z]bjmxsbo\_s_kl\:b<
k – dhgklZglZ kdhjhklb ^Zgghc j_Zdpbb Nbabq_kdbc kfuke dhg
klZglu kdhjhklb – hgZ qbke_ggh jZ\gZ kdhjhklb obfbq_kdhc j_Zd
pbbijbdhgp_gljZpbyoj_Z]bjmxsbo\_s_kl\F:bF< fheve
DhgklZglZ kdhjhklb ]hfh]_gghc j_Zdpbb aZ\bkbl hl ijbjh^u j_Z]b
jmxsbo\_s_kl\l_fi_jZlmjubdZlZebaZlhjZ
;hevrbgkl\h obfbq_kdbo j_Zdpbc y\eyxlky keh`gufb ijhl_
dZxsbfbq_j_afgh`_kl\hijhf_`mlhqguoklZ^bc<lZdhfkemqZ_aZ
dhg^_ckl\mxsbofZkkijbf_gbflhevdhddZ`^hchl^_evghcklZ^bb
48
>ey]_l_jh]_gguoj_Zdpbc\mjZ\g_gb_aZdhgZ^_ckl\mxsbofZkk
\oh^yl dhgp_gljZpbb g_ \k_o j_Z]_glh\Zlhevdh]Zahh[jZaguobeb
jZkl\hj_gguo LZd ^ey j_Zdpbb ]hj_gby m]ey Kd H] : KH]
mjZ\g_gb_kdhjhklbbf__l\b^ v = k ⋅ c(O 2 ) .
Ijbf_j >eyj_Zdpbb12] + O] <12]ijhl_dZxs_c\
]Zah\hc nZa_ dhgklZglZ kdhjhklb jZ\gZ JZkkqblZcl_ Z gZqZev
gmx kdhjhklv j_Zdpbb_kebbkoh^gu_dhgp_gljZpbb\_s_kl\jZ\gu
c12 fheve c(O2 fheve[kdhjhklvwlhcj_Zdpbb\fh
f_gldh]^Zijhj_Z]bjm_l12
J_r_gb_
Z<khhl\_lkl\bbkaZdhghf^_ckl\mxsbofZkkkdhjhklv^Zgghc
j_Zdpbbhibku\Z_lkymjZ\g_gb_f v = k ⋅ c 2 ( NO) ⋅ c(O 2 ). Ke_^h\Zl_evghkdhjhklvj_Zdpbb\gZqZevgucfhf_gl\j_f_gb[m^_ljZ\gZ
vo = 0,8 ⋅ 0,4 2 ⋅ 0,3 = 0,0384 fheve ⋅ k
[ Kdhjhklv wlhc j_Zdpbb \ fhf_gl dh]^Z ijhj_Z]bjm_l 12
hibku\Z_lky mjZ\g_gb_f v1 = k ⋅ c12 ( NO) ⋅ c1 (O 2 ), ]^_ c112 b c1(O2) –
gh\u_dhgp_gljZpbb12b22ihke_lh]hdZdijhj_Z]bjh\Zeh12
Bkoh^ybamjZ\g_gbyj_ZdpbbjZkkqblZ_f\_ebqbgu c112b c1(O2).
12 khklZ\ey_l ∆c(NO Â fheve lh]^Z
c1(NO) = c0(NO) – ∆c(NO) = 0,4 – fheve<khhl\_lkl\bbkh
kl_obhf_ljbq_kdbfb dhwnnbpb_glZfb mjZ\g_gby j_Zdpbb mf_gvr_
gb_dhgp_gljZpbbH2jZ\gh∆c(O2) = ∆c(NO fheve
LZdbfh[jZahf c1H2) = c0(O2) – ∆c(O2) =0,3 – fheveKe_
^h\Zl_evgh v1 = 0,8 · 0,32 · fheve ⋅ k
Ijbf_j DZd baf_gblky kdhjhklv j_Zdpbb 12] + Cl] <
<12&O] _keb Z m\_ebqblv ^Z\e_gb_ \ j_Zdpbhgghf khkm^_ \ ^\Z
jZaZ[mf_gvrblvh[t_fkhkm^Z\jZaZ"
J_r_gb_
Z<khhl\_lkl\bbkaZdhghf^_ckl\mxsbofZkkkdhjhklv^Zgghc
j_Zdpbb hibku\Z_lky mjZ\g_gb_f v = k ⋅ c 2 ( NO) ⋅ c(Cl 2 ). Ihkdhevdm
m\_ebq_gb_ ^Z\e_gby ijb\h^bl d ijhihjpbhgZevghfm m\_ebq_gbx
dhgp_gljZpbc ]Zahh[jZaguo \_s_kl\ dhgp_gljZpbb j_Z]_glh\ \ gh
\uo mkeh\byo [m^ml jZ\gu c1(NO) = 2c0(NO), c1(Cl2) = 2c0(Cl2Dhg
klZglZ kdhjhklb j_Zdpbb ijb m\_ebq_gbb ^Z\e_gby g_ baf_gy_lky b
kdhjhklvj_Zdpbb\gh\uomkeh\byo[m^_ljZ\gZ
v1 = k ⋅ c12 ( NO) ⋅ c1 (Cl 2 ) = k ⋅ (2c0 ( NO)) 2 ⋅ (2c0 (Cl 2 )) =
= 8 · k · c 02 (NO) · c0(Cl2).
49
v 8 ⋅ k ⋅ c0 ( NO) ⋅ c0 (Cl 2 )
Hlkx^Zke_^m_lqlh 1 =
= 8.
2
v
k ⋅ c0 ( NO)c0 (Cl 2 )
Kdhjhklvj_Zdpbbm\_ebqblky\jZa
[ Mf_gvr_gb_ h[t_fZ khkm^Z \ jZaZ ijb\h^bl d khhl\_lkl
\mxs_fm m\_ebq_gbx dhgp_gljZpbc j_Z]_glh\ LZdbf h[jZahf
c2(NO) = 4 · c0(NO), a c2(Cl2) = 4 · c0(Cl2J_rZyaZ^ZqmihZgZeh]bbk
v
ij_^u^msbfimgdlhfihemqbf 2 = 64 l_mf_gvr_gb_h[t_fZkh
v
km^Z\jZaZijb\_^_ldm\_ebq_gbxkdhjhklb\jZaZ
2
<ebygb_l_fi_jZlmjugZkdhjhklvobfbq_kdhcj_Zdpbb
AZ\bkbfhklvkdhjhklbj_Zdpbbhll_fi_jZlmjuijb[eb`_gghhi
j_^_ey_lky wfibjbq_kdbf ijZ\behf <Zgl-=hnnZ ijb ih\ur_gbb
l_fi_jZlmju gZ dZ`^u_ ]jZ^mkh\ kdhjhklv obfbq_kdhc j_Zdpbb
m\_ebqb\Z_lky\-jZaZ\jZa
vT2
vT1
=
T2 −T1
γ 10
,
]^_ vT2 b vT1 –kdhjhklbj_Zdpbbkhhl\_lkl\_gghijbl_fi_jZlmjZoL2b
L1; – l_fi_jZlmjguc dhwnnbpb_gl kdhjhklb j_Zdpbb dhlhjuc \u
qbkey_lky gZ hkgh\_ wdki_jbf_glZevguo ^Zgguo b ijbgbfZ_l agZq_
gby^ey[hevrbgkl\Zj_Zdpbchl^h>ey^Zgghcj_Zdpbb–\_eb
qbgZijZdlbq_kdbihklhyggZyijb¨L ”§ 100h.
