close

Вход

Забыли?

вход по аккаунту

?

Isomeric Lactam Catenanes and the Mechanism of their Formation.

код для вставкиСкачать
COMMUNICATIONS
4b
-
OAc
5)
I+yG
AcO
6)
5 (s4%)
1X = OC(NH)CC13 (quant.)
R
[I11 For cyclic p-methoxybenzlidene acetal by D D Q : Y. Oikawa. T. Yoshioka. 0.
Yonemitsu. Z,/rulieduon Lrrt. 1982. 23. 8x9 892.
[I21 N M R data of 1 (CDCI,): ' H N M R : (3 = 5.55 (dd. 'J(H.F) = 50 H L .
'J(H,H) = 1.5 Hz, 0.8H: H-12). 5.32 (d. 'J(H,F) = SO Hz, 0.2H; H-lP). 1.77
(s. 3 H ; OMe): "C N M R : 6 = 107.0 (d, 'J(C,F) = 220 H/; C-1 p). 106.5 (d.
',I(C,F) = 222 Hz; C-1%)).79.1, 75.0. 74.1. 74.0. 13.4. 73.2. 72.X. 71.7, 72.4.
68.6. 55.2.
[I31 NMR data (CDCI,): 4b: 'H N M R : d = 4.62 (s, 1 H. H-I?), 4.53 (d.
' 4 H . H ) = 8 Hz. 1 H ; H-1');
N M R : 6 = 102.6 ('J(C.H) = 161 Hz: C-1').
99.8 ('J(C.H) = 159 HL: C-I?). ' 4 ~' H
: N M R : 6 = 5.61 (d. 'J(H.H) = 8 HL,
1 H : H-1'). 4.67 ( 5 . 1 H : H-1'); "C N M R : 6 = 100.4 (',/(C.H) = 157 Hz. C1'). 97.X ('J(C.H) = 162 HL; C-1'). - Data of4a see Experimentdl Procedure.
All assignments were made based on an C-H COSY experiment
[I41 T. Fukuyama. A. A. Laird. L. M. Hotchkiss. Tkrrahetlron Li,r/.1985. 26. 6291
6292.
~
~
~
~
[I51 T.Hori,O. 1tasaka.M.Kamimura. J.Bioch~in./ 7 b k r o l 3968.64. 1 2 5 - 128. M.
Sugita. S . Shirai. 0. Itauaka. T. Hori. ihid 1975, 77. 125 130.
[I61 K. Koike. M. Mori, Y. Ito. Y. Nakahara. T, Ogawa, A g r r i . K i d . ('hem 1990.
54. 2931-2939.
[I71 5 : ' H N M R ([D,]pyridine:D,O. 80 C): ii = 5.12 (d. 'J(H.H) = I Hr. 1 H: H~
H
OH
HO
~
OH
o
5
~
~
~
OH
5'
1').4.72(d,'J(H,H)=XHz,lH:H-l').4.44(dd.'J(H,H)=1nndIHz.1H:
Scheme 4. Synthesis o f glycosphingolipid 5. 1 ) H 2 . Pd(OH),:C:MtOH, 45 C:
2 ) AciO pyridine;DMAP. room temperature; 3) NH,NH,,'AcOH,'DMF. 50 'C:
4) CCI ,CN, 1 .X-diar;ibicycIo[5.4.0]undec-?-ene.'CH2CI,. 0 C -room temperatiire. 5 ) Me,Si-OTf. molecular sieves 4 &CHCI,. 0 C : 6) Na0Me:THF:MeOH.
Koike et al.["] The chemical shifts of carbohydrate portions of
5 and 5' in the 'H NMR spectrum were essentially identical["]
and clearly distinguishable from those of Sr." *I
The method described here can be carried out simply and,
more importantly, it is expected to be compatible with a variety
of manipulations encountered in oligosaccharide synthesis. We
are currently trying to use this approach to stereoselectively
synthesize Asn-linked oligosaccharides.
