close

Вход

Забыли?

вход по аккаунту

?

Di(1-pyridinio)- and Di(1-bipyridindiio)-dihydrodibenzotetraaza[14]annulenes.

код для вставкиСкачать
building blocks (e.g. Cp(C0)Rh) and ligands (e.g. vinylidene).r141
Received: February 13, 19x9 123176 IE]
German version: Angew. Chem. 101 (1989) 1084
111 H. Vahrenkamp, Adv. Orgunomel. Chem. 22 (1983) 169.
[2] M. D. Vargas, J. N. Nicholls, Adv. fnorg. Chem. Radiochem. 30 (1986) 123.
[3] H. Vahrenkamp in H. Werner, G . Erker (Hrsg.): Organomerallics in Orgunic Svnrhesis. Springer, Heidelberg 1989, p. 235.
[4] P. L. Bogdan, C. Woodcock, D. F. Shriver. Organometul/ic.s6 (1987) 1377.
and references cited therein.
151 M. Tachikawa, E. L. Muetterties, Prog. fnorg. Chem. 28 (1981) 203.
[6] J. F. Blount, L. F. Dahl, C. Hoogzand, W. Hiibel, J. Am. Chrm. Soc. 88
(1966) 292.
171 a) M. A. Andrews, H. D. Kaesz, J Am. Chrm. Soc. 101 (1979) 7255; b) E.
Keller, D. Wolters, Chem. Ber. /17 (1984) 1572.
[8] E. J. Wucherer, H . Vahrenkamp, Angew. Chem. 99 (1987) 353; Angew.
Chem. Int. Ed. Engl. 26 (1987) 355. For derivatives of cyclic azoalkanes cf.
A. Albini, H. Kisch, Top. Curr. Chem. 65 (1976) 105.
[Y] R. D. Adams, J. E. Bdbin, M . Tasi. Inorg. Chem. 25 (1986) 4514; h i d . 26
(1987) 2807.
[lo] Amounts of starting materials ca. 0.25 mmol (Za, Zb) or 0.03 mmol (Zc),
each in 100mL of hexane. Irradiation with Pyrex-filtered light of an
immersed Hanau TQ-150 W Hg-high pressure lamp for 48 (Za), 17 (Zb),
and 2.5 h (Zc), respectively. Work-up by chromatography on silica gel with
hexane. to which CH,CI, was gradually added (up to 10%).
[ l l ] B. F. G . Johnson, J. Lewis, K. T. Schorpp, J. Organomet. Chem. 91 (1975)
C13.
[12] Za: 1R (hexane) i = 2055(s), 2030(vs), 1987 cm-I (w); ' H N M R (CDCI,,
int. TMS): 6 = 2.98. Zc: IR: C = 2096(vw), 2070(vs), 2036(vs), 2021 (m).
1993(sh), 1987(m), 1937 c m - ' (w); 'H-NMR (CD,CI,): 6 = 3.94 (m.
2H),3.20(m,2H), 1.11 (t. J = 7 . 0 H z , 6 H ) .
[13] Za:orthorhombic,Pnma,a = 1281.1(4),b = 1321.6(2),c = 1178.9(2)pm.
Z = 4. 1602 reflections. R = 0.049; Zb: monoclinic, P2,/n, a = 949.2(2),
h = 1764.1(4). c = 1417.0(3)pm, D = 98.34(2)'. Z = 4, 3783 reflections,
R = 0.022. Further details of the crystal structure investigations are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft fur wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2 (FRG), on quoting the depository number CSD53632, the names of the authors. and the journal citation.
[I41 T. Albtez, H. Bantel, H. Vahrenkamp, unpublished.
per conductor^.['^^ Two compounds of the porphyrin and
porphyrazine series,[141which approximate the Little models, have been investigated as catalysts for the photoreduction of water. We report here on the synthesis of dibenzotain two pyridinio- o r bipyridindiio-moieties and thus are
prospective redox systems for the investigation of lightprospective redox systems for the investigation of lightinduced electron transfer and as models for organic superconductors.
