close

Вход

Забыли?

вход по аккаунту

?

Carbonyliron-Assisted Coupling of Cyclopolyenes with Methyl Acrylate.

код для вставкиСкачать
[S] a) M. Di Vaira, L. Sacconi, Angew. Chem. 94 (1982) 338; Angew. Chem.
I n < . Ed. E n g l . 21 (1982) 330; h) C. Bianchini, M. Di Vaira, A. Meli, L.
Sacconi, J . Am. Chem. Soc. I 0 3 (1981) 1448, and references cited therein.
[9] a ) W. Schmettow, A. Lipka, H. G. van Schnering, Angew. Chem. 86
(1974) 379; Anyew. Chem. f n t . Ed. Engl. 13 (1974) 345; h) H.-P. Abicht,
W. Honle, H. G. von Schnering, Z. Anorg. ANg. Chem. 519 (1984) 7.
(lo] A. L. Rhringold, M. J . Foley, P. J . Sullivan, J . Am. Chem. Soc. 104
(1982) 4727; further Mo-Mo distances for comparison: See, for example, J. s. Huang, L. F. Dahl, J . Organomer. Chem. 243 (1983) 5 7 ; W. A.
Herrmann, L. K. Bell, M. L. Ziegler, H. Pfisterer, C . Pahl, ibid. 247
(1983) 39: 0 . J. Scherer, H. Sitzmann, G. Wolmershauser,Angew. Chem.
96 (1984) 979; Angew. Chem. Int. Ed. Engl. 23 (1984) 968; H. Brunner,
H . Kauerrnann. U . Klement, J. Wachter, T. Zahn, M. L. Ziegler, ibid. 97
(1985) 122 and 24 (1985) 132; H. Brunner, N. Janietz, J. Wachter, T.
Zahn, M. L. Ziegler, h i d . 97 (1985) 122 and 24 (1985) 133.
(II] A. W. Duff, K. Jonas, R. Goddard, H.-J. Kraus, C. Kruger, J . Am. Chem.
So<. 105 (1983) 5479; P. T. Chesky, M. B. Hall, J. Am. Chem. Sac. 106
(1984) 5186.
(121 J . W. Lauher, M. Elian, R. H. Summerville, R. Hoffmann, J . Am. Chem.
Sol. 98 (1976) 3219.
[I31 Regarding the problem P,+P2+P6: E. A. Halevi, H. Bock, B. Roth,
Inory Chem. 23 (1984) 4376.
Carbonyliron-Assisted Coupling of Cyclopolyenes
with Methyl Acrylate
By Richard Goddard, Friedrich- Wilhelm Grevels,* and
Rosemarie Schrader
Dedicated to Professor Giinther Wilke on the occasion
of his 60th birthday
In many cases, substituted cyclohexadienes and cycloheptadienes are obtainable by addition of a nucleophile to
Hx
[(q5-cyclohexadienyl)Fe(C0)3] and [(q5-cycloheptadienyl)Fe(CO)2L] cations, respectively.“’ We present here another way to introduce the R02C-CH2-CH2or
R02C-CH=CH- side chains: the carbonyliron-assisted
coupling of acrylic esters with a cyclodiene or cyclotriene
followed by a hydrogen shift.
Irradiation of a mixture of the complex 1 and cycloheptatriene affords, in addition to [(q4-cycloheptatriene)Fe(C0)3] and small amounts of other products, the
dicarbonyliron complex 2 (20% yield). In 2 , the adduct of
the two organic substrates is o,q5-coordinated. The actual
photoreaction consists of the dissociation of CO,[*’ which
is followed by a series of thermal reactions. 2 is also obtained without irradiation starting from the tricarbonyliron
complex 4I3] and introducing cycloheptatriene by thermal
ligand exchange (43% yield).[41These reactions are comparable to the synthesis of compounds of the type 5.[5.61
Upon irradiation under CO, 2 is converted into the derivative 6,I4l which has a double bond in the side chain. In
this process, the hydrogen atom is selectively transferred
from the 2‘-H position to the ring. Analogous experiments
with deuterium-labeled 2 (1-H, 2-H = D, or 2’-H = D) show
that, in the first case, both D atoms remain in the side
chain, whereas, in the second case, D is transferred. Each
of the complexes 2 labeled in this way was synthesized
from the correspondingly labeled methyl acrylate (I-H, 2H = D , or 2‘-H = D).[’’
2 -
hv
co
Exploratory attempts to couple cyclooctatriene or cyclooctatetraene with methyl acrylate, analogously to the
synthesis of 2, gave the complexes 7 and 8, respectively,
in 10-20% ~ie1d.I~’
-
02c
H21 H’
FeICO),
I
hv - C O
a
- co
d oOCH3
.
