вход по аккаунту


Diagonal Interaction in the Four-Membered Ring. Experimental Demonstration of a Dominating Circumannular Conjugation 5 6-Dimethylenebicyclo[2.1

код для вставкиСкачать
[229] J. R. McCabe. C. A. Eckerf. Ind. Eng. Chem. Fundam. 13, 168 (1974).
[2301 R. A. Grieger, C. A. Eckert, Trans. Faraday SOC.66, 2579 (1970).
12311 R. A . Grieger, C. A. Eckert. Ind. Eng. Chem. Fundam. 10, 369 (1971).
12321 R. A. Grieger, C. A. Eckerr, J. Am. Chem. SOC.92. 2918, 7149 (1970).
[233] C. Brun. G. Jenner. Tetrahedron 28, 3113 (1972).
12341 B. E Poling, C. A. Eckert, Ind. Eng. Chem. Fundam. 71, 451 (1972).
[235] a) C A . Stewart, J. Am. Chem. SOC.93. 4815 (1971); b) 94. 635 (1972).
I2361 A very detailed study of the pressure-dependence of [2 + 2]-cycloadd1t1ons
including C T phenomena has been carried out by J. 1,011Jouanne, H. Kelm,
R. Hui.sgen, J Am. Chem. SOC.101. 151 (1979).
[237] F. E. Rogers, J . Phys. Chem. 75. 1734(1971): 76, 106 (1972): f . E. Rogers,
S. W. Quan. ihid. 77, 828 (1973).
12383 K. J . Breslauer. D. S. Kabakofj I . Org. Chem. 39, 721 (1974).
12391 H . D Fuhlhuber, A. Miedaner. J. Sauer, R. Sustmann. unpublished results;
A . Miedaner, Diplomarheit. Universitat Regensburg 1978.
j2401 V. D. Kiseleu, A . I . Konoualov, E. A. Versman. A. N. Usryugou, J . Org.
Chem. USSR 14. 118 (1978).
[241] B. S. Khambaia. A. Wassermann. J. Chem. SOC.1939, 375.
[2421 W. C. Herndon, C. R. Grayson. J. M. Manion, J. Org. Chem. 32. 526
( 1967).
[243] A. Wassermann, Trans. Faraday SOC.34, 128 (1938). and references cited
12441 M. Uchiyama, T. Tomioka, A. Amano, J . Phys. Chem. 68, 1878 (1964).
[245] W Tsang, J. Chem. Phys. 42, 1805 (1965).
[246] D. C. Tardy, R. Ireton, A. S. Gordon, J. Am. Chem. SOC.101, 1508 (1979):
The cleavage described for the tetradeuterialed compound is the main
reaction (>95%); in addition there is also Dz-, HD-, and H2-elimination as
competing reaction.
[247] J. Sauer. B. Schroder, R. Wiemer, Chem Ber. 100, 306 (1967).
[248] J. A Berson, W A. Mueller, J. Am. Chem. SOC.83, 4940 (1961)
12491 W. Grimme, H. G. Koser, Angew. Chem. 92.307 (1980); Angew. Chem. Int.
Ed. Engl. 19,307 (1980) and earlier work: W. Grimme, private communication.
[ZSO] W Neukam. W. Grimme, Tetrahedron Lett. 1978. 2201, 0.Papies. W.
Grimme. ibid. 1980. 2799.
(2511 G. Brieger, J. N. Bennert, Chem. Rev. 80. 63 (1980).
most interesting transannular relationships. From UV and
PE spectroscopic investigations, Vala and KIessinger (cf. ['I)
concluded the involvement of a considerable amount of
through-bond coupling (circumannular conjugation) in 1,3di-n-substituted cyclobutanes. We report here on an experimental determination of the orbital sequence in planar 1,3dimethylenecyclobutane ( l a ) using the reference compounds
(2), (lU)f31,and (12), with a procedure proposed by Heilbronned4] being used in the case of (10).