Hitherto, only diazepines had been obtained in reactions
of vinamidinium salts (which can easily be prepared with a
large variety of substituents) with 1,2-diamines.[' 5 , l 6 ] We
have now found that tetraaza[l4]annulenes 11 can be prepared from the 2-( 1-pyridinio)vinamidinium salts 1-3 as
well from the 2-phosphonio-vinamidinium salt 5" 'I and ophenylenediamine. The 2-( 1 -pyridinio)-vinamidinium salts 1
and 3 (for physical data of the new compounds see Table 2)
and the benzothiazoliovinamidinium salt 4 were prepared in
good yields according to the method described by Lloyd et
aLrl for 1 a ( R = R" = R"' = H)[' 5 ,
by reaction of the
corresponding N-carboxymethylpyridinium salts with dimethylformamide/phosphorus oxide chloride. The N,N'bis(carboxymethyl)-4,4'-bipyridinediium dibromide employed for the synthesis of 3 was obtained by hydrolysis of
the dimethyl ester, which in turn was prepared by reaction of
4,4'-bipyridine with methyl bromoacetate; the method of
Michaelis and Hill['91did not lead to the desired compound.
No salt 1, R,R"' = H, R = Me, could be isolated upon
reaction of N-carboxymethyl-y-picolinium chloride with
dimethylformamide/phosphorus oxide chloride; 2 was
formed directly.
As a new derivative of viologen, 3 can be reversibly reduced to a radical trication and a dication (see Table 1).
Position 2 in vinamidinium salts carries a negative partial
charge. It is therefore surprising that the (reversible) reduction of 3 proceeds more easily than that of methylviologen
Di( 1-pyridini0)- and Di( 1-bipyridindii0)dihydrodibenzotetraaza[ 141annulenes **
Me2?IyNMe2
m
By Florian Adams, Rudolf Gompper,* and Eckardt Kujath
Dedicated to Professor Christoph Riichardt on the occasion of
his 60th birthday
Derivatives and metal complexes of porphyrin 1' 41 and
thus of the structurally related phthalocyanine['have attracted great interest for some time as redox catalysts (inter
aha for fuel cells), synthetic oxygen storage systems, molecular metals, and discotic mesophases. Porphyrins which are
coupled covalently with an electron acceptor (quinone,l6l
ferrocene,"] viologen,@]arene ['I) have recently gained special importance as models for light-induced electron transfer.
The use of such systems as molecular shift registers has also
been proposed.["] Tetraaza[l4]annulenes (cf. Refs. [2,4, 11,
121) have properties similar to those of porphyrins and
phthalocyanine. Interest therefore attaches to new derivatives of these three classes of compounds because, inter alia,
metal complexes of such systems which bear cationic substituents basically fulfill all the prerequisites for organic su[*] Prof. Dr. R. Gompper, Dipl.-Chem. F. Adams, Dr. E. Kujath
Institut fur Organische Chemie der Universitdt
['I
[**I
Karlstrasse 23, D-8000 Miinchen (FRG)
Present adress: Cassella AG, Handuer Landstrasse 526,0-6000 Frankfurt
am Main 61 (FRG)
This work was supported by the Deutsche Forschungsgemeinschaft and
the Fonds der Chemischen Industrie.
1060
VCH Verlagsgesellschafi mhH, 0-6940 Weinheim, 1989
2 clop
1, 11, 12
R
R
K"
a
H
CO,Me
H
H
Co,Me
H
H
H
H
H
H
H
b
C
H
d
CH = C H - C,H,
CH = C H - C,H, - NO, @)
NMe,
4-pyridyl . HBF,
4-pyrtdyl
-CH = C H - C H = C H H
(1-methyl-4-pyridyl)eBFp
e
['I
5
4
f
Ig
Ilg, 12g
h
i
Ilk
0570-0~33jsYj0808-1060B 02.50jO
Angew,.
H
H
H
H
H
H
H
-CH = C H - C H = C H H
H
Chem. Int. Ed. Engl. 28 (1989) No. 8
Table 1, Redox potentials of 1g, 3,9, 11k, 12 k-Ni, 12 k-Cu (cyclovoltammetry
in (i) DMF, (ii) CH,CN/O.I M n-BuN,PF,, Pt-electrodes versus Ag/AgC1/3 M
NaCI).
