close

Вход

Забыли?

вход по аккаунту

?

Chiral Building Blocks for the Synthesis of Triquinane Sesquiterpenes Derivatives of 2-Methylbicyclo[3.3.0]octan-3-ol from Catalpol

код для вставкиСкачать
E.xperimmtal Procedure
All reactions were performed under nitrogen with freshly prepared dried solvents. 'H NMR. Bruker AC 200; IR, Perkin-Elmer 983 G ; UVjVIS. PerkinElmer Lambda 9.
Na(crypt) . 4: A solution of CpMn(CO), (4.5 g, 22 mmol) in 400 mL of T H F
was irradiated for 3.5 h. The resulting wine-red soltion was treated with NaBH,
( 1 g, 26.3 mmol) and [2.2.2]cryptand (1 g, 2.6 mmol) [6] and then stirred in the
dark at 25 'C for 12 h. The resulting brown suspension was filtered through
3 cm of diatomaceous earth, the filtrate was evaporated to dryness at 25 "C and
lo-' mbar. and the brown residue was washed with n-pentane until the IR
spectrum no longer showed the presence of CpMn(CO), (2.2 g of CpMn(CO),
was recovered). The red-brown powder was recrystallized from THF/n-pentane
at
30 C. The salts of 4 are air-sensitive to different degrees depending on
the cation [17]. Yield: 2.0 g Na(crypt). 4 (24% based on the amount of
CpMn(CO),employed, 48% based on the amount recovered). Correct C , H. N
analysis; C,,H,,Mn,N,NaO,,
(752). IR (THF): tee) = 1901 (m). 1875(vs),
1825(vs). 1810(m)cm-l. 'H NMR ([D,pacetone. 293 K): 6 = 4.18(s. 10H).
3.65 (m, 24H). 2.71 (t. 12H). - 26.9(s, br., IH). UVjVIS (THF): imAx(&)
= 405
(3090) and 508(800) nm (L mol-' cm-') [IS].
7: Na . 4 a (1 g. 2.5 mmol) [12] was dissolved in 30 mL of T H F . BiC1, (0.9 g.
2.9 mmol) was then added to this solution at 25 "C, resulting in foaming and the
formation of a dark precipitate. The suspension was stirred for 30 min at 25 "C
and then transferred directly to silylated silica gel. Chromatography on a silica
gel column (30 x 1.5 cm, - 20 "C) gave a yellow forerun upon elution with
n-pentanc Elution with CH,CI, afforded a long yellow-brown band, which,
upon removing the solvent and recrystallizing the residue from l 0 m L of
30 C , gave brown needle-shaped crystals of 7: Yield: 240 mg of
CH,CI, at
7 (15% biised on BiCl,). IR (CH,CI,): Gco = 1908(vs) and 1864(s)cm-'.
'H NMR (CDCI,): 6 = 4.38(m), 4.3(m) (total 12H), 2.13(s. 9H).
~
~
Received: November 3, 1988;
supplemented: December 27, 1988 [Z 3036 IE]
German version: Angew. Chem. 10f (1989) 482
CAS Registry numbers:
4 . Nag. 119366-71-1 : 4 - Na(crypt)e, 119366-67-5; 4 Me,Ne, 119366-68-6;
4 Bu,Na, 119366-69-7;4 a . Nae, 119391-00-3;7, 119366-70-0; BiCI,. 778760-2; CpMn(CO),. 12079-65-1; crypt, 23978-09-8.
[ l ] E. 0. Fischer, M. Herberhold: "Essays in Coordmation Chemistry", Expericntiu Supplement f X , Birkhluser, Basel 1964, pp. 259-305.
[ 2 ] W. Strohmeier. Angen. Chem. 76 (1964) 873; Angew. Chem. Int. Ed. Engl.
3 (1964) 749.
[3] V. S. Leong. N. J. Cooper. Orgrcnometaflics 7 (1988) 2080.
[4] a ) U . Kirchglssner, U. Schubert, Organometallics 7 (1988) 784; b) E.
Kunz, M. Knorr, J. Willnecker, U. Schubert, Nen J Chem. 12 (1988) 467.
151 [(MeC,H,)(CO),MnSiR,]e is apparently suitable for such syntheses:
U. Schubert, personal communication.
[6] crypt = 4.7.1 3.1 6.21, 24-hexaoxa-l.10-diazabicyclo[8.8.8]hexacosane,
N(C,H,OC,H,OCzH,),N.
