close

Вход

Забыли?

вход по аккаунту

?

Carbaporphyrins.

код для вставкиСкачать
bpy” nature. Given that bpy itself will react with [Mn,O(O,CR),(py),](ClO,) to afford butterfly-like clusters of the type
[Mn,02(02CR),(bpy),](C104),[171
it can be seen that in L2 the
5 3 ” linkage results in the above-mentioned properties being
independent: property 1 ) triggers self-assembly of a butterflylike [Mn402]*+cluster (as does free bpy), and property 2) yields
a resulting “dimer-of-clusters” supramolecular assembly. In
contrast, properties 1) and 2) are coupled (not independent) in
L1, and the 6,6” linkage therefore yields the new cluster type in
complex 1.
It is clear that there is great potential for suitably “programmed” polypyridyl and related ligands in this area of
supramolecular chemistry involving metal clusters, complementing the current use of mononuclear metal centers. Such an
approach might be one potential means of amalgamating, for
example, the often unusual magnetic properties of metal clusters
and the multidimensional controlled ordering of supramolecular chemistry.
Experimentd Procedure
[Mn,O,(O,CMe),(Ll),](CIO,), (1). Solid L1 (0.30 g, 0.90 mmol) was added to a
stirred red-brown solution of [Mn,O(O,CMe),(py),](CIO,) (0.52 g, 0.60 mmol) in
MeCN (60 mL), which caused a rapid color change to dark red-brown. The solution
was stirred for 12 h, filtered. and the filtrate layered with an equal volume of T H E
After several days, dark red-brown block-shaped crystals of I . 2 T H F had formed;
this formulation was indicated crystallograpbically. but dried solid analyzed a s
C 45.70
I-THF.ZH,O. Yield 46%. Anal. calcd (found) for C,,H,,,N,O,,CI,Mn,:
(45.87), H 4.11 (3.96). N 7.61 (7.67), Mn 14.93 (14.99)%.
[Mn,0,(O2CEt),,(L2),](CIO,), (2). Solid L2 (0.10 g, 0.30 mmol) was added to a
stirred red-brown solution of [Mn,O(O,CEt),(py),](CIO,) (0.19 g, 0.20 mmol) in
CH,CI, (50 mL). The solution was stirred for 2 h. filtered, and the filtrate layered
with an equal volume of hexanes. After several days. dark red crystals of
2.4CH,C12 -.YC,H,, were collected: this formulation was indicated crystallographically. but dried solid analyzed as solvent free. Yield 65%. Anal. calcd (found) for
C,oH,,,N,O,oCI,Mn,:
C 43.97 (44.04). H 4.67 (4.53). N 4.56 (4.66), Mn 17.88
(17.92)%.
Received: December 13. 1995 [Z8643IE]
German version : Angrit.. Chem. 1996, 108. 1962 - 1964
-
Keywords: - clusters complexes with carboxylato ligands
magnetic properties * manganese compounds
[I] J:M. Lehn, Suprumoleculur Chemrstr,v, VCH. Weinheim. 1995.
[2] a) R. Kritner, J.-M. Lehn. A. DeCian, J. Fischer, Angew. Chem. 1993,105.764;
Angew. Chem. i n t . Ed. Engl. 1993, 32, 703; b) E. Leize, A. Van Dorsselaer, R.
Krimer. J.-M. Lehn, 1 Chern. Soc. Chem. Commun. 1993, 990.
[3] C. Ptguet, G. Bernardinelli, B. Bocquet, A. Quattropani. A. F. Wi1liams.J. An7.
Chem. Soc. 1992, 114, 7440.
[4] W. Zarges, J. Hall, J.-M. Lehn, C. Bolm, Hels. Cl7rm. Actu 1991, 74, 1843.
[5] T:M. Garrett, U. Koert, J.-M. Lehn, A. Rigault. D. Meyer, J. Fischer, J. Chem.
SOC.Chem. Commun. 1990, 557.
[6] J:M. Lehn, J:P. Sauvage, J. Simon, R. Ziessel, C. Piccini-Leopardi. G. Germain, J:P. Declercq, M. Van Meerssche, Nou~,.J. Chrm. 1983. 7, 413.