11k
0.05
- 0.45
- 0.25
- 0.24
- 0.25
0.59
0.59
- 0.60
~
1Zk-Ni
~
12 k-Cu
1.9 x 10' (ii)
2.7 x lo5 (ii)
8.9 x 10' (i)
5.8 x lo5 (i)
8.6 x lo5 (i)
8.6 x lo5 (i)
- 0.12
- 0.49
- 0.27
- 0.86
1g
3
9
(El = - 0.67 V, E, = - 0.26 V ; cf. Ref. [20]). One would
have rather expected a similarity with 9 and bipyridinediylidest2'] ( E l z - 0.8 V, E, z - 0.6 V). In contrast, the
reduction of 1 g takes place in the normal range.
Reaction of l a with malononitrile in the presence of
Hiinig base affords the orange colored ylide 6,which should
attract attention for applications in the area of nonlinear
optics. Upon heating a mixture of 1 a and 2,3-dimethylbenzothiazolium tetrafluoroborate under analogous conditions
the blue cyanine dye 8 is obtained. The nova1 viologen
derivatives 9 and 10 are obtained on reaction of 3 with sodium hydroxide and methylhydrazine, respectively. Heating of
1 a with p-phenylenediamine in methanol leads to 7 and not
to a polymeric condensation product.
NC
@
CN
6
7
pyridinio-12'] and bipyridinio-substituted porphyrins.[221
11 k is formed upon reaction of 11 g with trimethyloxonium
tetrafluoroborate.
Especially interesting is the reaction of 3 with o-phenylenediamine. A practically insoluble product is formed, which,
on the basis of an elemental analysis and the IR spectrum, is
ascribed the structure 13. The compounds 11 are red, whereas 13 is black.
2 BFP
1"
Reaction of the phosphoniovinamidinium salt 5 [ " ] with
o-phenylenediamine leads to formation of the [I41annulene
Of the two vinamidinium systems in 2,
derivative 14 a.
only that in position 4 reacts with o-phenylenediamine, and
there results the red salt 14b in which the pyridinium ring is
coupled to the [14]annulene ring via C-4 and not as in 11 via
the N atom. The signals of the protons of the dimethylamino
groups appear in the 'H NMR spectrum of 14b at 6 = 2.65
and 3.38 and thus at almost the same field as in the spectrum
of 1 a (2.47, 3.40). The electronic spectrum of 14 b, like that
of 1 a, shows an intense absorption maximum at 306 nm; no
maxima are found in this region in the spectra of 11 - 14 b
reacts with methylhydrazine (in excess) to give the dark red
pyrazole derivative 14c.
~
R
I
?
o Y o @
10
gA
N-N
R'
LOR J (
I
2B F ~
1
R
14a:
a3
R=PPh3C104@
\
Me
R"'
R'
By reaction of the vinamidinium salts 1a-h with o-phenylenediamine (1 i reacts only under template conditions, see
below), it was possible to prepare the dipyridiniodibenzotetraaza[l4]annulenes 11, which are comparable with the
AIzgen. Chem. In[. Ed. Engl. 28 (1989) N o 8
Q VCH
Like other dihydrodibenzotetraaza[l4]annulenes,~'
',2 3 1
the pyridinio derivatives 11 can be converted into their Ni-,
Cu-, Co- and Fe-complexes 12 by heating with metal@) acetates in dimethylformamide; the complexes are also formed
on reaction of 1 with o-phenylenediamine in the presence of
the metal acetate (cf. Ref. [24]). 12i can be prepared only in
this way. The electronic spectra of 12 show bathochromic
shifts of the longest wavelength absorption maxima and of
the Soret bandscz3. at 350-400 nm compared to those of
11.
