close

Вход

Забыли?

вход по аккаунту

?

Metalated Tetra- and Penta(cyclopentadienyl)-cyclopentadienyl Compounds Syntheses by Multiple Pd-Catalyzed Cyclopentadienylations.

код для вставкиСкачать
COMMUNICATIONS
Ph
Ph
\
\
-
/
/?\
0 s __ 0 s -
’I
I‘
A
B
Scheme 3
fur in the case of the thioketone can be converted into a nucleophilic group. Similar reactions may open a way to novel ligand
reactions in the coordination sphere of trimetallic transition
metal clusters
E.uperirncwtal Procediire
All reactions were pcrformed under nitrogen with standard Schlenk techniques.
Purification on TLC plates (CH,CI, (40%)/hexane (60%)) and filtrations were
cdrried out under iiir The products were stored under nitrogen.
5 a ) Reaction of2 uith sulfur in presence ofNEt,: Elemental sulfur (8 mg) and one
drop of triethylaniine were added to an orange solution of 2 (31 mg) in CH,CI,
( 4 mL). The suspension was stirred for 45 min at room temperature and purified by
TLC. Complex 5 uas obtained as a n orange powder (23 mg. 72%). A small amount
of 3 was isolated iis well. b) Reaction of 2 with cyclohexene sulfide: The orange
solution of 2 (36 mg) in CH,CI, ( 5 mL) was cooled to -78 C and treated with
cyclohexcnesultidc (12 mg. about 3 equiv). The yellowish solution was maintained
at -7X c‘ for 5 nnn until the color had changed back to orange. and then i t was
warmed 10 room temperature After purification on TLC 31 mg (82%) of 5 was
isolated i i \ an orangc powder. c) Reaction of 6 with [Ph,C][BF,]. A solution of
[Ph,C][BF,] ( I I nip. about 1.2 equiv) in CH,CI, (2 mL) was added dropwise to a
)ellowsoltitionof6(46mgin3 mLCH,CI,)at -78 C. Afterstirringat -78 C f o r
i min the orange \oltition u a s warmed to room temperature The reaction solution
was puritied hy TLC. and 5 (13 mg. 42%) was isolated as a orange powder. Cyclohexadienone coiiiplc\ 3 (5 mg (17%) was isolated as a side product) ‘ H N M R
(250 MHL (‘DCI,). ,i= 7 1-7.6 (m. 5H. Ph). 4 74 (t, ’J(H.H) = 2.5 Hz, 1 H, CHPh). 1.84(dd. ‘J(H.H) = 8.0 Hz. 2.5 HZ. 2H.CH). 2.77(d, ’J(H,H) = 8.0Hz. 2H.
CH): IR (CH2CII):i.[ c m - ’ ] = 2084 (m). 2040 (sh). 2035 (vs). 2010 (m). 1987 (m).
1964 (sh). MS (positive ion FAB): n i I: 1014 (as calcd): elemental analysis. found
(calcd). C 26.56 (24.X5): H 1.21 (0.99).
6 . a ) Reaction o f 2 with H,S/DBU: A solution of the carbene complex 2 (19 mg) in
CH,CI, ( 5 mL) wiis ti-eated with H,S and stirred for 5 min at room temperature. A
solution o f DBU.(‘HICI, ( I drop DBU in 1 mL CH,CI,) was added dropwise unlil
the color changed to yellow. The solution was stirred for further 5 min. and [PPNICI
I 13 mg) u a \ added. The solvent was evaporated. and the oily yellow residue that
remained was trcaled with iPrOH (3 mL). During this procedure the product
formed y c l l o ~nncrocrystals. which were filtered and washed with hexane (2 mL).
Yield o f 6 : 24 mg (79%). b) Reaction of 5 with Li[BHEt,]: An orange solution of
j ( i O m g ) i n T H F ( j i n L ) w a s c o o l e d t o -78 C a n d treatedwithLi[BHEt,](O.l mL
0 1 a 1 .OM solution i n T H F ) . After 5 min a solution of [PPNICI (21 mg) in rPrOH
( 2 m L ) wiis added dropwise. The solution was stirred at - 78 C for further 5 min
and then &armed to room temperature. The solvent was evaporated. and the oily
residuc u<is treaicd a s mentioned above. Yield of 6: 25 mg (52%). ‘H N M R
(500 MHL. CDCI,) 6 =7.09 7.65 (m. 35H. Ph). 4.96 (s. 1 H . SH). 4.56 (t.
‘./(H.H) = 2.5 HI. 1 H. CHPh). 3.93 (d. ’J(H.H) = 8.2 Hz. 2H. CH). 2.31 (dd,
’./(H.H) = 8.3 H I . 2 3 Hz. 2 H . CH): I R (CH,CI,): i. [cm-’1 = 2044 (m). 1999 (s).
IYX6(s). 1959 ( m ) . 1Y34(m). 1918(sh):MS(negativeionFAB).in 1.1015(ascalcd
for anion). elemental analysis. found (calcd) C 44.12 (44.04). H 2.68 (2.64); N 0.92
(I).‘m): P 3.82 (3 9%.
