close

Вход

Забыли?

вход по аккаунту

?

meso-Tetrakis[4-(diphenylphosphino)-phenyl]porphyrin and a Water-Soluble Octakis-(phosphonium salt) Porphyrin Double-Decker with a Cage Structure.

код для вставкиСкачать
COMMUNICATIONS
E.uperimentu1 Procedure
6 a . 1 (1.12 g. 11.2 mmolj in xylcne (10 inL) was added dropNise over 0.5 h to ;I
boiling solution o f 5 a (2.0 g. 5.6 mmolj in xylene (40 mL). The mixture wiis stirred
for a further 0.5 h at about 140 C and then the solvent was removed at 0.5 mhar.
The resulting brown solid was suspended in pentane (20 m L ) . filtered with a D3 frit.
mhar. Recrystallization from tolucne afuashcd with pentme. and dricd at
forded 6 a (1.83 g. 6 8 % ) as brown microcrystals: m.p. 163°C (decomp.).
8 a : l ( 3 . 4 g, 34 mmol) was added dropwise to a solution o f 5 a (4.0 g. 11.2 mmol) in
toluene ( 1 0 mL) and pentane (10 mL)at - 78 'Tand stirred for 18 h at - 78 C. The
green-bro*n suspension was filtered at -78 C and the residue \lashed twice with
pentaiie (2 x 20 mL). Recrystallization from THF (10 mL) aFforded 8 a (5.39 g.
8 3 % ) as green inicrocr)stals: m.p. ca. 138 C (dccomp.).
9 h . I (1.3 g. 13 mmol) was added dropwisc to a solution of 5b (2 08 8.4.32 inmol)
in Et,O (30 mLj at 0 ' C . After 1 h the reaction solution was cooled to - ~ 3 0C, the
green crystals o f 9 h which precipitated &'ere filtered off and dried at l o - " mhiir; 9 b
(2.8 g. X9%j; n1.p. 107 C (decomp.).
13: Hexachloroethane (0.2 g, 0.X6 mmol) was added to a suspension of X a (0.5 g.
0.86 mmol) in toluene (30 mL) at -~78 C. The reaction mixture was allowed to
warm to room temperature over the course of 12 h. tiltci-ed. and the tiltrate was
evaporated to dryness at 0.5 mhar. The residue has dissolved in pentme (20 m L )
nnd small amounts of insoluble material were removed by liltration. The yellow
filtrate wiis concentrated to 5 m L and cooled t o -78 C. After 8 h. 0.14g of 13
(53%) had precipitated in the form of ii ycllow solid; m.p. X8 C (decomp.).
14. Hcxachloroethane (425 mg. 1.8 mmolj w a s added to a solution of 9 b (1 3 g,
1.8 mmol) in toluene (10 mL) ;it room temperature end the mixture was stirred l'or
2 h. The solvent was removed at 0.5 mbar. the residue was taken up in pentnnc
(40 mL)and filtered over Cclite to remove insoluhle material On cooling to - 30 C
small amounts of [his(triniethylsilyl)eyclooet~tetracne]h~ifniuin
dichloride precipitated. which w a s likewise filtered off. The clear filtrutc was concentrated t o 20 mL.
and subsequent cooling to - 30 C led to the precipitation ol' 14 (3x0 nig. 70%) in
the form of orange microcrystnls: m.p. about 128 C (decomp.).
[ I l l P Binger. G. Glascr. S. Albus. C. Kruger. C h i i Biv.. in press.
[12] a ) T. Wettling. I . Schncider, 0. Wagner. C. G. Kreiter, M . Re&. A n g w .
C%rrii. 1989. /O/. 1035 1037; A I I ~ ~ wC. k w . Inr. Ed. Engl. 1989. 28, 10131014: h) B. Geissler. T. Wettling, S. Barth, P. Binger. M. Re&. Svnrhesi.s 1994.
1337-1343.
[13] Data for the crystal structure analysis of 12:C2,1H36Pd,
M , = 400.4. crystal
dimensions: 0.16x0.30x0.37mm3,
= 9.434(2), h =17.130(3).
=
14.256(1)A, /!=YI.3X(lj1 V = 2 3 0 3 . 2 A 3 . T = 1 0 0 K , p ',,, , , , = 1 1 5 g c m P .
I i = 3.22 em-'. L = 4. monoclinic. apace group P2,:n (no. 14). E n d - N o n i u s
CAD4 diffractomcter. .; = 0.71069 A, <!~-20scan. 3269X measured reflections
( + / I .+ X . fl). (different Y values). [(sin())
= 0.83 ki,
10628 independent and 7427 observed rcllections [ I 2 20(
61 refined parameters. direct
s found and refined. R = 0.043. R , = 0.035 [n = 1;
roil density 0.60 e k ' .Further details of the crystal
structure investigation m a y hc obtained from the Fachinformationsrentrum
Karlsruhc. D-76344 Eggenstein-Leopoldshafen (Germany) on quoling the depository numbcr CSD-59068.
