close

Вход

Забыли?

вход по аккаунту

?

Clinical manifestations of cerebral amyloid angiopathyЦrelated inflammation.

код для вставкиСкачать
Clinical Manifestations of Cerebral Amyloid
Angiopathy–Related Inflammation
Jessica A. Eng, BA,1 Matthew P. Frosch, MD, PhD,2 Kyungchan Choi, MD,1 G. William Rebeck, PhD,1
and Steven M. Greenberg, MD, PhD1
To explore the clinical effects of inflammation associated with vascular deposits of the amyloid ␤ peptide (A␤), we
analyzed 42 consecutive patients with pathologically diagnosed cerebral amyloid angiopathy (CAA) for evidence of an
inflammatory response. Inflammation with giant-cell reaction surrounding amyloid-laden vessels was identified in 7 of
the 42 cases. The clinical symptoms in each of the seven were subacute cognitive decline or seizure rather than hemorrhagic stroke, the primary clinical presentation in 33 of 35 patients with noninflammatory CAA (p < 0.001). Inflammatory CAA also was associated with radiographic white matter abnormalities, significantly younger age at presentation,
and a marked overrepresentation of the apolipoprotein E ␧4/␧4 genotype (71% vs 4%, p < 0.001). Of the six inflammatory CAA patients with available follow-up information, five demonstrated clinical and radiographic improvement
after immunosuppressive treatment. The syndrome of CAA-related perivascular inflammation appears to represent a
subset of CAA with clinically distinct symptoms that may respond to immunosuppressive treatment. These data add to
evidence that inflammation against A␤ can cause vascular dysfunction, a potential mechanism for the toxic response
recently observed in clinical trials of A␤ immunization.
Ann Neurol 2004;55:250 –256
The inflammatory response to deposits of the
␤-amyloid peptide (A␤) in the brain has been postulated to have both beneficial and deleterious consequences. Pathological1 and epidemiological2,3 studies
of Alzheimer’s disease (AD) initially suggested that inflammation might contribute to disease pathogenesis.
More recent findings of reduced A␤-containing plaque
deposits in transgenic mice immunized with A␤4 or
treated with anti–A␤ antibodies5,6 have instead suggested that an immune response to A␤ might decrease
AD pathology. The possibility that anti-A␤ inflammation may be beneficial motivated a clinical trial of vaccination to A␤7 which subsequently was discontinued
when a subset of patients developed a meningoencephalitis syndrome.8
In contrast with the spate of studies on inflammation and A␤ deposition in the brain parenchyma, relatively little information is available on the effect of the
inflammatory response on vascular A␤ deposits or cerebral amyloid angiopathy (CAA). Both sporadic9,10
and some familial forms11–13 of CAA appear to associate with a modest increase in perivascular inflammatory
cells. Individual cases have been reported of a more robust inflammatory response to CAA, often involving
the appearance of multinucleated giant cells.9,14 –21
From the 1Department of Neurology and 2C. S. Kubik Laboratory
of Neuropathology, Massachusetts General Hospital and Harvard
Medical School, Boston, MA.
Received Apr 25, 2003, and in revised form Jul 13 and Sep 15.
Accepted for publication Sep 15, 2003.
250
Several of these case descriptions have suggested a severe clinical course associated with the CAA-related inflammation, although the clinical picture has not been
characterized in detail. Immune-based treatments studied in transgenic mice have not been found to reduce
the severity of CAA5,22 and in one model were associated with increased CAA-related intracerebral hemorrhage.22
In light of increasing interest in the benefits and
possible risks of anti–A␤ immunotherapy, we analyzed
the clinical, radiographic, pathological, and genetic
findings of patients with and without CAA-related inflammation in a series of consecutive patients with
pathologically diagnosed CAA. We sought to determine in particular whether the presence of inflammation was associated with specific clinical symptoms or
risk factors. Our findings suggest that the inflammatory response to CAA can cause clinically significant
vascular dysfunction.
Subjects and Methods
Identification of Subjects
We reviewed all patients seen at the Massachusetts General
Hospital (MGH) between July 1, 1994 and November 30,
2002 who were diagnosed pathologically with CAA as the
Address correspondence to Dr Greenberg, Wang ACC 836, Massachusetts General Hospital, Boston, MA 02114.
