close

Вход

Забыли?

вход по аккаунту

?

Insertion of a Cp Unit into a MetalЦMetal Bond [Ru3(CO)10(C5H4)] and its PPh3 Derivative.

код для вставкиСкачать
2: A mixture of 1 and green, chunky single crystals of 2 was obtained by slow
evaporation of aqueous solutions containing copper(i1) nitrate trihydrate,
bpym, and sodium carbonate in a 2.1 - 1 molar ratio. The yield was low because
of the initial precipitation of copper(l1) hydroxide. Crystals of 2 were separated
manually and studied by X-ray diffraction. The synthesis was repeated until
13 mg of 2 was obtained. This was then used for magnetic measurements. Both
1 and 2 provided correct elemental analysis (C, H. N. Cu).
Received: January 2, 1993 [Z 5792 IE]
German version: Angew. Chem. 1993. I(J5. 1122
111 W. E.Hatfield in Mugneto-S/rui.turul Correlutions in Eichange Coupled
S.utcms (Eds.: R. D. Willett. D. Gatteschi, 0. Kahn) ( N A T O AS1 Ser.
Ser. C 1985. 140, 555).
[2] a) D. J. Hodgson, Prog. Inorg. Chem. 1975. IY, 173; b) V. M. Crawford,
M. W. Richardson, J. R. Wasson, D. J. Hodgson, W. E. Hatfield, Inorg.
Chen?. 1976. 15, 2107. and references therein.
131 R. J. Majeste, E.A. Meyers. J. Phjs. Chem. 1970, 74, 3497. J. A. Barnes,
D. J Hodgson, W. E. Hatfield, Inorg. Chem. 1972, 11. 144; M. Toofan. A.
Boushehri. M. U1-Haque, J C h m . Soc. Dalton Truns. 1976. 217; K. T.
McGregor, D. J. Hodgson, W. E.Hatfield, Inorg. Cham. 1973. 12. 731; I.
Castro, J. Faus. M. Julve, M. Verdaguer, A. Monge. E. Gutierrez-Puebla.
lnorg, Chim. Actu 1990, 170, 251, J. Sletten, A. Serrensen. M. Julve. Y
Journaux, Inorg. Chem. 1990.29. 5054; I. Castro, J. Faus, M. Julve. J. A.
Real, F. Lloret, C. Bois, J. Chem. Sue. Dalton Trans. 1992. 47.
I41 I. Castro, M. Julve, G. De Munno, G. Bruno. J. A. Real. F. Lloret, J. Faus,
J Chrm. Soc. Dalton Truns. 1992, 1739.
[5] a) G. De Munno, G. Bruno, A r m CrmraNogr. Seer. C 1984,40,2030;b) G.
Brewer. E. Sinn, Inorg. Chem. 1985.24.4580:c) A. Real, J. Zarembowitch.
0. Kahn. X. Solans. ibid. 1987. 26. 2939; d ) M. Julve. G. De Munno. G .
Bruno, M. Verdaguer, ibid. 1988.27. 3160; e) L. W. Morgan. K. V. Goodwin. W. T. Pennington. J. D. Petersen. rbrd. 1992.31, 1103, f) M . Julve, M.
Verdaguer. G. De Munno, J. A Real. G . Bruno, ;bid., 1993. 32, 795.
[6] H. J. M. De Groot, L. J. De Jongh, R. D. Willett, J. Reedijk. J. Appl. Ph.m
1982, 53. 8038; C. Benelli, D. Gatteschi, D. W. Carnegie. R. L. Carlin. J.
Am. Chem. Soc. 1985. 107. 2560.
[7] X-ray structure analyses: Siemens R3m/V automatic diffractometer,
Mo,,, j. = 0.71073 A, graphite monochromator. 298 K, Lorentz-polarization and 'Y-scan absorption correction [XI. Data collection, solution and
refinement: w - 20, standard Patterson methods with subsequent Fourier
recycling, SHELXTL-PLUS [9]. All non-hydrogen atoms were refined
anisotropically. The hydrogen atoms of the water molecules were located
on a AFmap and refined with constraints. The bpym hydrogen atoms were
set in calculated positions and refined as riding atoms. They were all
refined isotropically. Final geometrical calculations and graphical manipulations were performed with the PARST program [lo] and the XP utility
(M,=
of the SHELX-PLUS system, respectively. 1 : C,,H,,N,,Cu,O,,
709.5). triclinic, space group PT, a =7.703(1), b =7.885(1 j, c =
11.172(2) A. x = 87.29(1), [j = 85.85(1), 7 =78.17(1)'. V = 662.7(2)A3,
Z = I , pralcd=1.778gcm--', fi =16.9cm-', 20 range 3-54'. crystal size
0.21 x 0.19 x 0.45 mm3, F(OO0) = 362; 2901 unique reflections and 2673
assumed as observed with 1 1 3u(1). 211 parameters, R(F,) = 0.030,
R,(F,) = 0.035 and S = 1 . 1 0 with w - ' = u2(Fo) 0.002000(f;,)2. 2.
