close

Вход

Забыли?

вход по аккаунту

?

Ligand-Property Control in the Nickel(0)ButadieneP-Ligand Catalytic System УElectronicФ Factors in the Control of Cyclodimer Distribution.

код для вставкиСкачать
121 P. Heimbach. J. Kluth, H . Schenkluhn. B. Weimann. Angew. Chem. Y2. 569
(1980): Angew Chem. In1 Ed. Engl. 10. 570 (1980)
[3] H. Schenkluhn, W.Scheidr. B. Weimonn. M. Zuhre.r. Angew Chem. Y I , 429
(1979); Angew. Chem. In1 Ed. Engl. I X . 401 (1979): quality criteria for the
optimum polynomial quotient S’/d (S’: variance of fit; 2. variance of experimental values). the multicorrelation coefficient M R . and a Chi’ test.
[4] C. A. Tolman. Chem. Rev. 77. 313 (1977): the “electronic” parameter x, of the
ligand L, is determined by IR spectroscopy ria the induced shlft of the
u < o ( A l )band of the L,Ni(CO), complex, and the ”steric” paramter A, as the
Corresponding apical angle.
151 J. El.m>wr. P Heimhuch, J. Kluih, A. Sisok. H . Srhenkllrhn. to be published.
161 a ) B. Barnert, B Bussemerer. P. Heimbuch. P. W. Jolly. C. Kruger. 1. Tkarchenko, G. Wilke. Tetrahedron Lett. 1972. 1457; b) B. Bussemeier. P. W. Jully. G. Wilke. J Am. Chem. Soc. Y6. 4726 (1974): c) B. Bussemeier. Dissertation. Universitat Bochum 1973
Under the conditions given in Table 1 the dimers vinylcyclohexene (VCH) and 1,5-cyclooctadiene (COD) predominate; Figure 1 shows the result of multilinear regression analysis[*]. (For a definition of the “electronic” and
“steric” parameters y, and 6,see r i . 3 1 . ) A purely “electronic”
effect is found for the amount of COD in the control region
3
0
I
.,20
0
0’
1’
n
50
Ligand-Property Control in the Nickel(o)/Butadiene/
P-Ligand Catalytic System: “Electronic” Factors
in the Control of Cyclodimer Distribution[’*’
1L
t
5’
e l
6’
By Paul Heimbach, Joachim Kluth, Hartmui Schenkluhn,
and Bruno Weimann[*l
0
XIcrn-lI
In the cyclooligomerization of butadiene on nickel-ligand
catalysts the ligand-property control of the degree of oligomerization at a [L],/[Ni],, ratio of unity is primarily of a “steric” nature and can be interpreted by corresponding association processes[’]. We now report an analysis of the ligandproperty control of cyclodimer distribution.
20
10
30
Fig. I . Dimer distribution in the cyclooligomerization of butadiene on nickel-ligand catalysts as function of the “electronic” ligand parameter x. (See Table I
for numbers of experiments.)
2‘,,,L=79.3-5.43x+0.206x’ (without nos. 9 and 13)
S= 5.41; MR=0.95X9; u (estimated)=4.0 extent of control: 100% “electronic”
( S . MR, u. see [I]).
Table 1. Experimental data on ligand-property control in the system nickel(ii)/P-ligand/butadiene= 1 . I . 170. [Ni],,=34 mmol/l. T=60“C, t = 4 8 h, butadiene conversion
>95%; see IS] for experimental procedure. VCH = vinylcyclohexene. C O D = 1.5-cyclooctadiene; Z = I00 x COD/(VCH + COD). The cyclodimer divinylcyclobutane.
which IS likewise formed, rearranges during the catalytic process to COD and VCH and can no longer be detected after 48 hl? The values in parentheses were not considered in the regression analysis
~~___
No.
L,
X
lcm
‘I
A
VCH
“‘I
IV la1
COD
r%][a]
ZC”,
Zd,
(~m.~x)l)lM
[NIIu
[bl
~
PtBu(iPr),
P(iPr),
P(nPr),
PEt,
PPhEt,
PPhMe’
P(PhCHI)?
PPh’Et
PPh,
PPhl(OEt)
P P h ( 0 nBu)l
PPh(0Et)’
PPh2(OPh)
P( 0 - n B u)
P(O-rPr),
P(0Meh
PPh(OPh)l
P(0-o-Tol), [L]
P(O-u-Biph), [dl
P(OPh),
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2.0
31
4.9
5.6
7.9
9.2
10.3
10.6
12.9
I5 5
17.3
18 3
18.5
19.5
19.8
23.4
23.7
28.0
28.9
29.2
32 I
33.5
28.4
35.2
53.9
54.2
55.1
53.5
24.4
51.9
48.4
41.1
20 I
47 6
46.7
40.4
24.5
7.8
25
8.5
I67
160
139
132
136
I22
160
I40
145
133
118
I I6
I39
112
130
107
129
141
152
128
[a] Remainder: unknown and open-chain butadiene dimers. [b] I‘,,,,,
Biph= biphenylyl.
(maximum overall reaction rate)