Esperirnuitol Procedure
Synthesis 01' 4a: To an ice-water cold mixturc of D D Q (42mg. 0.19 mmol) and
powdered moleculur sieves (4 A. 0.3 g) in CH'CI, (0.5 mL) was added with stirring
a solution of 1 (102.7 mg, 0.179mmol) an? 3a (65.9mg, 0.121 mmol) in CH,CI,
(2.5 m L ) . After being stirred at room temperature for 3 h, the mixture was quenched
by stirring w i t h il solution ofascorbic acid (0.7%). citric acid. (1.3%). and NaOH
(0.9%) i n water ( 3 mL). diluted with ethyl acetate. and filtered through Celite. The
filtrate M ~ washed
S
with water. aqueous NaHCO,. and brine, successively. dried
(Na,SO,). and evaporated in vacuo. After evacuation at high vacuum for 1 h the
crude acetal was obtained.
H-2'). 3.93 (dd, 'J(H.H) = 9 and 3 H7: H-3'). 3.86(dd. 'J(H.H) = 9 and X H/:
H-2'). 3.77 (m. I H , H-5'). 3.67 (m, 1 H : H-5')
[18] The 'H N M R signals of H-1' and H-2' of coinpound Sa' appear a t d = 6.12
and 4.60 respectively [16].
[I91 a) J - M . Petit. J.-C. Jaquinet, P. Sinaj.. C u r h o h ~ r i r .Rcv. 1980. 82, 1 3 0 ; b) T.
Nakano, Y . Ito, T. Ogawd, Z,~t-uhr&nn Li,t/. 1990. 31. 1597.
Isomeric Lactam Catenanes and the
Mechanism of their Formation
Stephan Ottens-Hildebrandt, Stephan Meier, Wolfgang
Schmidt, and Fritz Vogtle*
The increasing interest in catenanes during the last years is
Through the
documented by a rising number of
outstanding work of Sauvage et aI.[*]and Stoddart et al..[31certain catenane types have been made accessible. High yields were
obtained by skillful use of supramolecular template effects.I4]
Likewise, the one-['l and two-stepL6'syntheses of neutral catenanes of type 1, 2 described in 1992 were achieved with
The solution of the acetal in ether (8 mL) was added dropwise to a n ice-water cold
mixture of AgOTf (62 ing. 0.24 mmol), S K I , (46 mg, 0.24 mmol), DBMP (59 mg.
0.24 niniol), and powdered molecular sieves (4 A, 0.3 g) in ether (2 mL). and the
mixture was stirred at room temperature for 2.5 h. After being stirred with aqueous
NaHCO,. the mixture was diluted with ethyl acetate, filtered through. Celite, and
the filtrate M;IS washed with brine. dried (MgSO,). and ebaporated in vacuo. The
residue w a s puriiied by ailica gel column chromatography (hexaneiethyl acetate 2: 1)
to afford 4a (87.1 mg. 74%): m.p. 115-3 17 'C (from ether;hexane): ' H N M R (CDCI,) 6 = 4.50 (11. 'J(H.H) = 8 HL. 1H. H-1'). 4.32 (s. I H , H-1'): " C N M R (CD100.2('J(C.H)=156Hz.C-l').
C1,)6=102..3 ( 1 J ( C . H ) = 1 6 0 H ~C-1').
.
Received: April 12. 1994 [Z 6840 IE]
German version: A n p i c . Cliiwi. 1994. 106. 1843
[ l ] J. c' Paulson. ficwls Bioi./7eni. Sri. 1989. 14. 272-276.
[ 2 ] H. Paulsen. A i i ~ e w Clieni.
.
1982. 94. 184-201, Angeu-. Chcwi. h i . Ed. Engl.
1982. 21. 155-173.
[3] P. J. Garegg. T. Iversen. Curhohydr. Rei.. 1979, 70, C13 -C14. P. J. Garegg, C.
Henrichson, T. Norberg. P. Ossowski. ;bid. 1983. 119. 95-100: H. Paulsen, 0.
Locklioff. Clic,iii. Brr. 1981. 114, 3102-3114.
[4] H. Paulaen. R. Lebuhn. 0. Lockhoff. Curbohydr. Res. 1982. 103. C 7 - C l l :
C . A A. van Boeckel. T. Beetz, S. F. van Aelst. Trfruhrdron 1984, 40. 4097-
R
1 :R
2:R
=
OCH3
= H
4107.
[5] Recent rebiew: K.Toshima. K . Tatsuta. C/wnt. Rev. 1993. Y3. 1503 1531.