C,H,,N,Cu,O,,,
( M , = 419.3). monoclinic, space group C2/c. u =
33.619(7),
b =13.040(3),
c =7.040(1)A,
j=101.90(3)',
V=
3019.8(10)A3, Z = 8, pCalcd
= 2 . 1 0 9 g ~ m - ~ ,= 28.9cm-', 26-range 255",crystal size 0.27 x 0.10 x 0.08 mm3, F(OO0) = 1920. 3476 unique reflections and 2032 assumed as observed with I > 3a(l), 255 parameters,
R ( F o )= 0.041, R,(F,) = 0.047 and S = 0.93 with 1 v - I = 0 2 ( F o )
0.003359(F0j2. Further details of the crystal structure investigations are
available on request from the Fachinformationszentrum Karlsruhe.
Gesellschaft fur wissenschaftlich-technische Information inbH, D-76344
Eggenstein-Leopoldshafen (FRG). on quoting the depository number
CSD-57122, the names of the authors, and the journal citation.
[8] A. C. T. North, D. C. Philips, F. S. Mathews, Actu Crvstallo~r.Sect. A
1968, 24. 351.
191 SHELXTL PLUS, Version 3.4. Siemens Analytical X-Ray Instruments
Inc., Madison, WI, USA, 1989.
[lo] M. Nardelli, Comput. Chem. 1983. 7. 95.
[ l l ] Bond lengths and angles in the bpym ligand are in agreement with those
reported in the literature. The pyrimidyl rings of bpym are planar, but they
form a dihedral angle of 1.4( 1 )'. The dihedral angle between the equalorial
N(I)N(2)0(I)O(la) and bpym mean planes is 5.5(1).. The nitrate anion is
planar as expected. The N-0 bond lengths and the intraanion bond angles
average 1.255 A and 1 2 0 , respectively. The nitrate ion contributes to the
packing by forming hydrogen bonds involving two of its three oxygen
atoms.
[I21 Bond lengths and angles of the bridging bpym ligands are close to those of
the bpym ligdnds of 1 . Their pyrimidyl rings are planar. However. only the
bpym that bridges the Cu(2) and Cu(2a) atoms is planar, whereas the
N( 1)C(1)C(2jC(1 b)N(I b)C(3) and N(2jC(6)C(5)C(hb)N(2b)C(4)pyrim-
idyl rings form a dihedral angle of 3.4(2)'. Each water of crystallization is
linked through hydrogen bonding to two hydroxo groups of different
chains. Only one nitrate-oxygen atom [O(S)]contributes to the network of
hydrogen bonds.
[13] J. J. Borris, Ph. D. Thesis. University of Valencia, 1992; I. 1. Borris, E.
Coronado, J. Curely, J. C. Gianduzzo, R. Georges, J. A m . Chefn. Soc.,
submitted.
1141 The value of J , is of the same order of magnitude as previously reported
values in bpym-bridged Cu" complexes (see ref. [5d] and references
therein), the mechanim of the interaction through bis(bidentate) bridges is
now well documented.
Insertion of a Cp Unit into a Metal-Metal Bond:
[Ru~(CO)~,(C,H,)]and its PPh, Derivative**
By Daniel Heineke and Heinrich Vahrenkarnp*
Dedicuted lo Professor Heinrich Niith
on the occasion of his 65th birthdajj
The field of cyclopentadienylmetal complexes, the oldest
and most developed in organotransition metal chemistry, is
still fertile and of increasing utility. Recent examples of new
compound types"] and new applications"' underline this.
While only mononuclear cyclopentadienyl complexes have
been of practical value, new compositions or structural types
are more likely to be found in polynuclear corn pound^.'^' We
demonstrate this here by describing the synthesis and structure of the new Ru, clusters 1 with pZ-q5:q1-C,H4 units.
Compounds 1 a, b were found in the course of our systematic studies of reactions of [Ru,(CO),~]with phosphorus
y l i d e ~ . These
[ ~ ~ mostly multistep reactions normally lead to
organometallic products in which the initially ylidic P-C
bond is maintained. An exception to this rule is the reaction
between [Ru,(CO),,] and Ph,P=C(CH),.