[‘I Prof. Dr. P. Heimbach [ ‘ I , DiplLChem. J . Kluth, Dr. H. Schenkluhn [ ‘ I
Universitkt Essen-Gesamthochschule..
Fachbereich 8-Chemie. Organische Chemie I
Postfach 8643. D-4300 Essen I (Germany)
and Max-Planck-lnstitut fur Kohlenforschung, D-4330 Mulheim/Ruhr
(Germany)
[+I
[**I
Dr. B. Weimann
Max-Planck-Institut fur Kohlenforschung, D-4330 Miilheim/Ruhr (Germany)
To whom correspondence should be addressed
Control of Metal-Catalyzed ReacLions. Part I I --Part 10: 111
570
61.6
56.6
56.4
55.6
44.8
33.6
42. I
44.7
74.4
44.2
48.1
45.8
75.7
49 0
43.3
53 9
72.7
91.6
96.7
90.6
0 Verlag Chernie. GmbH, 6Y40 Wemheim, 1980
IS
66
63
67
61
45
38
43
45
(75)
46
50
53
(79)
51
48
57
74
92
97
91
69
64
58
55
49
47
45
45
(44)
45
47
49
(49)
52
53
65
66
89
94
96
defined for the conversion range of 0--95M
nd
nd
nd
nd
nd
nd
nd
0.57i0.01
0.89 t 0.08
0.95 t 0.06
nd
nd
3.30t0 2
nd
0.59?0.01
nd
nd
5 17t0.9
7 49 t 0.2
4.03t0.5
[c] Tol=tolyl [d]
given. The correlative relation can be represented by a simple parabola (the ligands PPh, and PPhzOPh are exceptions).
Octadienediyl(Iigand)nickel(11) complexes are assumed as
crucial catalytic intermediates for the control of the dimer
As expected, the pronounced steric indistribution (see
fluence of the P-ligands found in trimer formation is no longer operative in the control of dimer formation. If the ratio of
cyclodimers COD and VCH were determined solely by the
.rr,o/.rr,.rr-equilibrium of the complexes (1) and (2) (thermo-
057(i-0X.j~/X#/o707-o57(~ S 02 5 0 / 0
Angew. Chem. I n t . Ed. Engf. 19 (1980) No. 7
dynamic ~ e l e c t i v i t y ~then
~ ~ )a, similar picture would result for
the contribution of electronic control as for control of the degree of oligomerization (see 1'1). While increasing donor
character of the P-ligands (decreasing ,y value) uniformly favors formation of trimers, the amount of COD in the dimeric
products goes through a pronounced minimum. Hence the
n,a/n,n-equilibration is insufficient to explain the relationship found: a further opposing independent effect must also
be considered.
Such an effect would be a ligand-induced relative activation or inhibition of the product-forming reaction step to
give the dimers (kinetic ~electivity~~~).
In that case, the overall
reaction rate of dimer formation (t&,,ax)DIMshould correlate
with the corresponding product selectivity owing to the relative activation or inhibition. We therefore plotted
log ( ( 6 t , , , , ) ~ ~ ~ / [ N i ] ~versus
)
the product selectivity
Trimers
VCH
COD
Su = Butadiene, L = P-Ligand.
m
=
0 or 1
( K = log(COD/VCH)) at [L],/[Ni],= 1 (Fig. 2) for a series of
representative P-ligands. Remarkably, a linear relationship is
found.
[6] The maximum overall reaction rate (li.,,,T)olM
of the catalytic reaction was
determined by analogy with methods of enzyme kinetics iia the expression
- d[Su]/dr = i',,.,, [Su]''/(K,+[Su]") (Su = substrate) where n was determined
by a regression analysis. A value of n = 2 is found for the P-ligands employed:
see P. Heimbach, J. Kluth, H . Schenkluhn in B. Pullman: Catalysis in Chemistry and Biochemistry: Theory and Experiment. Vol. 12. D. Reidel. Dordrecht 1979. p. 227
[7] B. Giese, Angew. Chem. HY, 162 (1977); Angew. Chem. Int. Ed. Engl. 16. 125
(1977)
[8] P. Hermbuch. H. J . Hey. Angew. Chem. 82. 550 (1970); Angew. Chem. Int.
Ed Engl. 9. 528 (1970).
[9] P. fleimbuch. A . RoloJJ H . Schenkluhn. Angew. Chem. 89, 260 (1977); Angew. Chem. Int. Ed Engl. 16. 252 (1977).
P4(N-i-C3H7)6,a P4x6 Molecule with and without
Adarnantane Structure'**]
By Otto J. Scherer, Kurt Andres, Carl Kriiger, Yi-Hung
Tsay, and Gotthelf WoImerhauser"l
Replacement of the edges of a P4 tetrahedron by bridging
groups X (0, NCH3, etc.) formally affords P4x6 molecules
