close

Вход

Забыли?

вход по аккаунту

?

Application of Titanacycles to Heterocycle Synthesis Phospha- and Arsacyclobutenes.

код для вставкиСкачать
1101 2 . ' H NMR(300MHz.C6D,):d =0.03(s;SiCH3),1.70(vt,N= 5.4Hz;
PCH,). 2.40 (s: C,H,), 7.08 (m; p/m-H), 7.70 (m; o--H). "P{'H}-NMR
(121.4 MH7,C,Da):6 = 11.9(sj. IR(KBr): f = 1958 cm-' [v(C=C)];see
El. Werner, A. Hohn. J. Organumer Chem. 272 (1984) 105.
1111 3. ' H N M R (300 MHz. C,D,): 6 = - 3.53 (t. 4J(PH) = 3.5 Hz; =CH,).
0.16 (s; SiCH,), 1.90 (vt; N = 5.3 Hz; PCH,), 7.08 (m;p/m-H), 7.94 (m;
0-H). " P / ' H ) - N M R (121.4 MHz, C,D,): 6 = 15.8 (s). " C N M R
(75.4 MHz. C,D,): d = 91.6 ( s ; 0-C), 268.1 (t, 'J(PC) = 7.0 Hz; z-C). IR
(KBr): i;= 1648cm-' (v(C=C)]. Correct C, H. N analysis.
1121 a ) A. Hohn. H Otto, M. Dziallas, H. Werner, J. Chem. Sor Chem. Cumm u n . IYH7. 852: b) F J. Garcia Alonso, A. Hohn, J. Wolf, H. Otto, H.
Werner. Angew. Cltem. 97 (1985) 401. Angen-. Chem. In/. Ed. EngI. 24
(1985) 406; c) H. Werner, J. Wolf, G . Muller, C . Kruger, ihid. 96 (1984) 421
and -73 (1984) 431; d ) J. Orgunumer. Chem. 342 (1988) 381.
[13] 4a. ' H NMR (300 MHz, C,D,): 0.07 (s; StCH,), 0.50 (s; AICH,), 1.91
= 14.3, N = 5.2 Hz) and 2.53 (dvt, N = 5.3 Hz; PCH,), 4.77 and
(dvt. JgZm
6.01 (s; =CH2), 7.20(m;p/m-H). 7.92andX.O3(m;@H). "P('H}-NMR
( 1 I I .4 MHz. C,D,): 6 = 18.0 (s). IR(KBr): v^ = 1590 cm- I [v(C=C)]. 4b:
' H NMR (300 MHz, C,D,): 6 = 0.06 and 0.48 (s, Si(CH,),), 1.88 (dvt.
.JKcn,= 14.4. N = 5.1 Hz) and 2.53 (dvt, N = 5.3 Hz; PCH,), 0.61 (m;
AICII,CH,). 1.46 (t, J = 8.1 Hz), AICH,CH,), 2.19 (4, J = 7.4 Hz;
CH,CH,). 0.98 (t, J = 7.4 Hz; CH,CH,), 4.84 and 5.96 (br.s; =CH,),
7.1X (m: p:fn-H). 7.85 and 7.98 (m; o-H). " P i ' H i - N M R (121.4MHz.
C,,D6): b = 17.7(s). I R ( K B r ) . J = 1586cm-'Iv(C=Cj].CorrectC,H,N
analysis.
[14] C35H4,AllrNPzSi2, M, = 819.08. monoclinic (from toluene/hexane).
P2,lc.
Z = 4,
n = 18.823(6)&
b = 9.701(2)&
space group
< = 21.359(8)A, fi = 111 78(2)-, Y = 3622(2)A3, e,,,, = 1.5Og c m - 3 ,
~ ( M O ~=, 38.73
)
cm-', F(000) = 1648. 8600 measured reflections
(RigdkuAFC6.MoK,,E.= 0.71069A).T = 21 "C,w -2@scan,maximum
2 8 = 55.1 : 8352 independent reflections, empirical absorption correction,
heavy atom method, Lorentz and polarization corrections, R = 0.034,
K , = 0.040 (w. = l/u*(&)) for 5723 observed reflections ( I > 3.00u(fj)
and 379 parameters, residual electron density (max.) = 1.85 e k ' . Further details of the crystal structure analysis may be obtained from the
Fachinformationszentrum Karlsruhe. Gesellschaft fur wissenschaftlichtechnischr Information mbH, D-7514 Eggenstein-Leopoldshafen 2
(FRC;). by quoting the depository number CSD-54150, the names of the
authors. and the journal citation.
