вход по аккаунту


Book Review Elementary Introduction to Spatial and Temporary Fractals. (Series Lecture Notes in Chemistry Vol. 55.) By L. T. Fan D. Neogi and M

код для вставкиСкачать
sarily include the original publication in which the use of a
particular protective group was first proposed.
Despite these reservations, the book can be recommended
as an excellent and very useful source of information for all
chemists concerned with the synthesis of polyfunctional
compounds. Its coverage has been extended from that of the
first edition to include N-protecting groups for five-membered heterocycles and amides, but the latest developments
in the use of protective groups that can be removed enzymically were, of course, too recent to be included (H. Waldmann, Kontakte (Merck) 1991 (3), 33). The second edition
of “Protective Groups in Organic Synthesis” should be
available at all times in every organic preparative laboratory.
Hovst Kunz
Institut fur Organische Chemie
der Universitat Mainz (FRG)
Elementary Introduction to Spatial and Temporal Fractals.
(Series: Lecture Notes in Chemistry, Vol. 55.) By L. T
Fan, D. Neogi and M . Yashima. Springer, Berlin, 1991. IX,
168 pp., paperback DM 44.00.--ISBN 3-540-54212-4
The importance of fractals for describing complex structures and complicated phenomena is now generally recognized, and in the last few years quite a number of books
explaining the basic concepts of fractals in an easily understandable way have appeared. The book reviewed here is
such a one; it gives an introduction to spatial and temporal
fractals, and is intended particularly for students and research scientists working in the area of chemistry. The main
emphasis is on definitions, methods and applications; detailed mathematical derivations are kept to a minimum. It is
roughly 150 pages in length, and is clearly divided into four
parts followed by a detailed appendix.
In the first part the concepts and definitions of fractals are
explained. Topological and Hausdorff-Besicovitch fractals
and Euclidean dimensions are compared. Line, surface, and
volume fractals are also explained.
The second part contains examples that the reader can
easily understand using the knowledge gained from the first
part. The reader progresses via Cantor sets and Koch curves
to coastal perimeters. Particular attention is devoted to
methods for determining the fractal dimensions of irregular
surfaces. The concept of multifractals is also touched on
briefly, and it is shown that complex objects cannot always
be fully characterized by a single exponent; instead this may
require a distribution of exponents. The justification for this
procedure in terms of information theory is not gone into
here. Almost every book on fractals has to include a discussion of growth models; here the authors confine their attention to the best known of these, namely the Eden model and
the diffusion-generated aggregation model. Transport and
dynamic processes in fractal structures are not treated, and
accordingly only those characteristic exponents that are of
importance for structural analysis are discussed.
The third part of the book deals with temporal fractals.
These are also taken to include time series arising from measurements as a function of time, for example, data on the
prices of commodities as these vary with time. Such price
variations often do not show a normal (Gaussian) distribution. Fluctuations of this sort can be analyzed in terms of
stable distributions and fractional Brownian motions. Here
a distinction is also made between the properties of selfaffinity and self-similarity. The Hurst method for determining the characteristic exponents of discrete time series is deAngew. Chem. Inr. Ed. Engl. 3i (1992) No. S
0 VCH Verlagsgesellschaft mbH,
scribed. Only in the final section of this part do the authors
deal with “real” time fractals. These include stochastic processes in which the intervals between successive events have
a distribution characterized by a divergent average interval.
However, the fundamental importance of temporal fractals
for the interpretation of dispersive transport processes and
slow relaxation phenomena is scarcely mentioned.
The last part is devoted to chaos phenomena. The authors
clearly explain the role of the strange attractor in characterizing chaos in deterministic nonlinear systems, and that of
the Liapunov exponents in predicting trajectories. The relationship between fractals and chaos is made clear by a consideration of the fractal dimensions of the strange attractor.
The appendix should prove useful for readers interested in
practical applications. Here the fractal properties for three
particular cases are examined, by determining the fractal
dimensions for the perimeter of coal particles, for the surface
of rice hulls, and for the pressure fluctuations in multiphase
flow systems. Each case study begins with a theoretical introduction, which is followed by a description of the experimental arrangement, and finally a discussion of the results with
the help of figures and tables.
This book serves very well the needs of the reader who has
no previous knowledge of the subject, and wishes to acquire
the necessary background for an understanding of fractals,
especially for applications to chemistry, in a way that does
not make exacting demands. The price of DM 44.00 is appropriate for a book at this level.
Gerd Zumofen
Laboratorium fur Physikalische Chemie
der Eidgenossischen Technischen Hochschule,
Zurich (Switzerland)
Molecular Mechanism for Sensory Signals. By E. M . Kosower. Princeton University Press, Princeton NJ (USA),
1991. XVI, 438 pp., hardcover $79.50.-ISBN 0-69108553-6
The elucidation of the molecular mechanisms of sensory
perception, signal transduction, and the processing and storage of the information thus obtained is one of the most
fascinating research areas of modern biology and biochemistry. Many different approaches are being followed, involving a very wide variety of disciplines ranging from molecular
biology to neurobiology, and from molecular structure determination to the study of neuronal networks. E. M. Kosower has performed a valuable service in bringing together
in a single publication a survey of the current knowledge on
this complex subject.
At the beginning of the book the author defines a hierarchical classification of the world of living organisms, which
is made up of levels of organization of varying complexity.
A consideration of how these individual levels fit together
provides explanations for many apparently unconnected results. This approach from the viewpoint of systems and functions is becoming increasingly important in modern biology.
It is a concept to which E. M. Kosower frequently refers
back in this book, thereby making many of the relationships
easier to understand.
It is only very recently that detailed knowledge has been
gained about the mechanism of vision, the olfactory system,
the sense of taste, and the transduction of signals. From this
a number of common principles and levels of function have
been recognized; the receptors, which belong to the lowest
level, appear to have similar structures (containing seven
W-6940 Weinheim. 1992
0570-0833/92/0S05-0659$3.50+ .Dl0
Без категории
Размер файла
158 Кб
note, series, fractals, spatial, fan, chemistry, introduction, temporary, book, elementary, lectures, vol, review, neogi
Пожаловаться на содержимое документа