close

Вход

Забыли?

вход по аккаунту

?

Formation of Alkynyltrithiocarbonato Ligands from Alkylidyne Ligands and Carbon Disulfide.

код для вставкиСкачать
[I] R. Hoffmann. Sci. A m . 1993.268. No. 2, p. 40; Spektrum Wi~.\cnsch.1993.
No. 4. p. 68.
[2] K. Weber. H. Prinzbach. R. Schmidlin, F. Gerson. G. Gescheidt. Angeii'.
Cliem. 1993. 105. 907: Ang(w. Chrm. I n t . E d Engi. 1993. 32. 875, and
references therein.
[3] L. A. Paquette. Chrrii. Rei.. 1989.89, 1051; L. A. Paquette. J. C. Weber. T.
Kobayashi, Y Miyahara, J Am. Chem SIK. 1988, 110, 8591; G. A. Olah,
G. K. Surya Prdkash, W-D. Fessner. T. Kobayashi. L. A. Paquette. ;hid
1988, / / O . 8599.
[4] R. Pinkos. J.-P. Melder, H. Fritz. H. Prinzbach. Angciv. Chem. 1989. 101.
319: A n g ~ i Chun.
~.
I n [ . E d EngI. 1989. 28. 310; R. Pinkos. J.-P. Melder.
K. Weber. D. Hunkler. H. Prinzbach. J A m . Chmi. Sot.. 1993. 115. 7173.
[5] J.-P. Melder, R. Pinkos. H. Fritz, J Wiirth. H. Prinzbach. J. A m C h m
Sot.. 1992. 114. 10213
[6] W -D. Fessner. H. Prinzbach (T/ir Pugorluji Roirre to Doc/(,cu/icrlrtoiCs)in
Cuge Hdrocarhoiis (Ed.: G . A. Olah). Wiley. New York. 1990. p. 353.
[7] D . Bakowies. W. Thiel. J. A m . Chcwi. So(,.1991. 113, 3704: V. Parasuk. I.
Almof. Chmt. P h ~ sL. o / / . 1991. 184.187;C. J. Brabec. E. Anderson, B N.
Davidson. S. A. Kajihard. Q. M. Zhang. J. Bernholc. D. Tomanec, P h ~ s .
Rev. B Rupid Conintun. 1992, 46. 7326; G. van Helden. M. T. Hsu. N. G.
Gous. P. R. Kemper. M. T. Bowers, Chem. PIzn. Lrrt. 1992.204. 15: R . C.
Haddon. St.i(wic.a 1993. 261, 1545.
[8] Compound 4 is the final member in the series of dodecahedrapolyenes.
Contrary to early calculations and expectations[9] the dodecahedrenes
and nonconjugated dodecahedradienes[4.5.12] proved to have surprising
thermal stability: owing to the steric shielding of the highly bent C = C
bonds (cp = 43-50 ). dimerization only occurs at high temperatures[lO].
The existence of C,,,H,, trienes and C,,HI2 tetraenes was deduced prevfously from intense signals in the mass spectra of multifunctionalized dodecahedranes[4.5,10,12]. Multiple c m H X elimination and release of multiply unsaturated dodecahedranes were recently achieved with
Schwesinger bases[ll].
[9] A. B. McEwen, P. von R. Schleyer. J. Org. Chem. 1986, 51. 4357.
[lo] K. Weber. Dissertation. Universitlt Freiburg. 1993.
[ l l ] R. Schwesinger, R. Link, G. Thiele, H. Rotter. D. Honert. H.-H. Limbach.
F. Mlnnle. Angel,.. Chem. 1991. 103. 1376: A n g w . Chrm. I n / . Ed. Engi.
1991, 30. 1372, and references therein
[12] F. Wahl, Dissertation. Universitlt Freiburg. 1993.
[13] D. H. R. Barton, D. Crich. W. B. Motherwell. Tetrohedron 1985.41, 3901;
E. W. Della, J. Tsanaktsidis. Ausf. J. Chain. 1989.42. 61; D. H. R. Barton.
J. C. Jaszberenyl. D. Tang, Terruh(&on Lett. 1993, 34, 3381.
[14] C. Chatgilialoglu. D. Griller. M. Lesage, J Org. Chem. 1988. 53. 3641.