[I41 M. Hofmann. P. \:on R. Schleycr. unpublished: V. Caliman, P. B Hitchcock.
J. F. Nixon. M. Hofmann. P. \:on R. Schleyer. Aiigci!. Chcrti. 1994. 106. 22x4
22x6: .A/ig~'ii..C ' h e i i i . (111. Ed. €ng/. 1994. 33, 2202 2204.
[15] D. B6hin. F. Knoch. S. Kunimer. V.Schmidt. U. Zenncck. Aizgew. C ~ ' I 7 ~ r 1995.
i.
107. 251 254: Aiigrii.. C ' l r o n . Inr. Ld G i g / . 1995. 34. 198-201.
[I61 G. Mark1 in Mid/ipli, Borids uiid LOMC'uor.rl1riarroi7 iii Pho.vphor.u.! C / i i w i s / r j .
1st ed. (Eds: M. Re&. 0 .J. Schererj. Thiemc. Stuttgirt. 1990. pp. 220 257
[I71 Y. Kohayashi. J. Kumadaki. A. Ohsawa. W. Hamanii. 7iwuhedron Lerr. 1976.
3715 3716.
[I81 E Fluck. G. Becker. B. Neuniuller. R Knehl, G . Heckmann. H. Riffel. Z.
N ~ i r i r r / o r . . v d i .B 1987. 32, 1213-1221.
[I91 J. Fink. W. Rosch. V.-J. Vogelbacher, M. Regit7. Atz@w. C % t w . 1986. YK. 265266: Arigrw. Clirni. / I ? / . Ed. Eagl. 1986. 25, 280 281.
1201 K. Blatter. W. Riixh. WJ. Vogelbacher. J. Fink. M. Regitz. A i i g i w . C/wri.
1987. YY. 6 7 6X:
~ Aiigc,ii,. ( ' h o i i . I r i i . Ed. Eri,q/. 1987. 26. 85-86
~
~
Received: June 16. 1995 [Z81041E]
German version: Arigcw. Chiwi. 1995. 107. 241 1 -2414
Keywords: cyclooligomerizations . hafnium compounds
heterocycles phosphaalkynes phosphorus compounds
-
-
P. Binger. G . Glaser. B. Gahor, R. Mynort. Ai?geii.. Choii. 1995. f07. 114 11 5 :
C%o,i. Inr. Ed. EngI. 1995, 34. 81 - X3.
a) P. Bingcr, B. Biedenhach. C. Krugcr. M. Regit/, Aqfyu.. C/ioiii. 1987. 99.
798-799: A n g r w . Cheni. In!. Ed. Engl. 1987. 26. 764-765: hj T. Wettling. B
Cieissler, R. Schneider, S. Barth, P Binger. M. Regitz. h d . 1992. 1fJ4, 761 762
and 1992. 31, 758-759.
Revicw. a) J. F. Nixon. C / w n Rci,. 1988. KX, 1327-1362: h) M Regitz. P.
Binger. A n g r v . Chiwi. 1988. 100. 1541 1565: A i i g o i . . C/iwi. I t ! / . E d E q / .
1988. 27. 1484 -15OX; c ) P. Binger i n M u h i p l ~Bomb
~
urid L O MCoordiuorrori in
Pho.\phor.i,.~C/iiwii,\/j:i., i s t rd. (Eds.: M. Regitr. 0. J. Scherer). Thieme. Stutt$art. 1990. pp. 90 1 1 1, d) M. Regitz in O q a i i i c Swr/ieyi.! viir Or.g(ji?oriic/u//i~s
( O S M 4 , .4udieni (Eds.: D. Endcrs. H.-J. Cais. W. Keim). Vieweg, Wiesbadeii.
1993. pp. 93-113.
a ) P. Bingcr. R Milcrarek, R. M3nott. M . Regitz. W. Riisch. Angcii~Chw?.
1986. YX, 545-646: A n g w . C / i m . / n r . Ed. D ~ g l .1986. 25, 644-645; b) P.
Binger. R. Milcrarek. R. Mynott. C. Kriiger, Y.-H. Tsay, E. Raahe. M . Regitz.
Char,. Ber.. 1988. f 2 1 , 637-645: c) P. Binger, 8. Biedenhach. R. Mynott. C.
Kriiger. P. Betr. M. Regitz, Aiigeii. C'/iiwii. 1988. f00. 1219- 1221: Aiigcii
C ' h n i r . / t i / . Ed. Eiig/, 1988,27. 1158-1160.d)P. B. Hitchcock, M. J. Ma2ih.J. F.
Nixon, J. Chrm. SOC. c h i i . Coinmiin. 1986. 737 ~ 7 3 8 .
