close

Вход

Забыли?

вход по аккаунту

?

Crystal Structure of the 3-Allyllithium Compound [1 3-Diphenylallyllithium ╖ Diethyl Ether]n.

код для вставкиСкачать
single experiment. and, equally important, that no work-up
operation or manipulation of the substance be attempted
with other than moist (CH2C12)samples.
Received. August 23, 1985 [Z 1441 IE]
German version: Angew. Chem. 98 (1986) 102
[ I ] a ) S. W. Tobey, R. West, J . Am. Chem. Soc. 88 (1966) 2481; b) P. B.
Sargeant. C. G. Krespan, ;bid 91 (1969) 415; c) W. Weber, A. de Meijere, Angew. Chem. 92 (1980) 135: Anqew. Chem. Int. Ed. Engl. 19 (1980)
138; d) D. Wendisch in Houben-Weyl: Methoden der Organischen Chemie. 4th Edit., uol. l V / 3 , Thieme, Stuttgart 1971, p. 15ff.
R. Weiss, H. Wolf, U. Schuberr, T. Clark, J . Am. Chem. Soc. 103 (1981)
6142
A. E. Reed, F. Weinhold, R. Weiss, J. Macheleid, J. Phys. Chem. 89
(1985) 2688.
R. West, A. Sado, S. Tobey, J A m . Chem. Soc. 88 (1966) 2488.
R. Weiss, C Schlierf, K . Schloter, J . Am. Chem. Soc. 98 (1976) 4668.
1R analysis of tetraiodoallene: A. M. Snider, Jr., P. F Krause, F. A.
Miller, J . Phys. Chem. 80 (1976) 1262.
For the synthesis of salts of type 2 cf. 151. For the synthesis of salts of
type 3 cf.: 2. Yoshida, H. Konishi, Y. Miurd, H. Ogoshi, Tetrahedron
Lett. 1977. 4319. The 19 ion in 2 and 3 originated from I,-generating
redox processes accompanying the substitution process at the threemembered ring.
[Sl J. Mullay, J . Am. Chem. Soc. 106 (1984) 5842.
191 R. Weiss, K. G. Wagner, C. Priesner, J. Macheleid, J . Am. Chem. Soc.
107 (1985) 4491, and references cited therein.
[lo] According to M N D O calculations (R. Weiss, R. Roth, unpublished) the
positive partial charge on the iodine in c y c 1 0 - C ~is~0.42, in C2120.28, in
ICN 0.31.
[ I I] C. Laurence, M. Queignec-Cabanetos, B. Wojtkowiak, J . Chem. Soc.
Perkin Trans. 2 1982. 1605.
1121 J A. Creighton, K. M. Thomas, J . ,4401. Srmct. 7 (1971) 173.
are present in which the Li atoms coordinated to TMEDA
each couple two terminal allylic-C atoms (Cf. 2).['] In tetrahydrofuran, allyllithium is present as a monomeric1hh1
q3-compound.'h1
In 1,3-diphenylallyllithium~diethyl ether 3 we found for
the first time q3-allyllithium moieties also in the solid state.
They aggregate to form polymeric chains['I (Fig. 1). The lithium atoms lie almost symmetrically above and below the
ally1 group. The Li-C2 distance being shorter than the
Li-CI and Li-C3 distances, corresponds to the situation
found in most allyl-transition metal complexes.Lid.glThe
angle Cl-C2-C3 (131(1)") is quite large. This is consistent
with the comparably small '.I
I3CH2)
( coupling constants of
allyl-alkali metal compounds in solution and with quantum mechanical calculation^.^'^-^' The expected bending of
the substituents in monomeric allyllithium compounds (see
1) does not occur in 3, apparently because of stacking.
The 1,3-diphenylallyl moieties are approximately planar
(maximum deviation from the best plane: 8 pm) and are
inclined at 120" to each other in the direction of the chain.
Compound 3 crystallizes from a diethyl ether/hexane/
benzene mixture.I8' In diethyl ether, allyllithium has a degree of aggregation of at least
Since this should be
greater in diethyl etherlhexanelbenzene and should similarly hold for 1,3-diphenylallyllithium, the crystal structure
of 3 probably largely corresponds to its structure in solution.