E-mail sgreenberg@partners.org
© 2004 American Neurological Association
Published by Wiley-Liss, Inc., through Wiley Subscription Services
cause of their clinical syndrome. Forty-two eligible patients
were identified from our prospective cohort of CAA patients23; systematic search of a database maintained by the
MGH neuropathology laboratory yielded no additional cases.
Brain samples were obtained by postmortem brain examination in 12 of the cases, hematoma evacuation in 19, and
cortical biopsy in 11. The diagnostic brain samples were obtained at MGH for 37 of the 42 patients and from outside
referring hospitals for 5.
To identify specimens with evidence of CAA-related inflammation, a neuropathologist (M.P.F.) examined all available sections from these cases, stained by conventional methods (hematoxylin and eosin or Congo red), in random order
and without knowledge of clinical information. Specimens
were specifically examined by conventional staining methods
for the presence of inflammatory cells associated with amyloid deposits, AD pathology, and white matter lesions.
Data Collection and Analysis
Hospital records and radiographic images from CAA patients
with and without inflammation were reviewed for demographic information, vascular risk factors, clinical presentation, laboratory results, and radiographic findings. Thirtythree of the 42 patients (including all 7 with CAA-related
inflammation) donated blood samples for determination of
apolipoprotein E (APOE) genotype, performed as described.24 Clinical course was followed by telephone interviews with patients or caregivers at 6-month intervals.23 The
study was performed in accordance with the guidelines of the
institutional review board of MGH and with consent of subjects or family members.
Comparison of patients with and without perivascular inflammation was performed by Student’s t test for continuous
variables and by Fisher’s exact test for categorical variables.
All statistical analyses were performed with Stata software
(College Park, TX) and all significance tests were two-sided.
Immunohistochemical Staining
The following monoclonal antibodies (and concentrations)
were used to immunostain sections prepared from paraffin
blocks from patients with CAA-related inflammation:
anti–A␤ antibody 6E10 (1:200; Signet Laboratories, Dedham, MA), CD68 (1:50; DAKO, Carpinteria, CA), CD4
(1:20; Novocastra, Newcastle, UK), CD3 (1:100; Novocastra, Newcastle, UK), CD8 (1:50; DAKO, Carpinteria, CA),
and CD20 (1:200; DAKO, Carpinteria, CA). Incubations
were at 4°C overnight except for CD4 immunostaining,
which was performed at room temperature for 1 hour. Antibody staining was visualized using biotinylated goat anti–
mouse IgG (1:200) and commercial ABC reagent
(Vectastain-Rl Vector Laboratories, Burlingame, CA) according to the manufacturer’s recommendations
Results
Of 42 patients with pathologically diagnosed CAA seen
over an 9-year period, a subset of 7 (17%) could be
distinguished by pathology findings of perivascular inflammation with multinucleated giant cells. These
seven patients demonstrated a characteristic set of clinical and laboratory findings (Table 1). The presenting
symptom was cognitive or functional decline progressing rapidly over a period of months in three of the
seven, new onset of seizures in one patient, and both
progressive cognitive decline and seizure-like episodes
in the remaining three patients. Headaches were prominent in four patients. The salient features on diagnostic testing were patchy or confluent white matter hyperintensities on T2-weighted magnetic resonance
imaging (MRI) sequences (seven of seven patients; Fig
1), multiple microhemorrhages on gradient-echo sequences (six of seven), and mild to moderate elevations
of cerebrospinal fluid (CSF) protein (four of five patients with CSF examination). Neuroimaging otherwise
showed no evidence of vasculitis in the four patients
who underwent angiography (one by MR and three by
contrast angiography) and no definite areas of restricted diffusion in the six patients with diffusionweighted imaging.
All seven patients received brief or prolonged treatment with corticosteroids or cyclophosphamide (Table
1). Five of six patients with follow-up information improved clinically, although none improved to premorbid functional baseline. Four of five with follow-up
MRI scans also demonstrated clear improvement in extent of white matter changes (see Fig 1). Patient 2 did
not show substantial improvement either clinically or
radiographically. Two patients (including one otherwise lost to follow-up) died 2.7 and 3.2 years after presentation, whereas the remaining five have survived
through a mean follow-up period of 22.4 ⫾ 18.9
months.