Heating the
reagents under reflux in cyclohexane for 1 hour results in
complete conversion, and after chromatography with hexane over silica gel, yellow l a ('@%), red [Ru,(CO),,PPh,]
(8 Yo),and yellow 1b (29 %) are isolated. Thus, the two constituents of the phosphorus ylide are separated and incorporated in one (1 b) or two (1 a and [Ru,(CO), ,PPh,]) triruthenium clusters.
+
+
1048
C
YCH Verlagsge.srll.schu/tm b H , D-69451 Weinheim, 1993
The compositions of 1a, b were ascertained by mass spectra and N M R data.[51But only the structure determination
of 1 bc6]revealed the new structural type with an open Ru,
triangle held together by the p2-$:q1-C,H4 unit (Fig. 1).
This C,H, unit is clearly bonded as a metalliocyclopentadienyl (uniform R u l -C and C-C bond lengths, long Ru2-C1
bond) rather than a cyclopentadienylidene unit (which
would bind as a carbene with Ru2 and as an olefin with
[*I
Prof. Dr. H. Vdhrenkamp, Dr. D. Heineke
Institut fur Anorganische und Analytische Chemie der Universitit
Albertstrasse 21, D-79104 Freiburg (FRG)
Telefax: Int. code + (761) 203-2900
[**I This work was supported by the Fonds der Chemischen Industrie and by
the Volkswagen-Stiftung. We thank Dr. K. Steinbach. Marburg. and Prof.
Dr. H. Grutzmacher, Freiburg, for mass spectra.
B lO.OO+ .25/0
057(~-0833/93107o7-104R
A n g r w Chem. Int. Ed. Engl. 1993, 32, No. 7
again the valuable balance of stability and reactivity in
triruthenium clusters.
Received: January 15, 1993 [Z 5808 IE]
German version: Angm'. Chem. 1993. 105. 1142
6
Fig. 1. Molecular structure of I b . Selected bond lengths [pm]: Ru2-Cl
213.0(5). Rut-Ct 227.1(5). Rul-C2 222.6(6), Rul-C3 223.0(6), R u K 4
223.4(7). Rul-C5 222.3(6). C1-C2 143.1(8), C2-C3 142.8(9), C3-C4 138.9(9).
C4-CS 143.5(9), CS-C1 143.6(8).
RuI).['l Both of these bonding types are known in the chemistry of ruthenium in, for example, 2[*l and 3,I9] but this
structure in which the cluster geometry is fixed by insertion
of a linking C p unit into a metal-metal bond is, to our
knowledge, unprecedented. Compound 4['01is, however, an
isolobal analogue of 1, and the mononuclear analogue 5["]
completes this isoelectronic series of M,, M,, and M , metallacycles.
[I] J. L. Kersten. A. L. Rheingold, K. H. Theopold. C. P. Casey, R. A.
Wiedenhoefer, C. E. C. A. Hop, Angen. Chem. 1992, t04. 1364; Angeir.
Chem. Int. Ed. Engl. 1992,31. 1341 ;see also J. J. Schnelder. ihd. 1992. 104,
1422 and 1992.31. 1392.
[2] See R. F. Jordan, Adv. Orgunomet. Chem. 1991. 32, 325- 387.
131 N. J. Coville. K . E. du Plooy, W. Pickl, Coord. Chem. Res. 1992. 116,
1-267.
[4] D. S. Bohle, D. Heineke. A. Tiripicchio, M. Tmpicchio Camellini, H.
Vdhrenkamp. Angew. Cheni. 1990, 1112, 938-939: Angew. Chem. In!. Ed.
EngI. 1990.29.896-897; D. Heineke. D. S. Bohle. H. Vahrenkamp, Chem.
Ber. 1993, 126, 355-363.
[5] I R ( C H , C I , , B [ c m ~ ' ] ) : la.2115m,2065vs,2030vs, 1 9 9 4 s . 1 9 3 3 ~ I: b :
2084 vs. 2041 vs, 2004 vs, 1967 sh. 1922 m.'H N M R (CDCI,. int. TMS,
C p resonances): l a : 6 = 5.34 (m. 2H). 4.44 (m, 2H): I b : d = 5.05 (m.
2H). 3.98 (m, 2H). " C N M R (CDCI,, int. TMS, C p resonances): l a :
6 = 9 7 . 4 ( 1 C ) , 9 0 . 0 ( 2 C ) , 8 5 . 8 ( 2 C ) : 1 b : 6 = 1 0 7 . 5 ( d , J p ~= X . l H z , l C ) .
