close

Вход

Забыли?

вход по аккаунту

?

Dihydrodioxetobenzodioxins Synthesis and Chemiluminescence.

код для вставкиСкачать
[ I ] D . Seebach, E. Hungerbiihler in R. Scheflold: Modern Synthetic Methods,
Vol. 2, Salle und Sauerlander, Aarau 1980, p. 91.
121 a) A. Nordal. G. Hausfreif,J . Grether. Medd. Nor. Farm. Selsk. 28, 225
(1966); b) S . Sakamura, T. Yoshihara, K . Toyoda, Agric. Biol. Chem. 37,
1915 (1973); 33. 1795 (1969); c) R. W. Gray, A. Guggisberg, K. P. Segebarth. M. Hesse. H . Schmid, Helv. Chim. Acta 59, 645 (1976).
131 Precursor o f (2a): M. Carmack, C. J. KeNey, J. Org. Chem. 33, 2171
(1968); D. Seebach. H . - 0 . Kalinowski. 8. Bastani. G. Crass, H . Daum. H.
Dorr. N . P. Du Preez. V. Ehrig, W. Langer, C. Niissler. H.-A. Oei. M.
Schmitt, Helv. Chim. Acta 60, 301 (1977); J. A . Musich. H . Rapoport. J.
Am. Chem. SOC.100. 4865 (1978);-Precursor of (2b) by titanate catalyzed transesterification of the methyl ester: D. Seebach, E. Hungerbuhler,
R. NaeJ P. Schnurrenberger, B. Weidmann, M. Ziiger. Synthesis, in
press.
[4] Cf.: A. B. Smith. 111. P. J. Jerris, Synth. Commun. 8, 421 (1978); J. Mulzer. T. Kerkmann. Angew. Chem. 92. 470 (1980); Angew. Chem. Int. Ed.
Engl. 19. 466 (1980); J. E. Baldwin, J. Chem. SOC.Chem. Commun. 1976,
734, 736, 738.
[5] W . HeNer. Ch. Tamm, Helv. Chim. Acta 57, 1766 (1974). We thank Prof.
Ch. Tamm. Universitat Basel, for an authentic sample of dimethyl
(2R,3S)-(+)-4'-Omethylpiscidate.
Dihydrodioxetobenzodioxins:
Synthesis and Chemiluminescence"*'
By Waldemar Adam, Omar Cueto, Ernst Schmidt,
and Kiyoshige Takayama"l
In our search for novel "high-energy'' molecules for the
thermal generation of electronically excited products, we
undertook the preparation of the dioxetanes (I) derived
from 1,4-benzodioxins (4). By analogy to the perhydrodioxetodioxins (2) and the bisdioxetane (3). which on thermolysis afford electronically excited ethylene glycol diester''] and benzoic anhydrideI2],respectively, in high yield, it
was expected that electronically excited pyrocatechol diesters should be formed in high yields from 2a,8a-dihydroI ,2-dioxeto[3,4-a][I ,4]benzodioxin (])I3].
Herewith we report the preparation, characterization, and chemiluminescence of the novel dioxetanes ( I ) .
troscopically'". On heating, pure (la) quantitatively gave
the pyrocatechol diester ( 5 ~ ) 'with
~ ~ concomitant light
emission.
4)
(a), R
(51
fJ)
= Ph,
R'=H;
( b ) , R = Ph, R ' = M e ;
Ic). R = R ' = Me
Photooxygenation of 2-methyl-3-phenyl and 2,3-dimethyl- 1,4-benzodioxins, (46) and (4c). respectively, afforded
the corresponding dioxetanes (Ib)'*l and (lc)I9l which upon
heating were quantitatively transformed into the pyrocatechol derivatives (5b)'''' and ( 5 ~ ) "'I, respectively, with light
emission.
On thermal decomposition, the dioxetanes (I) chemiluminesce; however, the emission intensity was too weak to
be useful for quantitative determination of the singlet
quantum yields (a').We therefore used the energy-transfer chemiluminescence to assess the quantum yields'". The
activation parameters AHf and AS', and the singlet
(<pLpA)and triplet
quantum yields, respectively, are
collected in Table 1 .
(aTSA)
Table I. Activation parameters and quantum yields for thermolysis of the
dioxetanes ( I ) .
