close

Вход

Забыли?

вход по аккаунту

?

Diethyl Thioxomalonate S-Oxide; a Sulfine as Reactive Intermediate.

код для вставкиСкачать
Diethyl Thioxomalonate S-Oxide;
a Sulfine as Reactive Intermediate**
By Rolf W . Saalfank* and Walter Rost
Dedicated to Professor Hans Jurgen Bestmann on the
occasion of his 60th birthday
(+) 37.1
2Jc-2,
2
c-4
Jc-2. c-4
3WI
(+) 57.2
5 [a1
(+) 18.6
erl~l
Scheme 3. ' J , , and ' J c c in Hz. For "C chemlcal shill see [XI]
As yet, there is no explanation for the unusually large
'Jcc values sometimes observed in chlorinated ketones.
Regardless of this they indicate that care must be taken in
determining the CC connectivities of unknown compounds
via I3C-l3Ccouplings: not every coupling constant that is
greater than ca. 25 H z is an indication of CC bonding.
1,3-Bis(dialkylamino)-1,3-diethoxyallenes-malonamide
dianion equivalents-react with disubstituted malonyl
chlorides to give allene-l,l-dicarboxamides.['lBy the
choice of appropriate combinations of substituents, this
transallenation[*' has wide scope. Tetraethoxyallene-a
malonic ester dianion equivalent-reacts with phosgene
and thiophosgene to give bis(ethoxycarbony1)ketene and
bis(ethoxycarbonyl)thioketene, re~pectively.[~'
We have now been able to generate diethyl thioxomalonate S-oxide 4 as an intermediate by reaction of tetraethoxyallene li4]
with thionyl chloride 2. The ketene acetal
3, formed in the first step with elimination of ethyl chloride, spontaneously eliminates ethyl chloride again to afford the heteroallene 4 .
(Et0)2C=C=C(OEt),
+
c1
\
S=O d
- EtCl
c1'
2
1
Received: March 28, 1985;
revised: June 24, 1985 [Z 1243 IE]
German version: Angew. Chem. 97 (1985) 860
Et02C
Et02C\
4
'
,c=s=o
d
CAS Registry numbers:
l a , 67-64-1: l b , 78-95-5; lc, 513-88-2; Id, 921-03-9; l e , 1768-31-6; Za, 431348.8: Zb, 98303-51-6: 2c, 37873-58-8; Zd, 2892-59-3; 3, 56513-93-0; 4, 7855000-2; 5 , 3200-96-2; 6, 6130-82-1.
[I] R. Freeman, T. Frenkiel, J. Am. Chem. SOC.104 (1982) 5545.
[2] A. Pinto, S. K. D o Prado, R. B. Filho, W. E. Hull, A. Neszmelyi, G. Lukacs, Tetrahedron Lett. 23 (1982) 5267.
131 F. J. Schmitz, S. K. Agarwal, S. P. Gumaisekara, J. Am. Chem. SOC.I05
(1983) 4835.
141 J. Buddrus, H. Bauer, H. Gotthardt, R. Jung, Angew. Chem. 95 (1983)
565; Angew. Chem. Int. Ed. Engl. 22 (1983) 548.
[S] N. S. Bhacca, M. F. Balandin, A. D. Kinghorn, T. A. Frenkiel, R. Freeman, G. A. Morris, J. Am. Chem. SOC.I05 (1983) 2538.
161 W. Kreiser, V. Ruschenbach, H. Bauer, J. Buddrus, Helu. Chim. A d a 67
(1984) 2231.
[7] A. Bax, R. Freeman, S. P. Kempsell, J. Am. Chem. SOC.102 (1980) 4849;
A. Bax, R. Freeman, T. A. Frenkiel, ibid. 103 (1981) 2102.
[8] G. Maahs, Justus Liebigs Ann. Chem. 686 (1965) 55.
191 Summary: P. E. Hansen, Annu. Rep. NMR-Spectrose. 11A (1981) 66; V.
Wray, P. E. Hansen, ibid. 99.
[lo] H. Dreeskamp, K. Hildenhrand, G . Pfisterer, Mol. Phys. 17 (1969) 429.
[ I I] The "C-chemical shifts of la, b are described in M. Yalpani, B. Modardi, E. Khoshdel, Org. Magn. Reson. 12 (1979) 254; those of the other
compounds (in CaDJ are (C-I, C-2, C-3): lc: 70.6, 194.3, 23.1; Id: 68.3,
189.5, 44.5: l e : 92.6, 179.7, 62.1.