KihfhsvxijZ\beZ<Zgl-=hnnZ\hafh`ghebrvijbf_jghhp_
gblv\ebygb_l_fi_jZlmjugZkdhjhklvj_Zdpbb;he__lhqgh_hibkZ
gb_ aZ\bkbfhklb kdhjhklb j_Zdpbb hl l_fi_jZlmju hkms_kl\bfh \
jZfdZol_hjbbZdlb\guoklhedgh\_gbc:jj_gbmkZ
< l_hjbb Zdlb\Zpbb \ebygb_ l_fi_jZlmju b dZlZebaZlhjZ gZ
kdhjhklv obfbq_kdhc j_Zdpbb hibku\Z_lky ke_^mxsbf mjZ\g_gb_f
^eydhgklZglukdhjhklbobfbq_kdhcj_Zdpbb
−
Ea
RT
,
k = Ae
]^_:–ihklhyggucfgh`bl_evg_aZ\bkysbchll_fi_jZlmjuhij_
^_eyxsbcky ijbjh^hc j_Z]bjmxsbo \_s_kl\ R – mgb\_jkZevgZy ]Z
ah\ZyihklhyggZy?Z –wg_j]byZdlb\Zpbb_–hkgh\Zgb_gZlmjZevgh]h
eh]ZjbnfZDZdke_^m_lbamjZ\g_gby:jj_gbmkZdhgklZglZkdhjhklb
j_Zdpbbl_f[hevr_q_ff_gvr_wg_j]byZdlb\Zpbb
50
Ijbf_j . L_fi_jZlmjguc dhwnnbpb_gl kdhjhklb obfbq_kdhc
j_Zdpbb jZ\_g <h kdhevdh jZa \hajZkl_l kdhjhklv j_Zdpbb ijb
m\_ebq_gbbl_fi_jZlmju\j_Zdpbhgghfkhkm^_k^hhK"
J_r_gb_
<khhl\_lkl\bbkijZ\behf<Zgl-=hnnZ
vT2
vT1
=
T2 −T1
γ 10
;
v38o
v15 o
=
38 −15
2,1 10
= 2,12,3 = 5,5.
Ijbf_qZgb_ ?keb m <Zr_]h dZevdmeylhjZ hlkmlkl\m_l dghidZ
\ha\_^_gby\kl_i_gvlhlZdb_Zjbnf_lbq_kdb_\ujZ`_gbyfh`gh\u
qbkeylv q_j_a klZ^bb eh]Zjbnfbjh\Zgby b ihke_^mxs_]h ihl_gpbb
jh\Zgby
v o
v o
lg 38 = lg 2,12,3 = 2,3 ⋅ lg 2,1 = 0,74 Z 38 = 100,74 ≈ 5,5 .
v15o
v15o
Obfbq_kdh_jZ\gh\_kb_
Obfbq_kdb_ j_Zdpbb \ j_amevlZl_ dhlhjuo bkoh^gu_ \_s_kl\Z
iheghklvx ij_\jZsZxlky \ ijh^mdlu j_Zdpbb gZau\Zxlky g_h[jZ
lbfufb J_Zdpbb b^msb_ h^gh\j_f_ggh \ ^\mo ijhlb\hiheh`guo
gZijZ\e_gbyoijyfhfbh[jZlghfgZau\Zxlkyh[jZlbfufb.
<h[jZlbfuoj_Zdpbyokhklhygb_kbkl_fuijbdhlhjhfkdhjhklb
ijyfhcbh[jZlghcj_ZdpbbjZ\gu vij = vh[j gZau\Z_lkykhklhygb_f
obfbq_kdh]h jZ\gh\_kbyObfbq_kdh_jZ\gh\_kb_y\ey_lky^bgZfbq_
kdbfl__]hmklZgh\e_gb_g_hagZqZ_lij_djZs_gb_j_Zdpbb<h[
s_fkemqZ_^eyex[hch[jZlbfhcj_ZdpbbZ: + bB <dD + eEg_aZ
\bkbfhhl__f_oZgbafZ\uihegy_lkykhhlghr_gb_
K=
c d ( D) c e ( E )
.
c a ( A) c b ( B )
IjbmklZgh\b\r_fkyjZ\gh\_kbbijhba\_^_gb_dhgp_gljZpbcijh
^mdlh\ j_Zdpbb hlg_k_ggh_ d ijhba\_^_gbx dhgp_gljZpbc bkoh^guo
\_s_kl\^ey^Zgghcj_Zdpbbijb^Zgghcl_fi_jZlmj_ij_^klZ\ey_lkh
[hcihklhyggmx\_ebqbgmgZau\Z_fmxdhgklZglhcjZ\gh\_kby(D).
Ijbf_j.GZc^bl_dhgklZglmjZ\gh\_kbyj_Zdpbb: + < <D,
ijhl_dZxs_c \ ]Zah\hc nZa_ \aZdjulhfkhkm^__kebbkoh^gu_dhg
p_gljZpbb : b < jZ\gu khhl\_lkl\_ggh fheve b fheve Z d
fhf_glm gZklmie_gby jZ\gh\_kby ijhj_Z]bjh\Zeh \_s_kl\Z <.
51
JZkkqblZcl_ baf_g_gb_ ^Z\e_gby \ kbkl_f_ ih kjZ\g_gbxki_j\hgZ
qZevguf
J_r_gb_
AZibr_f\ujZ`_gb_dhgklZglujZ\gh\_kby^eywlhcj_Zdpbb
c 2 ( D)
K= 2
.
c ( A) ⋅ c( B )
Hij_^_ebfjZ\gh\_kgu_dhgp_gljZpbb\_s_kl\
D fhf_glm gZklmie_gby jZ\gh\_kby ijhj_Z]bjh\Zeh \_s_
kl\Z<ke_^h\Zl_evgh∆k(<) = 0,25 Â k0(<) = 0,25 Â fheveJZ\gh\_kgZydhgp_gljZpby\_s_kl\Z<jZ\gZc(<) = c0(<) – ∆c(<) = 0,4 –
– fheve
< khhl\_lkl\bb k mjZ\g_gb_f j_Zdpbb ∆c(:) = 2∆c(<) = 2·0,1 =
= fheve Ke_^h\Zl_evgh jZ\gh\_kgZy dhgp_gljZpby \_s_kl\Z :
jZ\gZ c(:) = c0(:) – ∆c(:) = 0,6 – fheve
<khhl\_lkl\bbkmjZ\g_gb_fj_Zdpbbdhebq_kl\hh[jZah\Z\r_
]hky \_s_kl\Z D qbke_ggh jZ\gh dhebq_kl\m ijhj_Z]bjh\Z\r_]h \_
s_kl\Z:ihwlhfm∆c(D fheveLZddZd\i_j\hgZqZevgucfh
f_gl\_s_kl\hDhlkmlkl\h\ZehlhjZ\gh\_kgZydhgp_gljZpbyDjZ\gZ
c(D) = 0 + ∆c(D fheve
Ih^klZ\b\gZc^_ggu_jZ\gh\_kgu_dhgp_gljZpbb\_s_kl\:, <b
D\\ujZ`_gb_^eydhgklZglujZ\gh\_kbyihemqbf
0,2 2
K=
= 0,83 .
