вход по аккаунту


Methods for the Synthesis of -Hydrocarbon Transition Metal Complexes without MetalЦMetal Bonds.

код для вставкиСкачать
Volume 32
Number 7
July 1993
Pages 923-1110
international Edition in English
Methods for the Synthesis of p-Hydrocarbon Transition Metal
Complexes without Metal-Metal Bonds
By Wolfgang Beck,* Burkhard Niemer, and Michael Wieser
Dediccited to Professor Heinrich Noth on the occasion of’ his 65th birthday
Transition metal complexes in which hydrocarbons serve as o,o-,
o,n-,or K,n-bound bridging
ligands are currently of great interest. This review presents efficient and directed syntheses for
such compounds, which often have very aesthetic structures. These reactions are among the
most important reaction types in modern organometallic chemistry. They can be a useful aid
for the synthesis of tailor-made compounds, for example, for models of catalytic processes
and, specifically, for the construction of heterometallic compounds. We will discuss reactions
of electrophilic complexes with nucleophilic ones, numerous transformations of (functionalized) hydrocarbons with metal complexes, the currently very topical complexes with bridging
acetylide and carbide ligands, and organometallic polymers, which can be expected to have
interesting and novel materials properties. Chisholm“] has described the importance of these
complexes as follows: “Central to the development of polynuclear and cluster chemistry are
bridging kgands and central to organometallic chemistry are metal-carbon bonds. Thus bridging ligands hold a pivotal role in the development of dinuclear and polynuclear organometallic
1. Introduction
Complexes incorporating hydrocarbons as bridges between metal atoms were known soon after the advent of
modern organometallic chemistry. They are formed, for instance, by the reaction of metal carbonyls with alkynesC2’o r
by the dimerization of dicyclopentadienylrh~dium.~~~~
Cyclopolyenes such as cyclooctatetraene can act as bridges between two iron, cobalt, or platinum atoms.[3b1The synthesis
of complexes with bridging polymethylene ligands from a,wdibromoalkanes and [CpFe(CO)J was the first directed
synthetic pathway.[41
Why are complexes with hydrocarbon bridges of such
great interest? They are models for intermediates in the
Prof. Dr. W. Beck, Dr. B. Niemer, Dipl.-Chem. M. Wiesei
Institut fur Anorgdnische Chemie der Universitlt
Meiserstrasse 1. D-80333 Munchen (FRG)
Teeletax’ In[. code (89)5902-451
Fischer-Tropsch process,[51 in the polymerization of alkenes16“Iand alkynes,[6b1and for unsaturated hydrocarbons
chemisorbed on metal s~rfaces[’~-a first step during heterogeneous catalyses. It is possible to prepare in a directed way
heterometallic species that can act as precursors for heterogeneous catalysts which incorporate different metals in stoichiometric proportions.[*’ In addition, “early” and “late”
transition metals, for example, zirconium and cobalt,’’l can
be linked with hydrocarbon ligands. In organometallic polymers, unsaturated hydrocarbons can act as electronic
bridges“’] (“molecular wires”“ ‘I) between metal atoms.
Electrochemical studies on compounds with bridging K ligands yield insights into the intramolecular electron transfer
between two metal atoms.” 21
Due to the large number of currently known complexes
with hydrocarbon bridges, this review cannot be complete;
cluster compounds and polynuclear complexes with metalmetal bonds o r supporting bridging ligands[”. 13. 1 4 ] will be
excluded for the most part. We will stress methods for the
synthesis of p-hydrocarbon complexes not having metalmetal bonds. Other reviews in the literature have organized
these complexes according to compound type.‘,, l 5 ”I
2. Reactions between Electrophilic and
Nucleophilic Complexes
In general, complexes with bridging hydrocarbon ligands
are formed in a predictable and unique fashion when
organometallic nucleophiles are combined with corresponding electrophiles. In nearly all cases these are reactions of
cationic and anionic complexes, yielding neutral products.
Kochi coined the term “ion pair annihilation” for these in
principle extremely simple reactions.[’81 The reactions described in the following sections and the abbreviations used
are summarized in Table 1.
Table 1. Overview of the reactions in Section 2[a].
[a] [L,M(CO),]- = carbonylmetalate ion. e.g.,[Re(CO)J; M = metal; Z =
hydrocarbon; N u = nucleophilic substituent, e.g., S; X = halide; L = ligand;
[ML,]+ denotes, e.g., [Re(CO),]+, [L,M] denotes, e.g., [(PPh,),Pt]; Cp =
q5-C,H,, Cp* = tj5-C,Me,; Fp = [Fe(CO),Cp]; Fp* = [Fe(CO),Cp*]; Fc =
tant reactions in organometallic chemistry.[”] It has found
broad application in organic
and is also a crucial step in industrial processes such as the Wacker process.[221
The unsaturated hydrocarbon, for example, an olefin, is
activated (becomes at least partially positively charged) by
coordination to a transition metal atom and is thereby made
susceptible to nucleophilic attack (Scheme 1). These reac-
Scheme 1. Nucleophilic atrack on a carbon atom activated by coordination.
tions are characterized by high regio- and stereospecificity,
which is also supported by theoretical studies.[20a.g, 231
Davies, Green, and Mingos formulated general, meanwhile
well-established rules that predict that acyclic hydrocarbon
ligands as well as those with an even number of coordinated
carbon atoms (a2, q4.. .) are attacked preferentially (DGM
rules: “even before odd” and “open before closed”).
The addition of organometallic nucleophiles (carbonylmetalate ions) to unsaturated hydrocarbon ligands in cationic complexes opened up a direct pathway to various compounds with hydrocarbon bridges.[24JThe first example of
this reaction type was found by us when [CpM(CO),(q2-C,H4)]+ (M = Mo, W) was allowed to react with
[Re(C0),]-.[251 This pathway to complexes like 1 with
ethylene bridges has been briefly discussed by Ellis.126JInterestingly, the Cp(OC),M unit in complex 1 can be replaced by
the stronger nucleophile [Re(CO),]-.[”1 Compound 2 can
2.1. Reactions between Unsaturated Hydrocarbon
Ligands in Cationic Metal Complexes and
Carbonylmetalate Ions, and Redox Reactions
2.1.1. Addition Reactions
The addition of organic nucleophiles to unsaturated hydrocarbon ligands is one of the most investigated and impor-
Woljgung Beck was born in Munich in 1932 and completed his dissertation in 1960 with Professor
W Hieber at the Technische Hochschule in Munich. After his habilitation at the T H Munich in
1963, he accepted the offer of the chair for Inorganic and Analytical Chemistry at the University
of Munich in 1968. He was awarded the Karl- Winnacker-Stipendium and the Chemiepreis der
Akademie zu Gottingen. In 1977 he was a visiting professor at the University of Wisconsin in
Madison. His research interests lie in coordination chemistry (metal complexes ofpseudohalides
and reactions oftheir coordinated ligands, metal complexes with biologically relevant ligands and
of dyes) and organometallic chemistry.
Burkhard Niemer, born in Essen in 1962, studied chemistryfrom 1981 to 1987 at the Universities
of Giessen and Munich. In 1990 he completed his dissertation under the supervision of Professor
W Beck on complexes with hydrocarbon bridges. After a stay with Professor H. D. Kaesz at the
University of California, Los Angeles, he returned to Munich in 1992.
Michael Wieser was born in Munich in 1965 and studied chemistry from 1984 to 1990 at the
Technische Universitat and the University of Munich. He is currently a doctoral student with
Professor W Beck and working on the topic discussed in this review.
Angew. Chem. In1 Ed. Engl. 1993, 32,923-949
be obtained more directly by the reaction of [(OC),Re(qz-CzH4)]+ with [Re(CO),]-.[281 The cationic rhenium
ethylene complex can be prepared under very mild conditions (1 bar, room temperature) from [ (OC),Re]FBF, and
A number of p-ethylene complexes could be prepared as
outlined in Scheme 2. The cationic alkene complexes
[(0C),M(q2-CH2=CHR)]+ (M = Mn, Re), [CpM(CO)~(qz-C~HJl+
(M = Mo, w), [(q6-C,H,)Ru(PMe,)z(q2C,H4)]'[301 and the anionic species [M(CO),]- (M = Mn,
Re), [CpM(CO)J (M = Mo, W), and [CpRu(CO),]- were
used for this purpose. In general, the p-alkene complexes
decompose upon heating with loss of the olefin and form
dimetallic complexes with a M-M bond (compound 2 decomposes only at 140 OC!).
are remarkable: the elimination of CO from the Re(CO),
anion, which occurs under very mild conditions, and the
migration of the ligand L' from Mo to Re. Analogous reactions were performed with [Mn(CO),]-, [CpW(CO),]-,[34b1
and [Ir(CO)J .["I
According to work by Green et al.,136a1
the [CpFe(CO),]anion acts-in contrast to [Re(CO),]- and [CpW(CO)3]-as a reducing agent towards the cationic molybdenum
alkyne complex [C~(L)MO(M~CEECM~),]+.
The products
of the reaction are [{CpFe(CO),},J and the 17-electron radical, [ C ~ M O ( M ~ C = C M ~ ) , which
] , [ ~ ~yields
~ ] dimers such as
5 with C, or C, bridges ("flyover" complexes, see also
Section 2.1.2).
Scheme 2. Synthesis and decomposition of complexes with ethylene bridges.
The addition of [Re(CO),]- to the q2-coordinated butadiene ligand in [(OC),Re(q2-HzC=CHCH=CH2)]+gives as
final product the stable p-but-2-ene-l,4-diyl complex 3.t3']
The use of cationic alkyne complexes as electrophiles
leads to the formation of p-q':q'-alkyne complexes
(Scheme 3).[321 In contrast, molybdenum alkyne complexes
in which the alkyne acts as a four-electron donor[33]react
with [Re(CO),]- to give the heterodimetallatetrahedranes
4.1341When unsymmetrically substituted alkynes are used, it
is thus possible to prepare chiral dimetallatetrahedranes with
four different corner atoms. Two aspects of these reactions
Scheme 3 . Synthesis of p-9' :q'-alkyne complexes (top) and tetrahedranes
(bottom) from alkyne complexes. R = COOMe, Me; ML, = Ru(CO),Cp,
Re(CO),. Mn(CO),; L,M = Cp(PMe,),Ru, etc.; L1 = CO, PPh,; R' = Me,
Ph; R Z = Me, Ph.
Angen. Chem. I n l . Ed. Engl. 1993, 32, 923-949
Organometallic nucleophiles, and especially [Re(CO),] -,
can be added to cationic complexes incorporating the followt~-imethylenemethane,'~~~
ing ligands: a l l ~ l , [q4-diene,[381
dienyl,[". 39*401 b e n ~ e n e , [ ~ ' .~ycloheptatriene,~~~]
t r o p y l i ~ m . [ In
~ ~all
1 cases, homo- and heterodimetallic complexes with c,x-hydrocarbon bridges are formed (e.g, 6-8).