[15] J. M. Mayer. J. C. Calabrese, Organume/u/ics 3 (1984) 1292.
1161 For related iridium-amine bond lengths, see M. D. Fryzuk. P. A. MacNeil. S. J. Rettig. J. Am. Chrrn. Sur. 109 (1987) 2803; for typical aluminum nitrogen bond lengths, see M. J. Zaworotko, J. L. Atwood, Inorg.
( ' h r w i . 19 (1980) 268.
(171 a ) D. L. Thorn, R. L. Harlow, J. Am. Chem. Sot.. 111 (1989) 2575; b) K
Isobc. A. Vazquez de Miguel. A. Nutton, P. M. Maitlis, J Chem. Suit
Dulron Truns. IYN4, 929.
[I81 A . Hiihn. H. Werner, Angen,. Chem. 98(1986) 745; Angew. Chem. Int. Ed
Enfil. 25 (1986) 737.
[19] M. D Fryzuk. P. A . MacNeil, S. 1. Rettig, J. Am. Chem. Sue. 107 (1985)
cycles containing a group 15 (5th main group) element are
rare.14. In the course of our search for organometallic
routes to main group heterocycles, we have discovered that
the bis(cyclopentadieny1)titanacyclobutene 1 reacts rapidly
and cleanly with group 15 aryl dichlorides to yield the corresponding heterocyclobutenes, 2 and 3. Herein, we report the
synthesis, and characterization of 2 the first arsacyclobutene
(1,2-dihydroarsete); comparisons with the P analog 3 will be
drawn.
Ph
Ph
+
PhMCI,
+
.
-Cp2TiC12
.,.TPh
Ph
1
The addition of one equivalent of PhAsC1, or PhPCI, to
bis(cyclopentadieny1)titanacyclobutene 1 [61 in hydrocarbon
solvents results in the immediate precipitation of titanocene
dichloride and formation of 2 or 3,[71respectively (essentially
quantitative by NMR spectroscopy).[*]2 and 3 were isolated
in greater than 50% yield as colorless crystals by filtration of
the titanocene dichloride byproduct, removal of solvent, and
recrystallization from cold ( - 20 "C) ether or pentane.
NMRc9]and high resolution mass spectral dataI"1 are consistent with a four-membered ring structure for 2 and 3. The
diastereotopic a-methylene hydrogens appear as doublets
(J = 13.3 Hz) at 6 = 2.75 and 2.35 in the 'H-NMR spectrum
of 2. The lJPcof 33.9 Hz for the ips0 phenyl carbon of 3 (I3C
NMR) is consistent with reported values for phosphetanes.
' J C Hat the a positions of 140-146 Hz (I3C NMR) of 2 and
3 are also indicative of a cyclic structure.["]
The proposed arsacyclobutene structure 2 was confirmed
by X-ray crystallography (Fig. 1)."*1 The four-membered
670X.
Application of Titanacycles to Heterocycle
Synthesis: Phospha- and Arsacyclobutenes **
By William Turnas,* Joseph A . Suriano, and
Richurti L. Harlow
Dedicated 10 Dr. George Parshall on the occasion of his
60th hirthdq.
The propensity of early transition metal alkyls to undergo
transmetalation reactions with main group halidesL'] coupled with the wealth of metallacyclic complexes now available['] should provide access to novel heterocycles that heretofore have been difficult to prepare. Except for the widely
studied ph~sphetanes,'~]
examples of four-membered carbo-
['I
Di-. W. Tumas. J. A. Suriano, Dr. R. L. Harlow
Central Research and Development Department
E.I. du Pont de Nemours and Co.
