close

Вход

Забыли?

вход по аккаунту

?

Cyclopentadienone Complexes as Five Membered Ring Synthons Ring- and Regiospecific Nucleophilic Additions to Cobaltocenium Salts and Elaboration to Substituted Cyclopentadienes and Cyclopentenones.

код для вставкиСкачать
Table 1.
This manuscript is
to be cited as
Angew. Chem. Suppl.
7982, 1360- 1372
Dieses Manuskript ist
zu zitieren als
Angew. Chern. Suppl.
7982, 1360-1372
0Vrrlag Chemie GmbH, D-6940 Wetnheirn. 1982
0771 4727/82/0808136(WM.5010
Cyclopentadienone Complexes as Five Membered Ring Synthons:
and Cyclopentenones
**
t values
[250
58%; yellow needles; m.p.
5.80
(S,
(S,
(Gj:
(9,
noid natural products/l/ particularly those exhibiting
Professor
red oil; 'H-NMR:
J =
2.4H2, lH), 2.52 (qd, J
=
3H), 4.76 ( s , 5H).
0.40 (d, J = 6 . 6 H 2 ,
3H), 0.45
J = 6.6, 2.4H2, lH), 3.42 ( s , 3 H ) ,
4.28
(9,
2H), 5.17
(dd, J = 2.0, 2.OHz. 2H).
oil; 'H-NMR:
0.39
(s, 9 ~ ) .0.49 ( s , 9~).0.99
(t, J = 6.OHz. 3H), 1.33 (m, 8H). 1.94 (m, Z H I , 2.34
~~
K. P. C. Vollhardt,
Dr.
(9,
181i), 2.80 (ddd, J = 2.4, 2.0, 2.OHz, 2H), 2.90 (qt,
( 2 ) :red
~
0.31 ( s , 9H), 0.39 (d, J = 6.3Hz.
9H), 2.26 (d.
6 . 3 , 2.4H2, lH), 3.55
The recent emergence of a variety of novel cyclopenta-
192-193°C: 'H-NMR
5H).
red o i l ; 'H-NMR:
3H1, 0.42
By Jcftrey P. Tane and K . Peter C. Vollhardt
(21I.
MHz, C6a6, except for
(CD3CCCD31: 0.46 ( s , 18H). 1.90 ( s , 3H), 5.60 ( s , 2H),
(2):
c e n - i n ) Salts and Elaboration to s
u
b
s
t
i
t
u
t
e
d
-
(Qb),
gave Satisfactory analytical data and/or mass spectra.
'H-NMR:
(2):
Ring- dnd Regiospecific Nucleophilic Additions to Cobalto-
(A:),
Physical data of compounds (21,
(w),
(GI, (z),
(z),
and ( 2 ) .All new compounds
Dr.
J. P. Tane
(d, J = ?.7Hz, 1H1, 3.17 (dd, J = 2.7, 2.7H2, 1H1, 3.61
3H), 4.74 ldd.
15.3, 7.7H2, 1HI. 4.78 ( s , 5 H ) . 5.15
Department of Chemistry, University of California,
(6,
Berkeley; Materials and Molecular Research Division
(dt, J = 15.3, 6.6H2, 1H); I R (neat):
kiwrence Berkeley Laboratory, Berkeley, California
(31: red crystals;
94720
0.44 ( s , 981, 2.43 (d, J = 2.7H2, lH), 3.21 ( s , 3H), 3.32
tt
This work was supported by the National Institute of
flealth (GM 22479).
K. P.
C.
V. is a Camille and
J
=
wc=c 960 cm-'.
60-61'C; 'H-hXR:
m.p.
0.41 ( s , 9H),
(d, J = 2.7, 181, 3.65 f s , 3H), 4.71 ( s , 5 H ) ;
IR (neat)
2253 an-'.
vczc
llenry Dreyfus Teacher-Scholar (1978-1983)
- 1360
-
1362
-
Continued f r o m previous page.
Table 1.
physiological activity has led to a renaissance in
-
synthetic approaches to five membered ring compounds. /2/
Most of these are based on intramolecular condensations,/ 2 /
red oil;
(2):
some have utilized three-carbun annulation methods,/3/ some
dd, J
13+21 cycloaddition chemistry,/4/
3.4H2, 1H), 3.59
few have relied on
transition metal mediated or controlled carbon-carbon bond
formatrons./1,5/
We have reported on a convenient regio-
0.26 ( s , W , 0.45
'H-NMR:
( s , 9 ~ 1 2.12
,
14.3, 1.882, lH), 2.14 (m, 1H1, 2.53 (dd, J
(5,
14.3,
=
4.76 (S, 5H); IR (CC14) vC-H exo
3H),
2149 a
n-'.