0,4 2 ⋅ 0,3
Baf_g_gb_ ^Z\e_gby \ kbkl_f_ ijhihjpbhgZevgh baf_g_gbx
kmffZjghcdhgp_gljZpbb]Zahh[jZaguo\_s_kl\LZdbfh[jZahf
p c( A) + c( B ) + c(C ) 0,4 + 0,3 + 0,2
=
=
= 0,9.
po
co ( A) + co ( B)
0,6 + 0,4
>Z\e_gb_\kbkl_f_\fhf_gljZ\gh\_kby[m^_lkhklZ\eylv
hlbkoh^gh]h
Ijbf_j<kbkl_f_:] + <] <D]jZ\gh\_kgu_dhgp_gljZpbb
jZ\gu c(: fheve c(< fheve c(D fheveGZc^bl_
dhgklZglm jZ\gh\_kby j_Zdpbb b bkoh^gu_ dhgp_gljZpbb : b < \_s_kl\hD\bkoh^ghckf_kbhlkmlkl\m_l
J_r_gb_
DhgklZglZjZ\gh\_kby^ey^Zgghcj_ZdpbbjZ\gZ
c 2 ( D)
0,6 2
K=
=
= 1.
c( A) ⋅ c( B ) 0,4 ⋅ 0,9
52
<khhl\_lkl\bbkmjZ\g_gb_fj_ZdpbbgZh[jZah\Zgb_fhevKg_h[oh^bfhihfhex\_s_kl\:b<L d\j_amevlZl_j_Zdpbbh[jZah\Zehkvfheve\_s_kl\ZDke_^h\Zl_evghgZ_]hh[jZah\Zgb_bajZkoh^h\Zehkvihfheve\_s_kl\Z:b\_s_kl\Z<LZdbfh[jZahfbkoh^gZy
dhgp_gljZpby\_s_kl\Z:jZ\gZ cbko(: fheveZbkoh^gZy
dhgp_gljZpby\_s_kl\Z<jZ\gZ cbko.(< fheve
<ebygb_baf_g_gby\g_rgbomkeh\bc
gZiheh`_gb_obfbq_kdh]hjZ\gh\_kby
IjbgpbiE_-RZl_ev_
Baf_g_gb_ mkeh\bc l_fi_jZlmjZ ^Z\e_gb_ dhgp_gljZpby ijb
dhlhjuo kbkl_fZ gZoh^blky \ khklhygbb obfbq_kdh]h jZ\gh\_kby
( vij = vh[j \uau\Z_lgZjmr_gb_jZ\gh\_kby<j_amevlZl_g_h^bgZdh
\h]h baf_g_gby kdhjhkl_c ijyfhc b h[jZlghc j_Zdpbc vij ≠ vh[j ) c
l_q_gb_f \j_f_gb \ kbkl_f_ mklZgZ\eb\Z_lky gh\h_ obfbq_kdh_ jZ\
gh\_kb_ vij = vh[j khhl\_lkl\mxs__ gh\uf mkeh\byf I_j_oh^ ba
h^gh]h jZ\gh\_kgh]h khklhygby \ ^jm]h_ gZau\Z_lky k^\b]hf beb
kf_s_gb_fiheh`_gbyjZ\gh\_kby
GZijZ\e_gb_kf_s_gbyobfbq_kdh]hjZ\gh\_kby\j_amevlZl_ba
f_g_gby\g_rgbomkeh\bchij_^_ey_lkyijbgpbihfE_-RZl_ev_?keb
gZ kbkl_fm gZoh^ysmxky \ khklhygbb obfbq_kdh]h jZ\gh\_kby hdZ
aZlv \g_rg__ \ha^_ckl\b_ lh hgh [m^_l [eZ]hijbylkl\h\Zlv ijh
l_dZgbxlh]hba^\moijhlb\hiheh`guoijhp_kkh\dhlhjuchkeZ[
ey_lwlh\ha^_ckl\b_
Ijbf_j.<dZdmxklhjhgmkf_klblkyobfbq_kdh_jZ\gh\_kb_\
kbkl_f_
CaCOd ↔ CaOd + CO]; ∆H d>`fhev
Zijb\\_^_gbb\kbkl_fmm]e_dbkeh]h]ZaZ
[ijb\\_^_gbb\kbkl_fmhdkb^ZdZevpby
\ijbm\_ebq_gbb^Z\e_gby
]ijbm\_ebq_gbbl_fi_jZlmju"
J_r_gb_
< khhl\_lkl\bb k ijbgpbihf E_-RZl_ev_ jZ\gh\_kb_ \ kbkl_f_
k^\b]Z_lkylZdbfh[jZahfqlh[umf_gvrblv\g_rg__\ha^_ckl\b_
Z<\_^_gb_m]e_dbkeh]h]ZaZijb\h^bldih\ur_gbxdhgp_gljZ
pbb CO2 >ey hkeZ[e_gby wlh]h \ha^_ckl\by jZ\gh\_kb_ \ kbkl_f_
^he`ghkf_klblvky\e_\h
53
[<\_^_gb_l\_j^h]hhdkb^ZdZevpbyg_baf_gy_ldhgp_gljZpbx
KZH\nZa_KZHdbobfbq_kdh_jZ\gh\_kb_g_kf_sZ_lky
\ M\_ebq_gb_ ^Z\e_gby ijb\h^bl d m\_ebq_gbx dhgp_gljZpbb
CO2]bijZdlbq_kdbgbdZdg_\eby_lgZdhgp_gljZpbbl\_j^uodhf
ihg_glh\JZ\gh\_kb_k^\b]Z_lky\e_\h
] M\_ebq_gb_ l_fi_jZlmju fh`_l [ulv kdhfi_gkbjh\Zgh wg^h
l_jfbq_kdbfijhp_kkhfIhkdhevdmbf_gghijyfZyj_Zdpbyijhl_dZ_l
kih]ehs_gb_fl_ieZjZ\gh\_kb_\kbkl_f_kf_sZ_lky\ijZ\h
<hijhku^eykZfhklhyl_evghcih^]hlh\db
1. QlhgZau\Z_lkykdhjhklvxobfbq_kdhcj_Zdpbb"
2. DZdb_nZdlhju\ebyxlgZkdhjhklvobfbq_kdhcj_Zdpbb"
3. DZd kdhjhklv obfbq_kdhc j_Zdpbb aZ\bkbl hl dhgp_gljZpbc j_Z
]_glh\" Knhjfmebjmcl_ hkgh\ghc aZdhg obfbq_kdhc dbg_lbdb –
aZdhg^_ckl\mxsbofZkk–bmdZ`bl_mkeh\by_]hijbf_g_gby
4. GZibrbl_ fZl_fZlbq_kdb_ \ujZ`_gby aZdhgZ ^_ckl\mxsbo fZkk
^eyke_^mxsboj_Zdpbc
ZNOCl] = 2NO] + Cl];
[Fe2Od + 3H] = 2Fed + 3H2O].