[6] F. Barresi. 0 . Hindsgaul, J. Am. Chant. Snc. 1991. 113. 9376-9377: Srnlctt
1992. 759 - 761.
[7] G.Stork. G . Kim. J. Am. Chein. Soc. 1992. 114, 1087 1088.
[a] Similar strategy for stereoselective r-glucosidation: M. Bols, Z~rruh~.i/rlron
1993,
4Y. 10049-10060: .4ctir C'hrni. S a d . 1993. 47. 829-834.
[9] Y. Oikawa. T. Yoshioka. 0. Yonemitsu. rerru/iedrun Lett. 1982. 23,885-888.
[lo] R.Johxnsson. B. Samuelsson, J. Client. Soc. Cltem. Contznun. 1984. 201 -202.
[*I Prof. Dr. F. Vogtle, DipLChem. S. Ottens-Hildebrandt, Dip1:Chem.
I>ipl.-Chem. W. Schmidt
lnstitut fur Organische Chemie und Biochemie der Universitit
Gerhard-Domagk-Strasse 1. D-53121 Bonn (FRG)
Telefdx: Int. code + (228)73-5662
S. Meler.
COMMUNICATIONS
amazingly simple building blocks and remarkably high yields.
The question concerning the mechanism of formation of these
octalactam catenanes and, in particular, the underlying template interaction has not, however, been adequately addressed.
Until now it has been assumed that "orthogonalization", the
perpendicular preorganization of the catenane building blocks.
is based on three effects : steric complementarity. hydrogen
bonding between carbonyl oxygen atoms and ainide protons,
and x-x interactions"] between the benzene rings of host and
guest subunits.[5,'I
Herein we report on the syntheses of the isomeric [2]catenanes 3-5 and of 6 (Scheme I ) , and on our conclusions concerning their mechanism of formation. The synthetic strategy
which leads to the monomethoxy-substituted catenane 6 makes
it possible. for the first time. to obtain lactam catenanes with
two different interlocking macrocycles. In this synthesis, formation of the catenanes can be detected by mass spectrometry."]
The isomeric [2]catenanes 3-5 and 6 were synthesized by
three different routes (Scheme 2, A and B; Scheme 4. C). The
isomers 3 and 4 were prepared by a method developed by
Hunter (routeA);['] instead of the unsubstituted diamine 11, the
methoxy-substituted diamine 9 was used in the reaction with
isophthaloyl dichloride (8). The resulting mixture contained the
substituted macromonocycles 12 and 13 (Scheme 4), and the
isomeric dimethoxy catenanes 3 and 4 (17 and 23% yield,
respectively) .Iy1 The products were separated by column chromatography and show characteristic differences in their NMR
spectra." O1
In an attempt to synthesize the third dimethoxy-substituted
catenane isomer 5 , we performed the reaction with starting materials having a reversed substitution pattern : 5-methoxyisophthaloyl dichloride (10) and the diamine 11 were employed
(route B). Besides the monocycles 12 and 13. the isomers 3 and
5 were formed exclusively (2.7 and 1.4% yield, respectively).
Isomer 5 was isolated by column chromatography. As expected,
important portions of its NMR spectra resemble that of
catenane 1.
9
8
Meoq
+
0'
10
3 + 5
CI
11
Scheme 2. Route A leads to a different set ordimethoxq.-suhstitutedcatenanes (3.4)
than route B ( + 3, 5 )
The route-dependent, selective formation of the stable isomers 4 and 5["] allows conclusions to be drawn about the mechanism of ring interlocking. We assume that the supramolecular
template effect, which is responsible for catenation, results from
the respective diacid dichlorides (8, 10) "lodging"
as guests in
the host, the intermediate macromonocycle
12, in such a way that the metaphenylene ring
n
A
of the guest is orthogonal to the ring plane of
the host (Scheme3).[121Because of the two
isophthaloyl binding sites in the host cycle,
there are two possible orientations (I, I1 and
111, IV, respectively) for each acid chloride (8
in J out
out i out
in i in
and 10). Routes A and B thus lead to selective
3
formation of isomers 4 and 5, respectively, in
4
5
addition to 3.
This mechanism provides an explanation
for the significantly different yields obtained
in routes A and B: In the case of route B, the
methoxy substituent on the diacid dichloride
may cause steric hindrance in the host-guest
complexes. Catenanes3 and 5 in route B
should thus be formed in lower yields than 3
out
in
and 4 in route A.