1s): 'H-NMR:
0.18 i s , 9 H ) . 2.61 (m, lH), 3.07
(5,
3H).
specific one step, photochemical entry into trimethylsilyl-
4.01 (d, J = 2.482. lH), 4 . 6 0 (s, 5H), 4.66 (dd, J = 2.3,
ated cyclopentadienones based on the L2+2+21 cycloaddition
1.7H2, 1H1, 4 . 7 0
(dd, J = 2.4, 2.3Hz. 1H).
of two alkyne units and carbon monoxide in the coordination
(A):
'H-NMR:
sphere of cobalt./6/
2.5H2, lH), 2.94 (m. 1H). 3.29 ( s , 3H), 3.41 (dd, J = 2.5,
We now describe the exploitation of
0.20
the complexed metal in these systems as an electronically
2.5Hz, lH), 4.55
stabilizing and sterically directing group,/7/ the first
(z):'H-NMR:
systematic evaluation of the regiospccificity of nucleophil-
4.73
ic
additions to substituted cobaltlcinium salts, / 8 /
and the
(%I:
IS,
(5,
(8,
9H). 2.32 (ddd. J = 2.7, 2.6,
SH), 5.12 (dd, J = 2.7, 1.4H2, 1H).
0.19 ( s , 9H), 2.74 (m, 2H), 3.60 ( s , 3H),
5H), 4.94
(dd, J
=
2.3,
2.3Hz. 2H).
0.16 ( s , 9H). 2.73 (ddd, J = 2.5, 2 . 0 ,
'H-NMR:
ultimatc elaboration of the produrts to substituted cyclo-
2.OHz, Z H ) , 3.17 ( s . 3H). 3.75 (t, J
pentadirnes and cyclopentenones.
(dd, J = 2.3, 2.3H2, 2H), 4.59 (dd, J
w c chose complex
(L1 / 6 .
bearing the synthetically
useful n-trimethylsilylmoletles / 9 /
2.5, 1H1, 3.88
=
=
2.3, 2.3H2, 2H),
2H).
5.18 (dd, J = 2.0, Z.OHz,
as a starting p l n t
from which to obtain more elaborately functionalized five
compound could then be treated with alkyllithium reagents
membered rings.
Initial e x p e r m n t s showed the molecule to
(-78OC) to give the red (3) and
~
be remarkably resilient to organometallic reagents
ICH3C1I2MgC1 or (CH3)2CuLi]. /lo/ However, activation with
heat
respect to nucleophilic attack was achieved by methylation
of the carbony1 function I(cH~)~o+BF~.
CH2C12, RT1 to give
( 2 ) isolated as the tetrafluoroborate salt (Table 1). Thls
- 1361
-
(4) (Table 1.2)
~
quantitatively.
(1) with
Synthetically more advantageous was to
(CH3l2SO4 (C6H6, BO'C,
the sulfate which was not isolated.
10hl to give
( 2 ) as
The solvent was then
replaced by THF and the alkyllithium added to give the
-
1363
-
of note is the stereoretention associated with the
formation of )
d
&
(
and ( L d ) , suggesting the occurrence
of a true nucleophilic mechanism, rather than the intermediacy of vinyl radicals derived from electron
transfer /12/.
yields shown in Table 2 .
(2)and (41,
(>):(4)
by
The structure of the products
consequence, although increasing the solvent polarity and
particularly the anticipated /7,8/ E-
decreasing the reaction temperature gave relatively more
stereochemistry at the chiral carbon were fully
(2) /13/
corroborated by spectral data (Table 1).
-120'C
The observed ring selectivity (Table 2) is clearly
exerted by the trimethylsilyl groups on the regiochemical
It is particularly
outcome of the above nucleophilic additions the parent
instructive to observe the selectivity switch-over in
zand &-1-octenyl-1-lithium
[n'-C5H51 1q'-cyclopentadienone]
(2) and
cobalt /6/ was methylated
treated with several lithioreagents to give
furnishing (3C.s)
and (3d.s)
respectively.
.
to give
Since both vinyllithium species would be expected to have
the four possible (unseparated) adducts
yield.
change in product ratio is most easily accommodated by
Nucleophilic additions to
The data reveal that as the nucleophile
proceeding through
An
additional point
- 1366
- 1364 -
Table 2 .