Received: September 13. 1995 [Z8397IE]
Gel-man version. An~eivC h i n 1996. 108. 1071 -1073
-
Keywords: carbene complexes clusters . complexes with sulfur
ligands . osmium compounds
[ I ] a ) H Wadepohl. A n p i i . . C%eni. 1992. 104. 253; AnReis C h i n . in!. Ed Engl.
1992. 31. 247. h ) D. Braga. P. J. Dyson, F. Grepioni, 8 . F. G. Johnson. Cheiii.
Rev 1994. Y4. 1585 -1620.
121 a ) G A Somorjoi. J. f ‘ I i ~ s . Chem. 1990, Y4, 1013; b) G. A. Somorjai. Inrroduc110nIO Siiiftim C / i c r n i . s ~ rund
~
Cu[uiy.slr. Wiley, New York. 1994.
C
[3] M. A. Gallop. B. E G . J O ~ I I S O IJI .l.:s\i>. A H . W~-ight.
J. Clirm Soc. Dalroii Trm.1989. .I1
4x7.
[4] A. J. Edwards. M. A Gallop. B E ( J . J ~ h i i s o n .J. U.
Kohler. J Leuis. P. R . Raithby. A y w i C h n i . 1994.
106, 1166: Aiig<,~r.Chrm. In/. Ed E I I ~1994.
/
3.?,1093.
[S] A. J. Edwards. J U.Kohler. J. Leuih. P. R. Riiithby. J.
Chem. Sol,. Dulron. T v u ~1995.
.
32’1
[6] E. 0. Fischer. S Riedmullcr. C/ioni Bo-. 1974. 107.
915-919: H. Fischer. J Orgunonic~ C‘iiiwi. 1981. 219.
C34; K. H Dotz. W Sturin. H G 4lt. Oi:s?rnionirro//ic.s, 1987, 6. 1324.
[7] W. E. Buhro, A. T. Patton. C. E. Strouse. J. A Gladysz.
F. B. McCormick. M. C.Etter. J. A m Chmi Sot. 1983.
105, 1056-1058.
Metalated Tetra- and Penta(cyclopentadieny1)cyclopentadienyl Compounds: Syntheses by
Multiple Pd-Catalyzed Cyclopentadienylations””
Roland Boese, Gabriele Brlunlich,
Jean-Pierre Gotteland, Jenn-Tsang Hwang,
Carsten Troll, and K. Peter C Voilhard t *Penta(cyclopentadieny1idene)cyclopentane 1 constitutes the
ultimate “fulvaleneradialene”~ll
and, as a ligand for transition
metals represents a significant
target in our efforts to explore the
basic chemical behavior of oligo(cyclopentadienyl) metal comDounds.[’] Apart from its potential to anchor rigidly (at least) five metals in close proximity, it
also has the correct topography to provide a synthetic entry into
metalated semibuckrninsterf~llerenes‘~~
or, in the dimeric form
of a metallocene, to endohedral metallobuckminsterfullerenes.I4]With respect to the latter, it is noteworthy that a theoretical treatment of C,, (and its interactions with metal fragments)
views the molecule as derived by an “implosion” of twelve cyclic
C,
We report that metal complexes of 1 and two regioisomers of
its lower cyclopentadienyl homologs can be prepared by a remarkably simple and potentially general palladium-catalyzed
reaction of iodocyclopentadienyl metal complexes[61 with cyclopentadienide.[’] Extension of this methodology to other substrates should dramatically enhance access to oligosubstituted
(q5-C,H,)M systems.[81 Initially, a stepwise approach was
sought, starting with the readily available[6‘-hl iodocyclopenta[*I Prof. Dr. K. P. C. Vollhardt. Dr. G. Brdunlich. Dr J.-P Gotteland.
Dr. J.-T Hwang. Dr. C. Troll
Department of Chemistry. University of California a1 Berkeley
and
The Chemical Sciences Division. Lawrence Berkeley National Laborutory
Berkeley. CA 94720 (USA)
Fax- h t . code +(510) 643-5208
e-mail: vollhardfn cchem.berkeley.edu
Prof. Dr. R. Boese
Institut fur Anorgdnische Chemie der Universitiit-Gesamthochschule
UniversitGtstrasse 5-7. D-45117 Essen (Germany)
[**I This work was supported by the Director. Office of Energy Research. Office of
Basic Energy Sciences. Chemical Sciences Division ofthe U. S. Department of
Energy under Contract DE-AC03-76SF00098. G B. thanks the Deutsche
Forschungsgemeinschaft. J:T. H. the Ministry of Education. Republic of China (Taiwan). and c . T. the Humboldt Foundation for po\tdoctoral fellowships