Table 2 compares the seven cases of CAA-related
perivascular inflammation with the other 35 cases of
pathologically confirmed CAA without inflammation.
The two groups differed significantly in presentation,
with lobar hemorrhagic stroke as the presenting feature
in 0 of 7 inflammatory cases compared with 33 of 35
noninflammatory CAA patients. Patients with CAArelated inflammation were also significantly younger at
presentation by approximately 7 years. Genetic analysis
showed a prominent association between perivascular
inflammation and the APOE ε4 allele, particularly in
its homozygous form. Five of the seven patients (71%)
with CAA-related perivascular inflammation carried the
APOE ε4/ε4 genotype compared with only one ε4/ε4
genotype among the 26 patients (4%) with noninflammatory CAA and available genetic data (odds ratio,
62.5; 95% confidence interval, 3.5–3062; p ⬍ 0.001).
Pathological examination of the brain samples from
these patients demonstrated moderate to severely advanced CAA17 together with accumulations of mononuclear and multinucleated white blood cells around
amyloid-laden vessel in cerebral cortex and leptomeninges (Fig 2A–C). All vessel segments with surrounding
inflammatory changes stained positive for A␤ (see Fig
2F). Inflammation within the vessel wall itself and
Eng et al: CAA-Related Inflammation
251
Table 1. Clinical, Laboratory, and Radiographic Characteristics of Patients with CAA-Related Perivascular Inflammation
MRI at Presentation
Patient No./
Age/Sex
White Matter
Hyperintensity
Microhemorrhages
CSF
WBC
(/ml)
Protein
(mg/dl)
Decreased
CS ⫻ 5 days
Increased
55
CP ⫻ 10 days
CS ⫻ 6 days
NA
164a
CS ⫻ 16 days
Decreased
CS ⫻ 1 yr
Decreased
CP ⫻ 1 yr
CS ⫻ 1 mo
Decreased
CP ⫻ 6 weeks
NA
1 mo cognitive
decline
Patchy
None
2/63/M
3 mo cognitive
decline
Patchy
Multiple
25a
211a
3/69/F
3 weeks gait
difficulty, few
months
cognitive
decline
1 yr cognitive
decline,
sudden onset
confusion
2 seizures over 1
mo
Patchy
Multiple
0
Confluent
Multiple
1
Confluent
Multiple
Confluent
Multiple
1
Confluent
Multiple
2
5/71/F
6/73/M
7/79/M
3 seizures over
2 months,
confusion,
and personality
changes over
few months
4 months
cognitive
decline, seizure
Immunosuppressive
Treatment
Follow-up
MRI: White
Matter
Hyperintensities
CS ⫻ 3 days
1/49/F
4/71/F
a
Clinical
Symptoms at
Presentation
NA
NA
50a
84*
Clinical Course
Improved, not to
baseline
Independent
Minimal
improvement
Dependent
Died 2.7 years
after presentation
Improved, not to
baseline
Recurrent seizure
Independent
Improved, not to
baseline
⫾ independent
Improved, not to
baseline
Recurrent
seizures
Died 3.2 yr after
presentation
Improved, not to
baseline,
independent
Above upper limit of normal at laboratory where CSF obtained.
CAA ⫽ cerebral amyloid angiopathy; MRI ⫽ magnetic resonance imaging; CSF ⫽ cerebrospinal fluid; WBC ⫽ white blood cell; CS ⫽
corticosteroids; CP ⫽ cyclophosphamide; NA ⫽ not available.
granuloma formation were not observed. Immunostaining for CD68 (not shown) demonstrated many of
the cells (including the multinucleated giant cells) to be
of the monocyte/microglial line. Multinucleated cells
could be seen in close association with A␤, suggesting
that the cells may have internalized the amyloid deposit. T lymphocytes (staining for CD3) were also
present in the perivascular infiltrate, including low
numbers of both CD8-positive and CD4-positive T
lymphocytes, whereas B lymphocytes, assessed by staining for CD20, were absent. Examination of the brain
parenchyma demonstrated multiple microhemorrhages
and small nonhemorrhagic infarctions in the cerebral
cortex and rarefaction of the underlying white matter
(see Fig 2D, E). Dense-cored plaques were present in
cortical samples from two of the seven patients. One
subject (Patient 6) had brain specimens available from
two time points: a biopsy at presentation and an autopsy 3.2 years after diagnosis and immunosuppressive
treatment. Comparison of the two specimens demonstrated persistence of severe CAA but resolution of
most or all of the perivascular inflammatory changes
noted at presentation.