I
“Z“
‘3
7
8
Fe(COI3
fe IC 01,
=7\C02CH3
[*] Dr. F.-W. Grevels, R. Schrader
Max-Planck-lnstitut fur Strahlenchemie
Stiftstrasse 34-36, D-4330 Mulheim a. d. Ruhr (FRG)
Dr. R. Goddard
Max-Planck-Institut fur Kohlenforschung
Lemhkestrasse 5, D-4330 Miilheim a. d. Ruhr (FRG)
Angew. Chem. Int. Ed. Engl. 24 (1985) No. 4
In the thermal reaction of 1,3-cyclohexadiene with 4,
two acrylic ester moieties are added to the six-membered
ring, forming 9[41(45% yield). The X-ray structure analysis
of 9 (Fig. 1) shows that the Fe(C0)3 group and the two
side chains are on the same side of the six-membered ring.
Hence it follows that, here too, complexation of the two
substrates initially takes place with subsequent formation
of a carbonyl(o,q3-organo)iron complex, which immediately undergoes rearrangement. In this case, a hydrogen
atom is transferred from the ring to the side chain, so that
the 1,3-diene unit is retained in the ring and the side chain,
detached from the metal, is saturated. When this sequence
0 V C H Veriagsgesellschafl mbH. D-6940 Wemheim, 1985
0570-0833/85/0404-0353 S 02 50/0
353
of reactions occurs once again with the second acrylic ester, 9 is formed as the final product.
Fig. I . Molecular structure of 9 in the crystal with selected interatomic distances [A]. Crystal data: Pnma, Q = 13.898(1), b = 17.465(2), c=7.237(1) A,
A=0.71069k, p = 8 . 9 cm-',
V=1756.6A3, 2 = 4 , p c r l c d = l . 4 8 g
R=0.035, R,=0.035; 4913 measured reflections [h, k, +I], of which 1743
were observed (f>2.00(0). 158 refined parameters. The molecule has a
space-group-determined mirror plane passing through Fe, CI, and 0 1 and
therefore cutting the C3-C3* and CS-C5* bonds. The best plane passing
through C4, C3, C3*, and C4* forms a n angle of 41.2' with that passing
through C4, C5, CS', and C4*. Further details of the crystal structure investigation may be obtained from the Fachinformationszentrum Energie Physik
Mathematik, D-7514 Eggenstein-Leopoldshafen (FRG), on quoting the depository number CSD 51 266, the authors, and the journal citation.
The analogous reaction of 1,3-cycloheptadiene with 4
likewise affords a substituted (q4-1,3-cyclodiene)Fe(CO),
complex,
which, however, contains only one acrylic
ester moiety (20% yield).
We are currently attempting to improve the yields by
modification of the reaction procedure; the reaction may
eventually be applied to other olefins"] as well as to substituted cyclopolyenes.
Received: October 26, 1984:
revised: December 28, 1984 [Z 1051 IE]
German version: Angew. Chem. 97 (1985) 318
354
0 VCH Verlaqsgesellschaft mbH. D-6940 Weinheim. 1985
[I] A. J. Pearson,Acc. Chem. Res. 73 (1980) 463; A. J . Birch, B. M. R. Bandara, K. Chamberlain, B. Chauncy, P. Dahler, A. 1. Day, I. D. Jenkins, L. F.
Kelly, T:C. Khor, G. Kretschmer, A. J. Liepa, A. S. Narula, W. D. Raverty, E. Rizzardo, C. Sell, G. R. Stephenson, D. J. Thompson, D. H. Williamson, Tetrahedron 37 Suppl. l (1981) 289; A. J. Pearson, S. L. Kole, B.