We are grateful to the French Ministry of Foreign Affairs for granting
J. P. G. VSNA status.
COMMUNICATIONS
some limitations; for instance, the generation of4b
and 5b was accompanied by that of the known
&
'~~
a
[FvMn,(CO),] (Fv = f ~ l v a l e n e ) , [highlighting
reductive dimerization route that becomes pre2a M L n = W(C0hCH3
3a (89%)
dominant in the construction of Sc, whose low
3b (61%)
2b MLn=hh(CO)3
3c (50%)
yield is due to the presence of the new
2c: M L n = Fe(C0)2CH3
[FvFe,(CO),(CH,),j ( 2 5 Y 0 ) . [ 'The
~ ~ latter is the
only product (80%) when 20% catalyst and 3.3
equivalents of base are employed. 8) Preliminary
experiments indicate that heteronuclear couplings
are possible. Thus, 2b (5 equiv) and 3a resulted
under conditions b in Scheme 1 in the so far inseparable mixture of three possible isomers of 5
(20%, 2 S : l : l ) as indicated by mass, IR, and
'H NMR spectral data. Similarly, 2c and 3a provided a mixture of one isomer of type 4 and two of
type 5 (15%). 9) Attempted interconversion of
4a(b) and 5a(b) photochemically or thermally
(80- 160 "C) led only to decomposition.
The structural assignments of 4 and 5 are based
on their distinctive spectral characteristics
(Table 1); the most diagnostic are the effects of the
plane of symmetry inherent in 5, which is absent in
4a (42% from3a; 26% from2a)
5a(lS%from3a; 11%from2a)
4. The choice of the regiochemical disposition of
5b (20%)
4b (40%)
the central diene unit in 4 (i.e., 1,2,4,5-substitu4c (0%)
5c (6%)
tion) is tentative, as the data do not exclude rigorScheme 1. a) CpSnBu, (2equiv). 3 % [Pd(CH,CN),CI,]. T H F (THF/DMF, 1 : l . for 3b). 23 C ,
ously a tautomeric 1,2,3,5-substitution pattern,
12 h: KF,, workup [ll]: b) 2a ( 5 equiv). 3 % [Pd(OAc),]. iPr,NEt (10 equiv). PhCH,(Et),N+CIbut appears justified on steric grounds and is
(3.3 equiv). DMF. 23°C. 52 h; c) CpSnMe, (0.3 equiv), 3 % [Pd(OAc),], NaOAc (15 equiv).
the
same as that formulated for 1,2,4,5-tetraPhCH,(Et),N+CI- ( 5 equiv), DMF. 23 T. 52 h.
tert-butyl-I ,3-cyclopentadiene.[' 51 Unfortunately,
crystals of 4 suitable for X-ray analysis could not
be obtained, bu; extensive experimentation eventually furnished
dienyl complexes 2, which were subjected to Pd-catalyzed single
to provide
coupling with tributyl(cycl~pentadienyl)stannane[~]
such a sample for 5a by slow diffusion of hexane vapors into a
3 as a mixture of 1,3- and 1,4-cyclopentadiene isomers (only the
saturated toluene solution (Fig. 1).r'61 The molecule is severely
1,3-isomer is shown in Scheme 1). This method is an improvesterically encumbered and the central cyclopentadiene is distortment over earlier preparations of these compounds, which coned as a consequence. The structure of Sa and molecular models
stitute valuable building blocks on route to (fu1valene)heteroof 4 also provide a rationale for the reluctance of the latter to
dimetal compounds.[''] Surprisingly, an attempt to effect the
undergo further metallocyclopentadienylationin the quest for
next step to furnish the tercyclopentadienyl system1"] by coumetalated I, even under forcing conditions.
pling the trimethylstannyl cyclopentadienide of 3a with 2a
(1 equiv) led instead to the 1,2,4,5-metallocyclopentadienyl-l,3cyclopentadiene 4a (9%), in addition to 3a (20%).1'21 The
reaction conditions['31 were optimized by varying the ratio
of 3a:2a (1:l to l:lO), the catalyst [Pd,(dba),] (dba =
dibenzylideneacetone), the base (NaOAc, K,CO,, Na,CO,),
the ammonium salt [PhCH,(Bu),N+Br-, Bu,N+CI-], added
ligands (PPh,), and reaction time (24-56 h). This allowed the
isolation of 4a and its isomer 5a in 60 YOcombined yield; the two
compounds were separated by chromatography on silica gel
(hexanes/acetone, 7/3) (Scheme 1, Table 1).['*I The following
observations were made during the course of this scrutiny:
C36
c37
c5
1 ) Complex 2a decomposed at elevated temperatures (80 "C),
c3&
thus preempting faster conversions. 2) Bases other than iPr,NEt
gave lower yields but similar product ratios (e.g., NaOAc: 4a,
28%; 5a, 12%; K,CO,: 4a, 18%; 5a, 6%). 3) Changing the
catalyst or ammonium salt had little effect. 4) Solvent may influ011
ence the yields (e.g., with K,CO,, [Pd,(dba),], DMF: 4a, 5a
20. w3
c19
24 YO; in CH,CN: 45 YO).5 ) The addition of PPh, (0.03 equiv)
C41
010
c38
C18
C29
C31
either completely suppressed the emergence of 5a (4a, 20%) or
08
(0.09 equiv) the reaction altogether. 6) The direct coupling of 2a
012
09
to give 4a and 5a is also possible simply by using cyclopentadiene as the substrate (e.g., conditions c in Scheme 1, 4a, 23 YO; Fig. 1. Molecular structure of 5a. Selected distances [A] and angles ["I: CI-C2
1.514(22). C2-C3 1 310(23), C3-C4 1.428(22). C4-C5 1.323(25), C5-Cl
Sa, loo/,). 7) An indication of the potential generality of the
1.562(23). C1-C6 1 527(24), C l - C l 5 1.563(23). C3-C24 1.459(23), C5-C33
reaction is given by the analogous transformations of 2b
1 433(21); Cl-C2-C3 112.0(14), C2-C3-C4 107.2(15). C3-C4-C5 114.4(16), C4-CSand 2c.L' 21 Furthermore, the use of these metals also pinpoints
CI 105.7(14), C5-CI-C2 lOOS(13). C6-Cl-Cl5 108 9(13).