[I21 Synthesis of 2a a n d 2b according t o H. H. Wasserman, J. U. Piper, E. V.
Dehmlov, J. Org. Chem. 38 (1973) 1451.
[I31 N. Morita, T. Asao, Y. Kitahara, Chem. Lett. 1972, 925.
[I41 "C chemical shifts (in CDCI,) (C-I, C-2, C-3, C-4, further C-atoms): 2a:
192.9, 102.0, 190.0, 59.3, 19.0 (2CH3), 68.9 (OCH2), 13.6 (CH,); 2b:
190.8, 92.8, 184.9, 58.8, 19.2 (2CH3), 70.4 (OCHZ), 15.2 (CH,); ZC: 178.4,
110.0, 182.4, 87.6, 72.0 (OCHz), 14.4 (CH,); 2d: 173.4, 104.8, 176.1 (1.
JC.H
=2.9 Hz), 85.4, 75.2 (OCHI).
1151 J. L. Marshall, L. G. Faehl, R. Kattner, Org. Magn. Reson. 12 (1979)
163.
[161 M. Klessinger, H. van Megen, K. Wilhelm, Chem. Ber. 115 (1982) 50.
(171 W. T. Brady, P. L. Ting, J. Org. Chem. 40 (1975) 3417.
1181 W. T. Brady, R. D. Watts, J. Org. Chem. 46 (1981) 4047.
[I91 G. Maahs, P. Hegenherg, Angew. Chem. 78 (1966) 927; Angew. Chem.
Int. Ed. Engl. 5 (1966) 888.
I201 "C chemical shifts (in CDCI,) (C-I, C-2, (2-3, (2-4): 3:204.8, 75.8, 204.8,
70.5, 21.0 (CCI-CHJ, 18.7 (2CH3); 4 : 200.9, 88.7, 103.2, 64.2, 53.2
(20CH,), 20.4 (2CH3); 5 and 6 see G. E. Hawkes, R. A. Smith, J. D.
Roberts, J. Org. Chem. 39 (1974) 1276.
Angew. Chem. Inr. Ed. Engl. 24 (1985) No. 10
EtO-$-S\cl
EtO
3
- EtCI
Et02C
4
4 can be trapped with 2,3-dimethyl-l,3-butadienein a
Diels-Alder reaction, forming diethyl 3,6-dihydro-4,5-dimethyl-2H-thiopyran-2,2-dicarboxylate 1-oxide 5 (42%
Surprisingly, tetraethyl ethylenetetracarboxylate
6 (3 1%), 2,5-dihydro-3,4-dimethylthiophene1,l-dioxide 7
(2~?l',)
and diethyl3,6-dihydro-4,5-dimethyl-2H-thiopyran2,2-dicarboxylate 8 (22%) are also formed (Table 1). We
assume that the dimerization of 4 to tetraethyl 1,2-dithietane-3,3,4,4-tetracarboxylate1,l -dioxide 9191competes with
the trapping of 4 by 2,3-dimethyl-l,3-butadiene.
By elimination of sulfur dioxide, 9 affords the intermediate tetraethyl thiiranetetracarboxylate 10, which finally eliminates
sulfur["1 to give the olefin 6.The intermediacy of 9 and its
(Et02C),C=C(C02Et),
0
5
8
7
6
11
19
12
[*] Prof. Dr. R. W. Saalfrank, DipLChem. W. Rost
lnstitut fur Organische Chemie der Universitat Erlangen-Nurnberg
Henkestrasse 42, D-8520 Erlangen (FRG)
[**I 1,3-Donor/Donor-SuhstitutedAllenes
in Synthesis, Part 3. This work
was supported by the Deutsche Forschungsgemeinschaft and the Fonds
der Chemischen Industrie. Part 2: [l].
0 VCH Verlagsgesellscha$ mbH. 0-6940 Weinheim. 1985
0570-0833/85/1010-0855 $ 02.50/0
85 5
decomposition explain in a simple manner the product 7,
which is formed in a cheleotropic reaction from 2,3-dimethyl-l,3-butadiene and the sulfur dioxide already present.["] The formation of 8 has not yet been unequivocally
explained. 8 is probably formed by reduction of 5 by the
elemental sulfur that was formed earlier."31 The intermediacy of 9 is supported, moreover, by the fact that the
lachrymatory factor of onions, Z-thiopropionaldehyde Soxide 11, dimerizes to the stable E-3,4-diethyl-l,2-dithietane 1,l-dioxide 12."'' Furthermore, it was possible to demonstrate the existence of 9 in the crude product by mass
spectroscopy [m/z 412 (M')]. All attempts to obtain pure 9
have been unsuccessful and have led exclusively to 6.