The complexes 12 have practically the same (cyclovoltammetrically determined) redox potentials (see Table 1) as the
metal-free compound 11 k, and both differ very little in this
respect from methylviologen.'201 The measurement of the
electrical powder conductivity
(4-electrode measurement,
1800 kp) shows that the complexes 12 investigated are insu-
Verlagsgesellschafi mhH, 0 - 6 9 4 0 Weinheim, 1989
0570-0833jSSjO80X-1061S 02.50/0
1061
Table 2. Some physical data of the new compounds
~
1 b:
lc:
1d:
1 e:
If:
1g:
1h:
li:
2:
~~
yield71%;m.p. = 212-213°C; U V j V I S ( D M S 0 ) : i.mxx(Igc)
= 290 nm (4.26, sh), 310 (4.49)
yield 81%; m.p. = 185-186'C
yield 42%; m.p. = 242 'C; UV/VlS (CH,CN): j.mox(lgc)
= 254 nm (4.14). 305 (4.61). 370 (4.57)
yield 6 8 % ; m.p. = 276°C; UVIVIS (CH,CN): imsx(1g~)
= 307 nm (4.65). 354 (4.63)
yield 71 %; m.p. = 276-278'C; UViVIS (DMSO): 2,,,dx(lg
I:)
= 304 nm 4.68)
yield 69%; m.p. = 270'C; UVjVIS (H,O): L,,,(lgE)
= 276 nm (4.53). 304 (4.59), 372 (3.26)
yield 75%; m.p. = 256-257'C
yield 78%; m.p. = 260-261 ;'C
yield 69%; m.p. = 171-172°C; 'H-NMR (D,O): 6 = 2.60
11k . H,O:
1Za-Ni:
12a-Cu:
1Za-Co. H,O.
1Za-Fe :
(~;6H.NMe),3.23(~;6H,NMe),3.40(~;6H,NMe),3.67(~:
6H , NMe), 7.53-9.30 (AA'BB; 4 H , pyridinio-H), 7.70 (s;
12c-Ni:
2 H , CHNMe,), 8.30 ( s ; 2H, CHNMe,); UVjVIS (H,O):
3:
i.,.,(lg&) = 250 nm (4.02). 302 (4.60). 351 (4.17). 397
(4.48)
yield 72%; m.p. = 290-292°C; 'H-NMR (D,O): 6 = 2.63
1zc-cu:
IZd-Ni . H,O:
(~;12H,NMe),3.47(S;12H,NMe),7.93(~;4H,CHNMe,),
4:
6:
7:
8:
9:
10:
Ila:
11b:
llc:
lld:
lle:
Ilf:
l l g . H,O:
11h:
8.83-9.43 (AABB; 8 H, pyridinio-H); UVjVIS (H20):
E ) = 286 nm (4.67), 305 (4.70), 437 (3.64)
imBx(lg
yield 49%; m.p. = 221-222°C
yield 69%; orange needles, m.p. = 307-308 "C
yield 64%; red powder, m.p. = 185 "C; UVjVIS (DMSO):
J.,,,ax(lgc) = 265 nm (4.09), 286 (4.1 l), 363 (4.35)
yield 8 3 % ; violet powder, m.p. = 334°C; UVjVIS (DMSO):
i.,,,(lgE) = 332 nm (4.27), 586 (4.81). 626 (5.23)
yield 61 %; UVjVlS (CH,CI,): ,l,.,(lg c) = 250 nm, 489;
(MeOH) = 253 (4.68). 436 (4.02); (H,O) = 254 (4.82). 405
(3.87)
yield 29%; m.p. = 287-288°C. UVjVIS (CH,CN):
kmax(k?
E)
= 214 nm (4.23), 235 (4.11). 295 (4.08), 357 (4.43)
yield 81 YO; red powder, Zers. ah 355°C; 'H-NMR
([D,]DMSO): 6 = 7.05-7.55 (m; 8H, Benzo-H), 8.13-9.38
(m; 14H, pyridinio-H, C H = N und =CH-N), 14.59 (1.
J = 7.0 Hz; 2H, NH); IR (KBr): v' = 1650 cm- ', 1595,1560,
1085; UVjVIS (DMF): i.,Ar(lg&)
= 360 nm (4.63, sh), 371
(4.73). 408 (4.39). 428 (4.32, sh)
yield 31%; m.p. = 280-282X
yield 74%; m.p. = 295'C
yield 88%; dark-red powder; UVjVIS (DMSO): i,,,(lg E )
= 360 nm (4.98). 372 (4.98). 410 (4.49), 432 (4.50), 460 (4.38)
yield 37%; blue-violet crystals; UVjVIS (DMSO):
i,,,(Ige) = 360 nm (5.01), 428 (4.42), 490 (4.33)
yield 21%; red powder; UVjVIS (DMF): J.max(Ig&)
= 289 nm (4.74). 362 (4.75, sh). 375 (4.82). 415 (4.27), 436
(4.23)
yield 72%; red-violet powder; UVjVIS (DMSO): i.,,,as(lgE)
= 269 nm (4.76), 360 (4.60, sh), 373 (4.70), 411 (4.36), 429
(4.37), 463 (4.20, sh)
yield 30%; red powder: UVjVIS (DMF): j.mdx(lg&)
= 356 nm (4.61). 372 (4.69). 413 (4.36), 427 (4.36)
lators (12g-Cu: CT = 1.6 x lo-" S/cm-'; 12k-Cu: CT = 2.9 x
10-'oS/cm-';12k-Ni:a = 6~10-'~S/cm-');theconductivity of the metal-free compound I l k is even greater
(CT= 1.9 x lo-' S/cm-'). Also the (undoped) polymer 13 is
only weakly conducting (CT= 2.4 x
S/cm-').-Table 2
lists some data of the new compounds.