5. HldZdbonZdlhjh\aZ\bkbldhgklZglZkdhjhklbj_Zdpbb"DZdh\__
nbabq_kdbckfuke"
6. DZdh\h\ebygb_^Z\e_gbygZkdhjhklvobfbq_kdhcj_Zdpbb"
7. DZd\eby_lih\ur_gb_ihgb`_gb_l_fi_jZlmjugZkdhjhklvob
fbq_kdhcj_Zdpbb"
8. Qlh lZdh_l_fi_jZlmjgucdhwnnbpb_glkdhjhklbobfbq_kdhcj_
Zdpbb"
9. Ihq_fmkdhjhklvobfbq_kdhcj_Zdpbbkih\ur_gb_fl_fi_jZlmju
\hajZklZ_lgZfgh]hkbevg__q_fqbkehklhedgh\_gbcfhe_dme"
10. DZdb_fhe_dmeugZau\ZxlkyZdlb\gufb"
11. QlhlZdh_wg_j]byZdlb\ZpbbbZdlb\bjh\Zggucdhfie_dk"
12. DZdh\hkhhlghr_gb_\_ebqbgwg_j]bbobfbq_kdbok\ya_c\j_Z]b
jmxsbofhe_dmeZobwg_j]bbZdlb\Zpbbj_Zdpbb"
13. Ijb\_^bl_wg_j]_lbq_kdmx^bZ]jZffmkhhlghr_gbywg_j]bbZdlb
\Zpbbbl_ieh\h]hwnn_dlZj_ZdpbbDZdh[tykgblvqlhl_ieh\hc
wnn_dlj_Zdpbbg_aZ\bkblhl__wg_j]bbZdlb\Zpbb"
14. DZd \eby_l \_ebqbgZ wg_j]bb Zdlb\Zpbb gZ kdhjhklv obfbq_kdhc
j_Zdpbb"
15. <hafh`guebj_Zdpbbkwg_j]b_cZdlb\ZpbbjZ\ghcgmex"
16. DZdh\Z \aZbfhk\yav f_`^m dhgklZglhc kdhjhklb j_Zdpbb b __
wg_j]b_cZdlb\Zpbb"
54
17. DZdh\h \ebygb_ \_ebqbgu wg_j]bb Zdlb\Zpbb gZ l_fi_jZlmjguc
dhwnnbpb_glkdhjhklbj_Zdpbb"
18. DZdb_\_s_kl\ZgZau\ZxlkydZlZebaZlhjZfb"
19. <q_faZdexqZ_lkymkdhjyxs__^_ckl\b_dZlZebaZlhjZ"
20. DZdh\h\ebygb_dZlZebaZlhjZgZ\_ebqbgmwg_j]bbZdlb\Zpbbob
fbq_kdhc j_Zdpbb" Ihykgbl_ k bkihevah\Zgb_f wg_j]_lbq_kdhc
^bZ]jZffu
21. GZ ijZdlbq_kdhf ijbf_j_ h[tykgbl_ kmsghklv l_hjbb ijhf_`m
lhqguoijh^mdlh\
22. <q_fkhklhblhkh[_gghklvn_jf_glZlb\guoj_Zdpbc"
AZ^Zqb^eyj_r_gby
128. GZibrbl_fZl_fZlbq_kdb_\ujZ`_gbyaZdhgZ^_ckl\mxsbofZkk
^eyj_Zdpbcb^msboihko_fZf
\:j + <j ::2<j;
Z:] + 2<] ::<];
]:j + <d :Dj + Ed.
[:] + <d ::<];
129. JZkkqblZcl_dZdbaf_gblkykdhjhklvj_Zdpbb
2:] + <] :K]_keb
Zm\_ebqblvdhgp_gljZpbx\_s_kl\Z:\jZaZ
[m\_ebqblvdhgp_gljZpbx\_s_kl\Z<\jZaZ
\m\_ebqblv^Z\e_gb_\kbkl_f_\^\ZjZaZ
]m\_ebqblvh[t_fkbkl_fu\^\ZjZaZ"
130. GZqZevgu_dhgp_gljZpbbj_Z]_glh\jZ\guk0(: fheveb
k0(< fheveJZkkqblZcl_dZdbaf_gblkykdhjhklvj_Zdpbb
2:] + <] :D]ihkjZ\g_gbxki_j\hgZqZevghc\lhlfhf_gl
dh]^Zijhj_Z]bjm_l\_s_kl\Z<
131. <khkm^h[t_fhfe\\_eb]H2b]NOJZkkqblZcl_dZd
baf_gblkykdhjhklvj_ZdpbbNO]H] :NO]ihkjZ\g_gbxk
i_j\hgZqZevghc\lhlfhf_gldh]^Zijhj_Z]bjm_lNO.
132. L_fi_jZlmjguc dhwnnbpb_gl kdhjhklb j_Zdpbb jZ\_g JZk
kqblZcl_ dZd baf_gblky kdhjhklv j_Zdpbb _keb Z m\_ebqblv
l_fi_jZlmjm\kbkl_f_khK^hhK[mf_gvrblvl_fi_jZlm
jm\kbkl_f_khK^hhK"
133. Ijbih\ur_gbbl_fi_jZlmjugZ hKkdhjhklvj_Zdpbb\hajZk
lZ_l\jZaZHij_^_ebl_l_fi_jZlmjgucdhwnnbpb_glkdhjh
klbj_Zdpbb
134. Ijbmf_gvr_gbbl_fi_jZlmjuk hK^h hKkdhjhklvj_Zdpbb
mf_gvrbeZkv\jZaHij_^_ebl_l_fi_jZlmjgucdhwnnbpb_gl
kdhjhklbj_Zdpbb
55
135. GZkdhevdh]jZ^mkh\g_h[oh^bfhbaf_gblvl_fi_jZlmjm\kbkl_
f_qlh[ukdhjhklvj_Zdpbbm\_ebqbeZkv\jZa_kebl_fi_jZ
lmjgucdhwnnbpb_gljZ\_g"
136. <dZdmxklhjhgmkf_klblkyjZ\gh\_kb_\kbkl_fZo
Z+] +I] <+I];
¨Ho = –d>`
[1]H] <12];
¨Ho d>`
\KH]H] <KH];
¨Ho = –d>`
]G]H] <G2H];
¨Ho = –d>`
–ijbm\_ebq_gbb^Z\e_gby
–ijbm\_ebq_gbbh[t_fZkbkl_fu
–ijbhoeZ`^_gbbkbkl_fu
137. GZibrbl_ fZl_fZlbq_kdh_ \ujZ`_gb_ dhgklZglu jZ\gh\_kby \
kbkl_f_
Z1]H] <12];
[) CH3COOH(j) <++(j) + CH3COO-(j);
\&X2dG] <&XdG2H];
]12]H] <12];
^>$J&12]–j <$J+j + 2CN–j.
138. KlZg^ZjlgZy wglZeviby h[jZah\Zgby 3&O] jZ\gZ d>`fhev
DZdb_ mkeh\by g_h[oh^bfh kha^Z\Zlv ^ey m\_ebq_gby ijZdlbq_
kdh]h\uoh^Z3&O5 ijb_]hkbgl_a_baijhkluo\_s_kl\"
139. Obfbq_kdh_jZ\gh\_kb_12]H] <12]mklZgh\behkvijb
dhgp_gljZpbyo hdkb^Z ZahlZ ,, dbkehjh^Z b hdkb^Z ZahlZ ,9
jZ\guo khhl\_lkl\_ggh b fheve <uqbkebl_ dhg
klZglm jZ\gh\_kby b bkoh^gu_ dhgp_gljZpbb hdkb^Z ZahlZ ,, b
dbkehjh^Z_keb\bkoh^ghckbkl_f_hdkb^ZahlZ,9hlkmlkl\h\Ze
140. <uqbkebl_dhgklZglmjZ\gh\_kbyj_Zdpbb12O] <12]_keb
gZqZevgZydhgp_gljZpby12O4[ueZfheveZdfhf_glmgZ
klmie_gbyjZ\gh\_kbyijh^bkkhpbbjh\Zeh12O4.