171 Na(crypt). 4: u = 1803.2(7), h = 1434.6(7). c = 1719.6(8) pm. /? =
126.32( 3 ) space group C2/c,2 = 4. Solution and refinement of the structure (SHELX 76 and SHELX 86, G. Sheldrick, Universitzt Gottingen)
led to R , = 0.071; R , = 0.064. dMn.." = 298.3(1), dMn."= 167.1 pm.
7: u = 1081.6(4). h = 1162.1 (5). c = 1249.5(3)pm, d = 114.24(3). B =
96.68(3). y = 109.46(3)', space group P i , 2 = 2. Solution and refinement
of the structure (see Na(crypt) 4) led to R , = 0.041; R, = 0.036.
dR,.R,
= 281.3(0). dR,.Mn
= 289.7(2)-295.0(2) pm. Further details of the
crystal structure investigation may be obtained from the Fachinformationszentrum Energie. Physik, Mathematik GmbH, D-7514 EggensteinLeopoldshafen 2 (FRG). on quoting the depository number CSD-53411,
the names of the authors, and the journal citation.
[XI J. Roziers. J. M. Williams. R. P. Stewart, Jr.. J. L. Petersen, L. E Dahl, J.
Ani. Cheni. Soc. YY (1977) 4497.
[9] G. Huttner, K. Evertz, Acc. Chem. Rex 19 (1986) 406.
[I01 J. von Seyerl, U. Moering, A. Wagner. A. Frank, G . Huttner, Angen.
Chrm. YO (1978) 912; Angen,. Chetn. h t . Ed. Enxl. 17 (1978) 844.
1111 U. Weber, L. Zsolnai. G. Huttner. J Organomer. Chem. 260 (1984) 281.
[12] K. Plo131. A. Strube. G. Huttner, unpublished.
[13] Cf. Bi,[M(CO),].,: G . Huttner, U. Weber, L. Zsolnai, Z. Naturforsrh. B 37
(1982) 707; A. M. Arif. A. H. Cowley. N. C. Norman, M. Pakulski, Inorg.
Chem. 35 (1986) 4836.
[14] J. M. Wallis. 0. Miiller, H. Schmidbaur, fnurg. Chem. 26 (1987) 458.
[15] G. Huttner. U. Weber, B. Sigwarth, 0. Scheidsteger, Angen. Chem. 94
(1982) 210; A n g w . Chem. int. Ed. Engl. 21 (1982) 411.
[16] B. Sigwarth. L. Zsolnai. H. Berke, G. Huttner, J Organomet. Chc,m. 226
(1982) C5.
[I71 The anion 4 can also be isolated as a pyrophoric powder containing naked
Nae or. by metathesis, as the Me,Ne or Bu,Ne salt.
[I 81 The given i: values are lower limits owing to the tendency of the compounds
to decompose.
Chiral Building Blocks for the Synthesis
of Triquinane Sesquiterpenes : Derivatives
of 2-Methylbicyclo[3.3.O]octan-3-olfrom Catalpol **
By Klaus Weinges,* Helene Iatridou, Hans-Georg Stammler,
and Johannes Weiss
An increasing number of natural products with angular or
linear triquinane carbon frameworks have been isolated in
recent years and have encouraged the development of general approaches to their synthesis!'I Because of the special
biological activity often exhibited by triquinane sesquiterpenes, we are interested in synthesizing them in enantiomerically pure form. This goal can be realized by transformation
to chiral compounds that display
of the ketoenol ether 1
suitable structural features for the synthesis of triquinane
sesquiterpenes. Compound 1 can be prepared in 93 % yield
from the naturally occurring catalpol according to a published procedureL2b1 that has since been improved. Cuprate
addition to the enone of silyl ether 2 (Scheme 1 ) introduces
the methyl substituent at C-2, which is characteristic of a
series of angular and linear triquinanes. ['I
Ramberg-Backlund reaction of 9 resulted in ring contractionL31 to give the pentalene derivative 10, which was
converted into 8-tert-butyldimethylsiloxy-2-methylbicyclo[3.3.0]octan-3-ol 11L41 by stereoselective hydroboration.