[7] J:M. Lehn, A. Rigault, J. Siegel. J. Harrowfield. B. Chewier. D . Moras. Proc.
Null. Acud. Sci. USA 1987, 84, 2565.
[8] a) P. Baxter. J.-M. Lehn. A. DeCian, J. Fischer, Angeu.. Chein. 1993, 105, 92;
Angex.. Chem. In[. Ed. Engl. 1993, 32.69; b) P. Baxter, J.-M. Lehn. J. Fischer.
M:T. Youinou. ibid. 1994, 106, 2432 and 1994, 33, 2284.
191 a) M:T. Youinou, R. Ziessel, JLM. Lehn, Inorg. Chem. 1991.30,2144; b) M.-T.
Youinou, N. Rahmouni. J. Fischer. J. A. Osborn. Angel“. Chem. 1992,104,771;
Angeir.. Chem. In/.Ed. Engl. 1992, 31, 733.
[lo] K . T. Potts, K. A Gheysen Raiford, M. Keshavarz-K,J Am. Chnn. Sol,. 1993,
115.2793.
[ I l l a) E. C. Constable, R. Chotalia, D. A. Tocher, J. Chem. Sor. Chrm. Commun.
1992,771; b) E. C. Constable. Tetruhedron 1992,48.10013; Prog. Inorg. Chem.
1994,42,67; c) E. c . Constable, M. D. Ward, D. A. Tocher, J Am. Chem. Soc.
1990,112,1256, .I
Chem. Soc. Dalron Truns. 1991,1675; d) E.C. Constable, R.
Chotalia. J Chem. Soc. Chem. Commun. 1992.64.
[I21 H. J. Eppley, H.-L. Tsai. N. de Vrtes. K. Folting, G. Christou, D. N. Hendrickson, J. Am. Chem. Soc. 1995, 117, 301, and references therein.
[13] a) M. W Wemple, D. M. Adams, K . S. Hagen. K. Folting, D. N. Hendrickson,
G. Christou, J Chern. Soc. Chem. Commun. 1995,1591 ;b) H.-L. Tsai. S. Wang.
K. Folting, W. E. Srreib, D. N . Hendrickson, G . Christou, J. Am. Cl7em. Soc.
1995. 117. 2503.
1820
0 VCH
Verlagsgesellschuft mbH, 0-69451 Weinheim, 1996
[14] T. Garber. S. Van Wallendael. D. P. Rillema, M. Kirk, W. E. Hatfield. J. H.
Welch. P. Singh, Inorg. Chem. 1990, 29. 2863.
[15] J:M. Lehn, R. Ziessel. Helv. Chbn. A r m 1988, 71, 1511.
[16] J. B. Vincent, H.-R. Chang, K. Folting, J. C. Huffman. G . Christou. D . N.
Hendrickson. J. Am. Chem. Soc. 1987. 109. 5703.
[17] J. B. Vincent,C. Christmas, H.-R. Chang.Q. Li,P. D . W. Boyd, J. C. Huffman,
D. N. Hendrickson, G. Christou, J. Am. Chem. Soc. 1989, I l l , 2086.
[18] Crystal data for 1 . 2 T H F : C,,H,,N,0,,C12Mn;2C.H,0,
triclinic, Pi, T =
-169‘C, u=12.017(2), h=12.197(2), c=12.343(2).&, a =73.29(1), p =
78.02(1). = 68.36(1)’. V =1600.1
2 =1. 6 ‘ 5 2 6 5 4 5 . 4176 unique reflections. 3757 unique reflections with F>2.33u(F); R ( F ) = 0.0448, R J F ) =
0.0419. Crystal data for 2.4CH,C1,..rC6H,,.
C,oH,,,N,O,oCIIMn,~
4CH,C12..~C,H,,. monoclinic, C2/c, T = -164”C, a = 22.189(4), b =
32.402(6), c = 22.521(4)A. ~ = l l S . 6 0 ( l ) c , Y=14602A3, Z - 4, 6 ‘ 5 2 8 5
45:. 9508 unique reflections, 5341 unique reflections with F>4o(F); R(F) =
0.0914. R,(F2, all data) = 0.1777. Crystallographic data (excluding structure
factors) for the structurets) reported in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplementary publication no.