Crystal Structure of the q3-Allyllithium Compound
~1,3-Diphenylallyllithium~Diethyl
EtherJ,**
By Gernot Boche, * Heinz Etzrodt, Michael Marsch,
Werner Massa, Gerhard Baum, Hans Dietrich, and
Waruno Mahdi
Allyl-transition metal complexes count among the most
studied species in organometallic chemistry."] In the case
of allyllithium, however, no evidence has hitherto been put
forward of an q3-structure in the solid state, as found in
the transition metal complexes. According to calculations,
monomeric allyllithium has such an $structure in which
the H atoms, as in some transition metal complexes,["1are
bent out from the plane of the C atoms (cf. l).Iz-41
According to a crystal structure determination of allyllithium. tetramethylenediamine (TMEDA), polymer chains
H
H
Fig. 1. Section of the polymeric chain structure of 3. The atom5 are represented by spheres with arbitrary radii. Selected bond lengths [pm] and bond
angles ["I: Li-CI 248(3), Li-C2 230(3), Li-C3 250(3), Li-0 192(3), Li-CI'
240(3), Li-C2' 232(3), Li-C3' 252(3), C l - C I I 147(1), CI-C2 139(1), C2-C3
138(2), C3-C31 145(1); C I l - C I - C 2 127(1), Cl-C2-C3 131(1), C2-C3-C31
127( I).
1'1 Prof. Dr. G. Boche, Dr. H. Etzrodt, M. Marsch,
Priv.-Doz. Dr. W. Massa, G. Baum
Fachbereich Chemie der Universitat
Hans-Meerwein-Strasse, D-3550 Marburg (FRG)
Prof. Dr. H. Dietrich, W. Mahdi
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Fdradayweg 4-6, D-I000 Berlin 33
I**] This work was supported by the Fonds der Chernischen Industrie and
the Deutsche Forschungsgemeinschaft. We thank Prof. Dr. R. Allmann,
Fachbereich Geowissenschaften der Universitat Marburg, for helpful
discussions and the NATO for a traveling scholarship.
104
0 VCH Verlagsgesellschaft mhH. 0-6940 Weinheim. 1986
Structures of the "q3-allyl type" have been known since
Stucky et al. elucidated the crystal structure of benzyllithium .triethylenediamine.''O"l Interestingly, the frequently
occurring benzyllithium type structure, likewise possible in
3,['.'Oh1 is not found. The energy difference between such
structures should, however, be small, as has been shown by
0570-0833/86/0101-0104 $ 02.50/0
Angew. Chem. Inr. Ed. En# 2S (1986J No. 1
the polymorphism in the case of dilithium 1,2-diphenylbenzocyclobutadienediide.[' I, I2l.
Received: September 2, 1985;
supplemented: October 7, 1985 [ Z 1445 IE]
German version: Angew. Chem. 98 (1986) 84
[I] Some relevant publications: a) G. Wilke, B. BogdanoviC, P. Hardt, P.
Heimbach, W. Kaim, M. Kroner, W. Oberkirch, K. Tanaka, E. Steinrucke, D. Walter, H. Zimmermann, Angew Chem. 78 (1966) 157; Angew.
Chem. I n f Ed. Engl. 5 (1966) 151; b) R. Uttech, H. Dietrich, 2. Krisrollogr. 122 ( 1965) 60; c) U. Franke, E. Weiss, J. Orgonome!. Chem. 139
(1977) 305; d ) J. A. Kaduk, A. T. Poulos, J. A. Ibers, ibrd. 127(1977) 245
( i n this work the structures of several allyl-transition metal complexes
are discussed): e) T. H. Tulip, J. A. Ibers, J . Am. Chem. So<. I01 (1979)
4201; f) D. M. P. Mingos in G. Wilkinson, F. G. A. Stone, E. W. Abel
(Eds.): Comprehensive Organome/allic Chemistry. Vol. I l l , Pergamon,
Oxford 1982; g) T. H. Cymbaluk. R. D. Ernst, V. W. Day, Organometal1ic.s 2 (1983) 963; h) R. Benn, A. Rufinska, rbrd. 4 (1985) 209, and references cited therein; i) R. Goddard, C. Kruger, F. Mark, R. Stansfield, X.
Zhang, rhrd. 4 (1985) 285, and references cited therein; j) P. W. Jolly,
Angen Chem. Y7 (1985) 279; Angew. Cliem. lnt. Ed. Engl. 24 (1985)
283.