105 (1983) 4483; A. J. Pearson, S. L. Kole, T.
Chen, J . Am. Chem. SOC.
Ray, J. Am. Chem. SOC.106 (1984) 6060.
121 3 has been identified as a photoproduct of 1 in low-temperature matrices. In solution, it is present in equilibrium with 4 131.
131 F.-W. Grevels, D. Schulz, E. Koerner von Gustorf, Angew. Chem. 86
(1974) 558: Anqew. Chem. Inr. Ed. Engl. I3 (1974) 534.
I41 2 : Procedure: A solution of 3.7 g (40 mmol) cycloheptatriene in 120 m L
diethyl ether is added to 2.5 g (8 mmol) 4 at -30°C and the reaction mixture is warmed with stirring to room temperature. After 3 h, the solution
is evaporated in vacuum and the residue chromatographed on silica gel.
The side products are eluted with pentane, followed by 2 with diethyl
ether (1.0 g, 43%): yellowish orange crystals, m.p. = 103°C (decomp.) after
recrystallization from diethyl ether. 'H NMR (C,D,): 6=4.09 (dd, J=7.5,
8.5 Hz, I-H), 3.75 (m, 2-H), 1.91 (dd,J=8.5, 13.5 Hz, 2'-H), 2.08(m, 3-H),
4.50 (m, 4-H), 4.01 (dd, J=6.5, 10.5 Hz, 5-H), 4.83 (dt, J = 2 , 6.5 Hz, 6-H),
4.96 (dd, J=6.5, 7.5 Hr, 7-H). 3.17 (m,8-H), 0.04 (m, 9-H), 0.79 (m, 9'-H),
3.67 (ester-CHi); Assignment by exhaustive decoupling. "C{'HI NMR
(CeDe,): 6=26.7 (CI), 47.9 (C2). 55.1 (C3), 82.6, 88.1, 101.9, 104.3, 105.6
(C4 to CX), 28.9 (C9). 185.5, 50.4 (C02CH3), 209.4, 210.1 (2CO); Assignment by comparison with the non-decoupled spectrum of the compound
deuterated in the I-H and 2-H positions. IR (n-hexane): v(C0)=2020,
1972; v(ester-CO)= 1699 cm-'. UV(n-hexane):/1=365 ( s h , c = 1400), 275
(sh, 6600), 228 (7900), 209 nm (20 loo).-6: Procedure: 0.50 g (1.7 mmol)
2 is irradiated in 150 mL n-hexane under carbon monoxide (immersion
lamp apparatus made of Solidex glass, mercury lamp Philips HPK
125W). 2.5 h at room temperature. Chromatography on silica gel (pentane with 15% diethyl ether) affords 0.41 g 6 (75%): yellow crystals, m.p.
79-83°C (after recrystallization from n-hexane). 'H NMR (C,D,):
6=5.57 (d, J=15.8 Hz, I-H), 6.61 (dd, J = 5 . 5 , 15.8 Hz, 2-H), 1.25-1.55
(m, 5 H, 3-H, 4-H), 2.43 (m, 2-H, 5-H), 4.52 (m, 2H, 6-H), 3.41 (s, 3 H, ester-CH,). IR (n-hexane): v(C0)=2049, 1981, 1977.5: v(ester-CO)= 1734
cm-'.-7: yellow crystals, m.p.=80-82"C (decomp.). ' H NMR (C,D,):
6=1.75 (dd, J = 7 . 11.5 Hz, LH), 1.51 (ddd, J=1.5, 7, 14 Hz, 2-H), 3.30
(dt, J = 14, 11.5 Hz. 2'-H), 2.59 (m, 3-H), 4.24 (t. J = 9 . 5 Hz, 4-H), 3.90 (t,