141. DZd baf_gblky ^Z\e_gb_ \ kbkl_f_ N] + 3H] < NH] _keb
gZqZevgu_dhgp_gljZpbbZahlZb\h^hjh^Z\kbkl_f_[uebkhhl
\_lkl\_gghjZ\gubfheveZdfhf_glmgZklmie_gbyjZ\
gh\_kbyijhj_Z]bjh\ZehZahlZ"Hij_^_ebl_dhgklZglmjZ\
gh\_kby\^Zgghckbkl_f_ijbwlbomkeh\byo
142. DhgklZglZjZ\gh\_kby]hfh]_gghckbkl_fu1] + 3H] <1+]
ijbl_fi_jZlmj_ hKjZ\gZJZ\gh\_kgu_dhgp_gljZpbb\h
^hjh^ZbZffbZdZkhhl\_lkl\_gghjZ\gubfheve<uqbk
ebl_jZ\gh\_kgmxbgZqZevgmxdhgp_gljZpbbZahlZ_keb\bkoh^
ghckbkl_f_ZffbZdhlkmlkl\h\Ze
56
143. Ijb hKdhgklZglZjZ\gh\_kbykbkl_fu)H2d + CO] <)Hd +
+ CO] jZ\gZ <uqbkebl_ jZ\gh\_kgu_ dhgp_gljZpbb KH b
KH2_kebbogZqZevgu_dhgp_gljZpbbjZ\gukhhl\_lkl\_ggh
bfheve
144. DhgklZglZjZ\gh\_kbyKH]G] <KH]G2H]jZ\gZ_^bgb
p_Hij_^_eblvkdhevdhijhp_glh\KH2ih^\_j]g_lkyij_\jZs_
gbx\KH_kebkf_rZlvfhevKH2bfhevG2 .
145. DhgklZglZjZ\gh\_kbyKH]G] <KH]G2H]jZ\gZ_^bgb
p_ Hij_^_eblv \ dZdbo h[t_fguo hlghr_gbyo [ueb kf_rZgu
KH2 b G2 _keb d fhf_glm gZklmie_gby jZ\gh\_kby \ j_Zdpbx
\klmibehi_j\hgZqZevgh]hdhebq_kl\Z\h^hjh^Z"
146. >ey j_Zdpbb G] + Br] < +%U] ijb g_dhlhjhc l_fi_jZlmj_
dhgklZglZ jZ\gh\_kby jZ\gZ Hij_^_eblv h[t_fguc khklZ\
jZ\gh\_kghckbkl_fu_kebbkoh^gZykf_kvkhklhyeZbafhev
\h^hjh^Zbfhev[jhfZ
147. < aZfdgmlhf khkm^_ ijhl_dZ_l j_Zdpby :<] < :] <] Dhg
klZglZjZ\gh\_kbyjZ\gZZjZ\gh\_kgZydhgp_gljZpby\_s_
kl\Z:jZ\gZfheveGZc^bl_gZqZevgmxdhgp_gljZpbx\_
s_kl\Z:<ZlZd`_kl_i_gvjZaeh`_gbywlh]h\_s_kl\Z
148. Hij_^_ebl_dhgklZglmjZ\gh\_kbyj_Zdpbb12] <12O]ijb
25 hKbkoh^ybabaf_g_gbybah[Zjgh-bahl_jfbq_kdh]hihl_gpbZ
eZkbkl_fu\j_amevlZl_j_Zdpbb¨Go298(N2O4 d>`fhev
¨G 0298 (NO2 d>`fhev
=E:<:9
DHEBQ?KL<?GGUCKHKL:<J:KL<HJH<
JZkl\hjhf gZau\Zxl ]hfh]_ggmx kbkl_fm i_j_f_ggh]h khklZ
\Z khklhysmx ba ^\mo beb [he__ \_s_kl\ <_s_kl\Z khklZ\eyxsb_
jZkl\hjgZau\Zxldhfihg_glZfbjZkl\hjZJZkl\hju[u\Zxl]Zahh[
jZagu_`b^db_bl\_j^u_
>ey[bheh]bbbf_^bpbgugZb[hevrbcbgl_j_kij_^klZ\eyxl`b^
db_\h^gu_jZkl\hjuEx[hcjZkl\hjkhklhblbajZkl\hj_gguo\_s_kl\b
jZkl\hjbl_ey ohly wlb ihgylby \ ba\_klghc kl_i_gb mkeh\gu H[uqgh
jZkl\hjbl_e_f kqblZxl lhl dhfihg_gl dhlhjuc \ jZkl\hj_ gZoh^blky \
lhf`_\b^_qlhb^hjZkl\hj_gbyGZijbf_j\\h^ghfjZkl\hj_]exdhau
l\_j^h_ \_s_kl\h jZkl\hjbl_e_f y\ey_lky \h^Z Z kf_kv kibjlZ `b^
dhklv b \h^u `b^dhklv fh`gh gZa\Zlv \ aZ\bkbfhklb hl dhebq_kl\Z
dhfihg_glZjZkl\hjhfkibjlZ\\h^_beb\h^u\kibjl_
57
<jZkl\hjZowe_dljheblh\\g_aZ\bkbfhklbhlkhhlghr_gbydhf
ihg_glh\bboZ]j_]Zlgh]hkhklhygbywe_dljheblu\k_]^ZjZkkfZljb
\ZxlkydZdjZkl\hj_ggu_\_s_kl\Z
K\hckl\Z jZkl\hjZ hij_^_eyxlky dZq_kl\_gguf b dhebq_kl\_g
guf khklZ\hf jZkl\hjZ GZ ijZdlbd_ dhebq_kl\_gguc khklZ\ jZkl\h
jh\ \ujZ`Zxl ijb ihfhsb ke_^mxsbo \_ebqbg Z [_ajZaf_jguo –
fZkkh\Zy h[t_fgZy b fheyjgZy ^heb [ jZaf_jguo – fZkkh\Zy dhg
p_gljZpby \_s_kl\Z fheyjgZy dhgp_gljZpby \_s_kl\Z fheyjgZy
dhgp_gljZpbywd\b\Ze_glZ\_s_kl\Zbfheyevghklv
FZkkh\Zy^heyjZkl\hj_ggh]h\_s_kl\ZZ-^m[ev-\w\ujZ`Z_l
ky\^heyo_^bgbpuijhp_glZoijhfbee_ÅlukyqgZyqZklvb\
fbeebhgguo^heyofegØ1FZkkh\Zy^heyqbke_gghjZ\gZhlghr_gbx
fZkkujZkl\hj_ggh]h\_s_kl\Zm1 dh[s_cfZkk_jZkl\hjZ
m1 ( X )
w( X ) =
⋅ 100% .
m(j − jZ )
H[t_fgZy^heyjZkl\hj_ggh]h\_s_kl\Zϕ –nb\ujZ`Z_lky\
^heyo_^bgbpubebijhp_glZobqbke_gghjZ\gZhlghr_gbxh[t
_fZ`b^dh]hbeb]Zahh[jZagh]h\_s_kl\ZV1 dh[s_fmh[t_fmjZkl\h
jZbebkf_kbV:
V (X )
ϕ( X ) = 1
⋅ 100 %.
V
>ey jZkl\hjh\ kibjlZ ijbgylh h[t_fguc ijhp_gl h[hagZqZlv
dZdh.
GZijbf_j_kebfZkkh\Zy^hey+&O \jZkl\hj_lhwlhagZ
qblqlh\]jZkl\hjZkh^_j`blky]+&Ob]jZkl\hjbl_ey?k
eb h[t_fgZy ^hey 22 \ \ha^mo_ khklZ\ey_l – wlh agZqbl qlh \
100 e\ha^moZkh^_j`blkyedbkehjh^Zbl^
FheyjgZy^heyjZkl\hj_ggh]h\_s_kl\Zχ –ob)\ujZ`Z_lky\
^heyo _^bgbpubebijhp_glZo bqbke_gghjZ\gZhlghr_gbxob
fbq_kdh]hdhebq_kl\ZjZkl\hj_ggh]h\_s_kl\Zn1 dkmffZjghfmqbkem
fhev\k_odhfihg_glh\jZkl\hjZ™ni:
n (X )
χ( X ) = 1
⋅ 100%
n
∑ i
FZkkh\Zydhgp_gljZpby\_s_kl\Z7X), beblblj\ujZ`Z_lky
\ d]^f3 ]kf3 ]e ]fe f]fe Qbke_ggh jZ\gZ hlghr_gbx fZkku
jZkl\hj_ggh]h\_s_kl\ZX)dh[t_fmjZkl\hjZV:
m( X )
T(X ) =
.