CCDC-179-52. Copies of the data can be obtained free of charge on application t o The Director, CCDC, 12 Union Road. Cambridge CB2 lEZ, U K (fax:
Int. code +(1223) 336-033; e-mail: teched(dchemcrys.cam.ac.uk)
[19] a) M. K. Chan. W. H. Armstrong. J. Am. Chein. Soc. 1991,113,5055; b) M. L.
Kirk. M. K. Chan. W H. Armstrong. E. I. Solomon. ihiri. 1992, 114, 10432;
c) H. Saklydmd, K . Tokuyama, Y. Matsumura. H. Okawa, J Chem. Soc.
Dulton Truns. 1993, 2329; d ) H. Kawasaki. M. Kusunoki. Y Javashi. M.
Suzuki, K. Munezawa. M. Suenaga, H. Senda, A. Uehara, Bull. Chem. Soc.
Jpn. 1994, 67, 1310: e) C. Philouze, G . Blondin, J.- J. Girerd, J. Guilhem. C.
Pascard. D. Lexa. J. Am. Chem. Soc. 1994. 116. 8557; f ) G . Haselhorst. K.
Wieghardt. J. Inorg. Biochem. 1995. 59, 624.
[20] E. Libby, K. Folting, C . J. Huffman, J. C. Huffman. G . Christou, Inorg. Chrm.
1993.32, 2549.
);
A’.
Carbaporphyrins**
Kurt Berlin*
In recent years numerous structural variants of porphyrins
have been synthesized[’. 2b1 which are not only interesting as 1871
arenes, but also because of their diverse applications in
medicine,’2Jand as catalysts and chromophores.“?2b1 In most of
these porphyrinoids, including porphyrin
porphyrin analogs, and expanded porphyrins,[lb. 2b,41 either a
pyrrole ring has been formally replaced by a unit containing a
nitrogen or a different heteroatom, or the arrangement of
pyrroles and CH groups has been changed. But few porphyrinoids with less than four heteroatoms in the inner cycle have
been reported that can bridge the gap to the formally related
C-annulenes, which are prepared by completely different synthetic strategies and display strongly contrasting spectroscopic
and physical
Novel porphyrin isomers, in particular one with an inverted
pyrrole ring and an inner CH unit,[’] were inspiration to proceed
further and replace one pyrrole ring of porphine by a five-membered unsaturated all-carbon ring. In these compounds only one
nitrogen atom of the porphyrin system is replaced by carbon;
thus they are referred to as carbaporphyrins.
Since the replacement of one pyrrole ring of the porphyrin
the reaction of a tripyrrane
core by 671 arenes was ~uccessful,’~~
like 2b (see Scheme 1 ) with a cyclopentadiene-I ,3-dialdehyde
appeared to be promising. Unfortunately the latter compound
is not known, and it would probably be unstable under the
[‘I Dr. K. Berlin
Tufts University. Department of Chemistry
62 Tdlbot Avenue, Medford. MA 02155 (USA)
Telefax: lnt. code +(617)627-3443
e-mail: kberlin(demerald.tufts.edu
[**I I thank Prof Dr. E. Breitmaier, Institut fur Organische Chemie und Biochemie. Bonn, Germany, for suggesting and supporting this project.
0S70-0833i96~3516-18208 15.00i ,2510
Angebv. Chem. Int. Ed. Engl. 1996, 35,No. 16
COMMUNICATIONS
-
acidic conditions required for cyclization. An alternative approach based on the condensation of 6-(2-pyrryl)fulvenes with
dipyrrylmethanedialdehydes to yield carbaporphyrinsr8] was
thwarted by the instability of the fulvene starting material. An
additional electron-withdrawing group attached to an unsaturated five-membered ring dialdehyde should increase the stability of the cyclopentadiene unit and provide a welcome function
in the carbaporphyrins for further reactions.