89.2 ( 2 C ) , 84.6 (2C). "P N M R (CDCI,, ext. H,PO,): 1 b: 6 = 29.3.
[6] Crystal data of l b : monoclinic, P2,jn. u =11.224(2), h =16.382(3),
c = 17.2980) A, B = 91.90(3)", Z = 43441 reflections. R = 0.031. Further
details of the structure determination may be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft fur wissenschaftlich-technische
Information mbH. W-76344 Eggenstein-Leopoldshafen (FRG). upon
quotation of the depository number CSD-400041, the authors. and the full
journal citation.
171 For a discussion of these bonding types see W. A. Herrmann. G. Kriechbaum, C. Bauer, E. Guggolz, M. L. Ziegler, Angric. Chem. 1981,93.838839; Angew. Chein. In!. Ed. Engl. 1981, 20, 815-816.
[81 K . P. C. Vollhardt, T. W. Weidemann, J Am. Chpm. Soc. 1983, 1115, 16761677.
[9] N. D Fedsey, N. J. Forrow, G . Hogarth, S. A. R. Knox, K. A. MacPherson. M. J. Morris, A. G. Orpen. J Orgunomet. Chem. 1984,267.C41 -C44.
[lo] S. Toke, E. T. K. Haupt, U. Behrens. Chem. Bey. 1986, 119. 96-106.
[111 P. Eilbracht. W. Fassmann, W. Diehl, Chem. Ber. 1985, 118, 2314-2329.
1121 H . Schmidtbaur, Angew. C h m . 1983, 95, 980-1000: Angrit.. Chrm. In/.
Ed. Engl. 1983.22,907 - 927.
[131 A. J Deeming, N. I. Powell. C. Whittaker, J Chern. Soc. D u k m Tron.s.
1991,1875-i880.
[14] D. Heineke, H. Vahrenkamp. Chem. Ber. 1993, 126. 373-377.
Cs,AuO, the First Ternary Oxide
with Anionic Gold""
2
By Claus Feldmann and Martin Jansen*
3
Dedicated to Professor Heinrich Noth
on the occasion of'his 65th birfhday.
Ph2C
a
I I
Me2C
I- I
Me2C - Fe(C0)2
4
5
RU(CO)~
(CO),Ru
The reaction pathway leading to 1 a, b is as uncommon as
their structure. Almost all coordination compounds of
Ph,P=C(CH), contain this ylide as an intact ligand.1'21 Its
reactions with [Os,(CO),,(MeCN),], for example, produce
closed Os, clusters with doubly and triply bridging
Ph,PC,H, units.r131Although the cleavage of phosphorus
ylides to generate carbene ligands is not unusual,"21 the separation of the oppositely charged Ph,P and C,H, fragments
and insertion of the cyclopentadienylide fragment into one
Ru-Ru bond of [Ru,(CO),,] are remarkable. Clusters I a, b
thus extend the long list of product types from reactions of
[Ru,(CO),,] and phosphorus ylides14. 14] and underline once
Angrw. Chem. h i t . Ed. Engl. 1993, 32. N o . 7
A"
Gold has the highest electron affinity among the metals,
222.73 kJmol-', a value comparable to that of iodine
(295.30 kJ mol-').l'l Accordingly, the unusual properties of
CsAu, which crystallizes with the CsCl structure type, are
attributed to ionic bonding and thus the existence of anionic
gold (Au-).['] Because of this singular
this compound has been intensively studied in recent years. It behaves as a semiconductor with a band gap of approximately
2.6 eV.131There is still considerable disagreement whether the
cesium auride can be viewed as a purely ionic crystal
Cs' Au- . Differing ionic contributions to chemical bonding
have been discussed, and a value of roughly around 50% is
[*] Prof. Dr. M. Jansen, Dip].-Chem. C. Feldmann
Institut fur Anorgdnische Chemie der Universitdt
Gerhard-Domagk-Strasse 1. D-53121 Bonn ( F R G )
Telefax: Int. code +(228)735660
[**I
This work was supported by the Deutsche Forschungsgemeinschaft and
the Fonds der Chemischen Industrie.
VCH Verlugsge.sclls~/iaftmhH, 0-69451 Wemheim, 1993
0570-0X33/93j0707-/04Y $ 10.00
+.L/(J
1049
Документ
Категория
Без категории
Просмотров
0
Размер файла
256 Кб
Теги
unit, bond, ru3, c5h4, pph3, metalцmetal, insertion, derivatives
1/--страниц
Пожаловаться на содержимое документа