V (j − jZ )
58
< debgbq_kdhc ijZdlbd_ g_j_^dh \ujZ`Zxl fZkkh\mx dhgp_g
ljZpbxbhgh\\fbeeb]jZffZogZfejZkl\hjZf]
FheyjgZy dhgp_gljZpby \_s_kl\Z k(X) \ujZ`Z_lky \ fheve
fhev^f3fhevkf3fhevfeQbke_gghjZ\gZhlghr_gbxobfbq_kdh]h
dhebq_kl\ZjZkl\hj_ggh]h\_s_kl\ZX)dh[t_fmjZkl\hjZV:
n( X )
c( X ) =
.
V (j − jZ )
FheyjgZydhgp_gljZpbywd\b\Ze_glZ\_s_kl\Zwd\b\Ze_gl
1

gZy dhgp_gljZpby k  * ( X ) \ujZ`Z_lky \ fheve fhev^f3,
z

3
fhevkf fhevfe Qbke_ggh jZ\gZ hlghr_gbxobfbq_kdh]hdhebq_
1

kl\Zwd\b\Ze_glZjZkl\hj_ggh]h\_s_kl\Z  * ( X ) dh[t_fmjZkl\hjZ
z

1

n  * ( X )
1

z
.
c  * ( X ) = 
z
 V (j − jZ )
Fheyevghklv jZkl\hjZ E; fhevd] qbke_ggh jZ\gZ hlghr_
gbxobfbq_kdh]hdhebq_kl\ZjZkl\hj_ggh]h\_s_kl\ZXdfZkk_jZk
l\hjbl_eymd]
b( X ) =
n( X )
.
m(j − ey)
Dhwnnbpb_gl jZkl\hjbfhklb \_s_kl\Z s – fZdkbfZevgZy
fZkkZ \_s_kl\Z kihkh[gZy jZkl\hjblvky \ ] \h^u ijb ^Zgghc
l_fi_jZlmj_ k h[jZah\Zgb_f gZkus_ggh]h jZkl\hjZ JZkl\hjbfh
klvxlZd`_gZau\Zxlfheyjgmxdhgp_gljZpbx\_s_kl\Z\_]hgZ
kus_gghfjZkl\hj_
Ijbf_jDZdb_h[t_fu\h^ubjZkl\hjZ%D&O2kfZkkh\hc^he_c
kheb b iehlghklvx ]fe ihlj_[mxlky ^ey ijb]hlh\e_gby
gh\h]h jZkl\hjZ h[t_fhf e k fZkkh\hc ^he_c kheb jZ\ghc b
iehlghklvx]fe"
J_r_gb_
Z<uqbkebffZkkmihemq_ggh]hjZkl\hjZh[t_fhfemj-jZ
= 1000⋅ ]
[<uqbkebffZkkm%D&O2\ihemq_gghfjZkl\hj_m(BaCl2):
\]jZkl\hjZkh^_j`blky ]\_s_kl\Z%D&O2),
59
\]
x ] (BaCl2),
−
100 2
x ]
=
1012 x
<uqbkebffZkkmbkoh^gh]hjZkl\hjZkh^_j`Zs_]h]oehjb
^Z[Zjby
\]jZkl\hjZkh^_j`blky ]%D&O2,
\y ]
]%D&O2,
−
y ]
<uqbkebfh[t_fbkoh^gh]hjZkl\hjZfZkkhc]
202
m(j − jZ )
Vj-jZ fe
=
ρ(j − jZ ) 1,09
FZkkZ ^h[Z\e_gghc \h^u khklZ\beZ m(H2O) = mj-jZ − mj-jZ
BaCl2) = 1012 − ]ldiehlghklv\h^uijbdhfgZlghcl_f
m(H 2 O) 810
i_jZlmj_[ebadZd_^bgbp_lh V (H 2O) =
=
= 810 fe.
1
ρ(H 2O)
Ijbf_j GZc^bl_ fZkkm \h^u b f_^gh]h dmihjhkZ &X624 ×
× 5H2O), g_h[oh^bfu_^eyijb]hlh\e_gbyjZkl\hjZh[t_fhfekfZk
kh\hc ^he_c CuSO4 jZ\ghc b iehlghklvx lZdh]h jZkl\hjZ
1,084 ]kf3.
J_r_gb_
FZkkZihemq_ggh]hjZkl\hjZ[m^_lkhklZ\eylv
mj-jZ Vj-jZ ⋅ ρj-jZ ⋅ ]
<uqbkebffZkkm&X624\wlhfjZkl\hj_
m(CuSO4) = w(CuSO4) ⋅ mj-jZ= 0,08 ⋅ 108 ]
<uqbkebffZkkmf_^gh]hdmihjhkZkh^_j`Zs_]h]&X624:
M(CuSO4 ⋅ 5H2O) = 160 + 90 = ]fhev
\]dmihjhkZkh^_j`blky ]&X624,
x]
–
]&X624, x =]
FZkkZ\h^ukhklZ\blm(H2O) = 1084 − ]
Ijbf_j DZdb_ h[t_fu jZkl\hjZ k_jghc dbkehlu k fZkkh\hc
^he_ciehlghklvx]feb\h^ug_h[oh^bfh\aylv^eyijb
]hlh\e_gbyjZkl\hjZ+2SO4h[t_fhffekfZkkh\hc^he_cb
iehlghklvx]kf3.
J_r_gb_
GZc^_ffZkkmfejZkl\hjZ
m(j − jZ ) = V (j − jZ ) ⋅ ρ(j − jZ ) = 100 ⋅ ]
60
15 ⋅ 110
= 16,5 ]
100
GZc^_ffZkkmjZkl\hjZ+2SO4kh^_j`Zs_]h]+2SO4:
100 ⋅ 16,5
m1j-jZ
= ]
96
AgZyfZkkmjZkl\hjZbiehlghklvgZc^_fh[t_fjZkl\hjZ
m(j − jZ ) 17,19
=
= 9,34 fe.