The first example of an addition of a carbonylmetalate ion to
a cyclic hydrocarbon ligand (cycloheptatriene) was reported
by Angelici et al.1431
The reaction of the chiral ally1 complex [CpMo(CO)(NO)(q'-C,H,)]+ and [M(CO),]- (M = Mn, Re) proceeds as stereospecifically as with organic n u ~ l e o p h i l e s to
form one isomer (6, M = Re), a fact which is supported by
theoretical calculations.[451
The cation [Cp*Ir(qZ-C2H4)(q3-C3H5)]+
can serve as a
test compound for the DGM rules.[461Contrary to these
rules, [Re(CO),]- is added-presumably for steric rea~ o n s [ ~ ~ ' - tthe
o terminal carbon atom of the allyl ligand,
forming 9, which was characterized by X-ray crystallograThe reaction of the Ir cation with organic nucleophiles leads to metallacyclobutanes by selective addition to
the central carbon atom of the allyl ligand.[461
The crystal structures show that the attack of the
organometallic nucleophile on the n-bound hydrocarbon occurs always exo to the metal. Surprisingly, a MoRu complex
with an q1:q6-cycloheptatriene bridge is also formed by the
reaction of [(q7-C,H,)Mo(CO),Br] and [Cp*Ru(CO),]-.
This reaction proceeds with an intermolecular CO transfe~-.[~']
The p-q6:q'-C,H, complexes have temperaturedependent NMR spectra, which suggests dynamic behavior
in soIution.f3*.481
The adduct formed from [(q6-C,H,)Mn(CO),J+ and [Re(CO),J- gives an excellent example for fluxional behavior in
organometallic corn pound^.[^'.^^^ We assume the transition
state to be a benzene-bridged structure [ (OC),Mn-(p-q4:q'C,H,)Re+(CO),] with 18 valence electrons on each metal
atom. Such o,n shifts are of great theoretical and practical
interest owing to their role in homogeneous
Alternatively, a transition state with a npbenzene bridge or
a contact ion pair is also possible for the MnRe complex.
Planar benzene bridges are known, for instance, in the dinuclear triple-decker complexes [(CpV),(p-q6-C,H6)][501 and
The formulation as contact ion pair
also retains the noble gas configuration for both metal
[Re(CO),]- reacts with [(q5-C6H,)Ru(C0),]+,initiallyin accord with the DGM rules-at the terminal carbon atom
of the dienyi ligand. A subsequent transformation in solution, presumably an H migration, leads to the p-q' :q4-cyclohexadiene complex in which the Re(CO), complex fragment
is bound to a sp2 carbon atom.[40]
Thiophene coordinated to a manganese atom is also activated towards the pentacarbonylrhenate ion. The reaction
provides [(OC),Mn(p-q4: qi-C4H,S)Re(CO),], in which the
Re(CO), complex fragment is attached to the carbon atom
adjacent to the
In the reaction of [HFe(CO),]and [HW(CO),]- with [(CO),Mn(C,H,S)]', on the other
hand, a hydride is added to the thiophene ligand.[521
The extension of this synthetic strategy to organometallic
dianions as nucleophiles leads to trinuclear heterometallic
complexes with two hydrocarbon bridges (Scheme 4).
Scheme 4. Synthesis of trimetallic complexes from organometallic cations and
carbonylmetalate dianions. Z = unsaturated hydrocarbon.
Complexes 10- 17 were prepared by the reaction of
[0s(CO),l2- or [Ru(CO),Jz- with the cations [ (OC),Re(CzHJl+, [Cp(OC)(ON)Mo(C,Hs)I+,
[CP(W,MO(diene)]+, [(OC),Fe(dienyl)] +,[(OC),Mn(C,H,S)I+, f (OC),Mn(C,H,)]+, [(OC),M(C,H,)]+ (M = Cr, Mo).['~' In the
same fashion, the cations [(q6-C,H,)(Me,P),Ru(CzH4)]z+,
(M = Fe, Ru),
and [Cp*Ir(C,H,)(C,H,)]'
can be added twice to [Os(CO),]" .I4''
The Re(CO), unit is isolobal with the methyl group. According to H ~ f f m a n n ,compound
10can therefore also be
termed 4-osma-I ,7-dirhena-n-heptane. X-ray crystal structure determinations show that the hydrocarbon bridges on
the 0 s atom always have a cis orientation in analogy to
[ M ~ , O S ( C O ) , ] .The
~ ~ ~carbon
atoms bound to osmium in
13- 15 are stereogenic. In solution it is possible to show that
diastereomers are present, while in the crystal structures of
14 and 15 the carbon atoms that are a-bound to osmium
have the same configuration. Surprisingly, even the trinuclear complex 16 shows the fluxional behavior observed in solutions of [(OC),Re(p-q' :$-C,H,)Mn(CO),].
The pentanuclear complex 18 (4,5,6-triosma-I ,9-dirhenan-nonane), which has two ethylene bridges, forms when
[(OC),Re(q2-C,H4)]+ is added to the trinuclear dianion
Angen. Chem. Int. Ed. En& 1993, 32, 923 - 949
/co oc, /co oc, /co
oc - 0s0s0s- co
oc‘ ‘CO oc‘ ‘co oc‘ \
.-I +
[OS,(CO),,]~-,which in turn is prepared by deprotonation
of the corresponding hydride.IS6’
The reaction of the dianion [Fe,(CO),]’- with the cationic
rhenium ethylene complex leads, by insertion of CO into the
Fe-C bond, to complex 19, which has two bridging acyl
This is due to the lower stability of the Fe-C
bond compared to its 0s-C analogue. Similar complexes
with organic substituents on the acyl-CO group have been
described by Fischer et al.[581and Kaesz et al.r591
-1 ++
(OC)5Re -CH2CH2\
c =o
The use of highly reduced anions (Ellis compounds)[601in
reactions with cationic zcomplexes should, in principle, also
lead to multinuclear complexes. However, the reaction of
[1r(CO),l3- with [(OC),Re($-C,H,)]+ yielded, under loss
of ethylene. the linear, heterometallic, trinuclear hydrido
complex [(OC),Re-Ir(H)(CO),-Re(CO)s]
as the main
product.[6 ‘1 Attempts to crystallize this compound produced
a crystal which, surprisingly, contained the chiral, trimetalated carbonate 20. which exhibits a “windmill” structure.
1’ AM@L- \I/
M- --c
Scheme 5. Addition of organometallic nucleophiles M - to x-bound hydrocarbons in cationic complexes.
2.1.2. Nucleophilic Addition or Electron Transfer between
Cation and Anion? Redox Reactions
This compound can be regarded as a derivative of a trihydroxycarbenium ion[6z1 and could react with nucleophiles.[62‘1 The carbonate could be formed from CO, according to Equation [a).[631
The organometallic nucleophiles [Re(CO),]- and [Os(CO),], - are especially suited for the addition to z-coordinated hydrocarbons. These anions possess a relatively high
degree of nu~leophilicity,[~’~
and the metalkarbon G bond
formed is very stable.[641Nearly constant metalkarbon G
bond lengths of 2.2-2.3 A were found in the X-ray crystal
structure determinations of a number of complexes.
Scheme 5 summarizes the additions of carbonylmetalate
ions to unsaturated hydrocarbon ligands in cationic complexes. Fischer et
studied the reactions of cationic carbyne complexes with carbonylmetalates; the addition of
[Co(CO)J to [Cp(OC),Mn-CR]+ afforded the complex
with a carbyne bridge.
Angrw CIi<>rn.
fnl. Ed.
EnxI. 1993, 32, 923-949
Evidence of electron transfer between cation and anion is
found in many reactions. For instance, in reactions employing [Re(CO),]-, [Re,(CO),,] is often formed as a byproduct; when [Mn(CO),]- is used, [Mn,(CO),,] is actually
the major product. The competition between nucleophilic
addition and electron transfer has been particularly stressed
by Kochi et aI.[’*] During the course of these reactions, 19and 17-electron complexes can form, which can then combine to give the nucleophilic adduct, the C-C coupling
product, or the dimer with a metal-metal bond (Scheme 6).
For instance, the reaction of [($-hexadienyl)Fe(CO)J+
with [CpMo(CO),]- yields the heterometallic adduct 7,
Scheme 6. Z
+ [LnM-MLnI
unsaturated hydrocarbon.
which decomposes thermally to the C-C coupling product 21
and dimer 22.[181
After extensive studies, which included kinetic work, on the reaction between [($-dienyl)Fe(CO),]+
and [CpMo(CO),]-, Kochi concluded that nucleophilic addition is preferred over electron transfer (SET).“’]
2 7
of the reaction between [ (OC),Mn-(q6-C6H3Me,)] and
The 17-electron radical cations [(q4C,H,)Fe(CO),] [741 and [CpFe(CO),CH,C(R)=CR,] [751
also undergo C-C coupling reactions.
The oxidation of (q4-C,H,)ML, complexes yields
the binuclear complexes [M(p-q5:q5-C,H,-C,H,)M]2+
(M = Fe(CO),P(OPh),, Fe(CO), , RhCp, CoCp*) and other
interesting products.[761Geiger, Salzer, et al. observed especially remarkable structural changes in the cyclooctatetraene
bridge during the (reversible) oxidation of the pseudo-tripledecker complexes [(C,R,)M(p-C,H,)M(C,R,)]
(M = Co,
Rh, R = H, Me; Scheme 7).1771Several bonding modes are
During the reaction of the tropylium complex [(C,H,)Mo(CO),]+ with organometallic nucleophiles, the C-C coupling product is frequently observed.[25b*
381 These bis(cyc1oheptatrienyl) complexes can also be prepared from the
cations by reduction with Zn, Cr”, Na/Hg, and
In general, neutral 17-electron radicals preferentially
dimerize with formation of a product with a metalkmetal
bond. In contrast, coupling reactions of 19-electron radicals
that contain x ligands give rise to dimers with C-C coupled
n l i g a n d ~ . ‘ Examples
include the dimerization of [CpCo(q5-C7Hy)],1671
[(q5-C,Hy)Fe(CO),],’691[(q7C,H,)M(CO),] (M = Cr, Mo, W),
and [(q6C6H,)FeCp].[701In the reduction of a cationic carbyne complex C-C coupling leads to the dinuclear bis(carbene)
complex [(OC),Cr=C(NEt,)-C(NEt,)=Cr(CO)5].[711
syntheses of the dimetallic complexes [(OC),Mn(p-q’ :q5C,H,-C,H,)Mn(CO),I
[(OC),Mn(p-q4:q4C,H6-C6H,)Mn(C0),]2- (23, by [2 + 21 cyclodimerization
of coordinated benzene), were achieved by the reduction of
[(q6-C,H,)Mn(CO),]’.[72”1 The [2 + 21 cycloaddition of 16electron osma- and ruthenacyclopentadiene leads to complex 24 and its “trans” isomer 25.[72b1
A Mn, complex with
an q5 :$-dicyclohexadienyl bridge is formed as a by-product
f($ @@ I
- 2eL
- 2e-
M = Ru. n = 0
M = Co, Rh. n = 2
M = C0,Rh
Scheme 7. Structural changes in the C,H, ligand upon
known for bridging cyclooctatetraene ligand~.[’~I
interesting is the oxidation of [CpRu(p-C,H,)RuCp], which
proceeds by insertion of both Ru atoms into a C-C bond of
the cyclooctatetraene bridge to yield a so-called flyover compIex.[791Flyover complexes such as 5 may also be prepared
by reducing cationic bis(a1kyne) molybdenum complexe ~ . [’] ~In~ attempted
~ ,
preparations of the sandwich complex [CpV(C,H,)] from C,Hi-, C-C coupling leads to three
isomers of [C~V(,U-C,H,-C,H,)VC~].~~~~
A review article
by Connelly comprehensively describes dimerizations of ncoordinated hydrocarbons induced by one-electron oxidations or reductions.[”’
The C-C coupling of two Cp ligands is achieved by lithiation of [CpMn(CO),] and subsequent oxidation with CuC1, .I8,=]
The reductive coupling of [BrCCo,(CO),] results in
the linkage of two [CCo,(CO),] units by a C-C bond.[83b1
2.2. Reactions of Anionic Metal Complexes Containing
a Nucleophilic Heteroatom Ligand with Coordinated
Unsaturated Hydrocarbons or Organometallic Lewis
In this section reactions following Scheme 8 are discussed.