Discussion
These data add a syndrome of perivascular inflammation, subacute cognitive decline, seizures, and leukoen-
252
Annals of Neurology
Vol 55
No 2
February 2004
cephalopathy to the spectrum of presentations associated with CAA.25 The clinical manifestations of this
syndrome potentially have important implications for
the diagnosis and treatment of CAA. The apparent response of some patients to immunosuppressive therapy
suggests that it may represent a treatable form of CAA,
highlighting the importance of reaching this diagnosis
in practice. CAA-related inflammation also may have a
more general role in affecting function of amyloidcontaining vessels, a possibility suggested by the modest increases in perivascular monocytes observed even
in apparently noninflammatory CAA.9 Radiographic
white matter changes are common in CAA26; the possibility that CAA-related inflammation plays a part in
this finding offers potential directions for future treatments.
The mechanism for the cognitive decline, seizures,
and white matter changes associated with this syndrome remains to be determined but appears likely to
reflect immune-mediated effects on vascular function.
CAA without inflammation has been reported to associate with impaired cognition,27 cerebral infarctions,28,29 and white matter lesions,26,30 but not with
the aggressive clinical and radiographic picture observed in the current patients, suggesting that the inflammation may play a direct role. The localization of
the inflammatory response to amyloid-laden vessel seg-
Fig 1. Magnetic resonance imaging (MRI) appearance in patients with cerebral amyloid angiopathy (CAA)–related inflammation.
The gradient-echo images from Patients 4 and 5 show multiple small hypointense lesions characteristic of CAA-related microhemorrhages. The fluid-attenuated inversion recovery (FLAIR) images performed at presentation and after follow-up intervals of 2 months
(Patient 4) or 22 months (Patient 5) demonstrate confluent regions of white matter hyperintensity that largely resolve at follow-up.
ments and the appearance of A␤ in close association
with some of the inflammatory cells9,14,19,31 implicate
A␤ as the likely trigger for the immune response. An
inflammatory response to vascular amyloid also has
been noted in a transgenic mouse model that develops
prominent CAA.32 The currently described syndrome
of perivascular inflammation appears distinct from
granulomatous angiitis of the central nervous system,33
which characteristically includes both granuloma formation and inflammation and necrosis within the vessel wall itself, features absent from the current cases.
True granulomatous angiitis has been reported in the
setting of CAA,14,21 although both most of the cases in
the literature and our own experience suggest that this
is a less common response to CAA than the type of
perivascular inflammatory response described here.
Table 2. Comparison of Clinical and Genetic Characteristics of Patients with Severe CAA with or without Perivascular
Inflammatory Changes
Characteristic
Age at presentation (yr ⫾ SD)
Sex (M/F)
Primary clinical presentation, n (%)
Intracerebral hemorrhage
Cognitive decline
Seizure
APOE genotype, n (%)b
ε4/ε4
ε4/ε(2 or 3)
ε(2 or 3)/ε(2 or 3)
a
CAA with Inflammation
(n ⫽ 7)
CAA without Inflammation
(n ⫽ 35)
68.3 ⫾ 9.6a
3/4
75.8 ⫾ 8.3
10/25
0 (0)b
3 (43)
4 (57)
n ⫽ 7 patients genotyped
5 (71)b
1 (14)
1 (14)
33 (94)
1 (3)
1 (3)
n ⫽ 26 patients genotyped
1 (4)
12 (46)
13 (50)
p ⫽ 0.04.
p ⬍ 0.001 for comparison of distributions of clinical presentation or APOE genotype.
b
CAA ⫽ cerebral amyloid angiopathy; APOE ⫽ apolipoprotein E.