I
T
996
C
VCH Verlagsgesrllst.huft mbH, 0-69451 Weinheim, 1996
0570-0833/96/3S09-0996$ 15.00f.2S/0
Angeir. Chem Int. Ed. Engl. 1996. 35, No. 9
COMMUNIEATIONS
Chemical structural confirmation of 4a was obtained by deprotonation with NaH (10 equiv) in T H F to give the corresponding and. as expected, highly symmetrical orange Na salt 6,
which displays drastically simplified 'Hand 13C N M R spectra
(Table 1 ) . Equilibration studies with cyclopentadiene
(pK, = 15.5) in 1.2-dimethoxyethane by 'H N M R spectroscopy
allowed the estimation of the pK, value of 4a as 14. The anion
in 6 could be alkylated with CHJ o r CH,CH,I to give an
inseparable mixture of 1,2,3,4,5- (minor) and 1,2,4,5,5-substituted cyclopentadiene isomers ('H N M R ) , which indicates
the nucleophilic reactivity of 6 at least with reL,pect to small
electrophiles. Nevertheless, since 1 could not bc prepared by
fivefold cyclopentadienylation according to Scheme 1 , we investigated the hopefully less sterically burdened. inverse strategy
given in Scheme 2.
Gratifyingly, treatment of tricarbonyl(q5-pentaiodocyclopentadieny1)mangdnese (7)[6"1with trimethyl(cyclopentadieny1)stannaneC9*
1 7 ] resulted
in the desired penta(cyc1opentadieny1)cyclopentadienyl complex 8 in one step in 28% yield
(Scheme 2) , [ I 2 ] as a mixture of 1,3- and 1,4-cyclopentadiene
Table 1. Selected physical data for 4. 5,6, 8, and 9 1121.
4a. orange-yellow crystals (from CH,Cl,/pentane). m p. 250 C (decomp): FABMS: 111;: ( O h ) : 1450 ( M + . 15). 1348 (14). 1309 (23). 663 [FvW,(CO),, 1001;
1HNMR(400MHr.C,D,).6=6.12(s,1H),5.09(m,1H).5.06(m,1H),4.97(m,
2 H ) . 4.74 (m. 1 H ) . 4.68 (m, 1 H). 4.62 (m, 1 H). 4.58 (m. 1 H ) , 4.56 (m. 1 H). 4.51
1 H).0.60
(m. IH).4.47(m. 1 H),4.45(m. 1 H),4.42(m.2H),4.37(m,2H).3.85(~.
(s, 3 H ) . 0.55 (s. 3H). 0.47 (s. 3H). 0.45 (s, 3 H ) ; ' H N M R (400MHz. [DJTHF).
6=636(s.1H).5.82(m.2H).5.77(m,2H),5.74(m,1H),5.66(m,1H).5.60(m.
3H). 5.55 (m. 2 H ) . 5.51 (m. I H). 5.49 (m, 2H). 5.46 (m. 2H). 4 49 (s, 1 H). 0 54
3.4 Hz, 3H]. 0.41 [s. J(183W,'H) = 3.4 Hz, 3H]. 0.40
3 4 Hz. 3HJ. 0.35 [s. J(183W.iH)= 3 4 Hz, 3H], "C('H) NMR
(100 MHz. [DJTHF). h = 233.20. 232.92. 232.49 (2C). 219.82 (2C). 219.65 (2C),
219.12 (2C). 219.06 (2C). 146.90. 142.62. 138.84. 137.78 ( C H ) , 113.44, 111.59.
110.92. 109.85. 9749 (CH). 96.92 (CH), 96.44 (CH), 96.40 (CH), 96.02 ( C H J .
95.85 (CH). 95.77 ( C H ) . 95.22 ( C H ) , 94.83 ( C H ) , 94.44 (CH). 94.35 ( C H ) , 94.26
( C H ) . 93.51 ( C H ) . 93.47 (CH). 92.98 (CH). 92.94 (CH). 57.53 ( C H ) . -25.07,
--26.87. -29 77. -29.91: iR (THF). i. = 2014. 1923. 1916cm-'.