6
7
To provide further evidence for the hypothesis that the reaction proceeds via an intermediate monocycle of type 12, we carried
0
S
I
I
out a synthesis following route C (Scheme 4).
Building blocks 8 and 11, which have already
been used by Hunter et al. for other targets,[']
were mixed in the presence of macrocycle 12.
obtained as a byproduct in routes A and B.
Of the two possible monomethoxy-substitutScheme 1 . The three isomeric disubstituted catenanes 3~ 5 and the isomerlc monosubstltuted calenanes 6
ed isomers 6 and 7, only 6 was formed in 3 %
and 7.
COMMUNICATIONS
4
I$
'
CI
g
+
0
0'
8
O
II
Q
R3
+
12
9
i
i
1
I
I
0
9
Scheme 3 The proposed template and orthogonaliration mechanism (cf. I -1V)
pi-ovides a n explanation for the Cormation of different catenme isomers (3.4 and 3,
5) in routes A and B.
yield. The combination of the three reaction components 8, 11,
and 12 to form a single product is consistent with our proposed
orthogonalization and interlocking mechanism shown in
Schemes 3 and 4. Other mechanisms, in particular the interlocking of two open-chain fragments such as 8 with 9 or 9 with 9, do
not appear to be significant.
An advantage of route C lies in the fact that the catenane 6
formed from the monocycle 12 can be identified unambiguously
from the molecular peak in the mass spectrum, because the
isomeric macromonocycle (identical molecular mass) cannot be
formed in route C.
The orthogonalization and interlocking mechanism has farreaching consequences: In future more reagents of types I-IV
will become available, in which a host cavity (e.g., 12) and a
(di)functionalized guest (e.g., 8, 10) are bound together by
macromolecular interactions in an orthogonalized precatenane
(prerotaxane, cf. ILIV) bearing two reactive groups. The synthesis of a variety of other catenanes by reaction with other
partners and the formation of rotaxanes have now become feasible.
E.-cpritiicntal Procedure
Route A : 1.04 g (1.29 mmol) 9 mixed with 0.4 mL triethylamine and 0.26 g
( I 2 9 minol) 8, cach dissolved in 250 mL anhydrous dichloroniethane, were added
,
0
_I
12 : n = l
n
13 : n = 2
Scheme 4. Route C . The "catenation" of the macromonocycle 12 with 8 and 11
leads to formation of catenane 6 . The guest diacid dichloride 8 and the host 12 are
locked in an orthogonal arrangement (1). The functional groups are fixed and thu\
preorgaiiired for reaction with the diamine 11.
simultaneously over 24 h under argon to 1 L ofstirred anhydrous dichloromethane.
The solvent was evaporated in vacuo and the residue dissolved in 300 mL chloroform. The organic layer was washed with 50 mL water. dried over MgSO,. filtered.
and concentrated in vacuo. The residue was purified by column chromatography
(SO,. 40-60 pm; dich1orornethane;ethyI acetate 7: 1 ) . Four fractions were isolated:
First liaction (catenane isomer 4): Yield 300 mg (23%): thin-layer chromatography
(TLC). R, = 0.58 (SO,. dich1oromethane:ethyl acetate 7/11: m.p. >300 C (decamp ): ' H N M R (400 MHz, CDCI,KD,OD 95!5): 6 = 0.37 (s. 6 H ; Ar-CH,),
0.72 (s. 6 H ; Ar-CH,), 1.00-2.40 (m. 76H; Ar-CH, and aliphatic CH,). 3.64 (a. 6 H ;
OCH,), 6.02. 6.06 (broad. 4 H : arom. H). 6.45-6.60 (broad. 4 H : arom. H). 6.78,
6.84 (broad. 4 H : arom. H). 7.00-7.10 (broad, 4 H : arom. H). 7.13 (dt. ' J = X.