J z 9 Hz, 5-H), 4.28 (dd, J = 4 , 8 Hz, 6-H), 5.74 (dd, J = 4 , 10.5 Hz, 7-H),
5.35 (dt, J = 10.5, = 8 Hz, 8-H), 1.91 (m, 9-H), 1.61 (m, 9'-H), 1.20 (m, IOH), 0.79 (m. 10'-H), 3.57 (s, 3 H, ester-CH,): Assignment by exhaustive decoupling. "C('HJ NMR (C,D8): 6=25.9, 33.6, 38.5, 39.3, 49.4, 50.2, 70.W
X9W92.6 (q'-allyl group), 131.2/13 1.7 (C7/C8), 180.8 (ester-CO), 204.7,'
21 1.31213.6 (CO). IR in-hexane): r,(CO)=2063.5, 2009.5, 1991: v(esterCO)= 1709 cm-'.-S: yellow crystals, m.p.= 104°C (decomp.). ' H NMR
(C,D,): 6=2.12 (dd, J = 6 , 14 Hz, I-H), 2.47 (m, 2-H), 3.17 (ddd, J = 1 1 ,
12.5, 14Hz,2'-H),2.49(m,3-H),4.84(t,J=9Hz,4-H),3.84(t,J=9Hz,5H), 4.41 (dd, J = 6 , 9 Hz, 6-H), 5.38 (dd, J = 6 , 12 Hz, 7-H), 5.51 (dd,
3 ~ 5 . 5 ,12 Hz, 8-H), 5.24 (ddd, J = I , 5.5, 12.5 Hz, 9-H), 5.56 (dd, J = l O ,
12.5 Hz. 10-H), 3.55 (s, 3 H, ester-CH;); Assignment by exhaustive decoupling. IR (n-hexane): v(C0)=2064, 2010.5, 1991.5: v(ester-CO)= 1709
cm-'.-9; yellow crystals, m.p.=57-5X0C. ' H NMR (C,D,): 6 = 1.92.0(4H, I-H),1.38(4H,2-H),1.62(2H,3-H),2.59(2H,4-H),4.47(2H,5H), 3.27 (s, 6 H , ester-CH,). "C NMR (C,D,): 6=32.8/26.9 [t,
'J(C-H)= 127 Hz, CI/C2], 39.2 (d, J = 122 Hz, C3), 67.2 (d, J = 160 Hz,
C4), 85.1 (d, J = 172 Hz, CS), 173.0 (ester-CO), 51.0 (q, J = 1 4 7 Hz, esterCH,), 212.6 (CO). IR (n-hexane): v(CO)= 2049, 1980.5; esterCO)= 1748 cm-'.-lO:
yellow crystals, m.p.=39-42"C.
' H NMR
(C,D,): 8= 1.82 (2H, I-H), 1.06 (ZH, 2-H), 0.77 ( I H, 3-H), 1.19/1.57
(2H/2H, 4-H/4'-H), 2.53 (2H. 5-H), 6.36 (2H, 6-H), 3.29 ( 3 H ; esterCHI). IR (n-hexane): v(C0)=2047, 1978: v(ester-CO)= 1750 cm-'.
[S] F.-W. Grevels. U. Feldhoff, J . Leitich, C. Kruger, J. Organomer. Chem.
I18 (1976) 79; unpublished.
[6] F.-W. Grevels, K. Schneider, Angew. Chem. 93 (1981) 417; Angew. Chem.
I n / . Ed. Engl. 20(1981)410: T. Akiyama, F.-W. Grevels, J. G. A. Reuvers,
P. Ritterskamp, Organometallicr 2 (1983) 157.
[7] R. K. Hill, C.R. Newkome, J. Orq. Chem. 34 (1969) 740.
[S] An adduct of type 2, a derivative of dimethyl maleate, is known: R. E.
Davis, T. A. Dodds, T.-H. Hseu, J . C. Wagnon, T. Devon, J. Tancrede, J.
S . McKennis, R. Pettit, J. Am. Chem. Soc. 96 (1974) 7562.
0570-0833/85/0404-0354 $ 02.50/0
Angew. Chem. In,. Ed. Engl. 24 (1985) No. 4
Документ
Категория
Без категории
Просмотров
0
Размер файла
213 Кб
Теги
methyl, assisted, acrylates, couplings, carbonyliron, cyclopolyenes
1/--страниц
Пожаловаться на содержимое документа