Received: February 7, 1989 [Z 3162 IE]
German version: Angew. Chem. 101 (1989) 1043
Publication delayed at author's request
[I1 a) J. P. Collman. J. I. Brauman. T. J. Collins, B. L. Iverson, G. Lang, R. B.
Pettman, J. L. Sessler, M. A. Walters, J. Am. Chem. Soc. 105 (1983) 3038;
b) R. D. Jones, D. A. Summerville, F, Basolo, Chem. Rev. 79 (1979) 139.
c) T. G. Traylor, Acc. Chem. Res. 14 (1981) 102; d) B. M. Hoffman, J. A.
Ibers, ibid. 16 (1983) 1 5 ; e) C . Piechoki, J. Simon, A. Skoulios, D. Guillon,
P. Weber, L Am. Chem. Soc. /04 (1982) 5245; f) B. Blanzat, C. Barthou,
N. Tercier, J.-J. Andrt-. J. Simon, ibid. 109 (1987) 6193; g) J. E. Baldwin, P.
Perlmutter, Top. Curr. Chem. I2l (1984) 181.
[2] H. Jahnke, Chimia 34 (1980) 58.
1062
0 VCH
Verlagsgesellschafi mbH, 0-6940 Weinheim. 1989
1Zd-Cu. H,O:
12e-Ni:
1Ze-Cu:
1Ze-Co:
ltf-Ni H,O:
12f-Cu. H 2 0 :
1Zf-Co ' 2 H 2 0
1Zg-Ni:
IZg-Cu. H,O:
IZh-Ni' H,O:
12i-Ni. H 2 0 :
1Zi-Cu. H,O:
IZk-Ni. H,O:
IZk-Cu. H,O:
13:
14a:
14b:
14c:
yield 34%; dark-red powder; UVjVIS (DMSO): i.max(IgE)
= 265 nm (4.79), 360 (4.60, sh), 372 (4.65). 404 (4.35), 425
(4.31). 510 (4.15)
yield 62%; red powder; 'H-NMR ([D,]DMSO): 6 = 6.957.80 (m; 8H. Benzo-H). 8.15-9.30 (m; 14H. pyridinio-H,
C H = N und = C H - N ) ; IR (KBr): i = 1630cm-', 1605,
E ) = 308 nm
1580.1485.1470, 1060; U v j V I S (DMF): ?.max(lg
(4.28). 340 (4.21). 355 (4.21). 397 (4.60, sh), 416 (4.75), 455
(4.02, sh), 489 (3.85. sh)
yield 65%; brown powder
yield 25%; black crystals; UVjVIS (DMSO): imaX(lg
E)
= 322 nm ( 4 . 2 9 370 (4.29), 415 (4.39, sh), 435 (4.41)
yield 9 6 % ; brown powder; UVjVIS (DMSO): A,,,sx
= 390 nm, 426,453
yield 81 %; dark-red crystals; UVjVIS (DMSO):
&(Ig E ) = 263 nm (4.47), 305 (4.30), 350 (4.06, sh), 396
(4.47. sh), 414 (4.66), 460 (4.25). 486 (4.23, sh)
yield 69%; blue-violet crystals
yield 62%; dark-red crystals; UVjVIS (DMSO): imax
= 360 nm, 394, 416,464
yield 89 %; blue-violet crystals
yield 96%; black-brown powder; UVjVIS (DMSO):
~ . m ~ xc() l=
g 355 nm (4.80). 395 (4.66), 415 (4.78), 497 (4.57)
yield 98%; blue-black powder
yield 99%; red-brown powder
yield 72%; dark-red powder; UVjVIS (DMSO): &(Ig E )
= 289 nm (4.71), 340 (4.57), 402 (4.50), 424 (4.74), 468 (3.89).