When the reaction of 1 and 2 is carried out in the absence
of a trapping agent for sulfine, 6 is again the only product
isolated in pure form.
[I] R. W. Saalfrank, W. Rost, F. Schutz, U. Ross, Angew. Chem. 96 (1984)
597; Angew. Chem. Int. Ed. Engl. 23 (1984) 637; R. W. Saalfrank, F.
Schutz, U. Moenius, Synthesb. in press.
[21 Transallenation has played only a minor role in cumulene chemistry up
to now. Cf. S. L. Buchwald, R. H. Grubhs, J. Am. Chem. Sor. 105 (1983)
5490.
I31 R. W. Saalfrank, W. Rost, Angew. Chem. 95 (1983) 328; Angew. Chem.
I n ( . Ed. Engl. 22 (1983) 321; Angew. Chem. Suppl. 1983. 451.
[4] Tetraethoxyallene I is prepared from tetraethoxyethylene [5] in analogy
to the synthesis of tetramethoxyallene [6].
[51 D. Bellus, H. Fischer, H. Greuter, P. Martin, Helu. Chim. Aeta 61 (1978)
1784.
[6] R. W. Hoffmann, W. Schafer, U. Bressel, Chem. Ber. 105 (1972) 21 I I ; R.
D. Mackenzie, T. R. Blohm, J. M. Grisar, J. Med. Chem. 16 (1973)
688.
[7] Allene 1 (10 mmol) in 50 mL of toluene at - 78°C was treated with a solution of 2 (10 mmol). After 30 min, 2,3-dimethyl-1,3-hutadiene
(50
mmol) was added at - 50°C. The reaction mixture was allowed to warm
over 4 h to room temperature and chromatographed on silica gel 60 FZS4,
ether/n-hexane (1 :I). 5 and 8 were then distilled. 6 [ether/n-hexane
(2 : I ) ] and 7 (ether) were recrystallized. Only 15 was formed with disulfur dichloride [crystals from e t h e r h h e x a n e ( I : I)].
[8] Cf. P. A. T. W. Porskamp, M. van der Leij, B. H. M. Lammerink, B.
Zwanenburg, Red. Traa. Chim. Pays-Bas 102 (1983) 400: 101 (1982) 1.
(91 For the mechanism of dimerization of 4 to 9, see [lo].
[lo] E. Block, A. A. Bazzi, L. K. Revelle, J . Am. Chem. Soc. I02 (1980)
2490.
[ I l l Cf. S. S. Bhattacharjee, H. Ila, H. Junjappa, Synthesis 1984. 249.
1121 H . J. Backer, J. Strating, C. M. H. Cool, Red. Trao. Chim. Pays-Bas 58
(1939) 778.
[I31 Under the reaction conditions used, 5 is not reduced to 8 by Sa.
1141 Cf. the review on the possibility of a tautomeric equilibrium
CI-S-S-CI+S=SCl2
[15].
[IS] G . W. Kutney, K. Turnbull, Chem. Rev. 1982. 333.
[I61 A. Senning, Angew,. Chem. 91 (1979) 1006; Angew. Chem. I n t . Ed. Engl.
18 (1979) 941.
1171 Cf. G . W. Kutney, J. W. J. Still, Can. J . Chem. 58 (1980) 1233.
[I81 Conceivably, no thiosulfine 13 is formed and 15 arises via dimerization
of I . This possibility is unlikely because of the failure to detect 11 (1 mol
112 mol CI-S-S-CI)
or 111 ( I mol 1 / 0 3 mol Cl-S-S-Cl).