Raubenheimer et al. were able to show that CS, adds to
the anionic Fischer carbene [(OC),Cr=C(OEt)CH,]- and
that the CS, adduct can be alkylated at the sulfur atom.r841
Possible “alkylating agents” for Fischer carbene dithiolates
- %M
+ [(Z)ML,I+
Scheme 8. N u
Angen. Chem. Inr. Ed. Engi. 1993, 32, 923-949
include [(OC),Re(q2-C2H4)]+, [CpW(CO),(?Z-C2H4)]i,
and [Cp(OC)(ON)Mo(q3-C,Hs)]+or [Re(CO),]+. Depending on whether one or two equivalents of base are employed,
the di- or trimetallic complexes 26-29 are formed.[s5.86a1
+ [L,M(z-Z)I'
Z-Z-Z) ML,]
+ [L,M(n,
z-Z-Z) ML,]
Scheme 9. Coupling of hydrocarbon ligands (Z) by C-C bond formation.
The first report on the C-C coupling of metal-coordinated
hydrocarbons in cationic and anionic complexes was published by Kane-Maguire et al.'911 The addition of Liferrocene to the cyclohexadienyl ligand in [ (OC),Fe(q5-C,H,)]+ leads to complex 31. Other electrophilic and
nucleophilic precursors, yielding, for instance, compounds
31-38, are listed in Table 2.
A further example for this type of reaction is the addition
of the anionic thiocarbyne complex [(HBpz,)(OC),M(CS)]
(M = Mo, W ; pz = 3,5-dimethylpyrazol-I-y1)[871to unsaturated hydrocarbons or to the metal atom in cationic complexes, giving rise to, for example, 30a,b.1s5,86b1
The use of
cationic organometallic Lewis acids leads to
complexes like 30c- with thiocarbonyl bridges.[85.8 6 b ]
30 a
The carboxylate ion [Cp(OC)(Ph,P)Fe-COO]- can be
"esterified" with the cationic ethylene complex [($-C2H4)Fe(CO)LCp] , leading to [Cp(OC)(Ph, P)Fe -C(0)OCH,CH,-Fe(CO)(L)Cp],
a complex with a carboxyethylene bridge.[89]
Adducts of tertiary diphosphanes and [ (OC),Cr(q7-CiH7)]' react with the cationic iron complex [CpFe(CO),(thf)]+ to yield an FeCr complex with an $C7H7(Ph,PCH,CH,CH2PPh,) bridge.["l
2.3. C-C Coupling Reactions
C-C coupling of coordinated nucleophilic and electrophilic hydrocarbons enables the synthesis of numerous
complexes with hydrocarbon bridges (Scheme 9).
Angeu. CIiem. I n f . Ed. EngI. 1993, 32. 923-949
A large number of multinuclear complexes can be prepared from the anion of bis(tricarbony1chromium)diphenylmethane (Scheme
The addition of the tropylium ion
to tricarbonylcycloheptatrieneiron leads to polymeric complexes.[' l o ]
Rosenblum et al. described C-C coupling reactions of 0bound ally1 ligands with cationic 71 complexes, for instance,
Table 2. C-C coupling reactions of metal-coordinated hydrocarbons.
[(OC),Fe(cycloheptd-1 .3diene-5.7-dione)j
(M = Fe. Ru)
[ (OC),M(cycloheptatrienyl)]
( M = Cr. Mo. W )
[ (CO),Fe(cyclohexadienyl)]
(M = Cr. Mo. W )
[ (OC),M(cycloheptatrienyl)]
(M = Cr. Mo,W)
[(OC),MnGH,)I +
(M = Cr. Mo. W)
[(OC),Cr( henzothiophenc)]
[(OC),CpFe(C,H,)]+ and [(OC),Fe(C,H,)]+.["'. ''*I Th e
cationic iron methylene complex [Cp(OC),Fe=CH,]+ adds
to unsaturated o-bound vinyl and ally1 ligands to form dinuclear iron complexes.[' 1 2 , ' 131 Cationic vinylidene complexes of iron or ruthenium as well as 2-ferrocenylpropene can
dimerize or react with acetylide complexes.['
In the same
manner, (1.3-di(ferrocenyl)allyl)+ can attack 2,4-bis(ferroceny1)penta-I ,3-diene.[' ' 51 A novel tricyclic dicarbene
bridging two Mn(CO),Cp units was obtained by Herrmann
et al. by [2 + 21 cycloaddition ofcyclopentadienylidene (prepared from diazacyclopentadiene)" '61 in the presence of
[Mn(CO),Cp(thf)]. Macomber et al. used a,P-unsaturated
carbene complexes as electrophiles and were able to prepare
numerous di- and even tricarbene complexes such as 39 by
reactions with a-deprotonated carbene complexes." "I
Transition metal complexes with aldehyde or ketone
groups, for example, ferrocenylaldehyde, ferrocenylbis(a1de930
Scheme 10. A = [(OC),Re(qZ-C,H,)]'. B = [(OC),CpFe(qZ-CZH,)]+. C =
D = [(OC),Re($-C,H,)]+. E =
F = [CpCo(q5-C,H,)]'. G = [(OC),Fe(q'-C,H,)]',
H = [CpCo(q'-C,H,)]+. I = [(OC),Mn(il'-C,H,)]', J = [(OC),M(q'-C,H,)]+
(M = Cr. Mo, W).
hyde), [ (2-formyInorbornadiene)RhCp], or [(OC),Cr(acetophenone)], can act as electrophiles in reactions with anionic
carbene complexes,['
organometak enolates,[' 91 or
lithiated compounds like lithioferrocene or [ (OC),Cr(C,H,Li)].r'201 These lithiated species can also be employed
in the Fischer carbene synthesis starting with metal carbonyls, allowing access to many dimetallic Cdrbene or carbyne complexes.['
When p-dilithiurn phenylene,['2''1 p-dilithium bipheny1,[121d1or o-C,H,(CH,MgC1),"21'1 are used in the Fischer
carbene or carbyne synthesis, complexes with bridging bis(carbene) and bis(carbyne) units such as [(OC),W=C(0Et)-p-C,H,-C(OEt)=W(CO),],
are obtained directly.
A number of organometallic acid chlorides with the general formula [L,M(q5-C,H,C(0)CI)] undergo Friedelkcrafts
acylation with ferrocene or [(OC),ReCp].['221 The Wittig
reaction can also be employed to couple two hydrocarbon
ligands, for example, [(OC),Fe(q4-C,H,PR,)]+
or [(q4-MeCH=CH-CH=
Two ferrocene molecules can be
coupled by using acetals,"
and two cobaltocene molecules
can be linked by employing alkynes having electron-withdrawing groups.['251
Angrw. Clwm. I n l . Ed. Engl. 1993, 32, 923 949
Dimetallic complexes can also be constructed by the
[2 + 21 cycloaddition of one x- and one o-bound alkyne
ligand.['2h1The [2 21 cycloaddition of cyclic alkadiynes to
[CpCo(CO),] leads, by formation of cyclobutadiene, to interesting superphane complexes[1271
like 40. During the reaction of [Cp*Rh($-C,H,),] with thiophene, both a C-C coupling reaction and C-S bond cleavage in thiophene occur,
giving rise to a dimetallic complex in which a S(CH),S chain
bridges two Cp*Rh units.i12s1
[Cp(OC),W-CH=C=CH,] with [Fe,(CO),(p-CH,)] leads
to a tungsten-substituted trimethylenemethane complex
[Cp(OC),W{p-v' :~4-CHC(CH,),)Fe(CO),1;['371
the photochemical reaction of a p-vinylidenediplatinum complex
with diphenylacetylene yields a complex with a 3' :q3-butadiene
Redox reactions leading to C-C coupling are
described in Section 2.1.2.
Other established methods in organic synthesis can be
used to prepare p-hydrocarbon complexes, for example, the
McMurry reaction,['291the Ullmann coupling of halocyclopentadienyl complexes,[' 301 the reaction of lithioferro~ e n e [ ' ~or
' ' anionic Fischer carbene complexes with dihalohydrocarbons['32a1or acid chlorides,['32b1the addition of
[($-LiC,H,)Mn(CO),] to [RC(0)C,H,Mn(CO),],ll 32c1 and
the condensation of ferrocenylaldehyde with acetone." 32d1
Trimethylstannylethynylcyclopentadienyl complexes react with iodo- and $-( 1-iodovinyl)cyclopentadienyl complexes by C-C coupling to yield complexes [L,M($ :$C,H,)CH=CH-C=C(C,H,)M'L,]
and [L,M($:$-C,H,)C=C(C5H4)M'LJi'03* 133a1 By reaction of Bu,SnC-CSnBu,
with iodocyclopentadienyl complexes two Cp ligands can be
coupled." 33b1
An interesting C-C coupling reaction of a CO ligand with
olefin and diene ligands in titanium, zirconium, and hafnium
complexes was observed by Erker et al. and expanded to a
general synthetic approach (Scheme 11) for metallacyclic
oxocarbene complexes.[9a*'
Scheme 11. M
= Ti.
Zr, Hf; M'
V. W, Fe, Co. Pt, etc
The addition of the organometallic enolate [Cp*(Ph,P)(ON)ReC(O)CH,]- to a CO ligand in cationic complexes
yields interesting 1-malonyl complexes [L,M-C(0)CH,C(O)-ML,] like 41.[1351
Carbyne complexes of type [Cp(CO),M=C-R]
(M = Mo, W) can be inserted into Pd-C bonds of palladacyin the same way as the isolobal alkynes (see Section 6).[141
Finalky, two unusual C-C coupling reactions should be
mentioned : the reaction of an q'-allenyl complex
A n j y i ~ .C'Iwni.