A. R. Barron. A . H. Cowley, Aiigcii. Chimi. 1987. YY. 956: Aiigi'ii. Clwii. In!.
E d . O q I . 1987, 26. 907-908.
R. Milcrarek, W. Russeler, P. Binger. K . Jonas. K. Angcrmund, C. Krugcr. M.
.
Regiti., Aiigcii C'iion 1987. YY. 957 958: Angm.. Chcrii. / n / . Ed. E i i ~ l 1987.
26, 908-909.
J. Haas, Diplomarbeit. Univcrsitiit Bonn, 1988.
a) G. Wilke. L. Stehling. unpublished; h) G . Wilke in F i i i r d u i i ~ r t ~R/ ut ~ s w i d ftr i
Hornogoirou.v Ciitrr/w/.\,Voi. 3 (Ed.: M. Tsutsui). Plenum. New York. 1979.
pp. 1-24: c ) Experimental procedures- J. Wicher, Dissertation. Universitat
Bochum. 1983: d ) ' H NMR-spectra: R . Benn, G . Schroth, ./. Orgui7om~r.
~ k i i 1982,
.
2 2 ~ 71
. 85.
a) G. Becker. G . Gresser. W. Uhl, Z . N o r r r r . f t ~ r . s r . / iB. 1981. 36. 16-19; b) Optim i x d procedure: W. Riisch. V. Hees. M. Regitz, Chwi. Bcr.. 1987. /20. 16451652
INEPT (optimized for "J(C.H) = 5 H L . in order to transfer the magnetization
from the protons of the ,er/-hutyI group): the experiment was carried out with
' H decoupling. Bec:iuse of the shorter delays (1:4 J(C.H) instead of 112
I(C.H)]. the INEPT pulse sequence w a s preferred over the DEPT pulse sequence.
rneso-Tetrakis(4-(diphenylphosphino)phenyllporphyrin and a Water-Soluble Octakis(phosphonium salt) Porphyrin Double-Decker
with a Cage Structure
Gottfried Mirkl,* Martin Reiss, Peter Kreitmeier, and
Heinrich Noth
Dediiculed to Professor Ro[f Huisgen
on thc occusion of' his 75th birthduy
Water-soluble porphyrins are important because of their potential interactions with biological systems (e.g. double-stranded
cleavage of DNA, photochemical oxidations, photodynamic tumor therapy, photoinduced intramolecular electron- and energy
transfer) .I' - 3 1 As a result, a series of ammonio-substituted porphyrins.I4- 61 porphyrinyl uridines,['I and sugar-substituted porphyrins['' have been reported. So far there are no reports of
phosphinoporphyrins; we are only aware of complexes of octaethylporphyrin (OEP) and tri- or pentavalent phosphorus as the
"metallic" central atom, ([P(OEP)]+X- and ([P[OEP)(OH)2]+CI0,-) .'I Here, we describe a phosphino-substituted
porphyrin for the first time, the tetrakis[4-diphenylphosphino)phenyl]porphyrin 2a, whose cationic form represents a new
type of water-soluble porphyrin.
[*] Prof. Dr. G . Miirkl. Dipl.-(:hem. M Rciss. Dr. P. Kreitmeier
liistitut fur Orgdiiischc Chemie der Universitit
Universititsstrasse 31. D-93040 Regensburg (Germany)
Tei~T;lx:Int. code + (941)943-4504
Prof. Dr. H. Niith
Institut fur Anorganische Chemie der Universilat
Meiserstrasse 1 , D-80333 Munchcn (Germany)
Telefiix: Int. code + (XY)590-2451
COMMUNICATIONS
Thc synthesis of 2 a was achieved by using the universal
method o f A . D. Adler et al. "'I,
from (4-diphenylphosphino)bcn/aldehyde 1 and pyrrole.
6
H
+
cannot be ruled out for 2a. Due to this extreme autooxidizability. reactions with 2 a must be performed under strict exclusion
of oxygen. In the crystal structure of the oxide 3a,[I5]the mesophenyl substituents are arranged propeller-like on the porphyrin
and the P(0)Ph2-oxygenatoms are oriented sy/i. mti.S J ' I ? , cmii
to each other (Fig. 1 a,b).
Porphyrin 2a i s also converted by H,O,>dcetone into the
tetraoxide 3 a and by sulfur in benzene to the tetrasulfide 4a
(Table 1). Compounds 3a and 4 a can also be obtained by
Adler condensation of the oxide (m.p. 104-106 'C) or the sul-
CH,CH,COOH
A. Ih
t Ph,P
1
6Ph,
Q
2a, M = 2 H
2b, M = Zn
2C, M=CO
In accordance with the method of G. Schiemenz et al..["] 1 is
obtained from 4-bromobenzaldehyde-ethyleneglycolacetal via
the Grignard compound, by reaction with chlorodiphenylphosphane"";'] and subsequent
The Adler condensation of I with pyrrole affords 2a in 21 % yield (purification by
recrystallization from CH,Cl,/MeOH, m.p. >350 'T, blackred, shiny needles). The characteristic Soret band at 423 nm
(benzene, i : = 490000) undergoes a bathochromic shift of 18 nm
in the diprotonated species 2a (solution of 2 a in benzene/HCl g:
I: = 412000). The fluorescence spectrum of 2a (CHCI,)[L3]
shows absorption maxima at 650, 707, and 760 nm (the longest
wavelength band is only weakly defined); the Stokes shift of
4 nm is very small due to the rigid structure of the system.