4 J = 1 . 5 H z . 2 H : arom. H). 7.17 (t, ' J = 8 H z , 2H: arom. H), 7.31 (pseudo-1.
COMMUNICATIONS
' J i 1 . 5 , ' J = l . 5 H 7 . 2 H : arom. H). 7.60 (pseudo-t. ' J = l . 5 . " J = I . S H L , 2 H :
'J
=
8 HL. 1 H: arom. H ) 8.14(s. 1 H: arom. H). 8.53 (s. 1 H: arom. H ) ; " C NMR
uroin.H).7.78(dt,-'J=X.'J=1.5Hz.7H:arom.H).7.88(t.'./=1.6Hr,2H:(62.9MHr. CDCI,:CD,OD 95'5): 6 =17.18. 17.89, 18.39. 18.59. 18.73, 19.10
arom. Hj. 8.26 (1. ' J = 1.5 Hr. 2 H . :ironi. H): ' " C NMR (62.9 MHz. CDCI,:
CD,OD95,5): d =16.71. 1790. 18.20. 18.32. (Ar-CH,). 22 X I . 26 18, 34.24. 34.52.
35.93. 36.23(CH,).44.62.45.11 (Cq).55.42(OCH3). 116.85.117.37. 122.85. 125.03.
127.42. 127.68. 128.37. 129.52. 130.75(CH). 125.50. 13008, 130.21. 130.83. 130.88.
131).95. 132.62, 13370. 134.15. 134.29. 13472, 134.79. 135.70. 115.81. 136.06.
146.15. 146.36. 148.56. 149.44, 160.48. 163.20. l6.3.YX. 164.04. 166.27. 166.34. I68 75
i C q ) FAB-MS:
~
i i i : : : 1871.0 [OM
H)'] ( C , 2 2 H l , 2 N 3 0 1 I870
,)' 43).
+
(Ar-CH,), 23.41, 26.74. 34.74, 35.05. 3646. 36.78 (CH,). 45.23. 45.68 (Cq),56.03
(OCH,), 117.63, 123.48. 125.04, 125.71. 126.98. 127 98. 128.26. 128.73. 128.88,
130.23. 131.31. 132.28(CH).129.82,131 10, 131.44.131 63, 133.75. 132.56. 133.24,
134.39. 134.85. 135.22. 135.45. 136.36. 136.57. 146.64. 147.00. 149.17, 150.10.
161.04. 163.84. 164.40. 164.50. 164.90. 169.40 (Cq): FAB-MS: in;:: 1840.41
[(,M H ) t ] ( C , 2 , H , , , ~ N , C )lX40.41).
,.
calcd: N 6.09. found: N 6.14%
+
Received March 30. 1994 [Z 6814 IE]
German version: A n g r w . C%pn7. 1994. IfN. 1818
Second fraclion (catenane isomer 3): Yield 220 m g (17'
(dichloroinethane:ethyl acetate 7: 1): m.p > 300
(250 MHL. CD,CI, CD,OD 95.5): 6 = 0 61 (5. 6 H : Ar-CH,). 0.90-2.70 (m.X2H:
[I]
Ar-C~i,;iiidaliphaticCH2).3.85,3.90(s.6H:OCH,).6.29.6 32(broad.4H:arom.
H ) . 6.79 (broad. 4 H . aroin HI. 6.97 (broad. 1 H. iirom H ) . 7.05.7.12 (broad. 4 H :
arom. H). 7.20- 7.36 (broad. 4 H : nrom. H). 7.42 (broad. 2H: arom. H). 7.51
(broad. 1 H:arom. H).7.60-7.70(m. 3H:aroin. H).7.80-7.95(m.?H:arom. H ) .
X.UX(d. 'J=XHr.IH:arom.H).X.09(bro;id,lH:arom.H),8.32(d.'J=X.ZHz.
Overview: G. Schill, Corcrianer, Ro/u.rurie.\, uiid Kiiors, Academic Press, New
York, 1971; D. Philp. J. F. Stoddart, Sy i /e/f 1991. 445 458; G Schill, N.
Schweickert. H. Fritz. W. Vetter. Angrw. Chen~.1983, 95. 909-911 : ArIgm.
c ' / W V f l . / I ? / .Ed. EJ7g/. 1983. 22, 889: Chei?~.
B p i . 1988. f21. 961: D M. Walba,
R. M. Richards, M. Hermsmeier. R. C . Haltiwanger. J Am. c ' h ~ ~Soc.
i . 1987,
109. 7081 -7087, and references therein: cf. also G.-J. M Gruter. F J. J. dc
1H;aroin.H).8.34.8.47(s.2H,amideH),8.55(broad,1H:arom.H).X.77(broad.