Int. Ed. Ennl. 1993, 32, 923-949
2.4. Nucleophilic Substitution of Halogen Atoms in
Unsaturated Hydrocarbon Ligands by Carbonylmetalates
Arene(tricarbony1)chromium complexes are among the
most studied organometallic compounds. Stereo- and enantioselective nucleophilic substitution reactions have been investigated especially thoroughly.[' 391 Since 1988, Heppert et
a1.[12'b"401and Hunter et al.[1411have obtained a series of
complexes like 42 with bridging o,n-arene ligands. These
complexes are prepared by the substitution of the halogen
atom in [(C,H,X)(OC),Cr] complexes with the strongly nucleophilic organometallic anions [Fe(C0),l2-, [M(C0),I2(M = Cr, W), [CpFe(CO),I--, and [Cp*Fe(CO),]-.
k O ) ,
Less reactive carbonylmetalate ions like [CpMo(CO),] -,
[CpNi(CO)]-, [Mn(CO),]-, and [Co(CO),]- do not undergo this reaction.['401 As in the nucleophilic addition reactions discussed in Section 2.1, redox reactions compete with
substitution. For instance, the reaction of [ ($-C,H,CI)Cr(CO),] with [M(C0),l2- (M = Cr, W) proceeds by reductive dehalogenation and yields [($-C,H,)Cr(CO),]. The use
of [CpFe(CO),]- at low temperatures leads to the substitution product;['411at higher temperatures, the SET reaction
product is preferred.['401Interestingly, it was not possible to
replace the chlorine substituent in [ (OC),Cr(p-$: q ' C,H,CI)Fe(CO),Cp] with excess [CpFe(CO),]The reaction of [($-C,H,CI,)FeCp]+ and excess [Re(CO),]-, on
the other hand, yields the trimetallic complex [CpFe(p-q6:q' :q'-C6H4)(Re(CO),),]+ besides the monosubstituted product.[421The CI atom in ($-benzylch1oride)chromium
tricarbonyl can be replaced by [Co(CO),] -
2.5. Reaction of Metal Complexes Containing an
Anionic Hydrocarbon Ligand with Halo Complexes
Numerous o,x-bridged complexes can be synthesized in a
straightforward manner from lithiated arene complexes by
93 1
"umpolung". For instance, the reaction of lithioferrocene
with halometal complexes leads to compounds of type 43
(Scheme 12).
Scheme 12. ML. = CpFe(C0),[143], CpW(N0),[144], Mn(C0),[143,145],
Ir(CO)(PPh,),[143], CpM(CO), (M = Ma, W)[143], Cp*Ru(CO),[146a],
Cp3U[146b], V(C,H,Me),[147].
The related half-sandwich compound [Cp*Ru(PMe,),Fc]
is formed from [Cp*Ru(PMe,),CH,tBu] and [Cp,Fe] by
C-H bond
When lithioferrocene is employed,
trinuclear complexes can be prepared."461 Lithiated di(benzene)chromium reacts with [CpFe(CO),I] and [(OC),ReI] in
the same fashion, forming complexes with p-q6:q1-arene
bridges.['491It was also possible to prepare compounds with
bridges between early and late transition metal centers.['5o1
Complexes with a CJ,~-C,CI,bridge can also be prepared, for
example, [(OC),Mn(p-y5 :q1-C,C14)ML,] (ML, = Re(CO), ,
Au(PPh,), Cp,TiCl, etc.)." 'I
Lithiation of the dimetallic complex [Cp(OC),Fe-(pq' :q'-C,H,)Mn(CO),] with BuLi and subsequent reaction
with [Cp(CO),FeI] yields the corresponding trimetallic compound 44.11521
The complex [(q5-C,H,Li)Cr(CO),] was used by Lotz et
al. to prepare a number of benzene-bridged complexes[''61
containing early and late transition metal atoms. A pseudotriple-decker complex is formed from [ (q6-indene)(q5-indenyl)Re]- and [{(cod)RhCl),].['
Lithiated ethynylferrocene reacts with ICl,Pt(PPh,),] to
give [~Z~-(P~,P),P~(C-C-FC),~.~~'*~
The tautomers with
ketene bridges [Cp*(OC),Fe-C(=CH,)-O-Zr(Cl)Cp,]
and [Cp*(OC),Fe-C(0)-CH,-AuPPhJ
were obtained
from the enolate [Cp*(OC),FeC(CH),O]- and the corresponding chloro complexes.['1'
2.6. Oxidative Addition of Halogenated Hydrocarbons
to Complexes with Metal Atoms in Low Oxidation
An alternative route to complexes with o,a-arene bridges
is the oxidative addition of coordinated chlorobenzene to
Pdo centers.['6o.
The reaction of [Pd(PR,),] with
[CpFe(q6-C,H,C1)]+ and [ (OC),Cr(tf'-C,H,CI)]
complexes 46 and 47, respectively. The CrPd compounds
are intermediates in the Pd-catalyzed carbonylation of
Complexes of palladium and platinum with hydrocarbon
bridges are prepared by double oxidative addition of
I(CH2)J ( n = 3-5)1162a1and of dibromoxylene to [Me,Pt(phen)] and [Me,M(bpy)J (M = Pd, Pt; phen = phenanthroline, bpy = bipyridine).['62b' 0- and p-Bromobenzylbromide react with Nio compounds to yield dinuclear nickel
complexes with 8' :q3-benzyl bridges." 62c1 Isocyanide and
carbon monoxide insert into the Ni-C CJ bond of the products, leading to the formation of compounds 48 and 49,
among others.
It is possible to coordinate metal complex fragments
or Fe" ions to the Cp rings of [(OC),Mn($C,H,-CH,-C,H,Li)]~'531
and [(OC),Mn(q5-C,H,C,H4Li)]l'541 to form, for example, 45. Rhodium, iridium,
iron, and ruthenium complexes with q3 :y4-cycloheptatrienyl
bridges can be prepared from [(OC),M(q3-C,H,)](M = Fe, Ru) and [Rh(CO),CI,],, [{(cod)RhCl),] (cod =
cyclooctadiene), or [Ir(CO),Cl].['
40: X = N A
49: x = o
Me3P Ni- PMe3
p-Acetylide complexes (see Section 7) can be prepared by
the oxidative addition of [(Ph,P),Pt(Cl)(C=CCI)] to a Pto
center." "I The coordinated 2-chloroallyl ligand in [Pt{q3CH,C(CH,C1)CH,}(PPh3),Jf can be oxidatively added to
Pto ~ o m p l e x e s . The
~ ' ~ resulting
o,a-ally1 bridge is of the
same type as the one found in the adduct of cationic
trimethylenemethane complexes and carbonylmetalate
Oxidative addition can also be employed for the preparation of organometallic polymers.['641The C-Br bond of 2bromoethyl methacrylate can be added to the electron-rich
dimethylplatinum complex \PtMe2(2,2'-bipyridine)].The reAngew. Chem. I n f . Ed. Engl. 1993, 32,
sulting adduct can then be transformed by radical polymerization, with azobis(isobutyronitri1e) (AIBN) as initiator, to
the polyethylene derivative.
3. Addition of Lewis Acidic Complex Fragments
to Free and Coordinated Unsaturated
A number of linear and cyclic polyenes can undergo addition of, for instance, two [Fe(CO),], [Fe(PMe,),], [Mn(CO),Cp], [CoCp], or [Fe(CO),Cp]'1'651 units to form complexes like 50a, b.[165b1
This opens up the possibility of forcing
two organometallic complex fragments into close proximity.
As a result of the intramolecular interactions between the
metal atoms, these complexes should have different properties from those of the mononuclear analogues.[16sb1Bis(arenetricarbonylchromium) complexes bridged by rigid
polynorbornyl spacers show efficient through-bond coupling between the Cr atoms through 6.5 A.r165c1
Many polymetallic arene complexes are known, for example, 50c, which was obtained by the Fischer-Hafner
method'166a1from CrCI,, aIuminum, AICI,, and phenylferrocene as arene.[166b]The same method allows the replacement of two Cp ligands in bis(ferrocene) by hexamethylbenzene. 66cl
cially impressive example for a multinuclear complex with
coordinated Cr(CO), groups is the paracyclophane complex
52 synthesized by Elschenbroich et al.[1701
compounds with Cr(CO), complex fragments can be prepared by the reaction of [(0C),CpFe(2-SC,H4)],
[(OC),CpFe(2-benzofuran)], or [(OC),Mn(q5-CsH,Ph)]
with [Cr(CO),] or [Cr(CO),(CH,CN),].['711
An important strategy for the synthesis of polydecker
complexes is the addition of an unsaturated metal complex
fragment to a x ligand of a sandwich compound (stacking
reaction, Scheme 13).['721Morrison et al. have used the Fischer-Hafner method (reaction of ferrocene with poiyarenes
in the presence of AICIJAI) to bind [FeCp]' units to polyarenes.[1731
+ + a -6
Scheme 13. Synthesis of polydeckers.
It was recently recognized that the [Cp*Ru]+ ion coordinates preferentially to arenes and polyarenes. This enables
the preparation of interesting polynuclear compounds like
53-55 (see also Section 8).[1741
50 b:
ML. = Fe(PMe,),
ML, = CoCp
In general, it is possible to bind the Cr(CO), unit to compounds containing phenyl groups.[1671
For instance, the reaction between [Cr(CO),] and styrene yields [(OC),Cr(styrene)],r168"]which can be irradiated to form the dimeric
complex 51.[16sb1The complex [(OC),Re-CH,CH,Ph] reacts with [(OC),Cr(C,H,N),] and Et,O.BF, to form
[(OC),Re(p-v]' :v]6-CH,CH,C,H,)Cr(CO),1.1'691 An espe-
E = C, Si, Ge. Sn, Pb
6 OTf -
flu +
Angeir.. Chem. hi.Ed. Engi. 1993, 32, 923-949
The [Cp*Ru]+ ion can bind twice to anthracene,["']
diphenylacetylene," 761 chrysene,[' 71 and diindenylruthenias well as to indigo
um (to give a tetradecker
and its metal complexes." 78b1 The Cp*Co group also adds to
coordinated cyclopentadiene and cycloheptatriene" 79. l8'1
to form triple-deckers like 56. The [Cp*Ru]+ cation reacts
with the half-sandwich complex [Cp*Ru(pentadienyl)]+ to
form a complex with a ruthenabenzene bridge.[I8'I
The highly reactive 14-electron species [Rh(CI)(PiPr,),] coordinates to both C=C bonds of 1,Cdiethynylbenzene. The
initially formed complex 57 (L = PiPr,) rearranges to give
the isomeric bis(viny1idene) complex 58." 9 1b1
R k C =C
Fulvalene complexes with two different metal centers can
be prepared by treating q4-dihydrofulvalene complexes with
substitutionally labile metal compounds (see Section 5).['8zl
The addition of the platinurn(o) complex [(Ph,P),Pt] to
the allene ligand in [Cp(OC)(HPh,P)Fe(CH,=C=CH,)]'
yields an FePt complex in which Fe is o-bound to the central
C atom of the q1:q3-allyl bridge."831
examined photoreactions of [MZ(CO),,]
Kreiter et
(M = Mn, Re) with dienes, trienes, and allenes, and they
were able to isolate a number of novel dinuclear complexes
with bridging hydrocarbon ligands from the complicated
reaction mixtures. Photoinduced [4 + 61 cycloaddition of
conjugated dienes and bis(tricarbonylchromium)[p-q6:t161 ,I '-bis(2,4,6-~ycloheptatriene)]and bis(tricarbony1chromium)heptafulvalene complexes can also be used to prepare
compounds with hydrocarbon bridges."851
Benzene and naphthalene can function as bridges between
two or even three metal complex fragments."] Examples for
the addition of a metal complex fragment to a o-bound vinyl
ligand can be found in the complexes with o,x-vinyl bridges,
[ (OC),Re(p-q' :q2-CH=CH,)Fe(CO),],"
[(OC)&(P9' :~2-CH=CH,)Re(CO),]',1' 87a1
[FP(P-V1:$CH=CH,)Fp]+ (Fp = C P ( C O ) , F ~ ) . A
~ 'large
~ ~ ~number
reports are found in the literature on p-vinyl dimetallic complexes with a metal-metal
(Scheme 14) or a second
supporting ligand."891
=C =RhL
Following work by Wojcicki et al., a number of multinuclear compounds can be prepared from propargyl complexes
and metal c a r b o n y l ~ . [ ' ~Compound
59 is a o,x-bridged complex without a metal-metal bond.