The splitting of the first two ionization potentials of (la)[*]
cannot be independent of the dihedral angle 6. A diminution
of 6, as in (lb), however, has different consequences depending on whether the sequence S > A (circumannular) or A > S
(transannular) in ( l a ) predominates. In the former case a
diminution in the splitting is to be expected, in the second
case an increase (Fig. 1, columns a-d). The PE spectroscopic investigation of (2), whose dihedral angle in the model is
130 ', can answer this question.
(3) is photochemically cyclized to a mixture (35 :65) of (4a)
and (4b)151.Hydrolysis (KOH/CH30H/H20) and reaction
Diagonal Interaction in the Four-Membered Ring.
Experimental Demonstration of a Dominating
Circumannular Conjugation:
By Hans-Dieter Martin, Mirjana Eckert-MaksiC,
and Bernhard Mayer"]
Dedicated to Professor Alfred Roedig on [he occasion of
his 70th birthday
Diagonal interaction in the four-membered ring, with its
chemical['] and spectroscopid2] consequences, is one of the
[*] Prof. Dr. H:D. Martin, DiplLChem. B. Mayer
lnstitut fur Organische Chemie der Universitat
Am Huhland. D-8700 Wurzhurg (Germany)
Dr. M. Eckert-Maksic.
present address: Organisch-chemisches lnstitut der U niversitat
Heidelherg (Germany)
131, A = C O O C H j
endo, endo
endo, exo
1-4a1 - /gal
ILbl- 19bl
[**I Small Rings. Part 37. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We thank Prof.
Dr. R. Cleirer for use of the PE spectrometer.-Part 36: H.-D. Martin. C. Heller,
B. Mover. H -D. Beckhaus. Chem. Ber. 11.7. 2589 (1980).
Angew. Chem. Int. Ed. Engl. 19 (1980) No. 10
@ Verlag Chemie. CmbH, 6940 Weinheim, 1980
I 02.50/0
- 10
Fig. 1. Orbital correlation diagram. (a)-(e), see text
In Figure 2 the same sequence S > A for (la) (column e)
leads via the experimental result for (11)@' (column f ) to a
prediction of the orbital sequence in (10) (column g), which
is in excellent agreement with the observed ionization potentials of (10) (column i) [IP,,, (PJ = 8.50, IP2,,( T ~=)9.75,
1P3."(u) = 11.00, IP4,,
( 7 ~=
~ )11.40 eV]. The assumption A >S
for ( l a ) (column d), on the other hand, leads to a contradiction (columns b and c). FinalIy comparison of (10) with 3-
with thionyl chloride affords-via carboxylic acids (.5a)/(5b),
which are separable by fractional crystallization-the acid
chlorides (6a)/(6b) (1 :3). Reaction with dimethylamine (ether, 0 "C) furnishes (7a)/(7b), from which (LiAlH,, tetrahydrofuran) the gas-chromatographically separable amines
(84 and (8b) are obtained. Oxidation (30% H,O,, CH,OH,
room temperature) leads to the hydrated amine oxides (9a)/
(9b), which are dehydrated at 120°C/12 torr, and at 18OoC/
12 torr give the diene (2) (yield 40-55%). Table 1 contains
'H-NMR data. The first two ionization potentials of (2)
(IP,,,=9.25, IP,,,=9.65 eV, Fig. 1, column e) show that only
the sequence S > A in (la) (column c) is consistent with the
experimental findings (column e). This experiment alone
provides no information about the sequence in (2).