1151 K. Weber, H. Fritz, H. Prinzbach. Tefruhrdr-onLert I992,33,619;cf.L. A.
Paquette, D. R. Lagerwall, H:G. Korth. J Org. C%em1992. 57. 5413.
[16] G. Polya. Acr. Morh. 1937. 68. 145; 3. M. Schuiman. T. Venanzi. R. L.
Disch, J. A m . Cher7t. So(.. 1975, 97, 5335, J. S. Garavelle, J. E. Leonhard.
J. Comput. Chrm. 1985, 9. 133: L. A. Paquette, R. J. Ternansky. D W.
Balogh, W. J. Taylor. J. A m . Chem. Sot.. 1983. 105. 5441.
fnf. Coiiiprrr. Sri
[17] G. Rucker. C. Rucker. Chimiu 1990. 44. 116: J CI~PIII.
1990. 30. 187.
[18] U. Burkert. N. L. Alhnger, Moleculur Mechrmics (ACS Monogr. 177).
American Chemical Society. Washington D.C., 1982.
[19] The polychlorides generated in recent chlorination reactions with 7 a under
"extreme" conditions (including C,oCl,4(CC13)2)are also soluble in standard solvents.
[20] J.-P. Melder. R. Pinkos. H. Fritz. H. Prinzbach, Angeii. Cltem. 1990, 102,
105; Angeir. c/iem. f n l . Ed. Eng/. 1%. 29, 95.
[21] The fluorination of 1 is being studied by Prof. A. Haas and Dr. M. Lieb
(Universitlt Bochum).
1221 F. N. Tebbe. R. L. Harlow, D. B. Chase, D. L. Thorn, G. C. Campbell, Jr..
J. C. Calabrese, N. Herron. R. Y Young. E. Wassermann, Sckncr 1992.
256, 822: G. A. Olah, I. Bucsi. C. Lambert, R. Aniszfeld, N. J. Trivedi,
D. K. Sensharma. G. K. S. Prakash. J. A m . Chem. Sot.. ,l991. 113. 9385.
G. K. S. Prakash, I. Bucsi. R. Aniszfeld. G. A. Olah ( h i p r o w / Prepurution, Cliemrcul Rructn'iry, und Fimctionu/i;ufion o / C,, und C,, Fullwene y)
in B u r k n t i n s t ~ ~ r f l r N r ~ (Eds.:
~ i i ~ ~ s W. E. Billups, M. A. Ciufolini). VCH.
Weinheim. 1993. p. 301
[23] P. R. Birkett, P. B. Hitchcock. H. W. Kroto, R. Taylor, D. R. M. Waiton,
Nurirrr 1992. 357. 479; E N . Tebbe, R. L. Harlow. D. 8 . Chase, D. L.
Thorn, G. C. Campbell, J. C. Calabrese. N. Herron. R. J. Young. E.
Wassermann. Sciencr 1992. 256. 822.