Polyynes and cyclopolyynes can undergo additions by several [Co,(CO),] units." 93a1 Alkynyl-substituted Fischer carbene complexes react with [Co,(CO),] to form the trinuclear
complex 60, for example.['93b1The binding of [Co,(CO),] o r
[Mo,Cp,(CO),] to [Fc-CH-C=C-C,H,]+
stabilizes the
carbenium ion between two complex fragments." 94J
Numerous alkyne complexes are known in which the
bridging alkyne ligand is o,K-bound (Scheme 15).[19s1ComR
Scheme 14. Dimetallic p-vinyl complexes.
During the course of their work on vinylidene complexe ~ , [ ' ~ 'Werner
et al. found that the [Rh(CI)L,] unit can be
added to the C = C bond in [Cp(iPr,P)Rh=C=CH,].1'91"1
Scheme 15. Types of alkynyl complexes.
Angan.. Cham. Inl. Ed. EnRI. 1993, 32, 923-949
plexes 61 and 62 with o,.ri-bound acetylide bridges (type B)
were prepared by the reactions of the organometallic Lewis
acid [(OC)sRe]111961 with [Cp(OC),Fe-C=CR]
HC- CSi Me,, respectively." "I
structures of type E and E'. The reaction of
[(MeC,H,),TiCl,] with NaC-CPh leads to an oxidative
coupling of two acetylide ligands, forming complexes with
type F bridge^.[^^^^"^^ A similar type F arrangement of
phenylethynyl ligands was also found in a samarium coinplex.12111
Recently, variations in the conditions for the reaction of [Me,Si(C,H,),TiCI], with LiCrCPh made it possible to identify compounds of type E, F, and G.'z'zl
4. Substitution of Halogen or Triflate Substituents
in Hydrocarbons by Nucleophilic Complexes
Selegue et al.[1981and Akita et al.['991were able to synthesize the corresponding cationic o,x-alkynyl complexes 63
and 64 (type B; Scheme 16). They obtained iron, ruthenium,
and tungsten complexes by the addition of organometallic
Lewis acids to o-bound acetylide ligands. The X-ray crystal
structures of 61,11y7bJ
and 6411991
prove the significance of the vinylidene structure B . Interestingly, the diiron
complex 63 shows fluxional behavior corresponding to a 1,2
proton shift.[19y1
p-Polymethylene complexes are among the oldest known
compounds containing hydrocarbon bridges.I4.
compounds have been investigated primarily by the research
groups led by King, Lindner, Moss, and Puddephatt and are
models for hydrocarbons bound to the surface of metal
catalysts.[51 They can generally be prepared with n 2 3
from a,#-dihalo compounds and carbonylmetalate ions
(Scheme 17). Particularly useful starting materials were Y,W
as the triflate group is a much
better leaving group than the halogen substituent. For instance, [(OC),Mn(CH,CH,CH,)Mn(CO),] was obtained by
the bis(triflate) method."' 3b1 In contrast, the reaction of 1.3dibromopropane with Na[Mn(CO),] led to a cyclic carbene
+ 2[L,M]-
- 2x-
Scheme 17. X = Br; ML, = FeCp(CO),; m = 3-6 14,215,216). X = Br. I:
ML, = RuCp(CO),: m =1. 3-10 [216-2181. X = Br, 1; ML, = Co(DH)(pyridine); m = 3 - 7 [218b]. X = I , OSO,CF,; ML. = MoCp(CO),. CpW(CO),;
m = 4. 5, 10 [219,220]. X = OSO,CF,,
ML, = Mn(CO),: m =
2-6, 10 1213, 216.2201. X = OS02CF3;MLn = Re(CO),; tn = 2 - 5, 10 [213a.
220, 2211. X = OSO,CF,: ML, = ReCp(NO)(PPh,); m = 3-5. 8 [222]
Scheme 16. Fluxional behavior of an Fe, complex.
The structure of [(MeC,H,)Mn(CO),{ =C=C(H)-Fp*)],
obtained from [Fp*-C=C-HI
and [(MeCp)Mn(CO),(thf)], indicates zwitterionic contributions.[199b1
[Pt(PPh,),] complex fragment can be bound to the C-C
bond of the chloroethynyl complex [Cl(Ph,P),PtC-C-C1].[1511 The o-acetylide complex [(dppe)(OC),Mn C=CR] can add twice to C u + , Ag', and Au'
Heterometallic complexes with two o,x-acetylide bridges
can be synthesized by using o-bis(alkyny1) complexes. For
instance, [Cp,Ti(C=CR),] reacts as a type D chelating ligand with FeCI, ,[200b1 [Ni(CO),],[20'1 [ C O , ( C O ) , ] , [ ~and
[(Ph,P),Pt(C,H,),].[2031 cis-[M(C,F,),(thf),] (M = Pd, Pt)
forms type D complexes with cis-[Pt(C-CR),L,] (R = Ph,
rBu. L, = 2PPh,, dppe,
while bridges of type G
are obtained with [ T ~ C ~ , ( C ~ C H ~ B U )Complexes
, ] . [ ' ~ ~ ~of~
type E can be prepared by the reaction of cis-[Pt(C,F,),(C=CR),]2(R = Ph, tBu) and cis-[M(C,F,),(thf)2].[204a1In contrast, cis-[(dppe)Pt(C=CR),] and
[Rh,CI,(CO),] react to yield a dinuclear compound with a
single o,x-acetylide bridge.[2051
Further complexes of type E are known for
iridium,[2071and zirconium.[2081The bonding in the latter
species is best described by the participation of resonance
The compounds [L,MCH,C=CCH,ML,]
(ML, = Fe(CO),Cp, W(CO),Cp) were obtained analogously. The iron
complex can be oxidized to the butatriene complex 651223"1
and can be employed as a building block for cluster synthesis ,I2 2 3 bl
Heterometallic compounds of type 66 can be prepared
from w-iodoalkyl metal complexes by substituting a carbonylmetalate for the iodine group (Scheme 18).[2241This
method also makes accessible the cobaltoxime complexes
with hydrocarbon bridges [py(DH)Co-R-Co(DH)py]
(R = (CH,),, n = 4-8; CH,C,H,CH,) from [py(DH)Co(CH,),CIl, (CH,),Br2, or C,H,(CH,Br),
and [py(DH)Co]- 1218h1.
1,2-Dihaloalkanesand anionic transition metal complexes
usually react to form ethylene and dimers with a metal-metal
bond, while, in general, dihalomethane does not undergo
such a r e a ~ t i o n . [ ~ ,An
* ~ ~exception
is its reaction with
[CpRu(CO),]-, which yields 67.r2171
The tetranuclear com-
+ ML;
+ I-
The trinuclear complex 71, which can be oxidized to 72
with trityl salts, is formed when [CpFe(CO),]- is combined
with the tris(su1fonate) HC(CH,OSO,CH,),
CH2- Fe(CO)2Cp
Scheme 18. CompIex66:n = 3-6;MLm = CpMo(CO),,CpW(CO),,Re(CO),.
plex 68 was recently prepared in a corresponding fash-
A large number of phydrocarbon complexes can be prepared by allowing carbonylmetalate ions to react with cyclic
dihalo or polyhalo compounds (octafluorocyclooctatetraene1236c1).
The complexes 73-76 were prepared in this manner from the corresponding dihalo species and organometallic anions.r223a,
235, 2361 Bis(triflates) with a T H F framework
The dianions [Fe(CO)3L]2-,i2251[CpRe(C0),]2-,12261
and [ O S , ( C O ) , ] ~ - [ ~ ~ ~ ~
react with alkanediylbis(triflate) to form metallacycles such
as 69a,b. These reactions have been reviewed in the literatUre,[72b. 2291
69 a
react with carbonylmetalate ions in the same fashion to yield
Of special interest is a type of complex with an unusual
A series of homo- and
hydrocarbon-bridged complexes.[236b1
and rare ethylene bridge, which is perpendicular to the metal
heterometallic p-q’ :$-ketene complexes [L,M-CH,-Catoms. This complex is formed by the reaction of 1,2(0)-M’L,] was prepared by Akita et al. from metal-substidichloroethane with the dimer [M,X,(PEt,),] (M = Zr, Hf;
tuted acetylchlorides [L,M -CH,C(O)Ci] and carbonylmetalX = Cl, Br).r2301A similar p-q2:q2-ethyiene bridge is also
ate ions (examples of L,M: Fp, M’L, = Mn(CO),, Fp,
[(Cp:Sm),(ppresent in [C~*Y~J(~-C,H,)P~(PP~~),],[~~~”~
Ni(CO)Cp).[2371Organometallic Lewis acids (e.g., Fp’)
and-in a distorted fashion-in
can be added to the carbonyl oxygen atom of the
Hafnium complexes
The pketene complexes are models for
with alkanediyl bridges cannot be prepared by substitution
an important step in the Fischer-Tropsch process
of halogen substituents but rather by the reaction of
(Scheme 19).[5.2371 Seppelt et al. described the reactions of
[Cp:HfH2] with a,w-dienes (formally a double insertion of
the olefin into the Hf-H bond).r233a1
CO and SO, can be
inserted into the metalkarbon bond of many p-polymethylene
Scheme 19. p-Ketene complexes as models for intermediates in the FischerTropsch process.
70 a
Abstraction of hydride from the p-polymethylene complexes [{Cp(ON)(Ph,P)Re},(CH,),,] (n = 3, 4, 5, 8) leads to
dicationic bis(carbene) complexes 70 a, which isomerize at
higher temperatures to give the diene-bridged complexes
70 b.12221
difluoromalonyl dichloride with carbonylmetalate ions.r2381
They were able to identify the complexes [ (OC),MnC(0) -CF, -C(0)-Mn(CO) 5] and [ (OC) Mn -CF, C(O)-Mn(CO),], among others.