As far back as 1963 Hafner et al. described Vilsmeier formylations of cy~lopentadiene[~]
that furnished mixtures of isomers
in the form of immonium salts. These can be converted into
aldehydes by basic hydrolysis. The hydroxyfulvenedialdehyde
la, which is stabilized by an intramolecular hydrogen bond,[101
was always isolated regardless of the original substitution pattern. This compound can also be regarded formally as the enol
form of cyclopentadienetrialdehyde.The mesomeric stabilization ofcompounds la and l b (Scheme 1 ) is probably responsible
for their sufficient stability even under acidic reaction conditions.
&I
R
R
on
ii
TI
H
2a : R = COZCH2Ph
2b :R = C 0 z H
on
/
O
Table I . Selected physical and spectroscopic data of la. lb, 3a. and 3b.
l a . 13C NMR (100 MHz, acetone): 6 = 127.8 (C-1/C-2). 138.3 (C-4). 142.3 (C-3;C5 ) , 182.5(C-2a!C-6), 186.9 (C-4a).
l b : M.p. 131-132°C; ' H N M R (200 MHz. CDCI,): 6 = 2.72 (s. 3H, 3a-H), 7.79
(s, 1 H. 5-H), 8.77, 8.92 (2d. J = 8.7 Hz, 2H, 2a-H/6-H), 9.99 (s. 1 H, 4a-H), 16.87
( t , J = 8 7 Hz, 1 H, 0-H); 13C NMR (100 MHz, acetone). 6 = 12.3 (C-3a). 125.9
(C-2). 127.1 (C-1). 135.8 (C-4). 141.8 (C-5), 144.7 (C-3). 179.6. 181.1 (C-2a/C-6),
187.4 (C-4a).
3a:M.p. z250'C:'HNMR(500MHz,CDC13).6= -723(s.lH.24-H). -4.21
(br.s.2H.NH). 1.76(4t, 12H.3b/7b/Xb/12b-H),3.31 (s.3H. 13a-H).3.50(s. 3H.
2a-H).3.75(2q,4H,7ai8a-H).3.82(q,2H,12a-H).3.88(q,2H.3a-H),8.39(s,1H,
17-H),9.11 (s, 1 H, 15-H). 9.18,9.26(2s,2H. 5-H/lO-H). 10.43 (s. 1 H. 20-H), 10.59
(s. 1 H . 18a-H); l 3 C N M R (125 MHz,CDCI,: 6 =11.4(C-l3a). 11.7(C-Za). 17.5,
17.6 (C-3b/C-I2b), 18.7 (C-7b/C-Sb), 19.6 (C-l2a), 19.7 (C-3a). 20.1 (C-7aiC-Xa).
94.1.94.8 (C-5, C-lo), 103.9 (C-24). 106.4(C-15), 108.1 (C-20). 132.1 (C-l6), 132.4
(C-19). 134.7, 134.8 (C-13/C-14), 135.3 (C-2). 135.6 (C-I). 1364 (C-18). 137.4
(C-3iC-12). 138 1. 138.5 (C-4/C-ll), 143.3 (C-17). 145.0. 145.3 (C-7!C-8). 155.0,
155.4 (C-6iC-9). 188.8 (C-I&), HRMS: m:: = 477.2777 (calcd 477.2780 for
C,,H3,N30); UV/Vis(CH,CI,): ;.ma, [nm](lgc) = 316(4.12). 366(4.36).433 (4.59),
524 (3.77), 564 (3.81)- 618 (3.23), 636 (3.25). 704 nfn (3.15).
3b: M.p. >250"C: 'HNMR(500 MHz.CDC13):6 = - 6.82(s. 1 H, 24-H), -3.71
(br. s, 2H. NH). 1.80 (2t. 6 H , 3b112b-H), 1.83 (2t. 6 H . 7b Hb-H), 3.47 (s, 3H,
13a-H). 3.50 (s. 3 H , 17a-H), 3.57 ( S . 3H, 2a-H), 3.87 (2q,4H. 7di8a-H). 3 94 (2q.