Experimental Station. Wilmington, D E 19880 (USA)
[**I Contribution No. 5275 from the Central Research and Development Department. We thank E Duvidsun for the "C N M R spectra, J. Lazar for
high-resolution mass spectra data, and W. Marsha// for assistance with the
X-ray crystallography.
Fig. I . Structure of 2 in the crystal. For bond lengths and angles see Table 1
ring is essentially planar with only a slight enveloping; the
atoms of the ring deviate from a mean plane by only 0.039,
- 0.052, 0.073, and - 0.059 A, for As, C1, C2, and C3,
respectively. Moreover, the As atom is clearly pyramidal
with C-As-C angles of 69.9, 102.3 and 101.7 '. For the sake
of comparison we also prepared and structurally characterized the isostructural phosphacyclobutene 3.". 31 Pertinent
bond lengths and angles for 2 and 3 as well as two previously
reported metalla~yclobutenes~'~~
are listed in Table 1. The
'
Table 1. Comparison of X-ray data for heterocyclobutenes
(1)
Ph
RX
PhAs (2)
PhP (3)
Cp,Ti (1) [14a] Br(PMe,),Ir [a]
Bond length [A]
x-CI
x-c3
c1-c2
C2-C3
1.989(6)
1.949(4)
1.499(7)
1.358(6)
1.872(4)
1.826(3)
1.510(5)
1.359(4)
2.122(5)
2.104(4)
1.537(6)
1.344(6)
2.166(6)
2.1 34(5)
1.525(8)
1.344(7)
Bond angle [ I
CI-X-C3
x-CI-c2
x-c3-c2
C1 -C2-C3
Ph-X-Cl
Ph-X-C3
69.9(2)
89.4(3)
95.4(3)
104.1(4)
102.3(2)
101.7(2)
73.8(2)
88.4(2)
95.2(2)
101.3(3)
104.3(2)
104.1(2)
69.3(2)
86.0(3)
91.8(3)
112.8(6)
64.5(2)
91.2(3)
98.0(4)
106.1( 5 )
[a] 114bJ; this structure is for p-tolyl rather than phenyl substituents.
four-membered ring in all these compounds is essentially
planar.[”’ The X-C bond lengths also reflect the hybridization of the carbon atoms in the ring. As expected, the CI-C2
single bond is considerably longer than the C2-C3 double
bond. The double bond in the four-membered ring is, however, slightly longer in the P and As compounds than in the
transition metal complexes. It is possible that this difference
may be indicative of more delocalization in the main group
compounds or may be due to less strain in the transition
metal complexes due to bonding through d orbitals.
Both the arsa- and phosphacyclobutenes are surprisingly
robust; no appreciable decomposition was observed upon
heating toluene solutions in sealed tubes at 100 “C for up to
20 h. Preliminary studies reveal that 2 and 3 are, however,
photochemically reactive. We are also investigating a number of other heterocycles prepared by transmetalation reactions of titanacycles.
Received: August 24, 1989 [Z3519iE]
German Version: Angew. Chem. 102 (1990) 89
CAS Registry numbers:
1, 74834-09-6; 2. 124481-54-5; 3. 124511-69-9; PhAsCI,. 696-28-6; PhPCI,,
644-97-3
[l] There is considerable precedent for these transmetalation reactions. The
synthesis of a number of heterocycles from zirconacyclopentadienes and
-cyclopentenes has recently been reported. P. J. Fagan, W. A. Nugent, J
Am. Chem. Soc. 110 (1988) 2310. Also see: M. D. Fryzuk, G. S. Bates,
C. Stone. J. O m . Chem. 53 (19881 4425. M. D. Frvzuk. G. S. Bates. C.
Stone Tetrahedron Lert 27 (1986) 1537, B J J van de Heisteeg, G Schat,
0 S Akkerman, F Blckelhaupt, Organometallics 5 (1986) 1749
[2] a) c P Casey, Reacr Intermed (Plenum) 2 (1981) 135, b) J P Collman,
L. S. Hegedus, J. R. Norton, R. G. Finke: Principies and Applications 01
Organorransition Metal Chembtry, University Science, Mill Valley, CA,
USA 1987; c) D. J. Cardin, M. F. Lappert, C. L. Raston: Chemistry of
Organozirconium and -Hafnium Compounds, Ellis Horwood Limited,
Chichester 1986; d) S. L. Buchwald, R. B. Nielsen. Chem. Rev. 88 (1988)
1047.