Lentz et al. were able to obtain the (p-q‘:q’-difluoroethylenediyl) complex 77 by the reaction of [Co(CO),]- with
difluorofumaric acid d i c h 1 0 r i d e . I ~ This
~ ~ ~ reaction presumably proceeds via a bis(acy1) complex. We wanted to
prepare a corresponding trans-bismetalated ethylene by the
reaction of [M(CO),]- (M = Mn, Re) with fumaric acid
dichloride. Unexpectedly, complexes 78 were formed.[2401
Angeu. Chem. Int. Ed. Engl. 1993,32, 923-949
Decarbonylation of aroyl complexes often leads to complexes such as 79 with arene bridges. These have been the
focus of recent studies, primarily by Hunter et al., on account of their potential as "electronic bridges".[214.2421
dimethyL2,2'-bipyridine and ferrocenecarbaldehyde can be
used to synthesize redox-active ligand systems.[2471
83 can be electrochemically polymerized to an electrochromic film.[2471
Quinoid structures have been suggested for the 1,CdimetaLated p-phenylene
Reactions with [Cr(CO),]
lead to complexes like 80 with o,.rc-bridges (see Section 3).[242c1
Electrochemical studies show that polymetalation of the
arene ligand in [(@-C,H,)Cr(CO),] leads to a stabilization
of the corresponding radical cations.1242C1
Numerous complexes of the type [(OC),Cr(p-$ :q6-C,H,-C,H,)Cr(CO),1,
[L,,M( -9' :q1-C,R4)ML,], and [(OC),Cr(p-q6:q1-C,H,)16'1
ML,] have been described in the literature.[165a.
The decomposition of the p-oxalyl complexes
leads to the dimetal carbonyls [ (OC),M-M(CO),] (M = Mn,
1,8-Diferrocenylnaphthalene can be obtained from the reaction of 1,8diiodonaphthalene with dilithi~ferrocene.[~~~'
5. Reactions of Dianionic Hydrocarbons with
Metal Complexes
The reaction of dianionic hydrocarbons with halometal
complexes can also lead to complexes with hydrocarbon
bridges. Werner et al. used this method to synthesize homoand heterometallic transition metal complexes containing a
bis(cyc1opentadienyl)methane bridge, for example, 81.[2451
Bis(q 5-pentadienyl)-diruthenium complexes like 82 can be
obtained by analogous methods.[2461 Dilithiated 4,4Angew. Chrm. inl. Ed. Engl. 1993,32. 923-949
The homo- and heterodimetallic fulvalene complexes
84a[839 1311,studied primarily by Vollhardt et a1.,[1821
currently of special interest. They can be obtained directly by
the reaction of the fulvalene dianion with metal complexes.1248*
2491 Fulvalene transition metal complexes 84 b with a
cisoid arrangement and no metal-metal bond can be prepared in this manner as ~ e l l . [ * ~ * ~ I
A particularly elegant and selective synthetic method for
heterometallic fulvalene complexes employs 3-cyclopentadienyl-2-cyclopentane-I-oneas precursor.[L82- The reaction of 3,4-dimethylcyclopentanone with dilithioferrocene
leads to cyclopentadienyl-substituted ferrocene; the lithium
salt of the latter can be transformed into the triiron complex
by reaction with FeCI, .125'1 Trinuclear heterometallic complexes with a fulvalene bridge, for example, 1,l'-di(nicke1oceny1)ferrocene 8512521
and numerous tercyclopentadienyl
complexes like 86,[2531
have been reported as well. The synthesis and properties of bis(fulva1ene)diiron (10.01-ferro-
octaethylporphyrinato) with olefins.[2611By using kinetic
methods, Halpern et al. were able to deduce a radical chain
mechanism for this insertion.I2" The p-propene complex
[(oep)Rh-CH,CH(CH,)-Rh(oep)] undergoes a dyotropic
1,2-exchange of the (oep)Rh groups.1Z621The monomeric
ruthenium porphyrin complex [ (Ru(tmp)] (tmp = tetramesitylporphyrinato) reacts with acetylene by formal hydrocarbon insertion and formation of the binuclear complex
N M R data indicate the
presence of a p-q' :q'-bis(carbene)
-C -C -ML,
cenophane) and other [m,m]-metallocenophanes have recently been thoroughly reviewed.12491
Why this special interest in fulvalene complexes? Cooperative effects between the metal centers are expected due to
the spatial proximity of the metal atoms (even when a metalScheme 20. Insertions of alkenes and alkynes into met& metal bonds.
metal bond is not present) and the high degree of electron
delocalization in the fulvalene bridge.
The comprehensive synthetic and electrochemical studies
Corresponding reactions involving C o complexes (particby Astruc et al. regarding "electron storage" complexes
ularly [CO(CN),]~-and acetylenes) have been known for
(i.e. mixed-valence complexes) deserve special mensome time.12641These complexes contain a trans-dimetaltion.['66c.254, 2551 For instance, the dicationic Fe"Fe" comlaethylene unit.12641cis-Dimetalated olefins usually have a
plex 87 can be reversibly reduced to the corresponding Fe'Fe'
metal-metal bond or other bridging l i g a n d ~ . [ ~2651
and Fe°Feo compounds.['66cl Electron transfer studies were
The insertion of tetrafluoroethylenes into the metal-metal
also performed on di, tri, and tetrarnetallo~enes[~~~~.
256, 2571
bond of [CO,(CO),]~"""~ and [{(p-SCH,)Fe(CO),},][266h1
and bis(fulva1ene) complexes.12581The dianions of pentaleads to dinuclear complexes with a C,F, bridge. At higher
lene,[259a1i n d a ~ e n e , and
[ ~ ~ tetraphosphaful~alene[~~~~~
temperatures, these species rearrange to give complexes with
can be used in the same fashion as the fulvalene dianion in
carbene bridges. A 1.4-dimetallacyclohexane derivative is
the construction of dimetallic complexes.
formed by the reaction of C,F, with [ P t ( c ~ d ) , ] . ~ ~ ~ ' I
Recently, the insertion of acetylene carboxylic acid esters
into the Re-Re bond of [Re,(CO),(CH,CN)] was observed
which led to the formation of [(OC),Re{ trans-p-q' :q2RC=C(C0,Me))Re(CO),].[26s1
The Complexes [(R,P)AuMe] (R = Me, Ph) react with
by means of insertion into the Au-Me
bond, loss of ethane, and formation of the cis compounds
[ (R P)Au( CFJC =C(CF,)Au( PR,)] .[2691 A complex with an
q2 :q2-C2(CF,), bridge is assumed as intermediate.[269h1In
analogy to alkynes, is01obaII'~.541 carbyne complexes
[Cp(OC),M=C-R] (M = Mo, W) can be inserted into the
Pd-C bond of metalla~ycles.~'
361 Isocyanides can also be
inserted into the Pd-C bond of p-acetylide palladium complexes.[2701
According to work by Herberhold et al.,12711
products of the insertion of chalcogens into the Li-C bond
of lithiated cyclopentadienyl complexes can serve as starting
materials for numerous multinuclear complexes with chalcogen bridges between the ring ligands.
"Magnesium butadiene", MgC,H,, reacts with [Cp*La(p-CI),K(dme)] (dme = dimethoxyethane) to yield a dilanthanum complex with a butadiene bridge, [Cp;La(p-q' :q3C,H,)LaCp;(thf)].[260a1 The reaction of the di-Grignard
compound [Cp,M(CH,MgBr),]
and ICp,M'Cl,]
M' = Ti, Zr, Hf) leads directly to 1,3-dimetallacyclobutanes.1260hl
6. Insertion Reactions
The insertion of unsaturated hydrocarbons into metalmetal bonds to form complexes with hydrocarbon bridges is
a relatively rare reaction type (Scheme 20). Examples include
reactions of dimeric (oep)rhodium(iI) complexes (oep =
7. Complexes with C, Bridges
Complexes with acetylide bridges are a rapidly expanding
class of materials. This type of complex can be prepared by
several methods, which in principle have already been described: 1) from alkaline metal acetylides and alkyl complexes or metal halides, 2) from alkyne complexes having
acidic protons and metal halides or alkyl complexes, 3) from
cationic complexes containing o,lr-ethynyl bridges, 4) from
Angeu.. Clzem. Int. Ed. Engl. 1993. 32, 923-949
metal alkyls and acetylene, 5 ) from dihaloacetylene and carbonylmetalate ions, 6) from lithiated metal alkynes and
metal halides, 7) by oxidative addition of dihaloacetylene,
1,3-diyne, or "RC=C+" to Pt', Rh', or Ir' centers (Table 3).
Table 3. Dinuclear transition metal complexes containing a C, bridge. mes
Complexes with C , bridges
Starting materials
(M = Fe, Ru: L = PMe,.
P(OMe),, L, = dppe)
[Cp(OC),Cr -C-C-Cr(CO),Cp]
[Cp*(ON)(Ph,P)Re-CC- Pd(CI)(PEt,),]
(Ph,P),[R-C=CAu - C =C --.4u -C =C - R]
[Cl(R <P),M -C-C-M(PR,),CI]
[Cp(OC),W - c
c- w (CO),Cp]
[Cp,( Me,P)Ti -Cd-Ti(PMe,)Cp,]
1199, 2771
2Na[Mn(CO),] I-C-C-I
[Cp*(ON)(Ph,P)Re-C-C- Lil
1. [Au,C,] 2 KR/NH,fl.
2. [Ph,P]CI
[CI(R,P),M(C=CCI)] +
1,l -diphenylcyclopropane
or [Cp,TiCI,]
[Cp(OC),RuC=CMe] +
[(rBu,SiO),Td] CO
Ta(OSirBu,) ,]
The formation of a W,C, complex with an acetylide bridge
from the ketene species [Cp(OC),W(p-CO)(p-CH,CO)W(CO),Cp] is unusual. The reaction proceeds by formal H,O
loss and intramolecular CO transfer.f2851Binger et al. described the reaction of [Cp,Ti(PMe,),] with 2-methylene1,If-diphenylcyclopropane,
which surprisingly also leads to a
dititanium complex with an acetylide bridge.[2861
Of interest are the metathesis reactions between W=W
and C=C1287,289r-c1
or C=N1289d1triple bonds, leading to
complexes like 90. p-Acetylide complexes are as suitable
as a l k y n e ~ [ ~ ~ ' and
a-alkynyl complexes [L,M-C=
C-R][290b1 as building blocks for the synthesis of cluster~.['~~]
[EtC =C -C=CEt]
+ CO
01 +1/2[[(rBu,SiO),Td
C I 2 ] (b)
Scheme 21
p l e x e ~ . ~ ' "199.
~ " . 2 7 6 - 2 7 8 1 The cationic complex can be regenerated by addition of acid. When Me,O' is used instead of
an acid, the corresponding a,n-propynyl complex can be
The superhydride K[BHEt,] acts solely as base
towards [(OC),Re(p-ql :q'-C-C-H)Re(CO),]
f,186a1 while
its addition to 88 leads-by attack of the hydride on the ,6'
carbon atom-to the p-vinylidene complex 89.[1991
1993. 32. 923-949
A p-dicarbide tantalum complex with three cumulated
double bonds is formed according to reaction (b) by CO
Angcii'. Cliet??,
Inr. Ed. Engl.