[2] a) T. Clark. E. D. Jemmis, P. von R. Schleyer, J. S. Binkley, J. A. Pople,
J. Orgonomet Chem. 150 (1980) 1; b) T. Clark, C. Rhode, P. von R.
Schleyer, Organomerallrcs 2 (1983) 1344: c) G. Decher, G. Boche, J. Organomer. Chem. 259 (1983) 31.
[3] Other bending modes of the H atoms were deduced on the basis of
'J(C,H) and 'J(H,H) coupling constants: M. Schlosser, M. Stahle, Anyew. Chein. 94 (1982) 142: Angew. Chem. I n / . Ed. Engl. 21 (1982) 145;
Angew Chem. Suppl. 1982. 198; see also [2b, 41.
[4] H. Albrecht, K. Zimmerrnann, G. Boche, G. Decher, J . Orgonomet.
Chem. 262 (1984) I. Further calculations on the structure of ally1 "anions" are cited in this work, and ' J ( "CH') coupling constants of these
compounds are also discussed. Most recent calculations on allyllithium,
which are In very good agreement with comparable data on 3 , are given
in a paper by P. von R. Schleyer, J . Am. Chem. Soc. 107 I 1985) 4793.
Structural data o n the ally1 anion in the gas phase, on the other hand,
deviate considerably, see J . M. Oakes, G. B. Ellison, J. Am. Chem. SOC.
106 (1984) 7734.
[ 5 ] H. Koster. E. Weiss, Chem. Ber. 115 (1982) 3422.
161 Unsymmetrically bridged: a) M. Schlosser, M. Stahle, Angew. Chem. 92
(1980) 497: Angew Chem. I n t . Ed. Engl. I9 (1980) 487; b) M. Stahle, M.
Schlosaer. J . Organornet. Chem. 220 (1981) 277; symmetrically bridged:
c) W. Neugebauer, P. von R. Schleyer, ibid. 198 (1980) C 1.
[7] X-ray structure analysis: 154 K, red needle, ca. 0.6 x 0.09 x 0.07 mm';
P2,2,2,,a = 1770.2(8), b=746.5(6),~=1231.0(7) pm,2=4,pL,,,=1.120g
cm-3: due to the crystal being very small, only 570 independent reflections with F,,>3cr(Fo)(from a total of 905 reflections with f?<20°) could
be measured (four-circle diffractometer CAD4, Enraf-Nonius, graphite
monochromator, Mo,, radiation). Direct methods; because of the small
number of reflections, refinement with phenyl residues as rigid groups
with idealized geometry (C-C 139.5 pm), H atoms at calculated positions (C-H 95 pm) and with isotropic temperature factors for the diphenylallyl moiety and anisotropic factors for the stronger vibrating or
somewhat disordered ether group. R,=0.068, R,=0.074 with w = 1.81
o'(F,,), 86 parameters. Further details of crystal structure investigation
are available o n request from the Fachinformationszentrum Energie,
Physik, Mathematik GmbH, D-75 14 Eggenstein-Leopoldshafen 2, o n
quoting the depository number C S D 51 693, the names of the authors,
and the full citation of the journal. Similar polymeric structures are
found, e.g.. in [C,HSln] and [CsH,Tl] (E. Frasson, F. Menegus, C. Panattoni, Narure (London) 1963, 1087), [(CsHs)zPb] (C. Panattoni, G. Bombieri,
U.
Croatto,
Acrn
CrysraNogr.
21
(1966)
823),
[C,H,C(CN(C(CN),]-Tl+ (M. 8. Freeman, L. G . Sneddon, J. C. Huffman, J. Am. Chem. SOC.99 (1977) 5194), [(C5HS)Na.tmeda](T. Aoyagi,
H. M. M. Shearer, K. Wade, G. Whitehead, J. Organornet. Chem. 175
(1979) 2 I ) , see also: E Canadell, 0. Eisenstein, Orgonomerallics 3 (1984)
759 E. R. Tidwell, B. R. Russell, J . Organomer. Chem. 80 (1974) 175,
calculated (with the aid of C N D 0 / 2 ) structures of allyllithium dimers,
and speculated thereby o n a polymeric structure having certain similarities to 3 . The calculated structure of an allyllithium-lithium hydride
complex can also be considered as model for the structure of 3 (P. von
R. Schleyer, A. J. Kos, E. Kaufmann, J. Am. Chem. SOC.105 (1983)
76 17).