Table I . 'H-chemical shif:s
la I
1.65 (bs)
1.70 (m)
1.70 (m)
2.20-2.30 (m)
2.20-2.30 (m)
1.70 (m)
1.57-2.00 (AA'BB')
1S O (m)
1.58 (m)
(c I
3.03 (m)
2.90-3.10 (m)
2.90-3.10 (m)
3.65 (m)
3.65 (m)
-2.90 (m)
=z 2.98 (m)
1.90-2.43 (m)
1.87-2.67 (m)
4.33 (bs),---CH2
2.55 (m)
3.25 (m)
2.25 (S)
3.10 (m)
3.90 (m)
3.00 ( S )
2.30 (m)
3.05 (m)
2.17 (s)
1.33-1.83 (m)
.1 23-1 80 (m)
2.85, 3.00 (s)
2.87. 2.96. 3.00
1.90-2.43 (m)
I .87-2.67 (m)
Fig. 2. Orbital correlation diagram. (a)-(i), see text.
0 Vedag Chemre, CmbH, 6940 Weinheim. 1980
$ 02.50/0
Angew. Chem. Inl. Ed. Engl. 19 (1980) No. I0
methylene-1,4-pentadiene (1.2)") [IP,JTJ = 8.80, IP2,,(n,) =
9.95 eV] shows that the sequence derived for (10) in Figures 1 and 2 is in very good agreement with that of the structurally related triene (12). All three reference compounds (2),
(lo), and (12) demonstrate that in (la) the circumannular
through-bond conjugation (sequence S > A) dominates over
the transannular through-space interaction (sequence
A > S)"'.
Received: March 18, 1980 [Z 569 IE]
German version: Angew Chem. 92, 833 (1980)
The new olefincobalt complexes were synthesized from
known compounds[4iaccording to eqs. (a) and (b); propene
or cyclopentene can also be used, instead of ethylene.
CAS Registry numbers:
(2), 74965-17-6;(3). 4756-84-7;(4a). 32426-61-2;(46). 32426-60-1;(Sa), 7496518-7;(Sb), 74985-45-8; (6a), 74965-19-8;(6b), 74985-46-9:(7a). 74965-20-1;
(76). 74985-47-0@a), 74965-21-2;lab), 74985-48-1;(9a). 74965-22-3;(9b),
[ I ] M. Horner. S. Hunrg, J. Am. Chem SOC.99, 6120 (1977), J. Harnrsch, G.
Sreimies, Tetrahedron Lett. 1978,247;S. Mazur. A . H. Schroder. M . Werss, J .
Chem. SOC.Chem. Commun. 1977,262;M. Dagonneau. P. Merzner. J. Vralle,
Tetrahedron Lett. 1973. 3675.
121 P. Hemmersbach, M. Klessinger, P. Bruckmann, J . Am. Chem. Sac. 100, 6344
(1978):J. M. Behan, R. A. W . Johnstone, J. J. Worman, T. P. Fehlner, J. Mol.
Struct. 40. 151 (1977);R. Spajford, J. Barardo. J. Wrobel, M. Vala, J. Am.
Chem. SOC.98,5217,5225 (1976);M . Simonetta, S.Carra, Tetrahedron Lett.
1962. 913:J J. Wormann, E. A. Schmidt, E. S. Olson, R. D. Schultr, Spectrochim. Acta A 32, 1415 (1976).
[31 H.-D. Martin. B. Mayer, Tetrahedron Lett. 1979,2351
141 E. Heilbronner, Isr. J. Chem. 10, 143 (1972);E. Heilbronner, H.-D. Martin,
Helv. Chim. Acta 55. 1490 (1972).
151 J. R. Scheffer, R. A Wostradowski, J. Org. Chem. 37,4317 (1972).
161 J C. Bunzh. A . J . Burak, D. C Frost, Tetrahedron 29, 3735 (1973).
[71 Synthesis of (12): 1.2.3-propanetricarboxylic acid is converted via the trichloride. tris(dimethylamide). and trisfdimethylamine) into the corresponding quaternary ammonium hydroxide, which IS then thermolyzed at 18O"C/
12 torr. Synthesis by ester pyrolysis: W. Bailey, J. Am. Chem. SOC.77, 1133
The reference compounds (10) and (12) also enable a satisfactory construction of the PE spectrum of [4]-radialene according to the LCBO method see
T. Bal/.v. U . Buser, E. Haselbach, Helv. Chim. Acta 61, 38 (1978).
Olefin-Insertion into Cobalt(d*) ComplexesStructure of
By Hans-Friedrich Kfein, Reinhard Hammer, Joachim Gross,
and Ulrich Schubert['l
The formal insertion of olefins into transition metal-hydrogen or -carbon bonds is a cardinal problem of organometallic chemistry and the principal feature of important industrial processes[''.