+ %
c =cH1
The H atom is made acidic by the z-coordination mode of
the C=CH ligand and can then be easily removed by bases
(Scheme 21). This provides a direct way to p-ethynediyl com-
+ LiHBEt,
[CpW(CO),Cl] [Li,C,]
[ 197 a. 2761
cleavage.[2881The cleavage of two C = C bonds in 3,s-octadiyne leads to the complex [ ( ( ~ B u O ) , W = C - ) , ] . [ ~ ~ ~ " ~
The C-C distances in the bridging ligands of most of the
complexes listed in Table 4 are only slightly different from
the C-C bond lengths in acetylene, ethylene, and ethane
(121, 134, 153 ppm, respectively). These complexes can
Table 4. Bond lengths In metal complexes with C, bridges.
C-C [pm]
M-C [pm]
[Cp(OC),w - c c -W(CO),Cp]
[Cp(Me,P)Ti-Cf C-Ti(PMe,)Cp,]
[Cp(Me,P),Ru-(MeO,C)C=C(C0,Me)- Ru(CO),Cp]
132(5 )
201 l(2)
I276 b]
219 4(7)
199(1), 214(1) [?78b]
200( 1)
229 6(4)
230( 1 )
219(1), 228(1)
therefore be regarded as dinietalated hydrocarbons, which is
in agreement with the calculations for [(OC)5ReC2Re(CO),]
reported by Trogler et al.1276b3
As is the case for the free
hydrocarbons, an increase in the participation of the carbon s
orbital leads to a decrease in the meta1-C distance.[276h.
The RuZr complexes 91 synthesized by Bullock et al. are the
only known series with all three types of C, bridges, CFC,
C=C, and C-C.[2781 These complexes are prepared from
the corresponding alkynylruthenium complexes by reaction
with the amidozirconium complex, by hydrozirconization
with the Schwartz reagent [Cp,Zr(H)CI], or by hydrozirconization of the vinylruthenium complex.
Agostic interactions between the Zr atom and the hydrogen atom in 91b,c have been proven by NMR spect r o s ~ o p y . ~Hydrozirconization
of alkenyl complexes
91 c
was first applied by Erker et al. for the synthesis of an
ethylene-bridged dizirconium complex that also contained
an agostic
Casey et al. used the Schwartz reagent
for the hydrogenation of the carbene complex
[Cp(OC),Re=CHCH,] (which is isolobal to an alkene). This
reaction led to p-alkylidene heterodimetallic complexes such
as [Cp(OC),Re(p-CHCH,)Zr(C1)Cp2].[290d1
In this context,
the unusual Zr, complexes prepared by Orpen and co-workers are noteworthy.[2911
They contain a type C alkyne bridge
(see Scheme 15).
Attempts to prepare the p-ethyne complex [(OC),Re-C(H)=C(H)-Re(CO),]
by proton abstraction from
[(OC),Re(p-q’ :q2-CH=CH2)Re(CO),]+ were not successfu1.[1871
CO, CO,, and isocyanide can be inserted into the metalcarbon bond of complexes 91a,b.12931
Dimetallic complexes of type 92, containing a bridging
1,3-butadiyne-I ,4-diyl ligand, are known as well. They are
prepared by the oxidative addition of HC-C-CECH
[Rh(C1)(PiPr,),],[2941by the reaction of [CpL,Fe-C=CC=C-Li] and [CpL,MCI] (M = Mo, W),[2951 or by
the Pd-catalyzed reaction of [Cp(OC),FeI] with
Lappert et al.,[297a1
Wrackmeyer et al.,1297b1
and Brune et al.[2981have shown
that vinyl, alkynyl, and aryl trimethylstannanes are especially suitable for the introduction of vinyl, alkynyl, and aryl
ligands into metal complexes. Further examples of the application of these trimethylstannanes to the preparation of
m = 1-3
93 a: ML, = Ru(CO),Cp
93 b: ML, = Pt(PBu,),CI
complexes with bridging vinyl, acetylene, and p-phenylene
ligands are described in the literature[’33.18’, 2 9 8 1 and in Section 8. When 2,5-trimethylstannyl-substituted thiophenes
and chloro complexes are employed, oligothiophene-bridged
complexes 93 are formed, which are of interest due to the
electrical conductivity of polythiophene~.l’~~I
Stang et al. discovered that alkynyl(pheny1)iodonium trifluoromethylsulfonate [RC-CIPh.OSO,CF,] is a new, effective source of electrophilic alkynes RC=C+.1300a1The
umpolung of the usual acetylene reactivity allows the preparation of o-acetylide complexes in high yields.
The addition of bis(pheny1iodonium)diyne bis(triflates) to
chlororhodium complexes and Vaska-type iridium(1) complexes yields rod-shaped dicationic metal(m) complexes of
type 92.[300a1Similar complexes are formed from p HC=C-C,H,-C=CH,
NaOMe, and dichloroiron comp l e ~ e s . Cobalt
1 ~ ~ ~clusters
~ ~ that are linked by a C-C bridge
are also
Only a small number of p-carbide complexes of type 94 are
known to date (Scheme22). They can be prepared by
metathesis,[287.3021 radical reactions,[3031or by nucleophilic
substitution.[304.3051 They are of interest as model systems
for surface-bound carbide species.r51
[(TPP)Fe=C= Fe(TPP)] [303]
[(pc)Fe=C=Fe(pc)] [303b]
95 [304]
Scheme 22. Known cdrbido complexes of type 94. TPP = tetraphenylporphyrindto. pc = phthalocyaninato(2-), pz = 3.5-dimethylpyrazolyl.
Complex 9Sc3O4]
contains what is to the best of our knowledge the shortest metalkarbon bond known (Fe-C
160(1) pm) and can therefore be considered a metalated
metal carbyne. Its preparation from the dichlorocarbene
complex [(TPP)Fe=CCI,] and [Re(CO),]- proceeds presumably according to the reaction in Scheme 23. During the
(TPP)Fe= C’
(TPP)Fe: C - Re2(CO)9
VPP)Fe= C = Re2(CO)g
Scheme 23
Angel‘. Chem. Int. Ed. EngI. 1993, 32. 923-949
reaction of 1,3-dibromopropane and [Mn(CO),] - , Casey also observed that the reaction does not proceed by substitution of the second bromine atom, but by the attack of an
additional [Mn(CO),]- ion on the original metal center.[2'4b1When the carbonylmetalate ions [Mn(CO),]-, [Fe(CO),]' - , and [Cr(CO),]' - are employed, the corresponding
compounds [(TPP)Fe=C=ML,] (ML, = Mn,(CO),, Fe(CO),, and Cr(CO),) are obtained.186b.3041
A novel synthetic pathway to p-carbide complexes is
found in the reaction of Lalor's halocarbyne complexes[305d1
with platinum(0) complexes.[85.86b1 Compound 96, which is
prepared by this route, isomerizes at higher temperatures to
give the carbide complex 97. Less stable compounds can also
be obtained with Nio and Pdo complexes.'86b1A large number of heterodimetallacyclopropenes have been prepared by
Stone et al. from Pto compounds and arylcarbyne complexes
(drykarbynes are isolobal to a l k y n e ~ ) . ~3061
+ "Pt(PPh3)$
such as [(v6-styrene)Cr(CO),I and [($-CH,=CH-C,H,)Fe(CO),Me], are currently the subjects of intensive investig a t i o n ~ . [ ~For
' ~ ~instance,
the polymerization of vinylferrocene-although first reported nearly 40 years agor3'Obl-is
still of active
Studies of metal-containing polyenes and polyynes are
quite topical because of the expected novel properties (rodshaped molecules, liquid-crystal properties, nonlinear optical behavior, one-dimensional electrical conductivity) of
these material^.^^"] The first of these novel polymers 100
were obtained by Takahashi, Hagihara, et al.[3121
HC 5 C - C Z C
C f C -C
96 b r
E C)-
5 C)
- Pt(PPh3)2Br
The elegant application by Gladysz et al. of the now-classical Fischer carbene and carbyne synthesis in a reaction
sequence led to complexes with a novel type of C, carbon
bridge (98).r3071
A general method for the preparation of polymers 101 and
102 is the stoichiometric reaction of dihalo complexes with
bis(trimethylstanny1)diynes. Lewis et al. used this approach
very successfully for the synthesis of oligomeric and polymeric p-acetylide
The polymers obtained
had an average molar mass of up to 200000. Using the same
methodology, Lewis et al. prepared cross-linked Pt-containing polymers 103.[314a1
Polymers have also been obtained by
reactions of [(o,p-~6-C,H,CI)Cr(CO)3] with Me,SnC=C-SnMe3.[314b]
Templeton et al. reported the dimerization of the methylidyne complex [tp'(OC),M=CH] (M = Mo, W ; tp' =
HB(3,S-Me,C,HN2),) to give the nonclassical p-vinylidene
complex 99.[305b*cI
M = Ni, Pd, PI. Fe,Rh
Organometallic polymers, which are frequently obtained
by the polymerization or copolymerization of monomers
Angen. Chrm. I n / . Ed. Engl. 1993, 32, 923-949
Complexes with C,, and C,, bridges have been synthesized, for example, the fullerenehexametal complexes
(M = Pd, Pt)[3081 and the diiridium
complexes [(R,P),(Cl)(OC)IrC,Ir(CO)(CI)(PR,),I (n = 60,
70).[309"lFurther transition metal compounds with bridging
carbon ligands have been comprehensively reviewed recently
by Diederich et al.r309b1
8. Organometallic Polymers with Hydrocarbon
Polymer chains with metal-containing terminal groups are
formed by the insertion of arylisocyanides (up to 100 times)
into the Pd-C bond of the p-acetylide complex
5 1 According to studies
by Marder et al., terminal dialkynes react with
IRh(PnBu,),Me] to yield the corresponding
Hanack et al. reported layered (p-acety1ide)phthalocyaninatoiron complexes and described them as models for
one-dimensional electrical conductors.[3''I
Metallapolyynes with alkynyl and carbyne ligands
are also of great interest.[318a1A corresponding monomer, the z-conjugated metallabutadiyne
[HC =W(dmpe),(C =C-H)], has been recently reported.[" 8b1 The first reported organometallic polymer with
arene bridges is 104. This polymer is formed in the same
The [Cp*Ru]+ ion, which can be added to nearly all types
of benzene rings (see Section 3), can serve as a building block
for the construction of metal-containing organic solids having the desired shape (molecular engineering of solid-state
materials)." 741 An example of these interesting compounds
is 105. Metal-containing polyurethanes such as 106 are
formed by the condensation of hexamethylenetriamine with
-molybdenum c o m p l e ~ e s . [The
~ ~ ~Mo-Mo
bond in 106 can
be cleaved photochemically.