(10)
(Id
(Ib)
~
AHC [kcal/mol] [a]
AS' [cal/mol/K] [a]
AG+[kcal/mol] [b]
103 a:,Ph
[%I
@;>BA
(Dl+\
[%I
10 4
uJT/aJ'
23.8 f I .O
-5.If2
25.1 f 1
1.1 f 0 . 3
0.6f0.06
0.6 f 0.06
500 f 3 0 0
~~
25.1 f 1
-5.7It2
26.9 f 1
1.6f0.2
3.5f 1.3
3.5f 1.3
2200 f700
26.2 f I
-3.7 *2
27.3 f 1
0.09 0.02
0.02 f 0.0 1
0.02 0.01
200 * I 0 0
*
*
[a] Determined by isothermal kinetics using DBA-enhanced chemiluminescence. @] At 293.2 K.
R
Ph-
Ph
Photosensitized singlet oxygenation of a 0.03 M CHzClz
solution of the 1,Cbenzodioxins (4)141at - 78 " C , using polymer-bound Rose Bengal as sensitizer and a 400W sodium street lamp as radiation source['I, led to complete
consumption of the dioxins within 2 h, as evidenced by
N M R monitoring. For example, with (4a) the olefinic proton at 6= 6.41 disappeared with simultaneous appearance
of the dioxetanyl proton at 6=6.33. On heating to 20°C
this signal also disappeared; in its place an aldehydic proton-as expected for (5a)-appeared.
The dioxetane (la). was isolated by column chromatography (Florisil, - 60 "C, CH,CI,) and characterized spec[*] Prof. Dr. W. Adam, Dr. 0.Cuerto, DipLChem. E. Schmidt,
[**I
Dr. K. Takayama
lnstitut fur Organische Chemie der Universitat
Am Hubland, D-8700 Wiirzburg (Germany) (address to which correspondence should be sent)
Department of Chemistry, University of Puerto Rico
Rio Piedras, Pueno Rico (USA)
This work was supported by the Deutsche Forschungsgemeinschaft, the
Fonds der Chemischen Industrie, the National Science Foundation, the
National Institutes of Health, as well as by the Petroleum Research
Fund.
Angew. Chem. fnr Ed. Engl. 20 (1981) No. 1 2
The activation parameters show that the dioxetanes (1)
are of comparable stability to that of tetramethyl-l,2-dioxetane (TMD)131.As expected, the disubstituted dioxetanes
(lb) and (lc) are more stable than the monosubstituted derivative (la). but there is no difference in stability due to
phenyl uersus methyl substitution. From the quantum
yields it is seen that, as with TMD, n,x* triplet states can
be selectively generated from the dioxetanes (I), i. e. all derivatives (la)-(lc) give very low yields of n,x* singlet
states. Surprising is the very low total quantum yield of
dioxetane (Ic). The possibility of introducing substituents
into the benzene ring and at the 2,3-positions should make
derivatives assessible which exhibit high singlet excitation
yields through intramolecular electron exchangef'].
Received: February 12, 1980,
in altered form July 5, 1981 [Z 924 IE]
German version: Angew. Chem. 93. I100 (1981)
CAS-Registry numbers:
(la), 79792-88-4; (Ib). 79792-89-5; (lc). 79792-90-8; (40). 5770-58-I ; (46).
79792-91-9; ( 4 ~ )79792-92-0;
.
(5a). 79792-93-1; (Sb), 79792-94-2; (Sc). 635.676.
[I] K . A. Zaklika. A. L. Thayer, A. P. Schaap. J. Am. Chem. SOC.100. 4916
(1978).
121 W. Adam, C . 4 . Cheng, 0. Cueto, I . Erden. K. Zinner. J. Am. Chem.
SOC.101. 4735 (1979).