I t i5 surprising that the tervalent phosphorus atoms in compound 2 a are slightly oxidizable, even though this is formally a
triphenylphosphane unit. I R spectroscopic monitoring of the
autooxidation of 2 a in CHCI, in daylight by oxygen in air-which leads to the tetraoxide 3a (Table I)-shows that formation of the phosphane oxide is about 1000 times faster than for
triphenylphosphane. This apparent autocatalyzed oxidation of
2a by the porphyrin system could be due to intramolecular,
photornduced activation of oxygen in air.[L41However, since
triphenylphosphane is also rapidly oxidized by oxygen in air in
the presence of catalytic amounts of mcso-tetraphenylporphyrin
(TPP) under the same conditions. an intermolecular catalysis
Q
R
0
II
3,
R = PPh, , 3 a , M = 2 H; 3b, M = Co
3c,M=Zn
S
4%
I1
R = PPh,, M = 2H
5,
R = PPh, I , 5a, M = 2H; 5b, M = Zn
CH,
0'
0
PPh2
fide (m.p. 82-84 C) of 1 with pyrrole (yields 12 and 16Y0,
respectively).
The formation of quaternary ions of 2 a i n dimethylformamide can be achieved at room temperature, for example, with
COMMUNICATIONS
Ph
Table 1 . Spectroscopic data of 2h, 3a. 3 b , 4a, 5a, 5b. 6a. 8a. and 8 b
Ph
Compd.
UV.;Vis [solvent]
unprotonated diprotonated
species
species
L,",,
oxide 3 a
sulfide ?a
phoaphonium
salt 5 a
phosphon~uin
snlt 6 a
Zn complex 2 h
(4
).,,&,( 8 )
[beniene]
[benzene]
421 (482000)
519 (20900)
554 (10900)
595 (7300)
647 (5450)
361
442
609
651
(25400)
(430000)
(10900)
(44500)
[CHCI,]
ICHClJ
420 (536 500)
515 (24400)
550 (12500)
586 (7750)
643 (5700)
373
444
619
653
(MeOH]
(MeOH]
(25000)
(505 000)
(13100)
(62800)
Co complex 3 b
W(CO),Zn
complex 8 b
f30.00 (s)
[CHCI,]
1416.1
(CH,CI,.
PI-FDMS):
f44.53 (a)
[CHCI,]
1479.2
~
f23.24 (s)
[MeOH]
[MeOH]
+24.96 (a)
41 7 (392 500)
512 (19400)
550 (8300)
5x6 (5500)
641 (3200)
365 (19400)
447 (353000)
594 (8300)
651 (38700)
[CUCI,]
( M N BAiCH ,CI,
PI-LISI MS):
[TH F]
- 5.61 (s)
(CDCI,]
1416.3
[MeOH]
425 (550100)
553 (23800)
592 (9500)
405 (58700)
[CHCI,]
-
[THFI
420 (507000)
514 (23700)
547 (13700)
588 (6800)
652 (6000)
456 (399000)
609 (11400)
667 (66400)
[THF]
406 (54200)
427 (544000)
556 (26300)
596 ( I 1700)
(MNBA,'CH,CI,,
PI-LISIMS):
1472.2
[THFI
7
L"Ph
Ph
8 Ere
(CDCI,]
378 (26000)
445 (337000)
653 (35700)
413 (475000)
533 ( 21 600)
W(CO)i
complex 8 a
(toluene.
PI-FDMS):
416 (420000)
514 (20000)
548 (9600)
590 (7000)
653 (3500)
405 (4Y900)
425 (570000)
556 (22900)
583 (9400)
Zn complex 5 b
(from MeOHj
ether) [a]
d ( I P)
[solvent]
i>1::
(MNBA/CH,CI,. +21.66 ( s )
PI-LISIMS):
[[DJTHF]
IR (KBr):
2647.0
e=l900- I955
(vs. hr.. C O )
(MNBA.!CH,CI,,
PI-LISIMS):
2712.2
21.75 (s)
[CDCI,]
IR (KBr):
C=1900~1955
(vs, br.. CO)
[a] 'H N M R (400 MHz, C D , N 0 2 ) : 6 = 3.21 (d. 3J(P.H) = 13.64 Hz. CH,). 7.92
8.23 (m, 48H), 8.64 (d. 8 H ) . 8.96 (s, 8H).
methyl iodide to give 5 a and with (4-bromomethy1)benzoic
acid to give 6a (Table 1). The phosphonium salts show normal Soret bands @ a , A,, = 4 1 6 n m ( E =420000), 6a,
i.,,, = 41 7 nm ( E = 392 500)). The salts d o not precipitate from
solutions in a little ethanol (5a) or DMF (6a) on dilution with
water.