Eng et al: CAA-Related Inflammation
253
Fig 2. Pathological findings in cases of cerebral amyloid angiopathy (CAA) with inflammatory changes. (A) Multifocal inflammatory
perivascular infiltrate is present involving leptomeningeal and parenchymal vessels, in association with amyloid deposition (Congo
Red stain; scale bar ⫽ 100␮m). (B) Involved parenchymal blood vessel with inflammatory cell infiltrate present but without evidence of associated damage to the vessel (H&E; scale bar ⫽ 25␮m). (C) Inflammatory perivascular infiltrate including a multinucleated giant cell (arrows; H&E; scale bar ⫽25␮um). (D) Small ischemic lesion in subcortical white matter is evident as an area
of tissue rarefaction and vacuolation (H&E stain; scale bar ⫽ 100␮m). (E) Evidence of a prior microhemorrhage demonstrated by
hemosiderin in the wall of an involved blood vessel (arrowheads) and in the adjacent parenchyma (arrows) (H&E stain; scale
bar ⫽ 50␮m). (F) Immunostaining for A␤ demonstrates the spatial relationship between the amyloid deposit and the inflammatory
cell infiltrate (primary antibody, 6E10; scale bar ⫽ 25␮m).
The patients with CAA-related perivascular inflammation demonstrated a striking overrepresentation of
the APOE ε4 allele and ε4/ε4 genotype. Although
based on only a few cases, these data raise the possibility that the E4 isoform of apolipoprotein E may play a
specific role in promoting an inflammatory response to
CAA. Previous studies have shown that APOE ε4 is
associated with increased fibrillar A␤ deposition24,34 –36
(with substantially increased vascular amyloid24,34,37)
and that the apoE protein38 (including residues specific
to the E4 isoform39) is present in the deposits themselves. Other studies have suggested that apolipoprotein
E4 may enhance activation of complement or microglia,40,41 offering potential mechanisms for the association observed in the current cases. Regardless of the
mechanism, this association if confirmed might offer a
potentially useful tool for supporting the diagnosis of
this syndrome.
254
Annals of Neurology
Vol 55
No 2
February 2004
The major limitation of our study was its restriction
to cases of CAA with available neuropathology samples. This requirement limited the overall number of
patients who could be studied, making it particularly
difficult to form conclusions about response to therapy
and optimal treatment for this syndrome. The restriction to cases with pathology samples also introduces
potential biases toward patients with atypical clinical
presentations, who may be more likely to undergo biopsy or postmortem evaluation. The figure of 17% (7
of 42) for the frequency of CAA-related inflammation
observed in our series therefore may represent an overestimate of its true frequency. Conversely, the patchy
nature of the inflammatory response raises the possibility that this pathology might be missed in a small biopsy specimen, thereby causing an underestimate in its
frequency. Although further studies clearly will be required to determine the full extent of this syndrome,
the current data are sufficient to suggest that it is not
rare. We also note that although the surgical specimens
derived from hematoma evacuation were not obtained
specifically for the evaluation of vessels, the samples of
leptomeningeal vessels and fragments of superficial cortical vessels present in the specimens were adequate to
evaluate for the perivascular inflammatory changes that
characterized the novel subset.
The clinical effects of CAA-related inflammation
may have important implications for immune-based
strategies for the treatment of the cerebral amyloidoses,
particularly AD. A clinical trial of A␤ vaccination for
AD was discontinued when same subjects (ultimately
18 of 298 treated with active vaccine) developed a syndrome described as meningoencephalitis.8 A recent report of the first autopsy of a patient with this syndrome42 described rapidly progressive cognitive
decline, prominent white matter abnormalities on
MRI, and the pathological appearance of both advanced CAA and inflammatory cells (primarily macrophages and T lymphocytes) surrounding some
amyloid-laden vessels of the leptomeninges and cerebral cortex. The clinical and pathological features encountered in this patient show intriguing similarities to
the currently described patients, pointing to the important possibility that the inflammatory response to CAA
might account partially for the vaccine-associated meningoencephalitis syndrome. Determining the mechanism for this toxic response to the A␤ vaccine would
be a major advance for immune-based treatment strategies,43 particularly if it ultimately allows a subgroup of
patients at high risk for this complication to be identified before treatment.
This research was supported by the National Institutes of Health
(R01 AG021084, S.M.G.) and Massachusetts Alzheimer’s Disease
Research Center Neuropathology Core (P50 AG05134).
We are grateful to Dr B. T. Hyman for reviewing the manuscript
and to Dr J.-P. G. Vonsattel for many very helpful discussions.
References
1. McGeer PL, McGeer EG. The inflammatory response system of
brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 1995;21:
195–218.