( 5 )- (9)(Table 1)
/14/ in varying amounts (Table 3) but good overall combined
very similar basicity /11/ and nucleophilicity, the
invoking a steric factor, the =-anion
34:66; at
Utilization of
In order to remove any influence which might be
steric factors force relatively bulky nucleophiles to
a more hindered reaction trajectory.
=
59:41].
=
limited effectiveness.
substituted ring (statistically disfavored), whereas
the reactions of
1e.g. at 25-C in c6H6 (Ac):(qC)
in TfiF-CH3CCH3 (&):(Lc)
~ I ' - C ~ ( C H ~in
) ~(1)instead of n5-C5H5 was of similar
indicative of an electronic preference to attack the
add to the unsubstituted ligand.
Attempts to affect the product ratios
variation in reaction conditions were of little
(2)
-
to give
(3)and ( -5 )
becomes less bulky, again increasing attack occurs
at the methoxysubstituted ring.
Relative
Compound Yield
Isolated
(3) 44)
:(Q) Yield ( 0 )
-
-
However, the
regioselectivity is now for the position a
(1)
R
Table 3. Nucleophilic additions to
(2) to
give ( 6 )
~
-
(9)
~
Alkyl
Alkenyl
Alkynyl
q-C6H13CH=CH (trans)
__
85
c-C6Hl3CH'CH
(Ci
5)
-
80
?-C6Hl3-CEC
95
TMS-CIC
83
CH30-CEC
92
t-BUO-CEC
94
C6H5S-CEC
89
Cl-czc
79
to the substituent, an effect particularly and
Hydride
10 0
H
unexpectedly pronounced for the bulky t_-butyl group.
Evidently, there is a subtle interplay of steric, charge,
and orbital control in these reactions. Extended Huckel
MO
calculations reveal that the
LUMO
of ( 2 ) has the
largest coefficient at the carbon a to the methoxy group,
but that there is more positive charge at the B carbon.
- 1365 -
- 1367
-
The synthetic relevance and potential of the above
approach to substituted complexed five-membered rings
is demonstrated by their oxidative decomplexation under
various conditions.
Thus, treatment of
(2)
with
CuC12-
/1/
See the referencesin B. M. Trost, T. A. Runge,
J. Rm. Chem. SOC., 103, (1981) 7559.
/2/
R. A. Ellison, Synthesis (1973) 397.
/3/
T. Hiyama, M. Shinoda, H. Saimoto, H. Nozaki,
4,
2H20 (1 equiv., CH3CN, -4OOC) followed by the addition
Bull. Chem. SOc. Jpn.
of solid oxalic acid dihydrate ( 3 equiv., -40'0
C. D. Radcliffe, Tetrahedron Lett. (1980) 4397;P. Prempree,
warming to 0°C gave
(lo)(62%).
and
Instead of added oxalic
acid, excess CuC12-H20 ( 2 . 5 equiv., CH CN, DOC) suffices
to effect a similar transformation of
( 2 )to (2)
(70%).
Remarkably, the free dienes including the very sensitive
(1981) 2747: M. E. Jung,
T. Siwapinyoyos, C. Thebtaranonth, Y. Thebtaranonth,
ibid., (1980) 1169; A. Greene, J.-P. DeprOs, J. Am. Chem.
--
SOC. 101, (1979) 4003.
/4/
See, for example, H . Klein, H. Mayr, Angew. Chem.
93,
(1981) 10691 Angew. Chem. Int. Ed. Enql. 20, (1981) 1027.
A. Bou, M. A. Pericss, F. Serratosa, Tetrahedron Lett.
/5/
23,(1982)
46,
361; N. E. shore,
M.
C. Croudace, J. Org. Chem.
(1981) 5436; R. F. Newton, P. L. Pauson, R. G. Taylor,
J. Chem. Res. (Sl (1980) 277: (M) (1980) 3501:
Pearson. M. Chandler, Tetrahedron Lett.
21,
J.
A.
(1980) 3933;
T. Hudlicky, F. J. Koszyk, T. M. Kutchan, J. P. Sheth,
J. Org. Chem. 45, (1980) 5020; R. C. Larock, K . Oertle,
G. F. Potter, J.
Am.
E , (1980) 190;
M.101, (1979) 6429; Y .
Chem. Soc.
Trost, D. M. T. Chan,
B.
