close

Вход

Забыли?

вход по аккаунту

?

Metal-Induced Self-Assembly of Cavitand-Based Cage Molecules.

код для вставкиСкачать
COMMUNICATIONS
E.xprrimmtul Section
6=29.576(8), c=7.859(1)&
6=92.60(2)',
V=1986.2a3. Z = 4 .
pcsicd=1.660gc11-~; F(O00) =1008; pMo=10.57cm-'; Om,, = 27"; 4692 determined, 4126 independent, 3649 observed reflections (F: > 217F:);
R1 = 0 043, wR2 = 0.131, G O F ( F 2 )= 1.17 for 351 parameters, residual electron density 0.77 and -1.08 e k 3 . Structural data of 4: C,,H,,O,.AgNO,;
M , = 540.31, crystals from acetonitrile, m.p. 168--170 C : crystal dimensions
0.33 x 0.25 x 0.22 mm; monoclinic, space group P?,/L.. a = 9.784(2),
b = 22.844(7), L. = 10.206(3)
= 96.59(2)";
V = 2266.0
2 = 4,
pEaICd
= 1 S 8 4 gcm-3; F(OO0) = 1104; pMo= 9 37 cm- I : Om", = 27'; 4742 determined. 3046 independent, 2073 observed reflections (F: > lap:); R1 = 0.056,
nR2 = 0.110, G O F ( F 2 )= 1.09 for 394 parameters, residual electron density
0.92 and -0.48 e k ' . Structural data of3: C,,H,,O,-NaClO,; 44,= 448.82,
crystals from tetrahydrofuran, m.p. 21 1-213 'C; crystal dimensions
0.55 x 0.40x0.38 mm3; triclinic, spacegroup Pi,a =11.010(3), h = 11.76613).
L. = 16.205(4)
1 = 84.27(2), 0 = 80 23(2), y = 88.09(2) ; V = 2058.2 A3,
Z=4,p,,,,,=1.448gcm-';F(000)=936;pM~=2.52cm~';O,,, =27';9014
determined, 8764 independent, 6656 observed reflections (F: > 20F:):
R1 = 0.049. nR2 = 0.1 19, G O F ( F 2 )= 1.07 for 718 parameters. residual electron density 0.26 and -0.49 e A-'. Crystallographic data (excluding structure
factors) for the structures reported in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplementary publication no
CCDC-179.172. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1 EZ. UK (fax:
Int. code +(1223) 336-033; e-mail deposit@,chemcrys.cam.acuk).
B. G . Cox, H . Schweiger, Coordination and Transporr ProperfwsarMacrocylic
Compounds in Solution, Elsevier, Amsterdam. 1992, pp. 298 301
J. L. Sussman, M. Hare], F. Frolow, C. Oefner, A. Goldman. L. Toker, I.
Silman, Science 1991, 253, 872-879.
a) P. C. Kearney. L. S . Mizoue, R. A. Kumpf, J. E. Forman, A. McCurdy,
D A. Dougherty, J. An?. Chem. Soc 1993,115,9907-9919; b) F, Inokuchi, Y
Miyahara, T Inazu, S. Shinkai, Angew. Chem. 1995,107,1459- 1462; Angew.
Chem. Inr. Ed. Engl. 1995, 34, 1364-1366, and references therein.
The pK value for the formation of 4 In C H , N 0 3 is 5.84+0.01 (preliminary
results. Dr H. Inerowicz; see refs [13.14] in ref. 1111.
The crystals of the complexes were obtained by dissolving equimolar amounts of the
ligands [lo] (ca. 0.3 M) and the corresponding salts in dry CH,CN (3.4) or T H F (5)
at room temperature, and subsequent cooling to 4'C (m.p. see ref. 1161). FAB-MS:
m!:. 433i435 (3).477/479 (4). 369 ( 5 ) , each with 100% intensity.