2. In’t Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal
antiinflammatory drugs and the risk of Alzheimer’s disease.
N Engl J Med 2001;345:1515–1521.
3. Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 1997;48:
626 – 632.
4. Schenk D, Barbour R, Dunn W, et al. Immunization with
amyloid-beta attenuates Alzheimer-disease-like pathology in the
PDAPP mouse. Nature 1999;400:173–177.
5. Bacskai BJ, Kajdasz ST, Christie RH, et al. Imaging of
amyloid-beta deposits in brains of living mice permits direct
observation of clearance of plaques with immunotherapy. Nat
Med 2001;7:369 –372.
6. McLaurin J, Cecal R, Kierstead ME, et al. Therapeutically effective antibodies against amyloid-beta peptide target amyloidbeta residues 4-10 and inhibit cytotoxicity and fibrillogenesis.
Nat Med 2002;8:1263–1269.
7. Schenk D. Opinion: amyloid-beta immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci
2002;3:824 – 828.
8. Orgogozo JM, Gilman S, Dartigues JF, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42
immunization. Neurology 2003;61:46 –54.
9. Yamada M, Itoh Y, Shintaku M, et al. Immune reactions associated with cerebral amyloid angiopathy. Stroke 1996;27:
1155–1162.
10. Uchihara T, Akiyama H, Kondo H, Ikeda K. Activated microglial cells are colocalized with perivascular deposits of amyloidbeta protein in Alzheimer’s disease brain. Stroke 1997;28:
1948 –1950.
11. Maat-Schieman ML, van Duinen SG, Rozemuller AJ, et al. Association of vascular amyloid beta and cells of the mononuclear
phagocyte system in hereditary cerebral hemorrhage with amyloidosis (Dutch) and Alzheimer disease. J Neuropathol Exp
Neurol 1997;56:273–284.
12. Vinters HV, Natte R, Maat-Schieman ML, et al. Secondary microvascular degeneration in amyloid angiopathy of patients with
hereditary cerebral hemorrhage with amyloidosis, Dutch type
(HCHWA-D). Acta Neuropathol 1998;95:235–244.
13. Shin Y, Cho HS, Rebeck GW, Greenberg SM. Vascular
changes in Iowa-type hereditary cerebral amyloid angiopathy.
Ann NY Acad Sci 2002;977:245–251.
14. Probst A, Ulrich J. Amyloid angiopathy combined with granulomatous angiitis of the central nervous system: report on two
patients. Clin Neuropathol 1985;4:250 –259.
15. Le Coz P, Mikol J, Ferrand J, et al. Granulomatous angiitis and
cerebral amyloid angiopathy presenting as a mass lesion. Neuropathol Appl Neurobiol 1991;17:149 –155.
16. Powers JM, Stein BM, Torres RA. Sporadic cerebral amyloid
angiopathy with giant cell reaction. Acta Neuropathol 1990;81:
95–98.
17. Vonsattel JP, Myers RH, Hedley-Whyte ET, et al. Cerebral
amyloid angiopathy without and with cerebral hemorrhages: a
comparative histological study. Ann Neurol 1991;30:637– 649.
18. Mandybur TI, Balko G. Cerebral amyloid angiopathy with
granulomatous angiitis ameliorated by steroid-cytoxan treatment. Clin Neuropharm 1992;15:241–247.
19. Anders KH, Wang ZZ, Kornfeld M, et al. Giant cell arteritis in
association with cerebral amyloid angiopathy: immunohistochemical and molecular studies. Hum Pathol 1997;28:
1237–1246.
20. Fountain NB, Eberhard DA. Primary angiitis of the central nervous system associated with cerebral amyloid angiopathy: report
of two cases and review of the literature. Neurology 1996;46:
190 –197.
21. Shintaku M, Osawa K, Toki J, et al. A case of granulomatous
angiitis of the central nervous system associated with amyloid
angiopathy. Acta Neuropathol 1986;70:340 –342.
22. Pfeifer M, Boncristiano S, Bondolfi L, et al. Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 2002;
298:1379.
23. O’Donnell HC, Rosand J, Knudsen KA, et al. Apolipoprotein
E genotype and the risk of recurrent lobar intracerebral hemorrhage. N Engl J Med 2000;342:240 –245.