which, without exception, have the adamantane-type structure"]. The structural alternative of a P4 rectangle doubly
bridged on its short sides and singly bridged on its long sides
has now been realized for the first time in the multidentate
cage molecule (2) ("double decker"), whose design principle
corresponds to that of a cryptand[''. (2) was synthesized[31by
thermolysis of the diazadiphosphetidine (1):
R
I
19
2 Cl-P\
IN\
?
CH3CN, Reflux
7-N-SiMe,
SJ
- 2 MeSSiC1
*
R-N
N-R
R
(I)
i 1/
R = i-C,H,
15
R=0.9&51
-.
0.0
lgl[
ka,l0,,,/ l N i l o )
1.o
Fig. 2. Reactivity-selectivity diagram for the cyclodimers in cyclooligomerization
of butadiene on nickel-ligand catalysts. (See Table I for numbers of experiments.)
Judging by the kinetic results (positive slope of the correlation lines in the reactivity/selectivity diagram[']) the ligand
control under discussion can be orbital-controlled. Further evidence for FMO control is seen in the nickel catalyzed
cyclodimerization of piperylene to four-membered ring
derivatives (symmetry-controlled metalla-ring closures)lX1
and in the nickel-catalyzed 2: 1 cooligomerization of butadiene with perturbed monoenesl'l, in which the regiospecificity is determined via the electronic requirements in the
LUMO of the cosubstrate (coefficient control).
Received: September 13. 1979;
supplemented: February 4. 1980 [Z 51 1 b IE]
German version: Angew. Chem. 92, 569 (1980)
[ I ] P. Heimbach. J. Klurh. H. Schenkluhn, B. Wermunn. Angew. Chem. Y2. 567
[2]
[3]
[41
151
(1980): Angew. Chem Lnt. Ed Engl. 19. 569 (1980).
H. Schenkluhn, W.Scheidr, B. Weimann. M Zahres. Angew. Chem. 91. 429
(1979); Angew. Chem. Int. Ed. Engl. 18.401 (1979).
C. A. Tolman. Chem. Rev. 77. 313 (1977).
a ) B. Barnell. B. Biissemeier. P. Heimbach. P. W. Jol/y. C. Kruger. J. Tkarchenko, C. Wilke. Tetrahedron Lett. 1972, 1457: b) B. Bussemeier. Dissertation, Universitat Bochum 1973.
F Brille. J. Klurh. H. Schenkluhn, J . Mol. Catal. 5, 27 (1979)
Angew. Chem. Int. Ed. Engl. 19 (1980) NO. 7
The novel tricyclic compound (2) forms colorless crystals
which are readily soluble in benzene, ether, and dichloromethane, but sparingly soluble in pentaneL4].The 'H-NMR
spectrum shows the two groups of signals in the area ratio
2: 1 expected for a symmetric structure ICD,Cl,, TMS int.;
6CH3=1.19 (d), 3J(HCCH)=6.8 Hz (bridge), 6CH3=1.20
(d), 3J(HCCH)=6.4 Hz (four-membered ring), 6CH =
3.82-4.22 (m)]. The singlet occurring at 6= 145.8 in the
3'P [ 'Hi -NMR spectrum (CD2C12,85% H3P04ext.) is shifted
downfield compared to cis-configurated diazadiphosphetidine derivatives (P-alkyl or NR2 sub~tituents)1~1.
Compound
(2) has a crystallographic center of symmetry (Fig. 1). The P
atoms and the N atoms N1, N*l, N2, N*2 form rectangles
perpendicular to each other with edges of length 2.58(1) and
3.13(1) A (P-rectangle) and 2.23(1) and 3.07(2) A (N-rectangle), respectively. The two P,(NR), four-membered rings are
almost planarl6l.
If (2) is heated in a sealed tube for several days at 156158 "C (dry cupboard), it is converted quantitatively into the
['I
Prof Dr. 0. J Scherer [ ' 1. DiplLChem. K. Andres
Fachbereich Chemie der Universitat
Postfach 3049. D-6750 Kaiserslautern (Germany)
Priv -DOE Dr. C. Kruger. Dr. Y.-H. Tsay. Dr. G . Wolmershauser
Max-Planck-lnstitut fur Kohlenforschung
Kaiser-Wilhelm-Plat; 1. D-4330 Mulheim-Ruhr 1 (Germany)
['I
Author to whom correspondence should be addressed.
[*'I This work was supported by the Deutsche Forschungsgemeinschaft and the
Fonds der Chemischen Industrie.
0 Verlag Chemie, GmbH. 6940 Weinheim. 1980
(1570-OR33/R0/0707-0571
rS 02.SO/O
571
Документ
Категория
Без категории
Просмотров
0
Размер файла
210 Кб
Теги
nickell, factors, distributions, catalytic, property, system, cyclodimeric, ligand, control, butadiene, уelectronicф
1/--страниц
Пожаловаться на содержимое документа