Received: October 21, 1996 [Z9672IE]
German version: Angen. Chem. 1997, 109.619-622
-
Keywords: C ligands
crown compounds
troscopy * silver - structure elucidation
*
NMR spec-
H. W. Roesky, E. Peymann, J. Schimkowiak, M. Noltemeyer, W Pinkert,
G. M. Sheldrick, J. Chcm. Soc. Chem. Commun. 1983,981 -982; P. G. Jones,
T. Gries. H. Grutzmacher. H. W. Roesky. J. Schimkowiak, G . M . Sheldrick,
Angew. Cheni. 1984, 96, 357-358. Angew Chem. Int. Ed. Engl. 1984, 23, 376.
R. M. Izart. K . Pawlak, J. S. Bradshaw, R. L. Bruening, Chem. Rev. 1991, 91,
1721 - 20x5
a) R. Wiest. R . Weiss, J. Chem. Soc. Chem. Commun. 1973, 678-679; b) J.
Bradshaw. C W. McDaniel. B. D. Skidmore, R. B. Nielsen, B. E. Wilson,
N. K. Dalley. R. M. Izatt, J. Hrterocyl. Chem 1987, 24, 1085- 1092; c) J. C.
Medina, T T. Goodnow, M. T. Rojas, J. L. Atwood, B. C. Lynn, A. E. Kaifer,
G. W Gokel. J. Am. Chem. Soc 1992, 114, 10583-10595; d) H . Plenio, R.
Diodone. Clieiii. Ber. 1996, 129, 1211-1217.
a) A. S. Craig, R. Kataky. R. C. Matthews. D . Parker, G. Ferguson, A. Lough,
H. Adams, N. Bailey, H. Schneider, J. Chem. SOL..Perkin Trans. 2 1990,15231531; b) A. J. Blake. R 0. Could, G. Reid, M. Schroder, J. Chem. SOC.Chem.
Commvn 1990.974 -976: c) M. Munakata, L. P. Wu, M . Yamamoto. T. Kurodasowa, M. Maekawa, J. Chrm. SOL..Dalton Trans. 1995, 3215-3220; d) H.-J.
Drexler. H. Reinke. H.-J. Holdt. Chem. Eer. 1996, 129, 807-814.
T. Burchard. P. Firman. H. Schneider. B. G . Cox, Ber. Bunsenges. Phjs. Chem.
1994. YX. 1534 - 1540.; T. Burchard. B. G. Cox. P. Firman, H . Schneider, ihzd.
1994. YX. 1526- 1533.
a ) H. G Smith, R. E Rundle, J Am. Chem. SOL..1958,80, 5075-5080; b) C.
Sourrisseau. B. Pasqier, Spvcrrochim. Acra Ser. A 1970, 26, 1279-1303;
c) H. E. Hunt. T. C. Lee, E. L Amma, Inorg. Nucl. Chem. Left 1974. 10,
lh9--174.d ) 1. F. Taylor. Jr.. E L. Amma, Acta CrysfaNogr.Seer. B 1975,31,
598 - 600
a) F. H Allen. I). Rogers. J. Chem Soc. Chem. Comrnun. 1967, 588-590:
b) R. B Jackson, W E. Streib, J Am. Chem. Soc. 1967, BY, 2539-2543; c) J. E.
McMurry, G. 1. Haley, J. R. Matz, J. C. Clardy, J. Mitchell, ;hid. 1986, 108,
5 1 5 -. 5 16.
a ) H. C. Kang, A. W. Hanson, B. Eaton. V. Boekelheide, J Am. Chem. Soc.
1985, 107. 1979 - 1985, b) R. Leppkes, F. Vogtle, Chem. Ber. 1983, 116,215219.
a ) W. I . lwema Bakker. W. Verboom, D . N. Reinhoudt, J. Chem Sot. Chem.
Commun. 1994.71 -72: b) W. Xu, R. J. Puddephatt, K. W. Muir. A. A. Torabi,
Urganameru/hc.~1994, 13, 3054- 3062
A. Merz. A. Karl. T. Futterer. N. Stacherdmger. 0. Schneider, J. Lex, E.
Luboch, F Biernat. Lwhig.7 Ann. Cl7em. 1994, 1199- 1209.
A. Merz, T. Futlerei-. J. Lex. H . Inerowicz, Angew. Chem 1997, 109,293-295;
Angru. Chrm. lnr Ed. Engl. 1997, 36, 278-280.