M.
Ito,
H. Aoyama, T. Hirao, A. Mochizuki, T. Saegusa, _
ibid.
_ -101,
(19791 494; R. Grigg, T. R. B. Mitchell, A. Ramasubbu,
J. Chem. Soc.,Chem. Corn. (19791 669; J. L. Roustan,
J. Y. Merour, C. Charrier, J. Benaim, P. Cadiot,
J. Organomet. Chem.
E, (1979) 61; H. Schmid, P.
61, (1978) 1427;
Naab,
K. Hayakawa, Helv. Chim. Acta..
- 1368 -
- 1370 -
free diene ligand from (ae) are available without
Y. Hayakawa, K. Yokoyama, R. Noyori, J. Am. Chem. SOC.
rearrangement by reaction with FeCl3*6H20 (87%,CHJCN,
100,
-40°C).
The cyclopentenone
(2)could
be generated
(1978) 1799: W. Best, B. Fell, G. Schmitt, Chem. Ber.
109 (1976) 2914:
quantitatively when the exposure of ( 3 3 1 to Fe3+ is
9 (1976) 209.
followed up by addition of oxalic acid, without the
/6/
isolation of any intermediates. Finally, the methoxy-
Rngew. Chem.
acetylene complex (3)is directly converted to
19,
~~
(13)
(75%) by decomplexation with FeC13*6H20followed by
treatment with dilute
sulfuric acid.
Application of
E. Weissberger, P. Laszlo, ACC. Chem. Res.
E. R. F . Gesing, J. P. Tane, K. P. C. Vollhardt,
92,
(1980) 1057; Angew. Chem. Int. Ed. Engl.
(1980) 1023.
E. Sheats, J. Organomet. Chem. Libr.
/7/
J.
/8/
S . G.
this methodology to natural product synthesis is under
Tetrahedron, '4 (1978) 3047.
active investigation.
/9/
95,
G. Stork, B. Ganem, J. Am. Chem. SOC.
R. K. Boeckman, ibid.
G.
Stork, T. Singh,
/lo/
I, (1979) 461.
Davies, M. L. H. Green, D. M. P. Mingos,
95
(1973) 6867;
96
(1973) 6152;
(1974) 6179;
u,
96, (1974) 6181.
yC4H9Li-TMEDA led to butylation of the niC H -ring.
5 5
For a possibly related butylation of qCC6H6Cr(CO13:
R. J. Card, W.
S.
Trahanovsky, J. Org. Chem.
e, (1980)
2555.
/11/
P. v. R. Schleyer, J. Chandrasekhar, A. J. Kos,
T. Clark, G. W. Spitznagel, J. Chem. Soc.,Chem. Comm.
(1981) 882.
/12/
At the Concentration of reactants employed,
considering our analytical accuracy in detecting the presence of double bond isomerization (ca. 1%) and the measured
very fast rate of inversion of vinyl radicals IR. W.
Fessenden, R. H . Schuler, J. Chem. Phys.
2,
(1963) 21471
the coupling rate of the intermediate radicals,were they
- 1369 -
- 1371 -
to be formed in our system, would have to be prohibitively
= 1012M -1 sec-l).
Kronenether mit tensidtypischen Strukturelementen sind
fast (kestimted
/13/
eine neue Ligandgeneration /la/, die im Bereich des Energie-
Charged hydride donors have also been found to add
transports, der -speicherung sowie in der organischen Halb-
progressively to the more hindered position o n lowering
leiter- und F l i l s s i g k r i s t a l l - T e c h n i k praktische Anwendung
reaction temperatures in a substituted ns-cyclohexadienyl-
versprechen /lb/. Ein ausgewogenes Zusammenspiel von Komple-
tricarbonyl iron cation: A. J. Birch, G.
xierung und Aggregationsflhigkeit ist dafiir Voraussetzung.
J. Organomet. Chem.,
/14/
The 'H-NMR
218
R.
Stephenson,
(1981) 91.
Die sinnvolle Abschiltzung von Wirkungsparametern wird sich
assignments for ( 9 - ( 9 1 are based on
an Strukturbestimmuligen orientieren miissen. Wir berichten
relative integrations, decoupling studies, and comparison
with models
erstmals iiber die Molekiilstruktur und den Ordnungszustand
(2) and (4).
eines Tensidkronenether-Alkalimetallionkomplexesim Kristallgitter.