V1 (j − jZ ) =
ρ(j − jZ ) 1,84
FZkkZ+2SO4\wlhfjZkl\hj_– m(H2SO4) =
<uqbkebffZkkm\h^ug_h[oh^bfmx^eyijb]hlh\e_gbyjZkl\hjZ
m(H2O) = mj-jZ – m1j-jZ – ]
LZd dZd iehlghklv \h^u ijb dhfgZlghc l_fi_jZlmj_ [ebadZ d
_^bgbp_lhh[t_f^h[Z\e_gghc\h^u\uqbkey_lky
m(H 2O) 92,81
V(H2O) =
=
= 92,81 fe
1
ρ(H 2O)
Ijbf_jDZdhch[t_fjZkl\hjZkfZkkh\hc^he_ck_jghcdbkehlu
b iehlghklvx ]fe ihlj_[m_lky ^ey ijb]hlh\e_gby fe
jZkl\hjZfheyjghcdhgp_gljZpbbwd\b\Ze_glZH2SO4fheve"
J_r_gb_
FheyjgZyfZkkZwd\b\Ze_glZk_jghcdbkehlu
1
 98
F =  (H 2SO 4 ) =
= 49 ]fhev
z*
 2
Dhebq_kl\h wd\b\Ze_glZH2SO4\jZkl\hj_dhlhjucg_h[oh^bfh
ijb]hlh\blv
fhevwd\b\Ze_glh\H2SO4kh^_j`blky\fejZkl\hjZ
ofhevwd\b\Ze_glh\H2SO4kh^_j`blky\fejZkl\hjZ
o= 0,125 fhev
FZkkZH2SO4\jZkl\hj_dhlhjucg_h[oh^bfhijb]hlh\blv
m(H2SO4) = 0,125 ⋅ ]
FZkkZbkoh^gh]hjZkl\hjZkh^_j`Zs_]h]H2SO4:
\]jZkl\hjZkh^_j`blky]H2SO4,
\y ]
–
]H2SO4,
y ]
<uqbkebfh[t_fbkoh^gh]hjZkl\hjZk_jghcdbkehlu
m(j − jZ ) 7,66
=
= 4,4 fe
V=
ρ(j - jZ 1,732
61
Ijbf_j . Dhwnnbpb_glu jZkl\hjbfhklb gbljZlZ dZeby ijb
60 KbhKkhhl\_lkl\_gghjZ\gub]\]\h^uDZdh\Z
fZkkZgbljZlZdZeby\u^_eb\r_]hky\hkZ^hdijbhoeZ`^_gbbhl
^hhKgZkus_ggh]hijbhKjZkl\hjZwlhckhebfZkkhc]"
J_r_gb_
FZkkZgZkus_ggh]hjZkl\hjZijbhKjZ\gZ
mj-jZ ]
FZkkZgbljZlZdZeby\wlhfjZkl\hj_
\jZkl\hj_fZkkhc]kh^_j`blkyKNO3fZkkhc]
-«]
-«o]
110,1 ⋅ 40
= 20,96 ]
o= m(KNO3) =
210,1
h
FZkkZ\h^u\]jZkl\hjZ[m^_ljZ\gZ
m(H2O) = 40 – ]
<uqbkebffZkkmKNO3\gZkus_gghfjZkl\hj_ijbhK\ ]
H2O:
\]H2OjZkl\hjy_lky]KNO3,
\]
-«y]KNO3,
y = m(KNO3 ]
IjbhoeZ`^_gbb\u^_eblkygbljZldZebyfZkkhc
m(KNO3) = 20,96 – ]
<hijhku^eykZfhklhyl_evghcih^]hlh\db
1. >Zcl_hij_^_e_gb_ihgylbyjZkl\hj.
2. H[tykgbl_klhqdbaj_gbyfhe_dmeyjgh-dbg_lbq_kdboij_^klZ\e_
gbc ijhp_kk jZkl\hj_gby l\_j^uo `b^dbo b ]Zahh[jZaguo \_
s_kl\\\h^_
3. Q_f hlebqZ_lky jZkl\hj hl f_oZgbq_kdhc kf_kb" Hl obfbq_kdbo
kh_^bg_gbc"
4. Fh`ghebkqblZlvqlhh[t_fjZkl\hjZjZ\_gkmff_h[t_fh\jZk
l\hjbl_eybjZkl\hjy_fh]h\_s_kl\Z"
5. DZdb_nZdlhjuhij_^_eyxll_ieh\hcwnn_dljZkl\hj_gby"
6. DZd \eby_l ijbjh^Z jZkl\hj_ggh]h \_s_kl\Z b jZkl\hjbl_ey gZ
jZkl\hjbfhklv"DZdb__s_nZdlhju\ebyxlgZjZkl\hjbfhklv\_
s_kl\"
7. Ijb\_^bl_ ijbf_ju ]Zah\ bf_xsbo g_agZqbl_evgmx b hq_gv
[hevrmxjZkl\hjbfhklv\\h^_Q_fwlhh[tykgy_lky"
62
8. DZd\ebyxll_fi_jZlmjZb^Z\e_gb_gZjZkl\hjbfhklv]Zah\\\h^_"
9. Fh`_leb[ulvgZkus_ggucjZkl\hjjZa[Z\e_ggufZdhgp_gljb
jh\ZggucjZkl\hj-g_gZkus_gguf"
10. DZdfh`ghihemqblvbkhojZgblvi_j_kus_ggucjZkl\hj"
11. Qlhijhbahc^_lkgZkus_ggufi_j_kus_ggufbg_gZkus_gguf
jZkl\hjZfb kmevnZlZ f_^b ijb \g_k_gbb \ dZ`^uc ba gbo g_
kdhevdbodjbklZeeh\f_^gh]hdmihjhkZ"
12. QlhlZdh_djbklZeeh]b^jZlu"Ijb\_^bl_ijbf_ju
13. Qlhij_^klZ\ey_lkh[hcdhwnnbpb_gljZkl\hjbfhklb\_s_kl\Zb\
dZdbo_^bgbpZo_]h\ujZ`Zxl"
14. DZdbaf_gy_lkyjZkl\hjbfhklv\_s_kl\kbaf_g_gb_fl_fi_jZlmju"
15. DZdh\uhkgh\gu_kihkh[u\ujZ`_gbykhklZ\ZjZkl\hjh\"
16. QlhlZdh_fZkkh\Zy^hey\_s_kl\Z\jZkl\hj_"
17. DZdZydhgp_gljZpbygZau\Z_lkyfheyjghcwd\b\Ze_glghc"
18. DZdgZclbwd\b\Ze_gldbkehluhkgh\Zgbykheb"
19. DZd i_j_kqblZlv fheyjgmx dhgp_gljZpbx gZ fZkkh\mx ^hex \_
s_kl\Z\jZkl\hj_"GZc^bl_fZkkh\mx^hex+3PO4\-fheyjghf
jZkl\hj__keb_]hiehlghklvjZ\gZd]f3.
20. DZdi_j_kqblZlvfZkkh\mx^hex\_s_kl\Z\jZkl\hj_gZ_]hwd\b
\Ze_glgmxdhgp_gljZpbx"GZc^bl_wd\b\Ze_glgmxdhgp_gljZpbx
jZkl\hjZ +&O k fZkkh\hc ^he_c _keb _]h iehlghklv jZ\gZ
]fe
21. DZdhlghkylkywd\b\Ze_glgu_dhgp_gljZpbbj_Z]bjmxsbojZkl\h
jh\dboh[t_fZf"
AZ^Zqb^eyj_r_gby
149. DZdhch[t_fjZkl\hjZk_jghcdbkehlukfheyjghcdhgp_gljZpb_c
fhevefh`ghijb]hlh\blvbafefheyjgh]hjZkl\hjZ"
150. IehlghklvjZkl\hjZkfZkkh\hc^he_c+2SO4jZ\gZ ]kf3.
<uqbkeblvZfheyjgmxdhgp_gljZpbx[ wd\b\Ze_glgmxdhgp_gljZpbx\fheyevghklvjZkl\hjZ
151. <uqbkeblv fZkkm kZoZjhau g_h[oh^bfmx ^ey ijb]hlh\e_gby
jZkl\hjZfZkkhc]fheyevghklvdhlhjh]hfhevd]
152. <uqbkebl_ obfbq_kdh_ dhebq_kl\h ]_dkZ]b^jZlZ oehjb^Z dZev
pbydhlhjh_g_h[oh^bfh\aylv^eyijb]hlh\e_gbyjZkl\hjZoeh
jb^Z dZevpby h[t_fhf fe k fZkkh\hc ^he_c kheb b
iehlghklvx]kf3.