A. Furstner, G Seidel. C. Kopiske, C. Kruger, R. Mynott, Liebrgs Ann. 1996.
655 - 662.
a) P. F. Rodesiler. E. L. Amma. Inorg. Chem. 1972, If, 388-395; b) J. E. Gano,
G . Subramanian, R . Birnbaum, J Org. Chem. 1990, 55,4760-4763; c) F. R.
Heirtzler, H. Hopf, P. G. Jones. P. Bubenitschek. Tetrahedron Lerr. 1995,
1239- 1242.
G. Peyronel, I . M . Vezzosi. S. Buffagni, Gazz. Chim. Zfal. 1963. 93, 1462- 1470
W. P. Anderson. W. D. Edwards, M. C. Zerner. Inorg. Chem. 1986, 25, 27282732. Programm HyperChem 4 5 , Hypercube Inc., Waterloo. Canada, 1995;
cd!CUkited on SG-Iris-Indigo.
X-ray structure analyses: The reflection intensities were determined with a n
Enraf-Nonius CAD4 diffractometer (room temperature, Mo,, radiation
L = 0.71069 A). The structures were solved by direct methods and refined with
F2for all independent reflections (heavy atoms with anisotropic, H atoms with
i~2.
isotropic temperature coeffjcients): wR2 = [Xn(F: - F ~ ) 2 / ~ w ( F 3 2 ]Programs: MolEN (Enraf-Nonius) for structural determination and SHELXL-93
(G. M. Sheldnck, Universitit Gottingen) for refinement, executed on computers of the Regionales Rechenzentrum der Universitit zu Koln. Structural data
of 1: C20HL101.M , = 326.38, crystals from ethyl acetate, m.p. 109-110°C:
crystal dimensions 0.34 x 0.25 x 0.22 mm; orthorhombic, space group Pbca,
Z=8.
u=13.984(3). h=X.040(1). ~ = 2 9 . 7 7 9 ( 7 ) p \ ; V=3348.1 A',
pc,,cci =1.295 g c m - 3 ; F(OO0) =1392;pM, = 0.89cm-';Om,, = 24';5427determined. 2566 independent. 1343 observed reflections (F:>2aF:);
Rl = 0.041,
uR2 = 0 070. G O F ( F ' ) = 0.84 for 306 parameters, residual electron density
M , = 496.26,
0.12and - 0 . l 6 e k 3 . Struct~raIdataof3:C,,H~~O~.AgNO~;
160-165 'C; crystal dimensions
crystals from acetonitrile, m.p
0.35 x 0.25 x 0.22 inm. monoclinic, space group P2,/n. a = 8.554(2),
Angew. Chem. In!. Ed. Enxl. 1991. 36, Nri. 6
-0VCH
A,
a3,
A,
Metal-Induced Self-Assembly of Cavitand-Based
Cage Molecules**
Paola Jacopozzi and Enrico Dalcanale*
i n memory of Gerhard Mann
Polymacrocyclic cage molecules constitute a very interesting
class of organic compounds with peculiar host-guest properties."] The confined space within carcerands and hemicarcerands, for example, can be regarded as a new phase of
matter for which reactivity,[21 ~tereoisomerism,~~]
and photochemical and photophysicalr41properties of the guest molecules
are different from those in the bulk phases.
So far, cage molecules have been constructed mainly by formation of covalent bonds;['] more recently, self-assembly
through noncovalent interactions such as hydrogen bonding has
proved to be a viable alternative.[61Metal-induced self-assembly-widely used for generating helicates, grids, boxes, and other multicomponent inorganic ar~hitectures['~-has rarely been
employed for the formation of molecular-sized cages. One remarkable exception is the trinuclear Pd" cage from Fujita et al;
the cationic complex assembles in high yield only in the presence
of a specific guest molecule.[*]
Here we report the quantitative self-assembly of stable, large
organopalladium and organoplatinum cage molecules of struc-
[*I
[**I
Dr. E. Dalcanale. Dr. P. Jacopozzi
Dipartimento di Chimica Organica e Industriale
Universiti di Parma. 1.43100 Parma (Italy)
Fax: Int. code +(521)905-472
We thank Dr. F. Corana (Bracco S. P. A.) for mass spectroscopic analyses and
acknowledge the Centro Interfacolti di Misure of the Universiti di Parma for
instrumental facilities. This work was supported by MURST.