[s,
J(la3W.' H)
1s. J('"W.'H)
=
=
100%) b)
I
i
Li
L
Sa: dark orange crystals (from toluenelhexane), m. p. 250 C (decomp): FAB-MS
111 z ('10):1450 (.k",
65). 1310 (100). 1093 (93); ' H N M R (400MHz. C,D,):
a
Li
as
i
e3
6=6.lX~AB-q.2H).504(t.J=2.0Hz,2H).4.97(m.2H).4.91(t.J=2.0Hz,
2H).4.75(in.2H~.J.53(m.4H).4.49(~.J=2.0Hz.2HJ.4.40(m.2H),O64(s.
+
Li
3 H ) . 0.67 ( 5 . 3 H ) . 0.55 ( s . 6H): ' H N M R (400 MHz. [DJTHF): 6d = 6.54 (d.
L1'
iWc0)j
J = l . 6 H 7 . 1 H ) 6.41(d,J=1.6Hz.1H).5.83(t.J=2.1Hz,2H),5.67(m,2H).
9
5.59 (m. 4 HI. 5.57 (1. J = 2.1 Hz. 2 H). 5.53 (t. J = 2.1 Hz, 2 H). 5 44 (m, 2 H), 5.33
Scheme 2. a) CpSnMe, (10 equiv). 30% [Pd(CH,CN)2CI,]. DMF. 90 C. 15 min;
0 . 4 7 [ ~ . J ( ' ~ ~ W . ~ H ) = 3 . 73H],
Hz,
lm.2H). 0.49[s.J('"W.'H)=3.7Hz.3H].
b) BuLi (5 equiv), THF. 23-C,
10 min.
NMR (100 MHz, [DJTHF):
0.41 [s. J('83W.' H) = 3.7 Hz, 6H]; "C('H:
<j= 230 55. 230.32. 217 37. 217 22. 217.13. 217.07. 147.07. 140.82 (cH), 137.71.
130.56 ( C H ) . 112.47. 108.93, 105.35, 95.00 (CH). 94.47 ( C H ) , 93.81 ( C H ) , 93.00
I,CH), 92 21 ( C H ) . 92.03 (CH). 90.85 (CH). 90.74(CH), 59.56, -28.64. -30.40.
tautomers. The spectral and analytical data are clearly consis-33.14. 1R ( T H F ) . ? = 2014, 1923. 1920cm-'.
tent with this formulation (Table l), and the quantity of signals
4b: yellow powder (from CHCl,!hexanes), m. p. 70 'C (decomp.); MS (70 eV). i n / :
in the various characteristic regions of the 13C N M R spectrum
(Yo): 874 ( M ' . 16). 790 (35). 708 (100). 678 (50). 567 (23), 540 (15). 483 (36). 226
(42). 'H NMR (300 MHz. C,D,): 6 = 6.18 (s. 1 H). 4.52 (m. 2H). 4.48 (m. 1 H ) .
are indicative of the presence of all eight possible isomers. This
4.42 (m. 1 HI. 4 37 (m. 1 H). 4.27 (m, I H). 4.23 (m, 2 H ) , 3.99 (m,2 H ) , 3.91 (m.
mixture is converged to one compound, 9, on fivefold deproto1 H). 3 XX (in. 1 H).3.80 (m. 1 H).3.75 (m, 1 H). 3.67 (m. 3H): "C('H: NMR
nation. The high symmetry of 9 is strikingly evident in its N M R
(100 MHr. C , D , i : 6 = 224.6. 224.5. 224.4. 224.3. 143.9. 139 2. 135.1. 132.4, 98.5.
data, the nine proton multiplets for 8 simplifying to two AA'BB'
97.6. 95.9. 95 7. 87.3. 87.1. 86.5. 86.3. 83.9. 83.7. 83.3, 82.5, 82.1. 82.0. 81.7. 81.5.
81.0. 79.4. 78 I . 55.8: IR ( T H F J : I. = 2011, 1932cm-'. High-resolution MS calcd
"triplets", and the eighty signals discernible for 8 in the I3C
for C,,H,,O,,Mn,: 873 8320; found: 873.8304.
NMR spectrum reducing in number to only five in 9.
5b: yellow powder (from CHCl,/hexanes). m. p. 69'C (decomp); FAB-MS: n?::
The pentaanion in 9 is the first derivative of 1 and as such can
(I%):
X74 ( M ', 5X1.790 (100). 678 (37). 652 (12). 622 (14). 567 (21). 307 (36). 289
be
envisioned to function as a starting material for the construc(27). 274 (31): ' H NMR (300 MHz. C,D,): 6 = 6.28 (AB-q, 2H). 4.66 (t,
tion of metalated semibuckminsterfullerenes and a multitude of
J=21Hr.ZH).4.56(m.2H).4.40(t. J=2.1Hz.ZH),4.29(m,ZH).3.94(t,
J = 7.1 Hz.2H). 3.X7(t. J = 2.1 Hz.2H).3.76(m.4H); ' ) C / ' H ) NMR(100MHz.
organometallic clusters with novel topography. Furthermore,
C,D,). 0 = 224 9. 224.8. 224.7. 147.1, 139.3, 136.6. 130.0, 100.6, 97.4. 93.9, 88.2.
the facile multiple cyclopentadienylations reported here open up
86.0. 83.1. 82 7. X2 6. 81.6. 81.2. 79.4, 57.1; 1R (THF): i. = 2011. 1932cm-'.