The reaction of 2 a with para-xylylene dibromide in the molar
ratio 1 :2 ( D M F 100 "C. dilution method, dropwise addition of
the bromide over 24 h, total reaction time 48 h) gives the octakis(phosphonium salt) 7. Compound 7 can be isolated by precipitation with ether, leading to a dark violet crystalline powder.
without by-products and in almost quantitative yield, which is
readily soluble in DMF. alcohol. and water. The appearance of
a single signal in the 31P N M R spectrum at 6 = 25.0 indicates
that all phosphorus atoms are in the same chemical and magnetic environment. The UV/Vis spectrum of 7 (MeOH: d,,,[nm]
(c) = 408 (468500), Soret bands, Q bands: 516 (21 000), 547
(12000), 584 (7000), 650 (5600); MeOH/HCI: 428 (430000).
598 (14 700). 649 (55300)) does not show any electronic interactions resulting from the porphyrin rings; however, a drastic
increase in the E value of the longwave Q bands at 649 nm is
noteworthy. The extreme high-field shift of the N H signals in
the ' H N M R spectrum (from 8 % - 2.5-3.0 to -6.5) clearly
indicates that the N H protons in each ring are influenced by the
ring currents of the other porphyrin ring.[i61
The mass spectrum ("TSQiSSQ 7000 Atmospheric Pressure
Ionization (API) System, Electrospray Ionization (ESI)
process", Finnigan MAT 71) establishes the structure
of 7.ri81The ions appearing in the EST spectrum are listed in
Table 2.
The octakis(phosph0nium salt) 7 is the first example of an
ionic, vertically stacked porphyrin. Tt can be classed as a "porphyrin double-decker" (separation of the porphyrin rings ca.
7 A) with a cage structure. So far, to the best of our knowledge,
only two neutral systems with two vertically stacked, covalently
bound porphyrins are known.[*'. I' Depending on the length
of the ci,w-dibromides, it should be possible to adjust the
height of the porphyrin cage so that different guest molecules
(organic molecules, complex fragments) can form stable
host-guest complexes. Similarly, stacking of porphyrins which
contain metal ions could enable formation of "molecular"
metals.'' ' J
The reaction of 2 a with Zn(OAc), in CHCI, gives the zinc
complex 2 b (Table 1). The cobalt complex 2c (reaction of 2 a
with Co(OAc), in CHCI,) is much more readily autooxidizable
than the metal-free phosphinoporphyrin 2 a, which has meant
that until now, only the corresponding phosphane oxide 3 b could
be isolated. This is plausible since cobalt complexes with nitrogen
donor ligands readily react with molecular oxygen to form per0x0- and superoxo complexes. Some of these complexes can
function as reversible oxygen carriers and may be used as
models for biological oxygen transport systems.1221( ~ - 0 ~ ) Cobalt complexes could therefore trigger the extremely facile
intra- or intermolecular autooxidation of the phosphorus atoms
in 2c.
The zinc complex 2 b can be converted smoothly to the phosphonium salt 5 b, by using methyl iodide (DMF. 20 h, room
temperature). and with careful exclusion of oxygen and light
(Table 1).
COMMUNICATIONS
Table 2. Electruyxi) ionirdtion (ESI) mass spectrum of 7 [a]
~~
~~
-
7, Cation
ni,:
-~
~~
~
(Assignment)
''] '8)
M"'
1 X'J .93 ( [ M
M?'
445.50 ([,W8' - H '17':7); 457.06 ([M8' Br-]":7)
Mh
510.59 ([M"'
- ?H']"'.'6). 533.07 ([M"
+
+ Br+ Br+ Br-
-- H + I 6 ' '6). 546.55 ([M" + 2Br-]'+:6)
655 67 ([h/'*+ 2 B r - - HtIii:5), 671.845 ( [ M ' '
02.:.30 ( [ M " ' - 3 H ' ] ' * , S ) . 639.48 ([M"
:7XX9([MX' -4Hi]"'.'4).
X59.7X ( [ M 8 ' 4Br-]"':4)
M'i
IOiX.17 ([M" - 5Ht]":3). 1065.14([MH++ B r - - 4 H ' ] ' +
1146.04 ( [ M s++4 B r - - Hi]'':3j, 1173.01 ([M" + 5Br-1'
M2
1 5 5 6 7 6 ( [ M H *- 6 H ' ] ' + , : 2 ) , 1597.21 ([M" f B r - - 5 H + ] 2 ' U ) . 1637.66([M8' + 2 B r - - 4 H + ] ' + 2 ) , 1678.11 ([M" + 3 B r
171X.57 ([M" + 4 B r - - 2 H t ] * ' : 2 ) . 1759.02 ([,Mat SBrH t ] ' t 2 j . 1799.47 ( [ M 8 '
6Br-I2+:2)
-3Ht]"':4).819.33([MR'
+
M'
[a]
+
799.11 ([h'"
- 2H'lr':5).