Verlagsgesellschafr mbH, 0-69451 Weinherm, 1997
0570-0833~97,'3606-0613$ 17.50+ S O / O
613
COMMUNICATIONS
ture 3, which are composed of two tetracyanocavitand derivatives connected through four Pd" or Pt" square-planar complexes. Preorganization of the cavitand is essential for achieving this
extremely efficient self-assembly. We therefore synthesized a
rigid, methylene-bridged cavitand with appropriate donor
atoms in the desired spatial orientation. Cages 3a-c were assembled by simply mixing 1 with 2 in a 1:2 molar ratio at room
temperature in solvents such as CH,CI,, CHCI,, or acetone
(Scheme 1). In all cases, the cage formed immediately as the
i!
CN
0
I
A
n
o
CN
l a R=CTjHn
2aM=Pd
2bM=Pt
1b R = C & j
R
R
A
-6
Figure 1. Monitoring of the metal-induced self-assembly of 3a by 'H NMR spectroscopy (300 MHz, CDCI,, 25°C). a) Free cavitand la; b) l a (excess) +2a;
c) l a +2a in a 1.2 molar ratio. Empty and solid symbols refer to the cavitand
signals of free l a and cage 3a, respectively. Upon formation of the cage, upfield
shifts were observed for the inner methylene bridge and the methyne protons;
aromatic protons were shifted downfield
18+
?
I
7 CF3SOS
ML
Table 1. Physical and spectroscopic data for 3a-c
3a R = C11Ha, M = Pd. C =dPpp
3b R = C l j H a . M = Pt. L = d p p ~
3C R = CgH13 M = Pd. L = dppp
Scheme 1. Self-assembly of Pd and Pt cage molecules. L
phino)propane (dppp).
=
1,3-bis(diphenylphos-
only product; there was no detectable presence of oligomeric
material. When the reaction was carried out with a 1:1 molar
ratio of 1and 2, a mixture of the cage and the free cavitand 1was
obtained (Figure 1). Furthermore, if an excess of the metal complex precursor was present, the reaction led only to the desired
cage plus unchanged 2. The metal-induced self-assembly process
was also monitored by FT-IR spectroscopy : the nitrile stretching band of the cage is shifted to a higher wavenumber than that
of the free cavitand.
Characterization of the cages followed from NMR ('H, I3C,
,'P, I9F) and FT-IR spectroscopy, ESI-MS, and vapor-phase
osmometry (VPO, Table 1). The extremely simple 'H and "P
NMR spectra indicated that the molecules are highly symmetric
(D4,,).
ESI-MS showed prominent [M - 2CF,SO;]2+ peaks for
all three cages; [M - 3 CF,S0J3+ ions were also observed. The
molecular ions could not be detected since their molecular
weights exceed the limit of the instrument. VPO of 3a in
dichloromethane gave an effective molecular weight of
5830 & 800 Da, which is consistent with the calculated value of
5775 Da.
Cages 3a-c are stable both in the solid state and in solution.
A tetrachloroethane solution of 3a was kept overnight at 100°C
and then the cage was recovered unchanged. Furthermore, no
614
6
V C H Verlngsgesellschnft mbH, 0-69451 Weinheim, 1997
3a: 'HNMR (300MHz. CDCI,, 28'C): 6 =7.94 (s, 8H, ArH). 7.60-7.21 (m,
80H, C,H,), 6.07 (d, J = 7 . 3 H z , 8H, OCH,O, outer), 4.38 (t. J = 8 . 2 H z , 8H,
C H I , 4.03 (d, J =7.3 Hz, 8H, OCH,O, inner), 2.98 (s, br, 16H.