131 W. Adam, Adv. Heterocycl. Chem. 21. 437 (1977).
0 Verlag Chemie GmbH. 6940 Weinheim, 1981
0570-0833/81/1212-1031 $02.50/0
1031
141 For the synthesis of 1,4-benzodioxins cf. E. Schrnidf. Diplomarbeit, University of Wiirrburg 1981.
151 W. Adam, H. J . Eggelte, J. Org. Chem. 42, 3987 (1977).
(n[6] ( I f f ) . 41% yield, yellow crystalline solid, m.p.=70-72"C
CSHIL/CHICL), >98% peroxide content by iodometric titration, satisfactory elemental analysis; 'H-NMR (CCI,, TMS): 6=6.33 (I H, s,
4 - H ) , 7.16 (4H, s, arom. protons), 7.45-7.61 and 7.83-7.97 (5H, m,
phenyl); IR (CCI,): v=3080,2960, 1620, 1500, 1470, 1460 cm-'.
171 (Sa). 82% yield, b.p.= 110°C/0.15 torr, n$= 1.5701; satisfactory elemental analysis; 'H-NMR (CCI,, TMS): 6=7.00--7.50 and 7.90-8.09
(SH, m, phenyl), 7.12 (4H, s, arom. protons), 7.95 ( I H, s, H-C02); IR
(CCI,): v=3080 (aromatic CH), 1750 ( C 4 ) cm-'.
IS] (Ib). 35% yield, yellow crystalline solid, m.p.=72-76"C
(nC S H I ~ K H ~ C >98%
I ~ ) , peroxide content by iodometric titration, satisfactory elemental analysis: 'H-NMR (CCI4, TMS): 6= 1.41 (3H, s,
CH,), 7.06 (4H, s, arom. protons), 7.40-7.57 and 7.73-7.88 ( 5 H, m,
phenyl); IR (CCI,): 3080, 2950, 1615, 1495, 1455, 1395 cm-'.
191 (lc), 33% yield, yellow crystalline solid, m. p. = 1 18 - 122 "C (dec.) (nC5HI2/CH2CI2),satisfactory elemental analysis; 'H-NMR (CCI,, TMS):
6= 1.81 (6H, s, CHJ and 6.99 (4H, s, arom. protons); IR (CCI,): 3040,
3000, 1612, 1495, and 1264 cm-'.
[lo] (Sb), 83% yield, b.p. = 15OoC/0.IO torr, RE'= 1.5631, satisfactory elemental analysis; 'H-NMR (CCI,, TMS): 6=2.15 (3H, s, CH,), 7.45 (4H, s,
arom. protons), 7.65-7.87 and 8.30-8.35 (SH, m, phenyl); IR (CCI,):
3080, 2960, 1775, 1755 cm-'.
[ I I ] (5c) formed quantitatively and IR and 'H-NMR identical with literature
data, H. Nimr. K. Das. N. M. Minernura. Chem. Ber. 104, 1871 (1971).
quinoid partial structure is not derived from a benzoid aromatic system.
The synthetic route to (2a) starting from the tautomerid
valence isomeric mixture (-?)I3] is outlined in Scheme I.
x@
(2c)
Scheme 1. A : 5-methyl-1.3-benzodithiolylium perchlorate 141, anhydrous
CH,CN, N2, 20"C, 12 h; B: NEt,, CH2C12,20°C; C: Reaction to give (5) or
(6): dicyanoketene [5] or 9-carbonylfluorene [6], anhydrous toluene, N2, 1.5 2 h.
Donor-Acceptor-Stabilized
1,6-MethanoflOlannulene Derivatives'"'
By Richard Neidlein and Hartmut Zeiner"'
Dedicated to Professor Rolf Huisgen on the occasion of
his 60th birthday
The diketo derivative (la) of 1,6-methano[IO]annulene, a
homologue of 1,4-naphthoquinone, cannot be synthesized"] since it is thermodynamically less stable than its
valence isomer (lb).
The bicyclic cycloheptatriene structure of (2a) is based
on spectroscopic evidence: in the 'H-NMR spectrum, the
CH,-bridge protons form an AX system with geminal coupling 2JAx=10.7 Hz; in contrast, 4-5 Hz would be expected for a tricyclic norcaradiene structure such as in
(2b)[71.
A further index for (2a) is provided by the absorption of H-7 to H-10[81(ABCD system at relatively low field
strengthL6.7). The "push-pull" effect in (24 produces a
carbonyl absorption at conspicuously low wavenumber, as
well as a relatively high basicity; the negative solvatochromism of the longest wavelength UV bands indicates a
marked contribution of the polar mesomeric structure (2a')
to the ground state.