4H,3ai12a-H).9.50(s.1H.10-H),9.57(2s,2H,5/15-H),l0.71
(s,IH,20-H),10.96
(s. 1 H . 18a-H); "CNMR(125 MHz,CDCI,). 6 =11.6(C-l3a), 11.8 (C-2a). 12.3
(C-17a). 17.6 (C-3b/C-l2b), 18.7, 18.8 (C-7b/C-Xb), 19.7, 19 X (C-3aiC-12a). 20.2
(C-7aiC-Xa),94.3(C~IO).95.5
(C-5). 102.2(C-15). 103.7 (C-24). 108.0(C-20),131.5
(C-18). 133.7 (C-16). 133 8 (C-l9), 134.7 (C-13). 135.1 (C-14). 135.4 (C-l), 135.5
(C-2). 137 6(C-3). 137 7(C-4). 137.8(C-l2). 138.6(C-l1), 145.1 (C-8). 145.5(C-7).
153.1 (C-17). 154.8. 155.5(C-6/C-9). 188.2(C-l8a); HRMS:nr I = 491.2936(calcd
491.2937 for C,,H,,N,O); UViVis (CH,CI,): L,,, [nm] (lgr:) = 320 (4.22), 371
(4.39). 434 (4.53). 523 (3.91). 564 (3.87), 638 (3.54), 703 nm (3.39).
obtained from yellow-brown fractions by column chromatography on silica gel. The products were identified unambiguously
by two-dimensional N M R spectroscopy (HMQC, HMBC) and
high-resolution mass spectrometry.['21
In the 'H N M R spectrum of 3a (Fig. 1) the signal of the inner
N H protons appears at 6, = - 4.21, whereas the sharp signal
la: R = H
lb: R=CH?
3a: R = H
3b: R = C H 3
Fig. 1. ' H N M R spectrum (CDCI,) of 3a
Scheme 1
The hydroxyfulvenedialdehyde l a and compound lb, which
was prepared analogously from methylcyclopentadiene, reacted
as expected with the in situ decarboxylated tripyrranedicarboxylic acid 2b" '1 in dichlormethane/THF with HBr/glacial
acetic acid as the catalyst. Oxidation of the products with 2,3dich~oro-5,6-dicyano-1,4-benzoquInone
(DDQ) yielded the carbaporphyrins 3a and 3b, respectively (Scheme I ) , which were
Angebt Chrm. l n l . Ed. Engl. 1996. 35. No. 16
C
corresponding to the inner CH group is observed at 6, =
-7.23. Thus the carbaporphyrins exhibit a ring current comparable to that of porphyrins, and there is no doubt that these
compounds are 18n arenes. This is also confirmed by the lowfield shifts of the signals corresponding to the meso protons
(between 6, = 9.1 and 10.7) and by those of the alkyl substituents. The chemical shifts of bH= ~7.23 and - 6.81 for the
inner C H group are equivalent to values given by Lash et al. for
VCH Verlagsgesellschajt mhH. 0.69451 Weinherm, 1996
0570-0R33/9613516-1821$ lS.VO+ . Z ' V
1821
COMMUNICATIONS
the oxiben~iporphyrin['~~
and also to those of comparable benzocondensed carbaporphyrin~.['~I
The UV/Vis spectra (Fig. 2) include a characteristic Soret
absorption['51at 433 nm and also resemble the spectra of alkylporphyrins in the visible range. In distinct contrast to porphyrins, the carbaporphyrins do not display a red fluorescence
at 366 nm, so that the yellow-brown target compounds look
quite unspectacular on the TLC plate.
I
Experimental Procedure
The hydroxyfulvenedialdehydes l a and l b were prepared according to the procedure published by Hafner et al. [9]
3a and 3b: To a solution of 2a (635 mg, 1 mmol) in anhydrous THF (80 mL) were
added triethylamine (0.1 mL) and palladium o n charcoal (200 rng, 10 % Pd, oxidic
form, Merck). The mixture was hydrogenated for 3 h at atmospheric pressure. The
catalyst was filtered o f f ,and the filtrate was added to a solution of l a (150 mg,
1 mmol) or Ib (164mg. 1 mmol) in dichloromethane (750mL). The orange-red
solution was degassed with argon and charged with hydrogen bromide in glacial
acetic acid (33 %. 1.5 mL) and glacial acetic acid (0.3 mL). The reaction mixture
was stirred for 3 h with exclusion of light and neutralized with triethylamine
(2.5 rnL). DDQ (250 mg) was added and the mixture was stirred an additional 12 h.