6 dark orange solution: ' H NMR (400 MHz. [DJTHF): d = 6.00 (s. 1 H). 5.55
(t. J = 2 2 HI. 4 H ) . 5.24 (t. J = 2.2 Hz. 4 H ) , 5.21 (t. J = 2.2 Hz, 4H). 5.13 (t,
J = 2.2 HI. 4 H ) . 040js. J(la3W.' H) = 3.4 Hz. ~ H ] . O . ~ O [ S . J ( ~ ~ ~ W
= .3.4
' HHz.
)
3HI; '.'<;'Hi NMR(100MHz.[D8]THF):ij= 233.91.232.92.220.00(2C).219.40
(T).
125.95. 114.11. 122.03. 115.55. 114.11. 9222. 91.77, 86.84. 84.99. -24.36.
-16.18
8 . bright yellow powder (from ether:hexanes), m. p. 90-91 C (decomp); MS
(70eV)- f i r : ( Y O ) :524 ( M 56). 440 (100); ' H N M R (300 MHz. C,D,): 6 = 6.48
(m. 1 Hi.6.26(ni. 1 H). 6.131m. 1 H). 3.11.3 04.2.97(3m.ca. 1:2:1,1 H). 2.69.2 64.
2.61 (3m. Cil. 1 - 7 - 1 . 1 H): I3C('H) NMR (100 MHz, [D,]THF): 6 [range (number
+.
of resolved peaks)] = 226.6-226.8(3), 138.3- 139.6(14). 135.9- 136.8(14). 135.2 135.4(9). 134.5 134.9(10). 132.7-133.6(9), 97.65--99.61(16), 46.56, 46.49, 42.63,
42.55.47.46: IR (hexanes): i.= 2011, 1932cm-'.
9: light orange. very air- and moisture-sensitive solution. 'H NMR (300 MHz,
[DJTHF). r) = 5 8.3 (I.J = 2.1 Hz. 2 H ) . 5.51 ( t . J = 2.1 Hr. 2H): "CC('H) NMR
(100 MHz. [DJTHF. CD,CN internal standard): 6 = 230.6, 111.8. 108.2. 106.2.
104.0. IR ( T H F ) . i. =1994. 1910cm-'
synthetic routes to a plethora of other oligocyclopentadienyl
compounds, assembled around a perhalogenated K core.
E-yerinientul Procedure
8: To complex 7 ( I .00 g, 1.20 mmol) and [Pd(CH,CN),CI,] (100 mg. 0.38 mmol) in
freshly distilled D M F (1OmL. from CaH,) was added CpSnMe, ( 2 . 7 0 ~ .
11.8 mmol) and the mixture stirred at 90 'C for I5 min. After the mixture had been
cooled to 23 C. ether (200mL) was added. the solution wsashed with H,O
( 3 x 100 mL). dried (MgSO,). the solvent removed. and the residue filtered through
silica gel (hexanes/ether. 5 : 1). Subsequent chomatography o n silica gel (hexanes;
ether. 10: 1) gave a yellow fraction containing 8 (176 mg. 28%).
Received. November 29. 1995 [Z 8605 IE]
German version: Angeir. Chimi. 1996. 108. 1100- 1102
-
-
Keywords: catalysis complexes with carbon ligands cyclopentadienes * cyclopentadienyl complexes
COMMUNICATIONS
[ I ] POI ii retiew ofradialcnes. see: H.Hopf, G. Maas, A n g m . . Cliem. 1992. 104.
953. A n p . C'hnx liir. Ed. EngL 1992. 31. 931.
121 a) C . G de ALebedo. R. Boese. D. A. Newman. K. P . C . Vollhardt,
O,;g(ifio,ilcrri/lrc.s1995. 14.4980: b) M. Tilset. K. P. C. Vollhardt. R. Boese. ihid.
1994. 13. 3146. c ) R. Boese. R Mvnibo. D. A. Newman. K . P C. Vollhardt,
Angeii. C/nvn. 1990. 103. 589; Angrit.. Ciioi?. I n / . Ed Engl. 1990. 2Y. 549; d)
P. A. McGovern. K . P. C. Vollhardt, Sjdetr 1990.493.
[3] a) For recent work on "buckybowls". see: A. H. Abdourazak, 2 Marcinow.
. 1995, 117. 6410, and
A. Sygula. R. Sygula, P. W. Rabideau. J. A m C / i ~ i iSoc.
references therein; b) R. Faust, Angeil-. Cliem. 1995, 107, 1559: A n g m Cheni.
l n t . Ed. Engl. 1995, 34, 1429.
(41 For recent work. see: a) T. Suzuki. Y. Maruyama. T. Kato. T Akasaka. K.
Kobayashi. S. Nagase. K. Yamamoto, H. Funasaka. T.Takahashi, J Am.
Clwfii.Sue. 1995. 117, 9606; b) D. E. Clemmer. M. F. Jarrold. hid. 1995, 117.
8841; c) A. Lappas. M . Kosaka. K. Tanigaki. K. Prassldes, ibd. 1995, 117,
7560, d ) K. B Shelimov. M . F. Jarrold. ibid 1995,117,6404; c) T. Akasaka. S.