153. <dZdhfh[t_f_jZkl\hjZkmevnZlZf_^bρ ]kf3kfZkkh
\hc^he_ckhebke_^m_ljZkl\hjblv]f_^gh]hdmihjhkZ
qlh[uihemqblvjZkl\hjkmevnZlZf_^b"
63
154. DfejZkl\hjZρ ]kf3kmevnZlZgZljbykwd\b\Ze_gl
ghc dhgp_gljZpb_c fheve ^h[Z\beb fe jZkl\hjZ
(ρ = ]kf3wlhckhebkfheyjghcdhgp_gljZpb_cfheve
<uqbkeblvfheyjgmxbwd\b\Ze_glgmxdhgp_gljZpbbkheb\ih
emq_gghfjZkl\hj_
155. >hdZdh]hh[t_fZg_h[oh^bfhjZa[Z\blvfejZkl\hjZkheyghc
dbkehlukfZkkh\hc^he_cρ ]kf3qlh[uihemqblv
jZkl\hjρ ]kf3bdZdh\Z[m^_l_]hfheyjgZydhgp_g
ljZpby"
156. DZdhch[t_fZffbZdZgmg_h[oh^bfhjZkl\hjblv\fe\h
^u^eyihemq_gbyjZkl\hjZkfZkkh\hc^he_cZffbZdZ
157. <uqbkebl_k(HNO3_kebgZg_cljZebaZpbxwlh]hjZkl\hjZh[t
_fhffejZkoh^m_lkykf_kvdZj[hgZlh\khklhysZybaK2CO3
fZkkhc]bNa2CO3fZkkhc]
158. DZdhch[t_fih^dbke_ggh]hjZkl\hjZi_jfZg]ZgZlZdZebykwd\b
\Ze_glghcdhgp_gljZpb_cfheveihlj_[m_lky^eydhebq_kl
\_ggh]h hij_^_e_gby `_e_aZ \ gZ\_kd_ djbklZeeh]b^jZlZ
(NH4)2SO4 ⋅ FeSO4 ⋅ 6H2OfZkkhc]"
159. DZdhch[t_fjZkl\hjZZahlghcdbkehluρ ]fek__fZkkh
\hc^he_cg_h[oh^bfh^h[Z\blvdfejZkl\hjZρ = 1,05
]kf3kfheyjghc^he_cdbkehluqlh[uihemqblvjZkl\hjk
fZkkh\hc^he_cHNO3 20 %?
160. Kf_rZebfejZkl\hjZk_jghcdbkehluρ ]kf3kwd\b\Z
e_glghcdhgp_gljZpb_cfhevebfe__jZkl\hjZkfheyj
ghc ^he_c ρ ]kf3 <uqbkeblv fZkkh\mx ^hex
H2SO4\ihemq_gghfjZkl\hj_
161. DZdb_h[t_fujZkl\hjZgbljZlZfZ]gbykfheyjghcdhgp_gljZpb_c
fheve b jZkl\hjZ gbljZlZ ojhfZ k fheyjghc dhgp_gljZpb_c
1 fheveg_h[oh^bfh\aylv^eyijb]hlh\e_gbykf_kbhdkb^h\fZ]
gbybojhfZfZkkhc]cfheyjghc^he_cCr2O3jZ\ghc"
162. Kf_kv f_^b b hdkb^Z f_^bII k fZkkh\hc ^he_c f_lZeebq_kdhc
f_^b h[jZ[hlZeb jZkl\hjhf Zahlghc dbkehlu k fZkkh\hc
^he_c b iehlghklvx jZkl\hjZ ]fe Ijb wlhf \u^_ebeky
hdkb^ ZahlZII h[t_fhf e g m <uqbkebl_fZkkmkf_kbb
h[t_fbajZkoh^h\Zggh]hjZkl\hjZdbkehlu
163. <uqbkebl_h[t_fgmhdkb^Zk_juIVbadhlhjh]hfh`ghih
emqblv fe jZkl\hjZ k_jghc dbkehlu k fZkkh\hc ^he_c (ρ ]kf3).
64
164. >eyi_j_djbklZeebaZpbbgbljZldZeby[uejZkl\hj_g\\h^_fZk
khc]ijbhK^hihemq_gbygZkus_ggh]hjZkl\hjZdhlhjuc
aZl_fhoeZ^beb^hhK<uqbkebl_fZkkm\udjbklZeebah\Z\r_cky
khebDZdh\ug_ba[_`gu_ihl_jbgbljZlZdZebyhlghkbl_evghbk
oh^gh]hh[jZapZ_kebdhwnnbpb_gljZkl\hjbfhklbgbljZlZdZeby
ijb hKjZ\_g]ZijbhK–]\]\h^u"
165. Dhwnnbpb_glu jZkl\hjbfhklb Pb(NO3)2 ijb b hKkhhl\_l
kl\_gghjZ\gu]b]\]\h^uDZdmxfZkkmqbklh]hgbl
jZlZ k\bgpZ fh`gh ihemqblv ijb hoeZ`^_gbb _]h gZkus_ggh]h
jZkl\hjZhl^hhK_kebgZijb]hlh\e_gb_gZkus_ggh]hjZk
l\hjZ[uehaZljZq_ghfe\h^u"DZdh\Z[m^_lfZkkh\Zy^hey
kheb\fZlhqghfjZkl\hj_"
166. <gZkus_gghfjZkl\hj_ijb hKfZkkh\Zy^heyK2Cr2O7khklZ\
ey_lDZdh\dhwnnbpb_gljZkl\hjbfhklb^bojhfZlZdZeby
ijbwlhcl_fi_jZlmj_"
167. GZc^bl_fZkkmKKlO3\u^_eb\r_]hkybajZkl\hjZfZkkhc]k
fZkkh\hc ^he_c kheb ijb hoeZ`^_gbb _]h ^h hK DZdh\Z
[m^_l fZkkh\Zy ^heykheb\fZlhqghfjZkl\hj__kebdhwnnbpb
_gljZkl\hjbfhklbkhebijbhKjZ\_g]"
168. JZkkqblZcl_ fheyjgmx dhgp_gljZpbx oehjb^Z gZljby \
nbabheh]bq_kdhfjZkl\hj_! ]kf3).
169. H[sZyfZkkZZahlZ\kmlhqghcfhq_\ghjf_jZ\gZ]<ujZab
l_dhebq_kl\hZahlZ\kmlhqghcfhq_\fheyo
170. Bf__lky jZkl\hj kh^_j`Zsbc h^gh\j_f_ggh k_jgmx b Zahlgmx
dbkehluHij_^_ebl_fZkkh\mx^hexdZ`^hcbadbkehl\jZkl\h
j_ _keb ijb g_cljZebaZpbb ] wlh]h jZkl\hjZ jZkoh^m_lky
fe ! ]kf3 jZkl\hjZ ]b^jhdkb^Z gZljby k fZkkh\hc
^he_cZijbijb[Z\e_gbbd]lZdh]h`_jZkl\hjZba[uldZ
oehjb^Z[Zjbyh[jZam_lkyhkZ^hdfZkkhc]
171. DZdhcfZkku]_dkZ]b^jZloehjb^ZdZevpbyg_h[oh^bfh^h[Z\blv
djZkl\hjmdZj[hgZlZgZljbyh[t_fhffe! ]fekfZk
kh\hc^he_ckhebqlh[uihemqblvjZkl\hj\dhlhjhffZk
kh\Zy^heydZj[hgZlZgZljbyjZ\gZ"
172. K
Документ
Категория
Без категории
Просмотров
27
Размер файла
1 157 Кб
Теги
рагойша, богатиков, сборник, шиманович, красицкий, задачи, химия, вопросов, упражнения, неорганических, pdf, 2003, общее, лапки
1/--страниц
Пожаловаться на содержимое документа