+ 3Br-]'+:Z)
M"
MI'
+
jl12..52([M8' - 7 H + ] t ) . 3 1 ~ 3 . 4 2 ( [ . ~ n t Br3436.13l[.MHt+ 4 B r - -3Ht]i).3517.03([.2-18i
C'2,.,t1,~,JBrxhXPh.
hl. = 3758.75 (Cl,t,H,(,4N8P#)'4,:M,
=
-
+ 2 B r - -2H+]4+:4).X39.56([M't + 3 B r -
1091.11 ([Mst
+ 2 B r - - 3Hi]";3).
+
~
1119.08 ([M"
-
Hi].":4).
+ 3Br-
-
!H']",3).
-
3H']"'1).
f ~ H + ] + ) . 3 2 7 4 , 3 2 ( [ , ~ ' ' + 2 B r - 5 H + ] ' ) . 3 3 5 5 2 3 ([M" + 3 B r - - 4 H ' I ' ) .
+ 5 B r - -2H+]*).3S9794([M8' + 6 B r - -H+]').3678.84([Md' +7Br ] ' I
3119.52: measurement conditions- solution
in
inethano1:w;itei- (1:l). heated capillary ( I 80 C). 196 eV accel-
eration potential
Compound 2a reacts with W(CO),.THF in T H F at room
temperature (reaction time 20 h ) to form the tetrakis(pentacarbonyltungsten) complex 8a (Table 1); the mass spectrum (PILISIMS, MNBA/CH,CI,, MNBA = m-nitrobenzyl alcohol)
confirms the chemical composition C , tZHbhN4020P4W4.
The
complex molecule peak observed[231agrees with calculated values for the given isotope ratios.
8a, M = 2H
8b, M = Zn
Modeling studies show that the nzeso-phenyl substituents are
perpendicular to the plane of the porphyrin ring and the
PPh2W(CO), substituents are free to rotate. The molecule has a
spatial expansion of about 20 A.
Analogous to 2a. the zinc complex 2b can also react at room
temperature with W(CO), . T H F in T H E This produces complex
8b (Table 1). which can also be obtained from 8a using Zn(OAc),
in boiling methanol (reaction time 1 h ).Iz4]
As far as we know,
8 b is the only porphyrin reported which contains a a-bound
transition metal complex fragment[251(mono- and bis-Cr(CO),TI complcxes of TPP were reported by N. J. Gogan et a1.1261).
Received' June 1 . 1995 [ZX052IE]
German version: Angi,ii . Chrm 1995, 107, 2439 2442
~
Keywords: cage compounds * macrocycles phosphorus compounds . porphyrinoids . tungsten compounds
[ I ] E. J. Gibbs. R F. Pasternack. Semiti. H o n u t d 1989. 3.77: R. J. Piel. J.
Bioniol. Struct. D w . 1989, 6. 1259: ref. [14]
[2] B. Garcia, C.-H. Lee. A. Blask6. T. C Bruice. J. An7. (~iiivw. So<.1991. / / 3 ,
XllX: A. Robert. B. Loock. M. Momenteau. B. Meunier. Inorg. ( % m i . 1991.
30. 706; T. C. Bruice. Acc. Chern. Res. 1991. 24. 243: 13. van den Bergh. P.
Cornaz. !Vuclir. Chim. Twhn. Luh. 1985, 33. 582
[3] a) T. Nagata. A. Osuka. K. Moruyamu. J. Ani. Chefii. S o ( . 1990. / I3054.
. b)
R. J. Fiel. M. R. Munson. NucIcJic Acide Res. 1980, 8. 2 8 7 5 : J. M. Kelly, M. J.
Murphy. D. J. McConnell. C. Oh Uigin. ihrd 1985. 1 3 . 167.
[4] R F. Pasternack. E. J. Gibbs. J. J. Villafranca. Biochwfi\trj~1983, 23. 2406:
ref. [3b].
[5] M J. Carvlin. N . Datta-Gupta, R. J. Fiel. Biochrin. Biuplii,s. Rr,. ( ' w i n i i m .
1982. 108. 66.
N . Robic. C. Bied-Charreton, M . Perree-Fauvet, C. Verchere-Bcaur. L.
Salmon. A. Gaudemer. R. F. Pasternack. fiJtruliedrori Lc t t . 1990. .I/, 4739.
L. Czuchapwski. J. Habdas. H. Niedbala. V. Wdndrekar. 7iwu/iilcdrun Li'fr.
1991. 32. 751 1.