The two hydroxyl substituents at C-8 and C-3, which were
selectively protected in 11 and 13, respectively, allowed, after
oxidation, a variety of alkylation reactions to be carried out
at the neighboring C atoms. As in analogous compounds,". ' 1 five-membered ring annelation at CI-C2 and
C2-C3 gives frameworks of the angular and linear
triquinanes, respectively. Furthermore, variation of the substituents a t C-7""' o r C-4'' bl offers a direct route to specific
members of this class of compounds.
The C-7 geminal methyl substituents of 15,which are introduced by a simple methylation reaction, are also found in
the carbon skeletons of the antibiotically active (-)hypn~philin''~and (-)-coriolin 20, which, in addition,
exhibits antitumor activity. 18] Compound 15 was used
to easily prepare (IR, 2R, 3R, 5R, 8R)-(+)-benzoyloxy-
.
'
Anxen.. Clwm. In/. Ed. Engl. 28 (1989) No. 4
$2 VCH
Fig. 1. Molecular structure of 18 [12]. The numbering is unsystematic
[*I Prof. Dr. K. Weinges, DipLChem. H. Iatridou
Organisch-chemisches Institut der Universitit
Im Neuenheimer Feld 270, D-6900 Heidelberg 1 (FRG)
Prof. Dr. J. Weiss ['I, DipLChem. H.-G. Stammler ['I
Anorganisch-chemisches Institut der Universitit Heidelberg
['I X-ray structure analysis.
[**I Chemistry and Stereochemistry of the Iridoids. Part I t . This work was
supported by the Deutsche Forschungsgemeinschaft. Part 10: [3].
Verlugsgesellschufim h H , D-6940 Weinheim. I989
0570-OX33;XYjO404-0447 $02.50/0
447
qo
?H
cataipol
0 ,
0-glucose
HO'
[l] a) L. A. Paquette. Top. Curr. Chem. 119 (1984) 1; b) B. M. Trost, Chem.
Soc. Rev. If (1982) 141.
[2] a) K. Weinges, H. von der Eltz, Angew. Chem. 92 (1980) 639; Anger..
Chem. Inf. Ed. EngI. 19 (1980) 628: b) K. Weinges. S. Haremsa. U . HuberPatz, R. Jahn, H. Rodewald, H. Irngartinger, H. Jaggy, E. Melzer, Liebigs
Ann. Chem. 1986,46.
131 K. Weinges, S. Haremsa. Liebigs Ann. Chem. 1987, 679.
141 endo-11 : (1R.2R,3RSR,XR)-( -)-8-fer1-butyldimethylsilyloxy-2-methylbicyclo[3.3.0]octan-3-ol: m.p. 37-38'C; [?I:':
2. = 589, - 353.9: 578.
- 356.6; 546.
366.4; 436, - 420.3; 365, - 489.2 ( c = 1.03 in acetone).
[5] Review: M. Ramaiah, Synthesis 1984, 529.
[6] Examples: a) hirsutic acid C: F. W. Comer, J. Trotter, J . Chem. Soc. B
1966, 11; complicatic acid: G. Mellows, P. G. Mantle, T. C. Feline,
D. J. Williams. Phylochemislry 12 (1973) 2717; hypnophilin: [7]; coriolin:
181; b) silphines: F. Bohlmann, J. Jakupovic, ibid. 19 (1980) 259; laurenenes: R. E. Corbett, C. M. Couldwell, D. R. Lauren, R. T. Weavers, J .
Chem. Soc. Perkin Trans. I, 1979, 1791; isocomenes: R. N. Harris 111,
D. Van Derveer, I. A. Bertrand. J . Chem. SOC.Chum. Commun. 1977,456.
[7] B. M. Gianneti, B. Steffan, W. Steglich, Terrahedron 42 (1986) 3587.
[8] T. Takeuchi, H. linuma, J. Iwanaga, S. Takahashi, T. Takita. H. Umezawa, J. Anrihiut. 22 (1969) 215; S. Takahashi, N. Naganawa. H. Iinuma.
T. Takita, K . Maeda, H. Umezawa, Tetrahedron Let!. 1971. 1955:
H. Nakamura, T. Fdkitd, H. Umezawa. M. Kunishima, Y. Nakayama,
Y. Iitaka, J . Antihior. 27 (1974) 301.
[9] a ) T. Ito, N. Tomiyoshi. K. Nakamura, S. Azuma, M. Izawa. F.