Table I . Physical data for the compounds 5 , 6, 7 , 8 , and 15
5 : IR (film): v= 1730 c m - ' (C=O); "C-NMR (CDCI?): 6 = 13.92 and 13.98
(CH?), 19.26 and 20.32 (CH,), 28.15 and 51.57 (CH,), 62.55 and 63.07
(OCH2), 70.53 (C,), 116.33 and 125.43 (C=), 165.36 and 165.75 (C=O);
b.p.= 117"C/O.I torr
6 : IR (KBr): v=1735 c m - ' (C=O); "C-NMR (CDCI,): 6=13.83 (4CH3),
62.52 (40CH2), 135.35 (2C=), 162.29 (4C=O): m.p.=56"C
7 :IR (KBr): v = 1300 and Ill0 c m - ' (SO2); ' T - N M R (CDCI,): 6 ~ 1 4 . 5 6
(2CH,), 60.61 (2CH2), 125.50 (2C=); m.p.= 135°C
8 : IR (film): ~ ~ 1 7 c2m5- ' (C=O); ',C-NMR (CDCI,): 6=13.89 (ZCH,),
19.05 and 19.96 (2CH3), 30.76 and 37.68 (CH2), 56.67 (CJ, 62.09 (20CH2),
122.83 and 125.31 (C=), 168.66 (2C=O): b.p.=97"C/0.1 torr
1 5 : IR (KBr): v = 1720 (C=O): I3C-NMR (CDCI?): 6 = 13.92 (4CH,), 62.52
(2C,), 63.77 (4CHZ), 165.84 (4C=O); m.p.=56"C
C0,Et
If tetraethoxyallene 1 is reacted with disulfur dichloridell'l instead of with thionyl chloride 2, no diethyl thioxomalonate S-sulfide 13 can be trapped with 2,3-dimethyl1,3-butadiene. (13 possibly exists in equilibrium with the
isomeric diethyl dithiiranedicarboxylate 14[15,l6].) Instead,
15["l
tetraethyl 1,2,4,5-tetrathiane-3,3,6,6-tetracarboxylate
is isolated in 83% yield (Table 1). We assume that 15 is
formed by dimerization of the isomers 13/14."*l Apparently, 13 and/or 14 d o not eliminate sulfur, since no diethyl
thioxomalonate 16 or its dimer can be dete~ted."'.'~]
OEt
/
I
EtO
cl\
*E
C
tl
c1
S-S
S-S
XCOZM
COzEt
II
CO E t
E t O ' k f 6 O E t
C02Et
OEt
rn
1191 K. Oka, J. Org Chem. 44 (1979) 1736
Do Cp(CO)*Mn Fragments Stabilize Radicals?**
(EtO,C),C=S=S
13
s-s
(EtOZC),
(s-s ) (CO,Et),
15
t-
It *
-s
(EtO,C),C=S
16
Received: February I I , 1985;
revised: April 9, 1985 [Z I164 IE]
Publication delayed at authors' request
German version: Angew. Chem. 97 (1985) 870
CAS Registry numbers:
1 , 85152-89-2: 2, 7719-09-7 4, 98194-64-0: 5 , 96745-90-3: 6, 6174-95-4; 7 ,
18214-56-7; 8 , 66950-00-3; 15, 98194-65-1; 2,3-dimethyl-1,3-butadiene,
5138 1-5; toluene, 108-88-3, sulfur dichloride, 10545-99-0.
856
0 VCH VerlagsgesellschaJi mbH, D-6940 Wemheim. 1985
By Renate Gross and Wolfgang Kaim*
Cp(CO)*Mn fragments [Cp =q'-CsH5(Cpo), q'-C5H4Me
(Cp'), q5-C,Mes(Cp')] can stabilize diamagnetic, unstable
molecules."] Three recent studies were concerned with the
formation of radical complexes involving these metal fragment~,'*-~'
and although each of the complexes described
has one unpaired electron, they differ significantly in the
distribution of spin. For anionic, binuclear coordination
compounds of pyrazine, the unpaired electron was shown
by ESR spectroscopy to be localized largely in the n-system of the heterocyclic ligand;[31 for the complexes
[Cp(CO),(L)Mn] (L = NH(m-C6H4CH,),[21 StBu, and
SePht4]), only a large "Mn coupling constant was ob["I Priv.-Doz. Dr. W. Kaim, Dipl.-Chem. R. Gross
lnstitut fur Anorganische Chemie der Universitat
Niederurseler Hang, D-6000 Frankfurt am Main SO (FRC)
[**I This work was supported by the Deutsche Forschungsgemeinschaft, the
Fonds der Chemischen Industrie, the Hermann-Willkomm-Stiftung, the
BASF AG, the Messer Griesheim GmhH, and the Karl-Winnacker-Stiftung of Hoechst AG.
0570-0833/85/1010-0856 $ 02.50/0
Angew. Chem. In,. Ed. Engl. 24 (1985) N o 10
Документ
Категория
Без категории
Просмотров
2
Размер файла
230 Кб
Теги
oxide, intermediate, diethyl, thioxomalonate, sulfine, reactive
1/--страниц
Пожаловаться на содержимое документа