N . Ono. M. Bougauchi. K. Maruyama. Terruhedron Lt,it. 1992. 33. 1629; P.
Maillard. C. Huel. M. Momenteau, ihid. 1992. 33. 8081 : K . Driaf. P. Krtiusz.
B. Verneuil. M. Spiro. J. C. Blais. G. Bolbach. i/7id. 1993. 34. 1027: H. Li. L.
C7uchajowski. ihid. 1994, 35. 1629.
P. Sayer. M. Gouterman. C. R. Connell, J .4tii. C/rmi. .hi..1977. YY, 1082.
A. D. Adler. R. F. Longo. J. D. Finarelli. J. Goldmacher. J. Assour. L. Korsakoff, J Org. C'hmii. 1967. 32. 476.
G . P. Schienienz. H. Kaack, Lic2hi~piAnn. C/J[W.1973. 1494.
n) Acetal, yield 70%. m.p. 86 87 C (methanol): h) 1. yield 80-90%. m.p.
69-71 C (methanol).
We thank Prof. Dr. Langhals. Institut for Organische < hemic der Uoiversitiit
Munchen. for recording the lluorescence spectra: see also M. Gouterman. The
Porpliwiris. Vol. 111, Academic Press, New York. 1978: D. J. Quimby, F. Longo,
J AN7. (%IV?i. SOC. 1975. 97. 5111.
J. Moan. E. Boye. Phorohiocheni. Phorohiophvc. 1981. 2. 301. D. Praseuth. A.
Gaudemer. .I.B. Verlhac. I. Kraljic. 1. Sissoeff. E. Guillt. P/ioriichc~tn.fhotcJhio/.
1986. 44. 717.
X-ray structure analysis: Siemens P4diffractometer. Mo,> irradiation. graphite
monochromator, measurements at 293 K. single cry\tal WC: 0.7 x 0.6 x
0.5 mm. red-black rhombus. Crystal data: C,,H,,,N,O,P,.
.M,= 1415.37, u =
20.414(12).h =7.914(5),c= 1 5 . 6 7 1 ( 1 2 ) ~ . ~ = 1 0 4 . 5 1 (. 1~)= 4 0 1 5 . 0 ( 3 9 ) . & 3 .
Z = 2 . monochnic. space group P 2 , : f i . pirlrd= I 171 Mgm-',
ic =
0.126 mm-'.F(000) = 1476. Data collection o-scan. ZW range 2.28-~470' in
h. h , +/. measuring speed: 6 60" per min. Reflection Hidth: 2.0 , 6758 ineasured reflections. 561 1 observed [ >4u(F)]. Structure solution: direct methods
(SHELXL93). Further details of the crystal striictiirc determination can be
obtained from the Fachinformationszentruin Karlsruhe. D-76344 EggensteinLeopoldshafen. on quoting depository number CSD-5X065.
H. Scheer. J. J. Katr in Porphi-rim and M i , t u / / i i p , ~ r p / i ~ r f(Ed.:
i i , K. M. Smith).
Elsevier, Amsterdam. 1975. p. 430 -437: see also ref. [241.
We would like to thank Doz. Dr. R. Deutrmann. Univer\iliit Regensburg, for
accurate recording of the ESI spectrum of 7.
The reliability of the method is confiriried by thc l.SI spectrum of the
inethylphosphonium salt 5 a ( M , = 1411.64). Here, the ions i d : 352.9 ([M"];
4 = 352.51) and 512.9 ([M" + I-]'+:3 = 512.85) are ohcerved almost exclusively.
N E. Kagan, D. Mauzerall. R. B. Merrifield. J. h i . Clic~wSoc. 1977. Y9. 5484:
F. R. Longo. PorpAwin ChrmDrrj, Adounce.\, Ann Arbor Science Publishers,
1979. I, 44-48.
COMMUNICATIONS
[20] H. A. Staab. T. Carell, Angcu.. C%mi. 1994. fO6. 1534; Aitgor. C/irin. f t t r . b-d.
of the carboximide substructures leads to the formation of the
Etigl. 1994. 33, 1466.
corresponding ring-contracted lactamimides 4. This reaction
[21] B. M. Hoffmann. J. A. Ibers, A w . C%Cni.Re.\.1983. 16. 15: M. Hanack, C / i i ~ i i i t
occurs with naphthalene-I ,8 :4,5-tetracarboxylic bisimides 5'41
1983. 37. 238.
and with the related perylene bisimides 7[51and is discussed in
[22] See for example F. A . Cotton. G . Wilkincon, Arlvancrrt Inorguiiic Chcriti.s/ry.
5th ed.. Wiley. New York, 1988, p. 735ff. and 1343ff.. M . Kikkawa. Y. Sasaki.
more detail herein.