Maruyama, M. Yanagiya, H. Shirahama, T. Matsumoto, RJrruhedron40
(1984) 241; b) K. Iseki, M. Yamazaki, M. Shibashaki. S. Ikegami, &id. 37
(1981) 4411: c) S. Knapp. A. F.Trope, M. %Theodore. N. Hirata,
J. J. Barchi, J. Org. Chem. 49 (1984) 608; d) F. P. Schuda,
M. R. Heimann, Terrahedron 40 (1984) 2365; e) P. Magnus, C. Exon,
P. Albaugh-Robertson, rhid 41 (1985) 5861
[lo] M. Demuth, P. Ritterskamp. E. Weight, K. Schaffner, J . Am. Chem. Soc.
108 (1986) 4149.
[ l l ] Compounds 2-5, 18, and the corresponding endo isomers of 6 - 13 were
characterized by elemental analysis and spectroscopy (IR, 'H. I3C NMR).
Optical rotations {[a]~'(cinacetone)):ris-3, + 14.4(1.11);endo-6,- 13.7
(1.07); endo-7. - 106.4 (1.10); mdo-8, - 5.0 (1.01); endo-10, + 22.3
(1.01); endo-11. - 353.9 (1.03); endo-13. + 87.0 (1.03); 18, + 1.06 (1.13).
[12] Since the absolute configuration of I at C-6 is known [2 b] and no reaction
is performed at this C atom, the absolute configuration of 18 can also be
determined by X-ray structure analysis. Crystal dimensions 0.8 x 0.6 x
0.5 mm3, orthorhombic, P2,2,2,, Z = 4. a = 9.885 (3,h = 12.776 (5).
c = 13.395 (7)A. V = 1692.7A3?
1.13gc11-~, p =0 . 1 7 cm - ' .
Siemens-Stoe diffractometer, Mo,. radiation. graphite monochromator,
20. o scan with 20 s 55 ', empirical absorption correction (li,scans of 7
reflections, min. transmission 0.715, max. transmission 0.855). 2240 independent reflections, 876 with I > 2.5 u ( 0 . Structure solution: direct methods (SHELXTL program). Structure refinement: "cascade matrix" procedure, which is based on F, with w = l/uz (fl. All C and 0 atoms refined
anisotropically. H atoms refined isotropically. Hydrogen atoms on C
atoms refined at calculated positions, hydrogen-atom position of
the hydroxyl group refined from difference Fourier syntheses with a fixed
0 H distance of 0.92 A. 191 parameters; R = 0.054 ( R , = 0.043). maximal residual electron density 0.1 3 e k 3 . minimal residual electron density
- 0.2 eA '. Further details of the crystal structure investigation may be
obtained from the Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2 (FRG), o n quoting the
depository number CSD-53487, the names of the aiithors, and the journal
citation.
~
1 R'=H
2 R'=SIPh,fBu
3 R'=SiPh,tBu
9 R'=SiMe,fBu
8 R'=SiMe,fBu
4
1
cc:"
R'O
5 R'=H,
R,=H,
6 R'=SiMe2fBu:R2=H2
1
7 R'=SiMe, tBu.R2=0
10 R'= SiMe,Wu
11 R'=SrMe,tBu.R2=H
12 R'=SiMe,fBu.R2=THP
13 R'=H,
OH
OH
20
19
R,=THP
14 R'=H, R2=THP
15 R'=CH3, R2=THP
1
16 RLH;
R,.THP
17 R ' = B Z , R ~ = T H P
18 R'=Bz.R2=H
Scheme 1. Reaction conditions: 1 4 2: rBuPh,SiCl, imidazole, DMF, RT
(room temperature), 5h, 71%; 2 - 3 : Me,CuLi, ether, - 75° C 1 h; sat.