The solvent was evaporated and the residue purified by column chromatograpy on
silica gel (eluent cyc1ohexane:ethyl acetate 3: I ) . Yield of 3a: 37 mg (77.6 pmol,
7.8 O h ) ; yield of 3b: 32 mg (65.2 pmol. 6.5 %) of 3b. Both are dark green-brown
microcrystalline compounds.
Received: December 27, 1995 [Z8685IE]
German version: Angen. Chem. 1996, 108, 1955-1957
A
Keywords: annulenes
O.Oo0
400
A Inm
Fig. 2. UV/Vis spectrum of 3a. A
-
= absorption
.
600
800
fdrbitrary units)
While the carbaporphyrins appear uniform in the '3C NMR
spectra, in the 500 MHz 'H NMR spectra each signal is accompanied by two weaker ones with identical multiplicity (ca. 13%
und 1 YO).Since they correlate to the same carbon signals in the
two-dimensional spectra (HMBC, HMQC), they provide the
identical structure information. This confirms that the material
is pure with respect to its constitution. Apparently either the
three possible tautomers of the carbaporphyrin can be observed
on the NMR time scale, or different stable conformations
coexist due to steric strain resulting from the three inner protons. It has not yet been possible to achieve coalescence in
high-temperature NMR experiments (deuteronaphthalene).
In "N NMR experiments (50 MHz, CDCI,, sample enriched
with 5 YO lSN) the chemical shifts of 6, =130.4 and 130.9
(3a, NH, as a standard) for N-21 and N-23 indicate that the
N-H units are located at least predominantly at these positions.['61
Efforts to synthesize metal complexes (Zn2+, Ni2+)of the
carbaporphyrins have not yet been successful. This can probably be attributed to the even lower CH acidity of the carbaporphyrins compared to that of the porphyrin isomers with an
inverted pyrrole ring and an inner CH unit; chelates of the latter
compounds having a carbon-metal bond are known.f51
The carbaporphyrins are quite similar to porphyrins with
regard to other chemical and spectroscopic properties. Hence
carbaporphyrins could be suitable for special applications that
require the spectroscopic properties of porphyrins but not their
complexation behavior with certain metal ions.
The further development of the synthetic strategy introduced here for the preparation of carbaporphyrins to eventually
prepare a tetracarbaporphyrin remains a great challenge and
would link annulene and porphyrin chemistry. A dicarbaporphyrin would contain two inner CH units and a total of
four inner protons. This would result not only in total cancellation of the tautomerism characteristic of porphyrins, but
also in an increase of steric strain which should influence
the aromaticity of the molecule. The effects of the inner
methylene groups in a tetracarbaporphyrin are the subject of
speculation.
1822
0 VCH
Verlugsgesellschuft mbH, 0-69451 Weinheim. 1996
- fulvenes
*
porphyrinoids
[I] a) J. L. Sessler, S . J. Weghorn, Y Hiseada, V. Lynch, Chem. Eur. J 1995, 1, 56;
b) J. L. Sessler, A. K. Burrell. Tup. Curr. Chem. 1991, 161. 177, and references
therein; c) T. Wessel, B. Franck, M. Moller, U. Rodewald, M. Lage, Angen.
Chem. 1993, 10S, 1201; Angrn. Chem. Int. Ed. Engl. 1993, 32, 1148; d) J. L.
Sessler. S . J. Weghorn, T. Morishima. M. Rosingana, V. Lynch, V. Lee, J Am.
Chem. Soc. 1992, f 14,8306;e) J. L. Sessler, T. D. Mody, D. A. Ford, V. Lynch,
Angen Chem. 1992,104,461;Angew. Chem. Int. Ed. Engl. 1992,31,452;f) M.
Pohl, H. Schmickler. J. Lex. E. Vogel, hid. 1991,103,1737 and 1991.30.1693;
g) H. Konig. C. Eickmeier, M. Moller, U. Rodewald, B. Franck. ibid. 1990.