Received April 1 4 , 1 9 8 2 / Z 10
S/
Der+Ligand
1 /2/
bildet mit NaSCN aus Aceton/Ether einen
stachiometrischen 1 : l - (Ligand:Salz) Komplex (Ausb. 75%.
farblose Plilttchen mit Fp= 75-77'C).
Zur Rantgenstrukturun-
tcrsuchung gecignete Kristalle wurden durch langsames Abt1:iiiilii
- 1372
>..:. 'Icisung erhalten. Die Verbindung kristalli-
- 1374
1
I
~
-
I
Dieses Manuskript ist
zu zitieren als
Angew. Chem. Suppl.
1982,1373- 1384
j.o
This manuscript is
to be cited as
Angew. Chem. Suppl.
1982,1373-1384
-
siert in der Raumgruppe Pi (triklin) mit Z=2 und den Gitterkonstanten a- 8 0 5 . 6 ( 2 ) pm, b= 1073.8(2)
a= 99.88(2)4, 13- 91.42(2)O,
'I=
pm, c - 2 6 1 0 . 7 ( 4 )
93.39(2)";
pm,
berechnete Dichte
= 1 . 0 2 3 g.cm-' / 3 / . Atomkoordinaten und B -Werte der Nichteq
wasserstoffatome sind in Tab.1 zusammengefaBt, Bindungsab-
OVeriag Chemie GmbH. 0-6940Weinheim. 1982
0721 -4227/82/0808-1373602.50/0
stlnde und -winkel in den Tabellen 2 und 3 . Tab.4 listet die
anisotropen Thermalparameter der Nichtwasserstoffatome auf.
Doppelschichtbildung mit einem Tensidkronenether-Komplex:
t
NaSCN
f
5
**
Der molekulare Bau des Komplexes lXBt sich i m Sinne klassischer Regeln fur ein Amphiphil beschreiben. Eine polare
Van MStyas Czugler. Edwin Weber *
, Alajos KPlmSn, Birgitta
Molekillregion wird durch die salrkomplexierte Kronenetherkopfgruppe bereitgestellt, zwei Dodecyl-Seitenketten halten
Stensland und LPszl6 PPrkanvi
die Lipophiliebalance aufrecht
.
Innerhalb des Kronenetherteils werden Verhlltnisse vorgeDr. E . Weber +
Institut fur Organische Chemie und Biochernie
der Universitlt Bonn
Gerhard-Domagk-StraBe 1 , D-5300 Bonn 1
Dr. M. Czugler, Prof. Dr. A. KSlman, Dr. L. PPrkSnyi
Central Research Institute for Chemistry
Hungarian Academy of Sciences
H-1525 Budapest 114, P.O.B. 17 (Ungarn)
Dr. B. Stensland
Universiflt Stockholm, Arrhenius Laboratorium
S-106 9 1 Stockholm (Schweden)
'
Korrespondenzautor
funden. die dem Na+-Komplex der unsubstituierten [ISIKrone-S
weitgehend entsprechen/4/: Regulare Makroringkonformation
nit einer sich wiederholenden Torsionswinkelsequenz 9 , 3.
9,a ~ 2,
, 3;alle fUnf Ethersauerstoffe sind an das Na+-Ion
gebunden (mittlerer Abstand 243 pm); das Kation ist um 5 7 pm
aus der Kronenetherringebene in Richtung auf das SCN--Ion abgerilckt (siehe Fig.1).
Na+ unterhillt auch die einzige fest-
stellbare Wechselwirkung mit dem SCN--Ion "a+.
.. N
233.4(4)
pml .
Die Geometrie der Schwanzgruppen ereffnet insofern Uber-
t
.
Prof. Dr. P. Kierkegaard (Stockholm) sind wir fur Diskussionsbeitrlge dankbar, der Hungarian Academy of
Sciences fur ein Reisestipendium, der Royal Swedish Academy fur finanzielle Unterstiitzung und Computermelizeit.
- 1373 -
raschendes, a l s sie sich konformativ wesentlich voneinander
unterscheiden: Wilhrend die in Bezug auf die Kronenetherringebene pseudoaxial abstehende Kette ("y-Kette"
- 1375
-
mit Ausnahme
Документ
Категория
Без категории
Просмотров
1
Размер файла
277 Кб
Теги
regiospecific, ring, complexes, cyclopentadienyl, salt, synthons, cyclopentenones, membered, additional, five, elaborating, substituted, cobaltocenium, nucleophilic
1/--страниц
Пожаловаться на содержимое документа