PhzPCH,CH,CH,PPh,), 2.55 (s, br, 8 H, Ph,PCH,CH,CH,PPh2), overlapping
with 2.43 (m, 16H, CHCH,(CH,),CH,),
148 (s. br, 16H, CHCH,CH,(CH,),CH,), 1.34-1.20 (m. 128H, CH,(CH,),), 0.81 (t. J = 6.8 Hz, 24H,
,
133.3, 132.7, 132.3,
CH,); 13C NMR (75 MHz, CDCI,, 25°C): 6 ~ 1 5 6 . 4138.9,
131.2. 129.8, 124.9 (Ar), 124.0 (ArCN), 121.2 (CF,, J = 319 Hz). 116.9 (Ar), 99.0
(OCH,O), 36.6(CH),31.8,30.2,29.7,29.6,29.8,29.3,28.7,28.4,28.1 (CH2),22.6,
18.6 (P(CH,),P), 14.0 (CH,); "P NMR (81 MHz, CDCI,, 25OC): 6 = 10.1 (s, br);
19F NMR (188.3 MHz, CDCI,, 25°C): 6 = -78.2 (21F, CF,SO;, external). -81.8 (3F, CF,SO;, internal); 1R (KBr): V = 2288cm-' (C-N); ESI-MS:
mi;: 2738 [ M - 2CF3SOJ2+, 1775 [M - 3CF,S0;I3+; VPO (CH,CI,):
5830+ 800 Da (C,,,H3,0N,0,,F2,P8Pd,S,).
3b: 'HNMR (300MHz, CDCI,, 25°C): 6 =7.97 (s, 8 H ; ArH), 7.55-7 18 (m,
80H, C,H,). 6.15 (d, J = 7 . 3 H z , 8H. OCH,O, outer), 4.39 (t, J = 8 . 2 H z , 8H,
CHI, 3.99 (d, J = 7 . 3 Hz, 8H, OCH20, inner), 3.11 (s, br, 16H,
Ph,PCH,CH,CH,PPh,), 2.6 (8, br, 8H. Ph,PCH,CH,CH,PPh,), overlapping
with 2.44 (m, 16H. CHCH,(CH,),CH,),
1.49 (s, br, 16H, CHCH,CH,(CH,),CH,), 1.26-1.20 (m, 128H, CH,(CH,),), 0.82 (t. J = 6.8 Hz,24H,
CH,);
NMR (75 MHz, CDCI,, 28°C): 6 = 156.6, 138.8, 133.3, 132.8, 132.2,
131.8, 129.8, 129.6 (Ar), 123.8 (ArCN), 121.2 (CF,, J = 319 Hz), 98.4 (OCH,O),
36 5 (CH), 31.7, 30.0, 29.6, 29.5, 294, 29.1, 28.6, 28.3, 28.0 (CH,),
21.4, 21.0 (P(CH,),P), 13.9 (CH,); "P NMR (81 MHz, CDCI,, 25°C):
6 = -18.7, J(Pt-P) = 3317 Hz; I 9 F NMR (188.3 MHz. CDCI,, 25°C):
6 = -78.1 (21E CF,SO;. external), -81.6 (3F, CF,SO;, internal); IR (KBr):
i. = 2290 cm-' (C=N); ESI-MS: mi:: 2916 [M - 2CF,S0;]2+,
1894
[M - 3CF,S0;I3+.
3c: 'HNMR (300MHz, CDCI,, 25OC): S =7.94 (s, 8H, ArH), 7.52-7.31 (m,
80H; C,H,). 6.07 (d, J =7.3 Hz, 8H, OCH,O, outer), 4.39 (t, J = 8.2 Hz. 8H,
CHI, 4.04 (d, J =7.3 Hz, 8H, OCH,O, inner), 2.99 (s, br, 16H, Ph2PCH,CH,CH,PPh,), 2.42 (s, br, 8 H, Ph,PCH,CH,CK,PPh,), overlapping with 2.39 (m,
16H. CHCH,(CH,),CH,), 1.50 (s, br, 16H, CHCH,CH,(CH,),CH,), 1.29-2.28
(m, 80H, CH,(CH,),), 0.84 (t, J = 6.8 Hz, 24H, CH,): 13C NMR (78 MHz,
CDCI,, 25°C): 6 ~ 1 8 6 . 9 139.3,
,
133.7, 133.6, 133.4, 133.1, 132.8, 131 4, 130.0,
129.9, 125.4 (Ar), 124.5 (ArCN), 99.5 (OCH,O), 36.9 (CH), 32.5, 30.1, 28.8, 28.6,
28 4(CH,), 22.9, 18.7(P(CH2),P), 14.2 (CH,); ,'PNMR (81 MHz, CDCI,, 25°C):
6 =16.7; I9FNMR(188.3 MHz,CD2Cl,,25"C):6 = -76.8(21F,CF3SO;,external), -79.9 (3F. CF,SO;, internal); IR (KBr): i. = 2306cm-' (CEN); ESI-MS:
m / r 2488 [ M - 2CF3S0;]'+. 1589 [ M - 3CF3SO~]3t.