24. Greenberg SM, Rebeck GW, Vonsattel JPV, et al. Apolipoprotein E e4 and cerebral hemorrhage associated with amyloid angiopathy. Ann Neurol 1995;38:254 –259.
25. Greenberg SM, Vonsattel JP, Stakes JW, et al. The clinical
spectrum of cerebral amyloid angiopathy: presentations without
lobar hemorrhage. Neurology 1993;43:2073–2079.
Eng et al: CAA-Related Inflammation
255
26. Smith EE, Eng JA, Rosand J, Greenberg SM. Presence of leukoaraiosis predicts recurrent lobar hemorrhage. Stroke (abs)
2003;34:242.
27. Pfeifer LA, White LR, Ross GW, et al. Cerebral amyloid angiopathy and cognitive function: the HAAS autopsy study. Neurology 2002;58:1629 –1634..
28. Olichney JM, Hansen LA, Hofstetter CR, et al. Cerebral infarction in Alzheimer’s disease is associated with severe amyloid
angiopathy and hypertension. Arch Neurol 1995;52:702–708.
29. Cadavid D, Mena H, Koeller K, Frommelt RA. Cerebral beta
amyloid angiopathy is a risk factor for cerebral ischemic infarction. A case control study in human brain biopsies. J Neuropathol Exp Neurol 2000;59:768 –773.
30. Haglund M, Englund E. Cerebral amyloid angiopathy, white
matter lesions and Alzheimer encephalopathy: a histopathological assessment. Dement Geriatr Cogn Disord 2002;14:
161–166.
31. Gray F, Vinters HV, Le Noan H, et al. Cerebral amyloid angiopathy and granulomatous angiitis: immunohistochemical
study using antibodies to the Alzheimer A4 peptide. Hum
Pathol 1990;21:1290 –1293.
32. Winkler DT, Bondolfi L, Herzig MC, et al. Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J Neurosci 2001;21:1619 –1627.
33. Kolodny EH, Rebeiz JJ, Caviness VSJ, Richardson EPJ. Granulomatous angiitis of the central nervous system. Arch Neurol
1968;19:510 –524.
34. Schmechel DE, Saunders AM, Strittmatter WJ, et al. Increased
amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer
disease. Proc Natl Acad Sci USA 1993;90:9649 –9653.
256
Annals of Neurology
Vol 55
No 2
February 2004
35. Rebeck GW, Reiter JS, Strickland DK, Hyman BT. Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and
receptor interactions. Neuron 1993;11:575–580.
36. Holtzman DM, Bales KR, Tenkova T, et al. Apolipoprotein E
isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad
Sci USA 2000;97:2892–2897.
37. Premkumar DR, Cohen DL, Hedera P, et al. Apolipoprotein
E-epsilon4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer’s disease. Am J
Pathol 1996;148:2083–2095.
38. Wisniewski T, Frangione B. Apolipoprotein E: a pathological
chaperone protein in patients with cerebral and systemic amyloid. Neurosci Lett 1992;135:235–238.
39. Cho HS, Hyman BT, Greenberg SM, Rebeck GW. Quantitation of apoE domains in Alzheimer disease brain suggests a role
for apoE in Abeta aggregation. J Neuropathol Exp. Neurol
2001;60:342–349..
40. Barger SW, Harmon AD. Microglial activation by Alzheimer
amyloid precursor protein and modulation by apolipoprotein E.
Nature 1997;388:878 – 881.
41. McGeer PL, Walker DG, Pitas RE, et al. Apolipoprotein E4
(ApoE4) but not ApoE3 or ApoE2 potentiates beta-amyloid
protein activation of complement in vitro. Brain Res 1997;749:
135–138.
42. Nicoll JA, Wilkinson D, Holmes C, et al. Neuropathology of
human Alzheimer disease after immunization with amyloid-beta
peptide: a case report. Nat Med 2003;9:448 – 452.
43. Greenberg SM, Bacskai BJ, Hyman BT. Alzheimer disease’s
double-edged vaccine. Nat Med 2003;9:389 –390.
Документ
Категория
Без категории
Просмотров
1
Размер файла
409 Кб
Теги
angiopathyцrelated, inflammation, clinical, amyloid, manifestation, cerebral
1/--страниц
Пожаловаться на содержимое документа