1241 R. Taylor. G . J. Langley. A. K. Brisdon, J. H. Holloway, E. G. Hope.
H. W. Kroto. D. R. Walton. J Client. Sot.. Chiwi. Crimmun. 1993. 875.
Formation of Alkynyltrithiocarbonato Ligands
from Alkylidyne Ligands and Carbon Disulfide**
By Andreas M a y * and Tsung-Yi Lee
Dedicated to Profkssor Ernst O t t o Fisclzer
on the occasion of'his 75th birthdav
Coupling reactions of alkylidyne ligands with carbonyl,"]
isocyanide,[21 and alkylidyne l i g a n d ~ ' ~are
] well establ i ~ h e d . ' ~A' simple qualitative molecular orbital model for
these reactions suggests that alkylidyne- thiocarbonyl coupling should also be feasible and even more facile than alkylidyne-cdrbonyl coupling.f41However, no alkylidyne thiocarbony1 metal complexes are available to test this prediction. A
proven method for the synthesis of thiocarbonyl ligands is
the abstraction of sulfur from coordinated carbon disulfide by phosphanes."] Tris-trimethylphosphane-substituted
tungsten alkylidyne complexes of type 2 [see Eq. (I)] appeared to be suitable precursors for alkylidyne thiocarbonyl
tungsten complexes of type 1. Dissociation of one phos0
c
phane ligdnd from 2 would provide an empty site for coordination of Carbon disulfide and free phosphane for sulfur
abstraction. The results described in this communication indicate that alkylidyne thiocarbonyl tungsten complexes can
be obtained as intermediates by this strategy and that these
undergo alkylidyne- thiocarbonyl coupling.
Alkylidyne complexes2[61 react slowly in THF with an
excess of carbon disulfide to give the green complexes 3a-e
in moderate yields [Eq. (I)]. Trimethylphosphane sulfide is
0
C
-
0
2 cs,
PMe,
- W3Ps
X-~EC-Ph
(1)
THF
PMe,
a:X=CI
b: X = Br
c:X=I
d: X = SCMe,
6: X = SCBH,,
2
ll
S
3
formed as a by-product."' The I3C NMR spectra of complexes 3a-e exhibit four signals in the low-field region at
6 = 245-180 (Table 1) and the expected number of signals
for a phenyl group and two trans trimethylphosphane ligands. The 13C NMR spectra thus contain one signal more
than expected for complexes of type 1. When 2 b is allowed
to react with labeled I3CS,, two I3C NMR signals of complex 3b, namely those at 6 = 241 and 218, are enhanced.
Except for the signal at 6 = 241, the I3C NMR data of
complexes 3a-c are similar to those of a class of tungsten
[*] Prof. A. Mayr. T.-Y Lee
Department of Chemistry
State University of New York at Stony Brook
Stony Brook, NY 11794-3400 (USA)
TekfaX: Int. code (516)632-7960
[**I This work was supported by the National Science Foundation. We thank
Michael P. Rickenbach and Prof. Stephen A. Koch for conducting the
X-ray crystallographic study.
+
1726 <.;
VCH Ver/ugsgesell.~rhufrmhH. 0-69451 Weiiiheint. 1YY3
057O-ON33lY3j/212-1726 X 10.00+ .?54
Angm
Chuii. fnt. Ed. Engl. 1993. 32. Nn. 12
Tablc I Characteristic I3C NMR (62.9 MHz, CDCI,. 25 C) and IR ( T H F )
data ol'complexes 3 a - e .
3 a : 6 = 240.0 (CS,).
1959 cI11-I ( 5 . C O )
3b: 6 = 241.2 (CS,).
I960 cm
(s. CO).
3 C : 0 = 743 9 (C-S,).
lY57 ciii ' (b. C O ) .
3 d . d = 2 4 2 1 (C'S,).
1924 ciii ' (s. C O ) .
3 e : 0 = 743.3 (CS,).
1927 c111-I (s. C O ) .
~
'
224.4 ( C 0 ) . 219.4 (PhCCS). 206.2 (PhCCS): i. =
223.9 (CO). 218.1 (PhCCS). 205.6 (PhC'CS): i.=
223.1 (CO). 216.1 (PhCCS). 204.0 (PhCCS): i.=
231.8 (CO). 192.7 (PhCCS). 180.0 (PhC'CS): i.=
231.1 (CO). 193.7 (PhCCS), 181.8 (PhCTS): i.=
alkynol, alkynolester, and alkynol silyl ether complexes
[WCI,(EOCCPh)(CO),(PMe,),]
(E = H, RCO, R,Si). which
were obtained by photoinduced alkylidyne-carbonyl coupling of [W(CPh)C1(CO),(PMe,)2] in the presence of ECI
(E = H, CI, and R,Si, respectively).[81 The presence of an
alkyne unit in complexes 3 is also indicated by the upfield
shift of the signals at 6 = 21 8 and 205 for complexes 3a-c to
(5 = 193 and 180 for 3d, e. which have thiolate ligands. These
signals lie in the range characteristic for four-electron donor
alkyne Iigmds.['] I n 3d and 3e n: donation by the alkyne unit
is reduced by competition with the strong thiolato n: donor
ligands, thus causing the shift of the alkyne N M R signals to
higher field.