0570-0833/97i3606-06f4S f 7 . 5 0 t 5010
Angew. Chem Int. Ed. Engl. 1997, 36, No. 6
COMMUNICATIONS
a
N
4 PIL(NEt3)2(0Tf)2
2
la
3b
+
8HNEt3(0Tf)
Scheme 2. Control o f the self-assembly of the Pt cage. a) 8 equiv NEt,; b) 8 equiv CF,SO,H. L
variation was observed in the 'H N M R spectra of 3a and 3b in
C,D,Cl, between 25 and 120°C.
The possibility of the presence of medium components
trapped inside the cage during the self-assembly process was
also investigated. No evidence for inclusion of solvent molecules
was found by either 'H N M R o r ESI-MS. Interestingly, there
were two signals in the "F NMR spectra of 3a-c a t 6 = - 81
and - 75 in a 1 : 7 integral ratio; this indicates encapsulation of
one of the eight triflate counterions inside the cage. Examination of the CPK models confirmed that the equatorial portals of
the cage are not large enough for the bulky triflate anion to
escape.
Control of the self-assembly process was achieved through
metal-ligand exchange (Scheme 2). Addition of eight equivalents of a competing ligand such as triethylamine to preformed
3b led to complete and clean disassembly of the cage into its
cavitand component and [Pt(dppp)(NEt,),(OTf),] . Subsequent
addition of eight equivalents of triflic acid restored the original
Pt complex 2b, which immediately reassembled the cage quantitatively.
These results prove that metal-induced self-assembly is a
simple and convenient route for generating stable, molecularsized cages in quantitative yields directly from a preorganized
set of precursors. We are currently investigating the extension of
this method for the formation of other cage molecules from
different sets of molecular components.
Experirnentrrl Section
Tetracyano ligands 1a.b were prepared by a known procedure [9] from the corresponding tetrabromocavitands [lo]. General procedure for 3a-c: [M(dppp)(OTf),]
(2)[11] (0.048 mmol) was added t o a solution of 1 (0.024mmol) in l 0 m L of
CH,CI,, and the resulting solution stirred at room temperature for a few minutes.
Removal of the solvent under vacuum yielded 3a-c in quantitative yields. 3a:
M = Pd, R = C,,H,,. green powder, m.p. =187"C (decomp.); 3b: M = Pt.
R = C,,H,,. white powder. m.p. = 250°C (decomp); 3c. M = Pd, R = C,H,,.
green powder, m.p. = 180 C (decomp).
The molecular weight of 3a was determined by VPO at 35'C in HPLC-grade
dichloromethane at concentrations of 2, 4, and 8 mM; three to four measurements
were taken at each concentration. The calibration curve was generated with a longchain, dodecasubsututed cavitand ( M , = 3237 Da) as the standard compound.
Received. September 27, 1996 [Z9600IE]
German version. AngeII: Chem. 1997. 109.665-661
Keywords: cage compounds - cavitands
. self-assembly
Angew Chem lnt. Ed Eygl 1997. 36, N o . 6
C
dppp.
[3] P
Timmermann, W. Verboom, F. C. J. M. van Veggel, J. P. M
van Duynhoven, D. N. Reinhoudt, Angew. Chmi. 1994, 106, 2437-2440;
AngeII:. Chem. Int. Ed. Engl. 1994, 33, 2345-2348.
[4] A. J. Parola, F. Pina, M. Maestri, N. Armaroli, V. Balzani, N m J. Chem. 1994,
18, 659-661; F. Pina. A. J. Parola, E. Ferreira, M. Maestri, N. Armaroli, R.