[S] Preparation of 3 : A solution of 1.3-diphenylpropene (100 mg,
0.51 mmol) in benzene (1 mL) and n-hexane ( I mL) was treated at room
temperature with diethyl ether (1.2 molar equivalents) and then with nbutyllithium in hexane (1.2 molar equivalents). After 16 h the solvent
was removed from the red, very thin needle-like crystals with the aid of a
fine pipette. T h e crystals were then washed with n-hexane and dried at
10 -'torr.
Angeu.. Chem
Int.
Ed. Engl. 25 (1986) N a I
191 P. West, J. I . Purmont, S. V. McKinley, J . Am. Chem. Sor. 90 (1968)
797.
[lo] a) S. P. Patterman, 1. L. Karle, G. D. Stucky, J. Am. Chem. SOC.92 (1970)
1150; b) review: W. Setzer, P. von R. Schleyer, Adti. Organornet. Chem
24 (1985) 353.
[ I I] G. Boche, H. Etzrodt, W. Massa, G. Baum, Angew Chem. 97 (1985) 858;
Angew. Chem. Int. Ed. Engl. 24 (1985) 863.
[I21 A structure of the "q3-azaallyl type" has recently been described: a) D.
Colgan, R. 1. Papasergio, C. L. Raston, A. H. White, J . Chem. SOC.
Chem. Commun. 1984, 1708: b) see also P. von R. Schleyer, R. Hacker,
H. Dietrich, W. Mahdi, ibid. 1985. 622.
Polymeric (q5,p-2,3-Dihydro-1,3-diborolyl)nickelthe First Polydecker Sandwich Compound**
By Thomas Kuhlmann. Siegmar Roth, Jacques RoziPre.
and Walter Siebert*
Dedicated to Professor Max Schmidt on the occasion of
his 60th birthday
Polydecker sandwich compounds are one-dimensional
transition-metal complex systems which should exhibit
electrical conductivity. INDO-MO calcuIations[l' on
eleven model compounds have yielded different band
structures, which are a function of the metals (Mn-Zn) and
the bridge ligands coupling them: Polymeric [(Mn(C,H,)],
is an insulator, [Zn(B,H,)], an electrical conductor. The
syntheses of oligodecker sandwich compounds with carbacycles have hitherto only led to triple-decker compounds,'21
whereas with the electron-deficient 2,3-dihydro- 1,3-diborolyl ligand it has been possible to synthesize tetra-, penta-,
and hexadecker-complexes of type 1 ( n = l-3).[31These results and the unusual conversion of bis(2,3-dihydro- 1,3-diboro1e)nickel sandwich complexes into the oligode~kers'~'
2 ( n = 1-8) at room temperature demonstrate that the 13e
fragment [Ni(R,C,B,)] is an electronically favorable stacking unit. We report here on the synthesis and properties of
the first polydecker sandwich compound 3.
Ni
1
Ni
Ni
Ni
2
3
1
co
1
['I
[**I
Prof. Dr. W. Siebert, Dr. T. Kuhlmann
Anorganisch-chemisches Institut der Universitat
Im Neuenheimer Feld 270, D-6900 Heidelberg I (FRG)
Dr. S. Roth
Max-Planck-lnstitut fur Festkorperforschung
Heisenbergstrasse I. D-7000 Stuttgart 80 (FRG)
Prof. Dr. J. Rozikre
Laboratoire des Acides Mineraux
Universite des Sciences et Techniques du Languedoc
F-34060 Montpellier Cedex (France)
This work was supported by the Deutsche Forschungsgemeinschaft. the
Land Baden-Wiirttemberg (Schwerpunkt Nr. 3 1 - Komplexchemie), the
Fonds der Chemischen Industrie, and BASF AG.
0 VCH Verlagsgesellschoft mbH. 0-6940 Weinheim, 1986
0570-0833/86/0l01-0105 $ 02.50/0
105
Документ
Категория
Без категории
Просмотров
1
Размер файла
251 Кб
Теги
crystals, structure, compounds, ethers, allyllithium, diethyl, diphenylallyllithium
1/--страниц
Пожаловаться на содержимое документа