The solid-state structure of 3b was determined by X-ray
crystallography and is shown in Figure l.llO1The newly
formed alkynyltrithiocdrbonato ligand is coordinated to the
tungsten atom through the acetylene group and one sulfur
atom. The bond lengths and angles of 3b exhibit no unusual
features.
bony1 couplings are expected to be susceptible to induction
by both nucleophiles and electrophile~.[~'
The nature of the
products 3 suggests electrophilic attack of carbon disulfide
at the thiocarbonyl ligand as a mechanistic possibility." 21
However, coupling could also be induced by nucleophilic
attack of Me,PS at the metal center to give an intermediate
with a thioketenyl ligand. Further reaction of the thioketenyl
ligand with carbon disulfide and displacement of Me,PS
from the metal center by the resulting trithiocarbonate group
could also account for the formation of the products. Regardless of the actual coupling mechanism, if the alkylidyne
thiocarbonyl complexes 1 are indeed intermediates in the
reaction shown in Equation (1). then the results imply that
alkylidyne- thiocarbonyl coupling is more facile than alkylidyne-carbonyl coupling, since the prerequisite structural
components for both are present in complexes I .
Esperimen fa1 Procedure
In a typical experiment a solution of Zb (98 mg. 0.161 mmol) and C S , ( 5 0 pL.
0.831 mniol) in 30 mL T H F was stirred at room temperature until most of the
starting material had reacted (reaction was monitored by IR spectroscopy).
During this time. the color of the solution changed from orange to browngreen. All volatile components were removed under vacuum. The product \ras
purified by chromatography on silica gel at room temperature eluting a i t h
CH2Cl,.'hexane ( 2 : l ) . Recrystallization from CH2C12 hexane gave air-stable.
green crystals. (Reaction times and yields, 3 n : 18 h. 14.7%: 3b: 44 h. 41.9%:
3 c : 14d. 38.0%: 3d. 17 h. 32.7%: 3e. 18 h, 16.Y%.) Satisfactory C.H aiuilyses
were obtained for complexes 3a and 3c e.
~
Received: June 17. 1993 [Z 6146 I€]
German version: Aiigrw. C h i i . 1993. 10.7. 1835
[ l ] F. R Kreissl. A. Frank. U. Schubert, T. L. Lindner, G. Huttner. A f i ~ q r i i
C'hein. 1976. 88. 649: An,gcw. Chem. / n r . Ed. EngI. 1976. 15. 632.
[2] A. C. Filippou. W. Grunleitner. Z. Nu/ur/or.sch. B 1989. 44. 1023.
[3] A. Mayr. C. M. Bastos. N Daubenspeck. G. A . McDermott. Chrf77.Bcv.
1992, / 2 S . 1583
141 A Mayr. C. M. Bastos. Ptog. fnarg. Cheni. 1992, 40. 1.
[ S ] P. V. Broadhurst. Po/i.hedron 1985, 4. 1801.
[6] a) A. Mayr. M. F. Asaro. M. A. Kjelsberg. K. S. Lee. D. Van Engen.
Oigu~~onirrri//ii~t
1987. 6. 432: b) A . Mayr. T.-Y Lee. M. A. Kjelsberg.
unpublished
[7] PMe,S: 'HNMR (250 MHz, CYCI,. 25 C ) :6 = 1.77 (J(P,H) = 13.1 Hz)
(J. B. Hendrickson. M. L. Maddox. J. 3. Smis, H. D. Kaesz, 7 i ~ t r d r e ~ h n
1964. 20. 449).
[XI A. Mayr. C M Bastos, R. T. Chang. J. X. Haberman, K. S . Robinson.