505 (3.88)
yield 46%; blue-violet crystals
yield 45%; blue-black crystals
yield 13%; red powder; UVjVlS (DMSO): J.,, = 269 nm,
397,414, 460
yield 99%; dark-brown powder
yield 40 % ; red powder
yield 32%; dark-red powder
yield 25%; red-brown powder
yield 68%; red-brown powder; UV/VIS (DMSO): .1,,,(Ig&)
= 265 nm (4.72), 395 (4.44, sh), 41 1 (4.60). 460 (4.28), 495
(4.29)
yield 51 %; brown-black powder
yield 26%; IR (KBr): i = 1646 cm- ', 1594,1560,1490,1408,
1317, 1084, 830, 750
yield 82%; UVjVIS (CH,CN): %,x,(lg E ) = 221 nm(4.81,sh),
262 (4.64. sh), 267.5 (4.67). 273 (4.65, sh), 328 (4.41, sh), 346
(4.59. sh), 355 (4.63), 379 (4.16, sh), 397 (4.05, sh), 433 (3.32,
sh)
yield 85%; dark-red powder, m.p. = 324°C; 'H-NMR
([DJDMSO): 6 = 2.65 ( s ; 12H, NMe). 3.38 (s; 12H. NMe),
7.05-7.90 (m; XH, Benzo-H), 7.96 ( s ; 4H, CHNMe,), 8.268.64 (AA'BB, XH, pyridinio-H), 8.85 (br.; 4H, C H = N und
=CH-N), 14.77 (br., 2H, NH); UVjVIS (DMSO):
i.max(lg&)
= 306 nm (4.81), 379 (4.68), 459 (4.80), 460 (4.91)
yield 21 %; dark-red crystals; UVjVIS (DMSO):
Amax(lg
c) = 345 nm (4.34, sh), 385 (4.70). 461 (4.88)
[3] K. Fischer, M. Hanack, Angew. Chem. 95 (1983) 741; Angew. Chem. Int.
Ed. Engl. 22 (1983) 724; Angew. Chem. Suppl. 1983, 1017.
(41 a) M. Hanack, A. Datz, R. Fray, K. Fischer,U. Keppeler, J. Koch, J. Metz,
M. Mezger. 0. Schneider, H.-J. Schulze in T. Skotheim (Ed.): Handbook of
Conducting Polymers, Marcel Dekker, New York 1986; b) U . Keppeler, M.
Hanack, Chem. Ber. 119 (1986) 3363.
[5] a) D. Wohrle, G. Meyer, Kontakte (Darmsradt) 1985) (3) 38; b) D.
Wohrle, ibid. 1988 (1) 24; c ) 0. Schneider, M. Hanack, Chem. Ber. 116
(1983) 2088; d) J. Koch, M. Hanack, ibid. 116 (1983) 2109.
[6] a) A. D. loran, B. A. Leland. G. G. Geller, J. J. Hopfield, P. B. Dervan, J.
Am. Chem. Soc. 106 (1984) 6090; b) J. A. Schmidt, A. R. Mclntosh, A. C.
Weedon, J. R. Bolton, J. S. Connolly, J. K. Hurley, M. R. Wasielewski,
ibid. 110 (1988) 1733; c) P. Leighton, J. K. M. Sanders, J. Chem. Soc.
Perkin Trans. 1 1987. 2385.
[7] E. S. Schmidt, T. S . Calderwood, T. C. Bruice, fnorg. Chem. 25 (1986)
3718.
[S] R. J. McMahon, R. Ken Force, H. H. Patterson, M. S . Wrighton, L Am.
Chem. Soc. 110 (1988) 2670.
191 F. Effenberger, H. Schlosser, P. Bauerle, S . Maier, H. Port, H. C. Wolf,
Angew. Chem. lOO(1988) 274; Angew. Chem. lnt. Ed. Engl. 27(1988) 281.
[lo] J. J. Hopfield, J. N. Onuchic, D. N. Beratan, Science (Washington, D.C.)
241 (1988) 817.