The diamagnetic ethylenecobalt(1) complexes (4)-(6)
were crystallized from pentane solutions. The complexes
gave correct elemental analyses. The crystals can be stored
under Ar at 20"C, but rapidly decompose on exposure to
(4) forms greenish yellow leaflets, which sublime with decomposition at 35-4O0C/O.1 mbar and are stable up to 95 "C
under 1 bar Ar. The brownish-yellow crystals of (5) sublime
at 60-65 "C/O.l mbar, likewise with decomposition; m.p.
115-117 "C (dec.). (6) was obtained as well-formed orangeyellow crystals, dec. >99 "C.
The dynamic 'H- and 3'P-NMR spectra of (4)-(6) evidence anisochronic "P nuclei (2: l ) for the ground state, and
thus indirectly the cis relationship of anionic ligands and
ethylene. An axial position of the hydride ligand in (4) cannot be deduced from the spectra; the structure (4) was formulated in analogy to the structure of the methyl compound (5).
A comparison of the NMR data of (5) with those of
indicates an axial position for the CH3
ligand, consistent with a theoretical
All three complexes behave differently in solution. On using CH30D for the synthesis of (4) according to eq. (a), IR
spectroscopy reveals a nearIy random distribution of the deuterium over five positions of the product: four sites in ethylene (vCD 2100 cm-l) and one at the cobalt (vcoH 1850
cm- I ) . Solvent-free 1-pentene is catalytically isomerized by
(4) (0.5 mol-%, 20 "C, 48 h) to 2-pentene (cis:trans= 9 :
thus demonstrating u-rn rearrangement in the 18-electron
compound (4) (Scheme 1).
L3C o H ( C H ~ = C H Z )
While the u-T rearrangement (1)*(2), a reversible p-elimination, is relatively well established''', there is only little experimental evidence supporting the practically irreversible
insertion (3)+ (2)f31.
As potential insertion precursors, we have prepared the
three pentacoordinated cobalt(1) complexes (4)-(6), which
contain a Co-H or Co-C bond in the cis position to the
equatorially bound ethylene ligand.
Prof. Dr. H.-F. Klein. Dr. R. Hammer, DipLChem. J. Gross, Dr. U. Schubert
Anorganisch-chemisches Institut der Technischen Universitat Miinchen
Lichtenbergstr. 4, D-8046 Garching (Germany)
[**I This work was supported by the Deutsche Forschungsgemernschaft and the
Fonds der Chemischen Industrie.
Angew Chem Inl. Ed. Engl 19 (1980) No 10
L3C OR(CH2=C H,)
=+L3C oH(CHz=CHR)
(518 ( 6 )
Scheme 1 . L = PMe,; R = CH,, CoH,
In contrast, a thermal isomerizatioa into the complex of
type (4) (Scheme 1) in the sense of an insertion-p-elimination reaction ~equence"~
is not observed in the case of (5); 1pentene is not isomerized by (5).
16) + Co(C,H4)(PMe3)3+ 1/2C6H,-C6H,
0 Verlag Chemie. GmbH, 6940 Weinheim, 1980
S 02.50/0
Без категории
Размер файла
391 Кб
experimentov, diagonal, domination, four, interactiv, demonstration, membered, circumannular, ring, dimethylenebicyclo, conjugation
Пожаловаться на содержимое документа