D. A. Belle-Oudry. A17gcw. Chen7. 1992, 104. 802; A n g c w Ckm. In!. Ed.
Engi. 1992. 31, 747.
191 J. L. Templeton. A h Orgunornei. Cheiii. 1989, 29. 1.
[lo] Crystals of 2b suitable for X-ray structure analysis were obtained by recrystallization from CH,ClJhexane. Crystal data for Zb: C,,,H,,OP,S,W,
M,=653.24.P2,;n(no. 1 4 ) , ~ = 8 . 9 5 5 ( 4 ) , b = 2 8 . 5 7 1 ( 4 ) . c = Y . 1 8 3 ( 1 ) ~ ,
fi = 99.20(2) V = 2319(2) W3, Z = 4. Q,.,,, = 1.871 gcm-'. p(MokJ =
71.929 c m - ' , 3291 unique observed data, 0 < 211 < 60.8 . 217 final variables. R = 0.033. R, = 0.032. All intensity measurements at room temperature. Mo,, radiation. graphite monochromator (i.= 0.71069 A), 0-20
scan mode. The structure was solved by direct methods and refined by
full-matrix least squares. All calculations were performed using the
TEXSAN programs. Further details of the crystal structure investigation
may be obtained from the Fachinformationszentrum Karlsruhe.
Gesellschaft fur wissenschaftlich-technische Information mbH, D-76344
Eggenstein-Leopoldshafen (FRG), on quoting the depository number
CSD-57807. the names of the authors. and the journal citation.
[I 11 An alternative mechanism could involve dissociation of PMe, and direct
addition of CS, across the metal-carbon triple bond as the C - C bondforming step. A precedent for this step is the cycloaddition o C C 0 2 to the
aminomethylidyne complex NEt,[W(CNEt,)(CO),(/I-PPhi,,MocCo,,]:
E. 0 . Fischer. A. C. Filippou. H G. Alt. U. Thewalt, Angris.. Chmi. 1985.
97, 21s: Aiigeiv. C/wii. / u r . E d En,?/. 1985. 24, 203. We consider this
possibility less likely. The cycloadduct [X(CO)(PMe,),W=C(Ph)-C(S)S]
would be a 16-electron complex without significant stabilization of the
metal center by il donation. Formation of the products from this type of
intermediate would require the formulation of additional unprecedented
steps.
[12] For reactions of thiocarbonyl ligands with electrophiles. see: B. D.
Dombek, R. J. Angelici, J. An?. C h m Soc. 1975, 97. 1261 For an electrophile-induced coupling of alkylidyne and carbonyl ligands. see: J. D.
Protasiewicz, A. Masschelein. S. J. Lippard, J. , 4 1 7 7 . C/7wii. So(.. 1993. I1.7.
800.
.
Fig. 1. Crystal structure of3b. Selected bond lengths [A] and angles [ 1: Wl-CI
2.034(6). W b C 8 1.964(6). W I - C I 0 2.002(7), WI-Brl 2.6050(8). WI-PI
2.521(2). Wl-P2 2.517(2). W1-Sl 2.541(2). CLC8 1.328(8). CX-S2 1.694(6).
C9-S2 1 785(7). C9-S3 1.646(6).C9-Sl 1.689(7): C2-CI-CX 136.9(6), Cl-CX-S2
147.8(5). C8-S2-C9 98.7(3). Sl-C9-S2117.5(4). S2-C9-S3 11 5.3(4).
The mechanism of formation of complexes 3 is proposed
to involve complexes 1 as the immediate coupling precursors.[' An interesting question, which still remains open, is
how the alkylidyne-thiocarbonyl coupling step is induced.
Alkylidyne-carbonyl couplings are induced primarily by
nucleophiles. whereas alkylidyne-isocyanide couplings are
initiated exclusively by e l e ~ t r o p h i l e s . Alkylidyne'~~
thiocar-
Документ
Категория
Без категории
Просмотров
0
Размер файла
272 Кб
Теги
alkynyltrithiocarbonato, formation, carbon, disulfide, alkylidyne, ligand
1/--страниц
Пожаловаться на содержимое документа