I l l ] a) H. Hiller, P. Dimroth, H. Pfitzner, JustusLiebigs Ann. Chem. 717(1968)
137; b) C. Reichardt, W. Scheibelein, Z . Naturforsch. 8 3 3 (1978) 1012.
0570-0833j89j0808-1062$02.50/0
Angew. Chem. Inl. Ed. Engl. 28 (1989) No. 8
[12] a) H. Kast. DOS 2427606 (January 2, 1976) BASFAG: Chem. Absrr. 84
(1976) 137226g: h) R. Miiller, D. Wohrle, Makromoi. Chem. 179 (1978)
2161; c) A. R. Cutler. C. S. Alleyne, D. Dolphin, inorg. Chem. 24 (1985)
2276. 2281 : d) E. Lorch, E. Breitmaier, Chem.-Ztg. 99 (1975) 87.
W. A. Little, Phys. Rev. A 134 (1964) 1416; h) H. J. Keller (Ed.): Chemistry
and Physics cflOne-dimensional Metals, Plenum Press, New York 1977; c)
W A. Little in [13b], p. 257; d) D. Davies, H. Gutfreund, W. A. Little,
Phys. Rev. B 13 (1976) 4766; e) H. Gutfreund, W. A. Little in [13 h] p. 279;
f) cf. Nuchr. Chem. Tech. Lab. 24 (1976) 591.
A. Harriman, G. Porter, J. Chem. Soc. Faraday Trans. 2 7.5 (1979) 1532; b)
A. Harriman, G. Porter, M. C. Richoux, ibid. 2 77 (19x1) 1175; c ) J. R.
Darwent, P. Douglas, A. Harriman, G. Porter, M. C. Richoux, Coord.
Chem. Rev. 44 (1982) 83.
D. Lloyd, K. S. Tucker. D. R. Marshall, J. Chem. Soc. Perkin Trans. 1
I Y N I . 726.
Z. Janousek, H. G. Viehe in H. Bohme, H. G. Viehe (Eds.): imintum Salts
(91 Organic Chemistry. Parr 1 (Advances in Organic Chemi~stry:Melhods
and Resulrs, E. C. Taylor (Ed.), Vol. 9 ) . Wiley-Interscience, New York,
1976, p. 378.
R. Gompper, E. Kujath, H.-U. Wagner, Angew. Chem. 94 (1982) 559;
Anxvw. Chem. i n l . Ed. Engl. 21 (1982) 543; Angew. Chem. Suppi. 1982,
1302.
V. Kral, V. V. Semenov. M. I. Kanishchev, Z. Arnold. S. A. Shevelev.
A. A. Fainzilherg, Collecr. Czech. Chem. Commun. 53 (1988) 1519.
L. Michdehs, E. S. Hill, J Gen. Physiol. 16 (1933) 859.
S. Hiinig. W. Schenk, Liebigs Ann. Chem. 1979, 1523.
a) J. Davila, A. Harriman, M.-C. Richoux, L. R. Milgrom, J. Chem. Soc.
Chcjm. Commun. 1987, 525; h) W. Schuhmann, H.-P. Josei, H. Parlar,
Angcw. Chem. 99 (1987) 264; Angew. Chem. int. Ed. Engi. 26 (1987) 241.
a ) L. R. Milgrom, J. Chem. Soc. Perkin Trans. 1 1983, 2535; b) J.-R.
Fuhrhop, U.Wanja, M. Biinzel, Liehigs Ann. Chem. 1984.426.
K. Sakata, M. Hashimoto, N . Tagami. Y. Murakdmi, Bull. Chem. Soc. Jpn.
53 (1980) 2262.
a ) E:G. Jiger. Z . Chem. 4 (1964) 437; 8 (1968) 30; Z . Anorg. A&. Chem.
364 (1969) 177; b) F. A., L‘Eplattenier, A. Pugin. Helv. Chim. Acta 58
(1975) 917.
K. Sdkata, T. Naganawa, M. Hashimoto, H. I. Ogawa, Y Kato, inorg.
Chim. Actu 143 (1988) 251.