NH&I solution, - 75 "C 20 "C, 87% cis-/rrans3 (3:2), n o separation:
50°C, 4 h, 83%; 4 - 5 : NaBH,, EtOH,
3-4: KOH in THF/MeOH,
- 1O"C, 1.5 h, 88% endolexo-alcohol (93:7); 5 - 6 : tBuMe,SiCI, imidazole,
DMF, RT, 2 h, 90%; 6 7: RuO, . xH,O, NaIO,, H,O/CCI,/CH,CN, 16 h,
RT, 79%; 7 - 8 : LiAIH,, THF, - 1 0 T , 1 h, 94%; 8 - 9 : 1) CH,SO,CI,
pyridine, - 15"C-RT, 2 S h , 2) Na,S.xH,O, EtOH, 80°C. 2h. 88%;
9 4 10: 1) m-chloroperbenzoic acid, CH,CI,, - 15" C+RT , 1 h, 65%. 2)
K,CO,, N-chlorosuccinimide, CH,CI,, RT, max. 72 h, 3) m-chloroperbenzoic
acid, CH,CI,, 24h, RT, 81%, 4) fBuOK, THF, 0°C-RT, 1 h. 64%;
1 0 4 11:l M BH, . TH F in THF, 0 ° C 1 h; 2 N NaOH, 30% H,O,, 30 min,
95 %; 11 12: 3,4-dihydro-2H-pyran,p-toluenesulfonicacid
in THF, CH,CI,,
RT, 1 h, 93%; 12 + 13: (nBu),NF 3 H,O, THF, RT, 72 h, 95%; 13 14:
pyridinum dichromate, DMF, RT, 2 h, 76%; 14 15: rBuOK, THF, - 75 " C ,
20min;MeI, - 7 5 " C - t O " C , 1 5 m i n , 6 5 % ; 1 5 ~ 1 6 : L i , N H , , T H F , r B u O H ,
- 75 "C, 20 min, 48 % after chromatographic separation (flash) of the endo-alcoho1 (37%), which can be reoxidized to the ketone 15 in 70% yield; 16 4 17:
PhCOCI, pyridine, - 10°C 4 RT, 16 h, 86%; 17 + 18: CH,COOH/H,O/
THF, RT, 16 h, 84%.
-
-
~
-
-
-
2,7,7-trimethylbicyclo[3.3.O~octan-3-ol
18, which Matsumoto et aI. used in racemic form to synthesize the coriolin
precursor 19. I9 Racemic 18, slightly modified, was also
employed by other authorsr9b-el as a coriolin precursor. The
synthesis of optically active 20 has only been achieved so far
by Demuth et aI.[''] via racemate resolution of a racemic
bicyclic intermediate. Enantiomerically pure ( + )-18 can be
prepared on a gram scale from 1 according to the reactions
shown in Scheme 1 n l l (ca. 4.5 g of 18 was obtained from
170 g of 1). Unlike racemic 18,r9a1(+)-18 is a crystalline
product (m.p. 87°C;[a];': 1 = 589, + 1.06;578, + 1.19;
546,+ 1.59;436, + 3.18;365, + 6.55(c = 1 .I3 in acetone)),
the constitution and configuration of which were confirmed
by X-ray diffraction (Fig.
Received: November 10, 1988 [Z3045IE]
German version: Angew,. Chem. 101 (1989) 485
448
$3 VCH Verla~gesellrchaflmhH,
0-6940 Weinheim. 1989
~
~
New Intermediates in the Cyclocotrimerization
of Thioxophosphorus(v) Cations with Alkynes **
By Ekkehard Lindner,* Volker Kass, WoEfgang Hiller,
and Riad Fawzi
Alkyne cyclotrimerization is an important and extensively
investigated route to benzene derivatives."] The introduction of heteroatoms such as N, 0, P, or S considerably ex[*] Prof. Dr. E. Lindner, DipLChem V. K k , Dr. W. Hiller, Dr. R. Fawzi
['*I
Institut fur Anorganische Chemie der Universitit
Auf der Morgenstelle 18. D-7400 Tubingen 1 (FRG)
Synthesis and Properties of Metal-Containing Heterocycles and Their
Reactions, Part 62. This work was supported by theDeutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. V. K . thanks the
Studienstiftung des deutschen Volkes for a fellowship. Part 61 : E. Lindner,
K. E. Frick. M. Stdngle. R. Fawzi, W. Hiller. Chem. Ber. 122, (1989) 53.
0570-0833i8910404-0448 R 02.50XJ
Angew. Chem Inr. Ed. Engl. 28 (1989) N o . 4
Документ
Категория
Без категории
Просмотров
4
Размер файла
285 Кб
Теги
chiral, triquinane, block, synthesis, sesquiterpene, building, derivatives, octane, methylbicyclo, catalpol
1/--страниц
Пожаловаться на содержимое документа