Nagase, K. Kobayashi. T Suzuhi, T. Kato. K Yamamoto, H . Funasaka. T
Takahashi, J. Chem. Soc. Cheri?. Cunimun 1995, 1343: f ) T.Akasaka, S Nagase. K.Kobayashi. T. Suzuki. T.Kato, T. Kikuchi, Y. Achiba, K. Ydmamoto,
H. Funasaka, T. Takahashi, Angrii. C/imr. 1995. 107. 2303: Angeu.. Chrvii. hit
Ed. EngI. 1995. 34, 2139: g) T. Suzuki. Y Maruyama. T. Kato. K. Kikuchi, Y
Nakao. Y. Achiba. K. Kobayashi. S. Nagase. ihid 1995. 107. 1228 and 1995,34.
1094; h) F T. Edelmann. rbrd. 1995, 107. 1071 and 1995. 34, 981
[5] J. A. Lopez, C. Meaiii. J. Or,qmmier. Cheni. 1994. 478. 161
[6] Related oligoethynylations of iodocyclopentadienyl metal compounds are
1995, 14.
known: a ) U . H. F. Bunz. V Enkelmann, E Beer. Orgu~mmc~tu//ic.s
2490; b) U. H. F. Bunz. V. Enkelmann, ihid. 1994, 13. 3823; c) U. H. F. Bunz.
V. Enkelmann, J Rider. i b d 1993, 12. 4745; d) U. H.F Bunz, A n g m . C/icwi.
1994. 106, 1127. Angeii.. Cliern. Inr. Ed. EngI. 1994, 33, 1073; e) E. C. Brehm.
J. K. Stille. A. I. Meyers. OrgXNnoiiiL,tu//r~,\1992. 11. 938; f ) C. Lo Sterzo. J
Ciiiw. So( Dulton Trran.5. 1992, 1989; g) C Lo Sterzo, J. K. Stille. Orgunonwru//ic.s1990. 9, 687; h) C. Lo Sterzo. M. M. Miller. J. K. Stille. ihid 1989, 8,
2331.
[7] For related single cyclopentadienylations of haloarenes. see: a) H. M . Nugent,
M . Rosenblum, J. A m . Chem. Soc. 1993, 115. 3848; b) B M. Foxman, D. A.
Gronbeck. N. Khruschova. M. Rosenblum. J. Org. Clioni. 1993. 58, 4078; c)
D. A Gronbeck, S. A. Matchett, M . Rosenblum, Tetruliedrlron Lett. 1990. 31.
4977; d) A. Ceccon, A. Gambaro, F. Gottardi. F. Manoli, A. Venzo, J
Orgunomer. C / i m . 1989.363,91: e) M.-T. Lee, B. M. Foxman, M. Rosenblum.
Organomeiu//ics 1985. 3, 539; f) R. Wahren, J. Orgunon7ef Chem. 1973, 57.
415;g) ?I J. Katz, A. M Gilgert, M. E. Hattenloch, G. Min-Min. H. H.
Brintzinger, Tfrrulierlrun Lrrr. 1993, 34, 3551: R. C Larock, W. H. Gong, J.
Org. Chwr 1990, 55, 407, 1989. 54, 2047; JLC. Fiaud. B. Denner, JLL.
Malleron. J Organornet. Clieni. 1985. 2YI. 393.
[XI For reviews and recent work, see: a ) N. J. Coville. K. E. du Plooy. W Pickl.
Coorri Cliem. Rev. 1992. 116, 1 ; b) C. Janiak, H. Schumann, Ade. Or,wnomrt
Chrm. 1991, 33. 291; c) J. Okuda, Top. Curr. Chem. 1991, 160, 97; d ) W. E.
Watts. Comprehensisr OrgunomeruNic Cliemi.stry, V d . 8 (Eds.: G. Wilklnson,
F. G. A. Stone, E. W Abel). Pergammon, Oxford. 1982, p. 1013. e ) K. H .
Sunkel, W. Kempinger. J. Hofmann, J. Orgunomer. C/icm. 1994,475.201 ;S. A.
Kur, A. L. Rheingold, C. H. Winter. Inorg. CIieIii. 1995, 34, 414. and the
refercnces therein.
[9] H . P. Fritz, C . G. Kreiter, J. Orgonomet. Chrm. 1964. 1. 323.
[lo] a ) A. P. Kahn, D . A. Newman. K.P. C. Vollhardt. S ~ n k ~1990.
f r 141: b) M. H.
Huffman, D. A. Newman, M. Tilset, W. B. Tolman, K. P. C Vollhardt.
Orgunorni,/u//ics 1986. 5. 1926.
[I 11 a) D. Milstein, J. K. Stille. J Am. Clieni. Soc. 1978, 100, 3636; b) J. E. Leibner.
J. Jacobus, J Org. Chem. 1979,44,449.
[12) All new compounds gave satisiactory analytical and spectral data (sccTabIe 1).
unless mentioned otherwise
[I31 R. Rossi, A. Carpita. F. Bellina, OrR. Prep. Pro? In!. 1995. -77. 129.