Ballardini, V. Balzani, J Phys. Chem. 1995, 99, 12701 -12703: A. Farrin, K.
Deshayes. C. Matthews, I. Balanescu,J Am. Chem. Sor. 1995. li7.9614-9615.
[ S ] For a review of three-dimensional cagelike compounds, see F. Vogtle. C. Seel,
P.-M. Windscheif in Comprehensise Supramolecular Chemut,:, . Vol. 2 (Ed.: F.
Vogtle), Pergamon, Oxford, 1996, p. 21 1
[6] R. Wyler, J. de Mendoza. J. Rebek, Jr , AngeII:. Chem. 1993, 105. 1820-1821;
A n g e w Chrm Int. Ed. Engl. 1993, 32, 1699-1701; B. C. Hammann. K . D.
Shimizu. J. Rebek. Jr., ibid. 1996, 108. 1425-1427 and 1993, 3.7. 1326-1329.
(71 P. N W Baxter in Comprehensive Supramolecular Chemisiry, Rd. 9 (Eds.: J -P.
Sauvage. M. W. Hosseini), Pergamon. Oxford. 1996, p. 165.
[S] M. Fujita. S . Nagao, K. Ogura, J Am. Chem. Soc. 1995, 117. 1649-1650;
P. N. W. Baxter. J:M. Lehn, A. DeCian, 1. Fischer, Angew C h ~ m1993, 108,
92-95; Angex. Chem. lnt Ed. Engl. 1993,32,69-72; K. Fujimoto, S. Shinkai,
Tctrahedron Lett. 1994, 35, 2915-2918; M. Fujita, D . Oguro, M. Miyazdwa,
H. Oka. K . Yamaguchi, K. Ogura, Nature 1995, 378. 469-471
[9] C. D. Gutsche. P. F. Pagoria, J Org. Chem. 1985. SO, 5795-5802
[lo] P Timmermann, H. Boerrigter, W. Verboom. G 1. van Hummel, S . Harkema,
D . N Reinhoudt. L Incl. Phenom. Mol. Recognii Chrm. 1994. 19. 167-191.
[ l l ] P. J. Stang. D. H. Cao, S. Saito, A . M . Arif. J. Am Cheni. Sot. 1995, 117,
6273-6283.
A p,-Peroxo Complex of Antimony:
Synthesis and Structure of (0-Tol,SbO),(O,),**
Hans Joachim Breunig,* Tamara Kruger, and
Enno Lork
Peroxides of main group elements usually contain the dioxygen group as a bridging unit (p0J in the arrangement E-O-OE.1" The quadruply bridging arrangement has been observed
only twice in transition metal comE
plexes.". 31 We report here on the syn'0-0
(w4-02)
thesis and the structure of 1
E
'
(0-To1 = o-tolyl), the first main
E/
(o-Tol,SbO),(O,),
[*I
[l] D. J. Cram. J. M Cram i n Container Molecules and their Guests, Monographs
in Supramdrculur Chemi.srrj.. Vol 4 (Ed.: J F. Stoddart), Royal Society of
Chemistry. Cambridge. 1994.
121 D. J. Cram. M E. Tanner. R . Thomas, Angriv. Chem. 1991, 103, 1048-1051;
A n g i w Chem. In/. Ed. En,@ 1991. 30. 1024- 1027.
=
[**I
1
Prof. Dr. H. J. Breunig, T. Kriiger, Dr. E. Lork
Institut fur Anorganische und Physikalische Chemie (FB 02) der Universitat
Postfach 330440, D-28334 Bremen (Germany)
Fax: Int. code +(421)218-4042
e-mail: breunig($ chemie.uni-bremen.de
This work was supported by the Fonds der Chemischen Industrie. We thank
Mrs. W. Buss and Prof. Dr. R. Minkwitz from the Universitat Dortmund for
the Ramdn spectrum.
VCH Verlagsgesellschafr mhH, 0-69451 Weinheim, 1997
0S70-0833~97/3606-0615$ 17 SO+ SO30
615
Документ
Категория
Без категории
Просмотров
0
Размер файла
396 Кб
Теги
base, self, assembly, induced, metali, molecules, cage, cavitand
1/--страниц
Пожаловаться на содержимое документа