Kanter. P R. Markies. T. Nomoto. 0 S. Akkeriniin. F. K. Bickelhaupt, J1 h i .
1 H : arum. H ) . 8.91 (bro:id. I H: arom. Hj. X.93.9.08.9.13.9.22. 9.28 (s. 5 H: amidr
Cliem. So<.1993. fl5. 12179 12180. M. Fujita. F. Ibukuro. H. Hagihara. K .
H). " C NMR (62.9 MHz. CDCI,,CD,OD 955). 6 =17.01. 18.12. 18.34. 18.53.
Ogura. N u r u r r 1994. 367, 723.
18.66 (Ar-CH,). 23.31. 26.61, 34.67. 34.90. 36.30. 36.64 (CH,), 45.08. 45.12. 45.52
[?I See for example: C. 0 . Dietrich-Buchecker. J. P. Sauvage. Bmorg. Chern. Front.
(CJ. 55.93, 56.32 (OCH,). 112.09. 117.22. 117.43. 118.10, 123.41. 123.68. 125.06,
1991. 2. 195-248: C. 0 . Dietrich-Buchecker. B. Frommberger. I. Liier. J - P .
125 53. 127.96, 128.57. 131.15. 132.32(CH). 129.67. 130.90. 131.09,131.33. 131.39.
Sauv;ige. F. Vdgtle. Arigcn. C h c 1993.
~
105, 1526-1529: Angew. Clwrn. Int.
131.55. 132.21, 132.32. 133.14. 133.51. 134.26, 134.70. 134.84. 134.95. 135.07,
Ed. Eii,q/. 1993, 32, 1434. and references therein.
135.32. 136.17. 136.24. 136.34. 136.51. 137.58. 146.43. 146.57. 149.05. 149.89.
[3] D. Armspach. P. R. Ashton. C. P. Moore. N Spencer, J F. Stoddart. T J.
160.68, 160.X6. 163.54. 163.63. 16426. 166.41. 166.78. 168.91. 169.20 (C,,):FABWear. D. J. Williams, 4nficw. C/wni. 1993. /US. 944-948: Angiw. C h i . 1r?/.
M S - r i i ' : : 1869.8[OW H)']
Ed. Ei?g/. 1993, 32. 854. D. B. Amabilino. P. R. Ashton. M. S. Tollcy. J F.
Third fraction (dimer 12): Yield 370mg (28%): TLC (SiO,): R, = 0.28
Stoddart. D. J. Williams, ihid. 1993. 105, 1358-1362 or 1993, 32. 1297, and
(dich1oromethane:cthyl acetate 7 : l ) : m.p. > 300 C (decomp.): ' H NMR
references therein, cf. also F. Viigtle. W. M. Miiller. U. Miiller. M. Bauer. K.
(400 MHz. CDCI,'CD,OD 95:5): ii =1.51 (broiid. 4 H ; aliphatic CH,). 1.63
Rissanen, ihid. 1993. 105. 1356 1358 and 1993. 32. 1295.
(broad. 8 H : aliphatic CH,). 2 16 (s. 24H. Ar-CH,). 2.32 (broad. 8 H . aliphatic
[4] F. Vogtle. R. Hoss, A ~ I ~ E Chmi.
II.
1994. fU6, 389: A n g m . C h ~ mI.t i t . Ed. Er!g/.
CH,).392(~.3H:OCH,).6.9X(s.XH:arom.H)7.63(d.'J=1.5Hr.2H:arom. 1994.33.375- 384: S. Anderson, H. L. Anderson. J. K . M. Sanders. rhid. 1992.
H).7.64(t.'J=5H~.lH:arom.H~.7.92(t,~J=1.5H~.IH:arom.H).X.09(dd.
104. 921 924 and 1992. 3f. 907: ACT. Chem. Rev. 1993, 26, 469 475.
' J = 5.'J=1.5 Hr. 2 H : a r o m . H j . 8.33 ( t . * J = I 5 H 7 . 1 H ; a r o m . H): " C NMR
[ S ] F VOgtle. S. Meier. R. Hoss. .4nge&i.Chmi. 1992, 104. 1628-1631: A n ~ r w .