[14] M. D. Rausch, R. F. Kovar, C. S. Kraihanzel, J A m . C/wii. Soc. 1969. 91,
1259
[15] G. Maier, S. Pfriem, U.Schiifer, K.-D. Malsch. R. Matusch, C/inir. &1-. 1981,
114. 3965; C. G. Venier. E. W. Casserly. J. Am. Chrm. So[,. 1990, 11-7, 2808.
1161 CrySYdlsize0.23x0.17 x0.~5mm3,spacegroupPl,;n.scanrange3<~(J148
.
u = 16.052(3), h =13.318(8), c = 18.671(4) A, /3 =101.85(2)', V = 3906(2) A3.
Z = 4, pEaiid= 2.459 gcm-', p =12.06 m m - ' , 6134 unique reflections at
115 K. of which 4748 were taken as observed [F, 2 4o(F)], R = 0.0565.
R, = 0.0566. Crystallographic data (excluding Structure factors) for the Struc-
A Novel Heterobimetallic Layered Compound
Showing Ferrimagnetism **
Jinkwon Kim,* Jin Mook Lim, Yong-Kook Choi, and
Youngkyu Do*
In recent years there has been considerable research into the
design of molecular magnetic materials for application in molecular electronic devices such as switches[' -31 and information
re~ording.'~
In] a search for new molecular magnetic materials,
a variety of chain compounds with a magnetic ground state have
been made by connecting two metal ions of unequal spin
through an appropriate organic bridging unit such as oxalato,'' 'I carboxylato!81 or cyan^'^] groups. These chain compounds are models for understanding the relationship between
molecular structures and magnetic properties. However, this
approach toward molecular magnets based on ferrimagnetic
chain compounds has some limitations, because the interchain
interactions within the crystal lattice are weak. Thus it is important from a practical as well as a theoretical viewpoint to generate a magnetically ordered, two- o r three-dimensional heterobimetallic compound by covalently connecting the magnetic
centers.["- 13] As intercalated layered materials were recently
shown to possess several remarkable properties simultaneousIY.['~' we directed part of our efforts toward the synthesis of
heterobimetallic two-dimensional compounds containing functional branches. We now describe the synthesis, structure, and
magnetic properties of compound I , (mtm = (bis(methylthi0)methy1idene)malonate.
[MnCu(mtm),(H,0)2(CH,0H),1,
The reaction of equimolar amounts of MSO, and the dicarboxylato ligand mtm in water or alcohol leads to the formation
of [M(mtm)(solvent),], (M = Mn, CU).["~The reaction of
these chain complexes in a 1 : 1 ratio in a water/methanol solvent
mixture affords the neutral heterobimetallic complex 1. The IR
spectrum of I exhibits several bands from 1579 to 1527 cm-'
and from 1417 to 1527 cm- I , characteristic regions for v, (CO,)
and v,(CO,) bands, respectively. This observation suggests that
all oxygen atoms of the carboxylato groups in 1 coordinate to
metal ions in bridging modes.[I6] The molecular structure of 1
established by X-ray diffraction['" confirms with this expectation (Fig. 1).
The Cu and Mn atoms of the asymmetric unit lie on the
crystallographically imposed inversion centers. All the metal
atoms of the repeating unit shown in Figure 1 form the (001)
plane of the unit cell, four M n atoms being at the corners and
one Cu atom at the center of the plane. The geometry around
the Cu atom may be described as octahedral with a large tetragonal distortion due to the Jahn-Teller effect. The equatorial
positions are occupied by four oxygen atoms of carboxylato
[*I
ture reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-179-14. Copies
of the data can be obtained free of charge o n application to The Director.
CCDC, 12 Union Road, Cambridge CB2 1 E 2 , U K (fax: int. code f(1223)
336-033; e-mail: techedOi chemcrys.cam.ac uk).
[17] K. Jones, M. t Lappert, J. Urgunornrr. C/iw7. 1965, 3. 295.
['"I
998
fJ VCH Ver/uRsgeseI/schuftmbH, D-69451 Weinheim, I996
1
Prof. Dr. J. Kim. J. M. Lim
Department of Chemistry
Kongju National University
Kongju. Chungnam 314-701 (South Korea)
Fax: Int. code +(416) 50-8479
Prof. Dr. Y D o
Department of Chemistry and Center for Molecular Science
Korea Advanced Institute of Science and Technology
Teajon 305-701 (South Korea)
Prof. Dr. Y.-K. Choi
Department of Chemistry
Chonman National University (South Korea)
This work was supported by Basic Science Research Institute Program administriited by Ministry of Education of Korea (BSRI 94-3429) and by Korea
Science and Engineering Foundation.
0570-0833!Y6;350Y-OYY8 3 IS.OO+ .25!1)
A n g i w Chern. Inr. Ed. Engl. 1996. 35. No. 9
Документ
Категория
Без категории
Просмотров
8
Размер файла
538 Кб
Теги
compounds, synthese, tetra, cyclopentadienylations, multiple, cyclopentadienyl, catalyzed, pentax, metalated
1/--страниц
Пожаловаться на содержимое документа