We thank Bayer AG (Dr. G. Heywang) for carrying out the conductivity
measurements.
could therefore only lead to zwitterions. In the case of 5,14dihydrodibenzotetraaza[l4]annulene derivatives, whose
cationic substituents are attached to the ring via a C atom,
the deprotonation should however lead to 7,16-bis(methylene) derivatives of tetraaza[ 141annulenes, which stem
from the 7,16-dihydro isomers (C7’’6H form instead of
N5/14Hform). Ni-complexes of tetrahydro derivatives of
such compounds are already known.[’] If the methylene
groups were part of a 1,3-dithiole ring then such compounds
would be dibenzotetraaza[l4]annulenehomologues of TTF.
They should have interesting redox and complexation properties.
2
BF,O
1
Q
SYN-Me
Q
SY.N-Me
8
‘N-Me
Di(4-pyridinio)-, Di(2-benzothiazolio)-, Di(2-[1,3dithiolylio1)- and Diformyltetraaza[141annulenes
and Tetraaza[141annulenylene-Homologous
Tetrathiafulvalenes**
By Florian Adams and Rudolf Gompper *
Dedicated io Professor Christoph Riichardt on the occasion of
his 60th birthday
Tetrathiafulvalene (TTF) (cf. Refs. [I ,2]) and bis(ethy1enedithio)tetrathiafulvalene (BEDT-TTF or ET) [’, 31 still
have special importance as donors for the production of synthetic metals and organic superconductors, even though a
whole series of derivatives, vinylogues, phenylogues, and
pentalenylene homologues[41of TTF have been sythesized in
the meantime (cf., e.g., Refs. [2,3]). Metal complexes ofcyclic
n-electron systems such as porphyrin, phthalocyanine and
dihydrodibenzotetraaza[ 14]annulene, bearing cationic substituents of the cyanine dye type, should according to Little
et
have snperconducting properties. As models for
such compounds we have prepared 7,16-di(1-pyridinio)and -( 1-[4,4-bipyridindio])-5,14-dihydrodibenzotetraaza[
141
annulenes and some metal complexes thereof.16] In these
compounds, the (bi)pyridinio moieties are bound via the N
atom to the fourteen-membered ring; an NH deprotonation
[*I
[**I
Prof. Dr. R . Gompper, DipLChem. F. Adams
Institut fur Organische Chemie der Universitat
Karlstrasse 23, D-8000 Miinchen 2 (FRG)
This work was supported by the Deutsche Forschungsgemeinschdft and
the Fonds der Chemischen Industrie.
Angeu Chem. Inr. Ed. EngI. 28 (1989) No. 8
(3
a : M = H , H ;b: M=Ni,Cu,Co
In the previous communication16] we have only described
such compounds in which two carbocation or phosphonium
centers are coupled with the fourteen-membered ring (see 14
therein). A system 2a (for physical data of the new compounds see Table I), in which the benzothiazole rings carry
the positive charges, can be obtained from the benzothiazoliovinamidinium salt
1 by reaction with o-phenylenediamine. If the reaction is carried out in the presence of
metal(I1) acetates the metal complexes 2 b are formed. Deprotonation of 2a with sodium methoxide yields the desired orange 7,16-bis(methylene)-7,16-dihydrodibenzotetraaza[l4]annulene in 86% yield (the FAB mass spectrumc9]
shows the required molecular mass of 582). It can be regarded as a [14]annulenylene homologue of the electron-rich 2,2‘bi(3-methyl-2,3-dihydrodibenzothiazolylidene).
Tetraaza[l4]annulenylene-homologous tetrathiafulvalenes 6 are obtained by deprotonation of the dithiolylium salts
5, which in turn are prepared by heating the methylenemalonaldehydes 4[’01 with o-phenylenediamine in the presence of tetrafluoroboric acid-ether in methanol. A nickeland a copper-complex can be prepared from 6e.
6 b does not react with p-tetracyanoquinodimethane. This
is understandable on the basis of the cyclovoltammogram of
6 b (irreversible oxidation at 0.75 eV). 6a, b,f react with
iodine to give black complexes whose elemental analyses
correspond approximately to the composition 6 . (13)1 and
which have only insignificant powder electrical conductivi-
VCH Verlagsge.~ellschafr~a~
mhH. 0-6940 Weinheim, 1989
0570-0833i89jORoR-tO~3$02.50/(1
1063
Документ
Категория
Без категории
Просмотров
1
Размер файла
461 Кб
Теги
annulenes, dihydrodibenzotetraaza, bipyridindiio, pyridinium
1/--страниц
Пожаловаться на содержимое документа