(62.9 MHL. CDCI,.'CD,OD 9515):d = 17.85 (Ar-CH,). 22.52. 25.92. 34.97 (CH,).
C/iwi?. 1171. Ed. U f g / . 1992. 31. 1619 1622.
44.80 (C,,). 55.17 (OCH,), 116.33. 118.50. 125.97. 129.10. 130.98 (CH). 130.74.
[6] C. A. Hunter, J. .4m. Cheni. Sor.. 1992. 114. 5303-5311.
130.93. 134.64. 134.66. 135.50. 147.79. 160.41. 166.37. 166.67 (Cq): FAB-MS. i i ~ ; : :
[7] C . A. Hunter. A n g m . Chrw. 1993. 105. 1653-1655: Angew. Clwn. I n ! . Ed.
935.5 [ ( M + H ) ' ] (C,7,H,,N,0,: 935.22).
Eiigl. 1993.33, 1584; C. A. Hunter. J. K. M. Sanders. .
I
A m C l ~ i n&so<,..
1990.
Fourth fraction (tetramer 13): Yield 100mg (7.7%); TLC (SO,): R, = 0.1
112, 5525-5534.
(dich1oromethane:ethanol 5 0 : l ) ; m.p. > 300-C (decomp.). IR (KBr): i,[cm-'] =
[XI Reported partly at GDCh lectures in Constance (December 8. 1993). Cologne.
3 2 8 8 ( b r ) , 2 9 2 5 ( ~ ) . 2 8 5 5 ( s )1656(s).
,
1593(m). 150O(vs). 1372(m), 1361 (s). 1252
Munster. Tubingen. and Krefeld as well as at lectures in Ravello and Stock(s). 1170 (mj. 1051 (m),856 (mj. 752 (m). 723 (m). FAB-MS. rfi,':: 1870.9
holm.
[(A4
HIt].
[9] The remaining products from routes A C consisted of mixtures of open-chain
and monocyclic higher oligomers. wjhich were not separated chromatographiRoute B: Analogous to route A. but with 1.00 g (1.29 mmol) 11 and 0.30 g
cally.
(1.29 mmol) 10. The residue was chromatograyhed on silica gel (40-60 pm)
[lo] The structures of the various isomers were confirmed by the 'H NMR. " C
(dichloromethane.etliyl acetate 7' I ) . Four fi-action5 were isolated:
NMR (see E . p r i m e n t u / Procrdure), and. in particular. NOESY spectra. Using
First fraction (catenane isomer 3): Yield 35 mg (2.7%).
electrospray m a s spectrometry. Prof. Dr. M. Przybylski. Universitit KonSecond fraction (catenane isomer 5): Yield 18 mg (1 4%): TLC (SO,): R, = 0.22
stan7. is attempting to distinguish between catenane isomers 3-5.
(dich1oromethane:ethyl acetate 5 0 : l ) : m.p. > 300 C (decomp.): 'H NMR
[ l l ] N o iiiterconversion o r equilibration of the isomeric catenanes could be ob(250 MHr. CDCI,,CD,OD 95.5): 6 = 0.35. 0.77 i s , 12H: Ar-CH,). 1.00-2.50 (m.
served even at higher temperature (300 'C). The translation of the rings seems
7 6 H : Ar-CH, and aliphatic CH,), 3.63 ( 5 . 6H:OCH,). 6.06, 6.09 (broad. 4 H :
to be hindered by the cyclohexyl residues. as proposed in earlier publications
aroin. H).6.45-6.55(broad.4H:arom. H).6.6S(broad.ZH:arom.H).6.X(broad.
[6. 71.
2 H : mom. H). 6.86 (broad. 2 H . arom. H) 6.95-7.15 (broad, 4 H . arom. Hj. 7.36
[I21 We d o not exclude the possibility that the isopthaloyl dichloride (8 or 10)
(t.'J=7.7Hz.2H;arom.H).7.40.7.45(broad,4H;arom.H).78(t.'J=7.7Hz,
already forms one amide bond with the corresponding diamine (9 or 1 I ) before
2 H . arom. H ) . 8.10 (t. ' J = 7 . 7 Hz. 2 H ; arom. H ) . 8.65 (broad. 2 H : arom. H):
"lodging" in the host.