131 a) Review: L. D. Quin: The Heterocyclic Chemisrry ojPhosphorus, Wiley,
New York, 1981, Chapter 4 and refs. within; b) S. A. Weissman, S. G.
Baxter, Tetrahedron Lett. 29 (1988) 1219.
[4] There is one report of the synthesis of arsetanes: M. Mickiewicz, S B.
Wild, J. Chem. Sac. Dalton Trans. 1977, 704.
[S] Only a few reports on 1.2-dihydrophosphetes exist. For example. a) R. H.
Nielson, B. A. Boyd, D. A. DuBois, R. Hani, G. M. Scheide. J. T. Schore,
U. G. Wettermark, Phosphorus Sulfur 30 (1987) 463; b) B. A Boyd, R. J.
Thoma, R. H. Nielson, Tetrahedron Lett. 28 (1987) 6121 ; c) A. Marinetti,
J. Fischer, F. Mathey, J. Am. Chem. Sac. 10711985) 5001; d) X-ray structure analysis of a metal carbonyl complex of 1,2-dihydrophosphete:N.H.
Tran Huy, L. Ricard. F. Mathey, Organometallics 7 (1988) 1791
[6] Prepared according to literature methods from the Tebbe reagent and
diphenylacetylene in THF and recrystallized from tolueneipentane: F. N.
Tebbe, R. L. Harlow. J Am. Chem. Soc. 102 (1980) 6149.
76
X’:
VCH Verlag.sge.s@Ilsrhafr
mhH, 0-6940 Weinhein?, 1990
[7] While this manuscript was in preparation, Doxsee et al. also prepared 3 via
this transmetalation route and structurally characterized it; K. M. Doxsee
(Eugene, OR, USA), private communication; see G. S. Shen, C. B.
Knobler. J. Am. Chem. Soc. 111 (1989) 9129.
[8] All manipulations were carried out under inert atmosphere either in a
drybox (Vacuum Atmospheres) or on a high vacuum line using dry, deoxygenated solvents.
191 Spectroscopic data: 2: ‘H NMR ( 3 0 0 MHz. CD,CI,): 6 = 7.6, 7.0-7.4
( m = 15H),2.75(d.JH,= 13.3Hz,1H),2.35(d,JH,=1 3 . 3 H ~ , l H ) - - ‘ ~ C
NMR (75.6 MHz, CD2C12.):6 = 147.0, 144.3. 141.0, 139.0, 137.7, 132.7,
129.3, 128.9, 128.8, 128.6, 128.5, 127.6, 127.5, 126.9, 23.3 (CH,,
Jell = 142.6. 145.5 HL). 3: ’H NMR (300 MHz, CD,CI,): 6 = 7.6, 7.457.55, 7.2-7.4(m, 15H). 2.94(dd, JIIii= 14.5, JPH= 10.1 Hz, lH),2.55(dd,
J,,,, = 14 5. Jp,, = 4 2 Hz, lH).-I3C
NMR (75.6 MHz, CD,CI,):
6 = 144.7. 143.1 (d, Jpc = 7.1 Hz), 138.4 (d, Jpc = 33.9Hz), 137.1 (d.
J p ~ = 4 . 0 H ~ ) , 1 3 6 . S ( d , J p ~ = 1 0 . 5 H z132.6(d,JW=19.0Hz).
).
129.9(d,
Jpc = 1.3 Hz), 128.9, 128.8 (d, Jpc
= 6.7 Hz. 128.7, 128.6, 127.9 (d,
JPC= 1.3 Hz). 127.4 (d. JPC = 5.1 Hz). 127.0, 28.3 (CH,, d, Jpc = 7.1,
Jctr = 140.1. 143.5 Hz).-”P
NMR (121.7 MHz, CD,CI,): 6 = - 18.0
(relative to external H,PO,).
[lo] High resolution MS (El, 70 eV). The molecular ions of both 2 and 3 were
observed. 2: m/z 344 0522. (AsC,,H,,, 344.0546 calc.). 3: m / i 300.1062
(PC,,H,,, 300.1068 calc.)