S Kawata. Y. Hatakeyama. F. B. Ueno. K. Saito, in or^. Chcnt. 1985.24.4096:
The reaction of 5 or 7 with KOH in tert-butanol leads to the
L. Casella, M. Gullotti. ihid. 1986.25. 1293; D. Chen. A. E. Martell, ;hid. 1987,
corresponding lactamimides in only small amounts as by-prod26, 1026; D. Mansuy. Purr Appl. Cheni. 1990. 62. 741
ucts. However, in ethanol and especially in methanol ring con[23] Isotope distribution o f the molecular peak of 8a ( I I I ; : 2638.9. 2639.Y. 2641.1.
2642.2, 2643.1. 2644.1, 2645.1, 2648.1. 2649.0, 2650.1, 2651 2, 2652.2, 2653.0,
traction is the dominant reaction pathway. Addition of dimethyl
2656.2). We would like to thank Dr. K. Mayer. Universitit Regcnsburg. for
sulfoxide (DMSO) further increases the yield and shortens reacrecording the m a s spectra.
tion
times, so that now the lactamimides 6 and 8, of which only
[24] After reaction o f 2 a with W(CO),.THF i n T H F at 25 C (60 h ) and subsequent
few derivatives are
are obtained in high yield, and
reaction with a saturated solution of Zn(OAc), in refluxing methanol. ii mixture of the tris-. di-, and mono-W(CO),complexcs of the mono-, di- and
only trace amounts of hydrolysis products are formed
trioxidcs of Z a and the zinc complex 3c of the tetraoxide are obtained. in
(Scheme
addition to the zinc complex 8b. Chromatographic separation can he achieved
on silica gel without problem.
[ 2 5 ] See for example M. Tsutsui. G. A. Taylor in Porp/tjrii?s ( i t i d M e / a / l ~ ~ p ~ ~ r / ~ h ~ r i . \
R
[Ed.: K. M. Smith). Elsevier, Amsterdam. 1975. p. 279l'f.
[26] N . 1. Gogan, Z. U. Siddiqui, Con. 1 C/iciii. 1972, 50. 720.
Tetracarboxylic Bisimide- Lactam Ring
Contraction: A Novel Type of Rearrangement**
R
R
Heinz Langhals* and Petra von Unold
5
6
Dedicated to Professor Rolf Huisgen
on the occasion of his 75th hirthduy
Six-membered ring dicarboximides 1 with aromatic substituents are commonly viewed as chemically very inert."] Strong
hydrolyzing reagents such as hot, concentrated sulfuric acid or
KOHltert-butyl alcohol are required for their saponification to
2a or 2 b as, for example, in the case of perylene-3,4-dicarboximidesL2.31 or perylene-3.4: 9-10-tetracarboxylic bisimides 7.[']
A completely different reaction pathway is observed if, under
much milder conditions, alkali metal hydroxides in alcohol react
with bisimides 3: In this case, the loss of a C, fragment from one
R
+
1
R
7
8
+
2b
2a
4
OH
R
3
[**I
R
Scheme 1. Reaction of the bisimides 5 and 7 with KOH; a. R = 2,j-di-t(~rr-butylphcnyl; b. R = 4-~rrr-butylphenyl;c.R = 2-r(,rr-butylphenyl;d, R = 5-rtwbutyl-2methylphenyl; e, R = 2.2-dimethylheptyl; f. R = (I-propylcyclohexy1)methyl.
+
[*I
KOH
4
Prof. Dr. H. Langhals, Dipl.-Chem. P. von Unold
Instilut fur Orgallkche Chemir der Universitit
Karlstmsse 23. D-80333 Miinchen (Germany)
Tdefax: Int. code + (89)5902-483
e-mail: ui26101 ( a sunmail.lrz-mucncheii.de
This work was supported by the Deutsche Forschungagemeinschaft and the
Fonds der Chemischen Industric.
Interestingly, ring contraction proceeds quite easily for
R = aryl, but is more difficult for R = alkyl. In bisimides bearing
aromatic and aliphatic substituents contraction of the aryl-substituted ring is favored. In both, 5 and 7 only one of the imide ring
systems is transformed to
the lactam, leaving the second one unchanged even
under more vigorous con- , , K O P d , ,
ditions. Evidently, the second imide subunit is essenR'
0
A
tial for the reaction to
occur. In agreement with
this conclusion is the find~ o * cH - N - R
ing that monoimide 1 does
not undergo ring contraction.
Lactamimides 6 and 8
o y o
(and also the bisimides 5
9
and 7) reversibly add OH9
in the presence of a large
&,
@
9
'-0833!Y5,'3420-2234 S /0.00+ 25:'O
Attgciv. Chant. lm.
ELI. Engl. 1995, 34, N o . 20
Документ
Категория
Без категории
Просмотров
1
Размер файла
532 Кб
Теги
meso, phosphonium, water, cage, phenyl, porphyrio, double, octakis, tetrakis, salt, diphenylphosphino, structure, decker, soluble
1/--страниц
Пожаловаться на содержимое документа