" C NMR (62.9 MHr, CDCI,;CD,OD 95.5): ri =16.39, 17.84. 18.07, 18.13. 18.06
(Ar-CH,). 22 66. 26.05. 34.20. 34.50. 35.99, 36.21 (CH,), 44.49. 44.96 (CJ, 55.55
(OCH,). 111.26. 117.3X. 122.75. 12322. 124.70. 124.92. 127.30. 128.28, 129.13.
131.67. 131.84(CH). 130.26. 130.67. 130.74. 130.80. 130.96, 132.47. 133.18, 133.80.
134.04. 134.43. 134.66. 135.82. 135.57. 136.86. 146.21. 145.97. 148.32. 149.33.
160.07. 163.11. 164.01. 167.07, 16X.62 ( C q ) : FAB-MS: ~ I J : : : 1869.9 [(M+ Hj'].
Third fraction (diiner 12): Yield 310 mg (23%).
Fourth fraction (tetramer 13): Yield 120 mg (9.2%).
+
~
+
Route C : 200 mg 12 (0.21 mmol) was dissolved i n 1 L anhydrous CHCI,. 1 .OO g
29 m i n d ) 11 mixed with 0.4 m L triethylaniine and 0.26 g ( I 2 9 nimol) 8, each
dissolved in 250 mL anhydrous CHCI,, were added simultaneously to the first
w l u t i o n oker 24 h under a n argon atmosphere. The solvent was evaporated in
vacuo. and the residue dissolved in 300 mL chloroform. The organic layer was
washed with 50 m L water. dried over MgSO,. liltered. arid concentrated in vacuo.
The residue was purified by column chromatography (SiO,, 40 60pm:
dichloromethane:ethyl acetate 7'1 1. One fraction was isolated (catenane iwmer 6 ) :
Yield 40 mg ( 3 % ) : TLC (SiO?): R, = 0.73 (dichloromethane. acetone 10.1):
m.p. > 300 C (decomp.); ' H NMR (400 M H r . CDCI,(CD,OD 95:s): b = 0.28,
0.61 (s. 1 2 H . Ar-CH,). 0.70-2.25 (m.76H. Ar-CH, and aliphatic CH,), 3.52 (s.
3 H . OCH,). 5.91. 5.96 (broad. 4H: arom. H), 6.40-6.50 (broad. 4 H . arom. H).
6.69. 6.73 (broad. 4 H : arom. H ) , 6.90-6.99 (broad. 4 H ; arom. H). 6.99-7.02 (m,
2 H : arom. H ) 7.0X (t. ' J = 3 HL, 2 H . arom. H). 7.20 (broad, 1 H ; arom. H). 7.28
(t. ' J = 8 Hz. 1 H: arom. H).7.50 (broad, 1 H: aroin. H). 7 6X (d, ' J = 7 Ha, 2 H :
arom. H). 7.70 (d. ' J = 7 Hr. 1 H : arom. H ) . 7.78 (broad. 2 H : arom. H). 7.97 (d.
(I
1170
4'
h'CH I . i , r / u y g c s e l / . ~ ~ / i inhH,
ufl
D-69451 W<,iiihiwn.1994
Synthesis and Characterization of
the First Thiaselanes**
Josef Hahn" and Reni: Klunsch
Until now selanes H,Se, and the thiaselanes H,S,Se,-, derived
from them by selenium-sulfur exchange were only known in the
form of organa"] and chloro derivatives.[*] We report here on the
synthesis and N M R spectroscopic characterization of thiaselanes
with the general formula H,S,Se,, as well as on the isolation of
[*I
[**I
Prof. Dr. J. Hahn, Dip1 -Chem. R. Klunsch
Institut fur Anorganische Chemie der Universitit
Greinstrasse 6. D-50939 Koln ( F R G )
Telepax: Int. code + (221)470-5196
This work was supported by the Deutsche Forschungsgemeinschaft (SFB 301 j.
U570-0833!94:1717-1770 $ l U . U O + 25:O
A J I , ~ c %Chrm.
.
Inr. Ed. Engl. 1994, 33. N o . 17
Документ
Категория
Без категории
Просмотров
1
Размер файла
436 Кб
Теги
catenane, mechanism, formation, lactam, isomeric
1/--страниц
Пожаловаться на содержимое документа