102,1437 and 1990.29,1393; h) S . Beckmann. T. Wessel. B. Franck, W. Honle,
H. Borrmann. H. G. von Schnering. ibrd. 1990. 102, 1439 and 1990, 29, 1395;
i) M. Broring, J. Jendrny, L. Zander, H. Schmickler. J. Lex. Y.-D. Wu, M.
Nendel. J. Chen, D. A. Plattner, K. N. Houk, E. Vogel, ibid. 1995, 107, 2709
and 199534.2515.
121 a) R. Bonnett, Chem. Soc. Rev. 1995, 19, and references therein; b) 8 . Franck,
A. Nonn, Angen. Chem. 1995,107,1941; Angrw. Chem. I n t . Ed. Engl. 1995.34,
1795; c) R. K. Pdndey. F.-Y Shiau, T. J. Dougherty, K. M. Smith, Tetrahedron
1991, 47. 9571.
[3] J. L. Sessler, Angen. Chem. 1994,106,1410; Angen. Chem. Int. Ed. Engl. 1994,
33. 1348. and references therein; E. Vogel, M. Kocher, H. Schmickler, J. Lex,
ibid. 1986.98.262 and 1986, ZS, 257; J. L. Sessler. E. A. Brucker, S. J. Weghorn,
M. Kisters, M. Schdfer, J. Lex, E. Vogel, ibid. 1994, 106. 2402 and 1994, 33.
2308.
[4] E Vogel. M. Broring, J. Fink, D. Rosen, H. Schmickler, J. Lex, K. W. K. Chan,
Y:D. Wu. M. Nendel. D. A. Plattner. K. N. Houk. Angew. Chem. 1995, 107,
2705; Angew. Chem. Inr. Ed. Engl. 1995. 34, 2511.
[5] a) P. J. Chmielewski, L. Latos-Grazynski, K. Rachlewicz, T. Glowiak, Angew.
Chem. 1994. 106. 805; Angen. Chem. Int. Ed. Engl. 1994, 33, 179; P. J.
Chmielewski, L. Latos-Grazynski, J Chem. SOC.Perkin Trans. 2 1995. 503; b)
H. Furuta. T. Asdno, T. Ogawa, J Am. Chem. Suc. 1994, 116, 761.
[6] E. Vogel, Pure Appl. Chem. 1993, 65, 143.
171 K. Berlin, E. Breitmaier, Angew Chem. 1994. 106. 229; Angew. Chem. I n t . Ed.
Engl. 1994,33,219; b) K. Berlin, E. Breitmaier, ibid. 1994,106, 1356 and 1994,
33. 1246.
[8] K. Berlin, Dissertation, Universitiit Bonn, 1994.
[9] K. Hafner. K H. Vopel, G. Ploss. C. Konig, Liebigs Ann. Chem. 1963,661, 52.
[lo] K. Hafner, H. E. A. Krdmer, H. Musso. G. Ploss, G. Schulz, Chem. Ber. 1964.
97.2066
Ill] J. L. Sessler, M. R. Johnson, V. Lynch, J Org. Chem. 1987, 52,4394.
[12] I thank M. Gondorf, R. Hartmann. T. Schonemeier, and C. Steinbeck for
carrying out NMR experiments, and G. Eckhdrdt and his co-workers for
recording the mass spectra.
[13] T. D. Lash, Angen. Chem. 1995. 107.2703; Angrbc. Chem. lnt. E d Engl. 1995,
34, 2533.
[14] K. Berlin. C. Steinbeck. E. Breitmaier, Synthesis 1996, 336.
[IS] J. L. Soret, C . R. Hebd. Seances Acad. Sci 1883, 97. 1207.
[16] I5N NMR chemical shifts of porphyrins: H. J. C. Yeh, M. Sato, I. Morishima,
J. Mugn. Res. 1977, 26, 365; C. S . Irving, A. Lapidot, J Chem. Soc. Chem.
Commun. 1977, 184.
OS70-0833/96/3516-1822$ 1 5 . 0 0 i .25/0
Angeir. Chem. Int. Ed. Engl. 1996, 35. N o 16
Документ
Категория
Без категории
Просмотров
1
Размер файла
397 Кб
Теги
carbaporphyrins
1/--страниц
Пожаловаться на содержимое документа