Conversion of the basic (2a) into the conjugated red-violet acid (2c) (Scheme 1) shifts the absorption of the CH2bridge protons (AB signal) 1.18 ppm upfield. With
Table 1. Selected physical data for compounds (2a). (5). and (6).
In contrast, however, the bicyclic quinoid structure is
considerably more stable than the tricyclic structure if it is
incorporated into an integral part of a ''push-pull'' system
as in (2a). No evidence that the valence isomer (2b) exists
has been obtained to datei2].To the best of our knowledge,
(2a) is the first "push-pull"-stabilized quinomethide whose
['I Prof. Dr.
["I
R. Neidlein, Dr. H. Zeiner
Pharmazeutisch-chemisches lnstitut der Universitat
Im Neuenheimer Feld 364, D-6900 Heidelberg (Germany)
This work was supported by the Fonds der Chemischen Industrie and
by the Deutsche Forschungsgemeinschaft.
1032
8 Verlag Chernie GmbH. 6940 Weinheirn, 1981
(20): M.p.=70-71°C:
yield 82%; M f=322.0485 (calc. 322.0484); 'HNMR (90 MHz, CDCI3, TMS): 6=0.65 (d, AX signal, %,= 10.7 Hz, I H,
CH,), 3.29 (d, AX-signal, 'JAx= 10.7 Hz, 1 H, CH,), 2.37 (s, CH,), 5.85 (d, AB
signal, 3J3.4=11.8 Hz, H-41, 7.29 (d, AB-signal, '.I3,= 11.8 Hz, H-3). 6.867.34 (m, H-7 to H-I0 and 3 arom. H) 181; UV (CH,CN): d,,,=244 nm
(E= 10094). 316 (3154, sh), 445 (8306); UV (CH2CI2): d.,,,=245
(11 478, sh),
254 (10655, sh), 295 (4364, sh), 316 (3540, sh), 458 (9253); IR (KBr): 1610
cm-'(CO), 1535 ( C 4 ) ; MS (100 eV, 170°C): rn/r 322 (IWh, M')
(2c)G(2a) in CFKOOD: 'H-NMR (90 MHz, TMS): 6=0.21 (d, AB-signal,
'JAB=10.8 Hz, 1 H, CH,), 1.37 (d, AB-signal, 2JAB=
10.8 Hz, I H, CH,), 2.63
(s, CH,), 6.63 (6,,, ,J3.4= 10.2 Hz, H-4), 7.34-8.19 (m,H-3, H-7 to H-I0 and
3 arom. H)
(5): yield 52%; M + =370.0597 (calc. 370.0597); 'H-NMR (90 MHz, CD,C12,
TMS): 6=0.80 (d, AX signal, ,JAx=10.9 Hz, 1 H, CH,), 2.75 (d, AX signal,
'JAx=10.9Hz, 1H,CHz),2.39(s,CH,),6.49(d,ABsignal,'J,.4=11.1 Hz,H4), 6.98 (d, AB signal, 'Ju= 11.1 Hz, H-3), 7.05-7.46 (m,H-7 to H-10 and 3
arom. H)
(6): M.p.= 128°C;yield46%; 'H-NMR(90 MHz,CDC13,TMS):6=0.89(d,
AX system, ' J A X = 10.6 Hz, I H, CH2), 3.22 (d, AX signal, 2JAx= 10.6 Hz, I H,
'J3..,= 11.6 Hz, H-4). 6.86-7.86 (m, H-3, H-7
CH2), 2.32 (s, C H A 6.50
to H-10 and I I arom. H): UV (CH3CN): d,.,=204
nm (&=74976), 230
(72179). 252 (43083). 264 (34131, sh), 318 (3917, sh), 340 (3357, sh), 522
(16226); UV (CH2C12):d2,:,,=305 nm (~=13885,sh), 322 (7295, sh), 342
(5648, sh), 540 (17415); MS (100 eV, 250°C): rn/r 470 (62%, M ' )
0570-0833/81/1212-1032 $ 02.50/0
Angew. Chem. Inl. Ed. Engl. 20 (t98t) No. 12
Документ
Категория
Без категории
Просмотров
2
Размер файла
235 Кб
Теги
synthesis, chemiluminescence, dihydrodioxetobenzodioxins
1/--страниц
Пожаловаться на содержимое документа