[I 11 E. Breitmdier, W. Voelter: Carbon-13 N M R Speclroscupy. VCH Publishers, Weinheim/New York 1987.
1121 Crystals of 2 suitable for X-ray diffraction were grown from concentrated
diethyl ether solutions at ca. - 20°C. Crystal data: AsC,,H,,. parallelepiped, ca. 0.28 x 0.35 x 0.42 mm, monoclinic, space group P2Jn (No.
14) u = 9.292(4), h = 6.734(1), c = 26.037(9) A, b = 93.33(2)”.
T = - 70°C. V = 1626.4A3. Mo,, radiation (CAD-diffractometer).
peArCd(Mo)
= 20.76cm-’,e..,, = 1 . 4 0 6 g c m - 3 , Z = 4. FW = 344.29.The
structure was solved by direct methods and refined by a full-matrix least
squares procedure to residuals of R = 0.042, R , = 0.041, GOF = 1.34, for
2004 unique reflections with 1‘2 3a and 267 variables, including isotropic
refinement of all hydrogen atoms. Further details of the crystal structure
investigations may be obtained from the Fachinformationszentrum Karlsruhe, GeSelkChdft fur wissenschaftlich-technischeInformation mbH, D7514 Eggenstein-Leopoldshafen 2 (FRG), on quoting the depository number CSD-54274, the names of the authors, and the journal citation.
(131 Crystal data for 3: PC,,H,,, irregular block, ca. 0.30x0.25 x0.40mni,
monoclinic, space group P2Jn (No. 14), a = 9.248(2). b = 6.797(1),
c=25.851(6)A,P=93.50(1)”,T= -70°C. V = 1621.9A3.Mo,,radiation,pca,c(Mo)=1.58cm-’,eC,,, = 1 . 2 3 0 g c m - 3 , Z = 4 , F W =300.34.
Compound 3 was found to be isostructural with 2 and was refined by a
full-matrix least squares procedure to residuals of R = 0.048, R , = 0.038,
G O F = 1.13, for 1485 unique reflections with I 2 3a and 267 variables,
including isotropic refinement of all hydrogen atoms. For full details see
reference 1121.
[14] a) R. J. McKinney, T H. Tulip, D. L. Thorn,T. S. Coolbaugh, F. N. Tebbe,
J. Am. Chem. Soc. 103 (1981) 5584; b) J. C. Calabrese, D. C. Roe, D. L
Thorn. T. H. Tulip, Orgunometallic.~3 (1984) 1223.
[tS] The atoms in the four-membered ring of 3 deviate from a mean plane by
0.039, 0.071,0.071, and - 0.061 A for P. C1. C2, and C3, respectively.
~
Structure of a 1 :1 Adduct of silyl Chloride and
Dimethyl Ether at 100 K
By Alexander J. Blake,* Stephen Cradock,
E. A . P! Ebsworth, and Keith C. Franklin
In the course of an investigation of the Raman and IR
spectra of mixtures of dimethyl ether with silyl and germyl
halides at low temperatures, [‘I we found evidence for the
existence of discrete adducts. As there are very few reports of
simple adducts involving silyl halides as acceptors, 1’- 31 and
no structural data have been reported except for (chloro~ilyl)dimethylamine,I~~
(where we have shown that a dimer
forms in the crystal, with nitrogen acting as a donor to a five
coordinate silicon), we sought more direct evidence for the
precise nature of the interactions in the dimethyl ether sys-
[*I
Dr. A. J. Blake. Dr. S. Cradock, Prof. E. A. V. Ebsworth, K . C. Franklin
Department of Chemistry, University of Edinburgh,
West Mains Road, GB-Edinburgh EH9 3JJ (Scotland)
(~570-~833i90j~)l01-0076
S 02.5010
Angen. Chrm. Int. Ed. Engl. 29 ( ( 9 9 0 ) N o .
Документ
Категория
Без категории
Просмотров
0
Размер файла
274 Кб
Теги
titanacycles, synthesis, phospho, arsacyclobutenes, application, heterocyclic
1/--страниц
Пожаловаться на содержимое документа