9. Miscellaneous
fashion as di- and trimetallic bis(methyldipheny1phosphine)nickel complexes containing tetra- and octafluorop,p'-biphenylene bridges: by the reaction of the corresponding organolithium compounds with bromonickel comp l e ~ e s . ' ~ Recent
examples of ferrocene-containing polymers are polyferrocenyldisulfide~3zo~
and polyferrocenyl~ i l a n e . [Rosenblurn
et al. reported the Pd"-catalyzed synthesis of interesting face-to-face metallocene polymers from
1 &diiodonaphthalene
and dimetalated ferrocene or
The coordination of M(CO), units
(M = Cr, Mo) to the benzene rings of poly(p-phenylene) has
also been
The oxidation of these molybdenum
polymers increases their electrical
same effect is observed in the ferrocene-containing polymer
[-Fc-CH=CH -(p-C,H4)-CH=CH -In, which can be
prepared by the Wittig
Recently a conjugated
polymer has been synthesized by metallacyclization of [CpCo(PPh,),] with 4,4-diethynylbiphenyl.1322'1
The thermodynamically very stable diiron system
[Cp(OC)Fe(p-CO)(p-CR)Fe(CO)Cp]+ has significant synthetic potential. It has been used primarily by Casey et
for the synthesis of a large number of complexes with
various hydrocarbon bridges. Reactions with the analogous
Ru compound have been reported by Knox et al.[3251In
general, the metal-metal bond remains intact in these reactions; however, hydride abstraction from the p-alkylidenediiron complex [{Cp(OC)Fe),(p-CO)(p-CHCH2CH=CH2)]
an exception. This reaction proceeds by cleavage of the
metal-metal bond and yields, after a rearrangement, a pq4:q'-butadiene complex.[3261The formation of a C,bridged tetrairon complex from a methylidyne and a vinylidene complex is also of interest.L3z71
Tetrairon complexes
with C, and C, bridges are known as
The cation
107, an organometallic cyanine, could have interesting electron-transfer and nonlinear optical properties. In an unexpected fashion, Fehlhammer et al. obtained complex 108,
which has an N rather than a CH bridge.[3291
cp' \co
\ /
Ru +
Ru +
c< /co
Ru +
Ru i
Ru +
oc/ 'cp
cp' 'co
Complexes with bis(carbene) bridges are formed by Herrmann's diazo method" '] from bis(diazo) compounds and
the coordinatively unsaturated metal complexes [Cp(OC),Mn], [Cp*Rh(p-CO),RhCp*], and [(OC),CpMoMOC~(CO),].'~~~]
Zenneck exploited highly reactive intermediates from cocondensation reactions of metal vapors and arenes to prepare several multinuclear complexes (e.g., triple-decker complexes).["'] Dititanacyclobutane can be obtained by the
thermolysis of 2-isopropyl-2-methyl-tita1~acyclobutane.~~~~"'
Other dialkyl-substituted titanacyclobutanes combine with
reactive Rh", Ir", Pd", and Pt"' complexes to yield, by loss of
Angew. Chem. In!. Ed. Engl. 1993, 32, 923-949
olefin, p-methylene heterodimetallic compounds [Cp,Ti(p-CI)(p-CH,)M(CI)(L)Me] (M = Rh, Ir, Pd, Pt).[332b1
complexes with two methylene bridges are formed by hydrogen abstraction from [Cp2Ta(CH,)CH3] with [($-indenyl)Ir(C0)2].[332c1
Of interest is the formation of dimetallic
complexes with a qS:q5-Me4C,CH,CH,C,Me4 bridge from
tungstacyclobutadienes L,W=C(Me)-C(Me)=C(Me) and
y5-cyclopentadienyl complexes with a -CH,CH,C-CMe
s u b s t i t ~ e n t . [The
~ ~ ~ metathesis
reactions of Schrock
carbene complexes and octatetraenes or 1,4-divinyIbenzene produces bis(carbene) complexes, for example,
Metal complexes with conjugated hydrocarbon bridges
(double and triple bonds) or with donor and acceptor ligands
are candidates for electrically conducting materials and for
materials with second- and third-order nonlinear optical
properties. These compounds have been only rarely studied
as precursors for heterometallic catalysts. These applications
appear to be attractive in the future. However, basic research, driven by scientific curiosity and independent of any
potential apptication, should not be neglected.r3361
Pi? B. expresses his sincere thanks to the co-workers men[L,MO=CH-CH=CH-CH=CH-CH=MOL~].'~~~] tioned in the references for their exemplary efforts, their ex-
A complex with an q3:q3-1,3-butadiene bridge was found
as the product of the reaction of a p-dihydridorhodium(1)
complex with b ~ t a d i e n e . ~The
~ ~ ~ ]ethylene complex
[Cp,(Me,P)Zr(C,H,)] undergoes a novel reaction with cyclopropene; the ethylene ligand is protonated and subsequently a p-7' :$-allenediyl complex is formed 109.13351
perimental and creative contributions, and the harmonious collaboration. The generous support of the Deutsche Forschungsgemeinschaft, the Fonds der Chernischen Industrie, Wacker
Chemie, Munich, and DEGUSSA AG, Frankfurt, is gratefully
acknowledged. We thank the following colleaguesfor valuable
literature references and for providing us with unpublished
manuscrQts: Profs. D. H. Gibson, B. Angelici. M . Akita, D.
A . Astruc, J. E. Bercaw. R. G. Bergman, R. M . Bullock, C. P.
Casey, C. Elschenbroich, G. Erker, G. L . Geoffroy. J. A.
Gladysz, J. A . Heppert, M . Herberhold, A. D. Hunter, C. G.
Kreiter, E. Lindner, S. Lotz, J. R. Moss, A. Salzer, J. P.
Selegue, J. Takats, J. L. Templeton, H . Werner, A. Wojcicki,
U . Zenneck, Drs. P. Harter, and D. Wadepohl. We thank Dr.
K . Siinkel for valuable discussions.
Received: February 12. 1993 [A 911 IE]
German version: Angew. Chem. 1993, lU5, 969
Translated by Dr. Wolf Christian Wilisch, Pasadena, CA (USA)
10. Outlook
Even though the selection of known complexes discussed
in this review is certainly subjective, the wide array of multinuclear transition metal complexes with 0-or n-bound hydrocarbon bridges is evident. The reactions of carbonylmetalate ions with cationic 71 complexes clearly follow the
isolobal prin~iple."~.
541 For instance, [Re(CO),]- acts like a
carbanion and [Re(CO),]+ like a carbenium ion, while the
[Re(CO),] unit acts like a methyl group. Cationic ethylene
complexes such as [(OC),Re(q2-C,H4)] can be compared
to carbenium ions, while p-acetylide complexes like
[(OC) Re -C =C- Re(CO),] behave like alk ynes.
Since efficient syntheses are now available, it is important
to investigate more closely the reactivity of these compounds
and their applications. Can novel organic compounds be
prepared with these complexes? One example is the synthesis
of a novel polycycle by oxidation of 40 with Ce4'.r'271 The
dimetallic iron complexes synthesized by Astruc et al.1254,2s51
are interesting compounds for electron storage with electrochemical properties that may lead to application in electron
transfer catalysis. Electrochemical investigations on heterodimetallic complexes might lead to new mixed-valence
organometallic compounds.
Chem. Inr. Ed. Engl. 1993,32,923-949
[I]M. H.Chisholm, Polyhedron 1988,7, 757-1077.
121 A. A. Hock, 0. S. Mills, Proc. Chem. SOC.1958, 233-234; W. Hubel,
E. H. Braye, J. Inorg. Nucl. Chem. 1959, 1U. 250-268, and references
[3] a) E. 0. Fischer, H. Wawersik, J. Organomel. Chem. 1966.5, 559-567;
b) A. Nakamura, N. Hagibara, Bull. Chem. SOC.Jpn. 1960,33,425;F. A.
Cotton, M. D. LaPrade, J. Am. Chem. SOC.1968,90,2026-2031.
[41 R. B. King, Inorg. Chem. 1963,2, 531-533.
[5] a)W.A.Herrmann,Angew.Chem. 1982,94,118-131;Angew.Chem.Inr.
Ed. Engl. 1982,21,117; b) C. Masters, Ad!,. Organomet. Chem. 1979,17,
[6]a) Gmelin Handbook of Inorganic Chemistry, Organoti/anium Compounds, Part 5, Springer, 1990,pp. 25-29, and references therein; b) G.
Wilke, Angew. Chem. 1988,100, 189-211;Angew. Chem. Int. Ed. Engl.
171 Benzene and its derivatives as bridging ligands in transition metal comAngew. Chem.
plexes: H. Wadepohl, Angew. Chem. 1992,104,253-268;
Int. Ed. Engl 1992,31,247-262.
[Sl R. D.Adams, Polyhedron 1988, 7, 2251-2253. and references therein;
J. R. Moss, M. L. Niven, E. E. Sutton, Inorg. Chim. Acta 1989, 165.
191 a) G. Erker, Angew. Chem. 1989,101,41 1-426;Angew. Chem. Int. Ed.
Engl. 1989,28,397;b) D . W Stephan, Coord. Chem. Rev. 1989.95.41
1101 J. Li, A. D. Hunter, R. McDonald, B. D. Santarsiero, S. G. Bott. J L.
Atwood, Organometnllics 1992,1 1, 3050-3055.
1111 J:M. Lehn, Angew. Chem. 1988, 100, 91-116;Angew. Chem. Int. Ed.
Engl. 1988,27, 89.
[121 a) M. Lacoste, H. Rabaa, D. Astruc, N. Ardoin, F. Varret, J.-Y. Saillard,
A. Le Beuze, J. Am. Chem. SOC.1990, 112, 9548-9557; b) D.Astruc,
Angew. Chem. 1988,100,662-680;Angew. Chem. Int. Ed. Ennl. 1988,27,
[13] M. H. Chisholm, Polyhedron 1988,7,757-1077;R. J. Puddephatr, ihd.
1988,7, 767-773;R.M. Bullock, C. P. Casey, Arc. Chem. Res. 1987.24,
167- 173;A. Wojcicki, Coordination Chemisrry and Catalvsis (Ed,: J . J.
Ziolkowski), World Publishing, 1988,pp. 3-25.
[14]F. G. A. Stone, Angew. Chem. 1984,96, 85-96; Angew. Chcm. Int. Ed.
Engl. 1984,23,89.
1151 p-Methylene complexes with metal-metal bonds: W A. Herrmann. Pro(.
Appl. Chem. 1982,54,65-82;Adv. Organomel. Chem. 1982,20,159-263;
Angew. Chem. 1982.94,118-131;Angew. Chem. Int. Ed. Engl. 1982.21,
117; J. Organomet. Chem. 1983, 2.50, 319-343; J. E. Hahn, Prog. Inorg.
Chem. 1984, 31, 205-264.
[16] Comprehensive review of dinuclear p-hydrocarbon complexes : J. Holton,
M. F. Lappert, R. Pearce, P. I. W Yarrow, Chem. Rev. 1983, 83, 135201.
[17] a) p-Polymethylene complexes: 1. R. Moss, L. G. Scott, Coord. Chem.
Rev. 1984,171-190; b) dinuclear complexes with saturated hydrocarbon
bridges: C. P. Casey, J. D. Audett, Chem. Rev. 1986, 86, 339-352.
[lSJ R. E. Lehmann, J. K . Kochi, Organomefallics 1991, 10, 190-202; J. K.
Kochi, T. M. Bockman, Adv. Organomer. Chem. 1991, 33,52-124.
[19] In the oxidative addition the complexes behave as Lewis acid and Lewis
base; however, the metal complexes are generally very electron rich.
(201 a) S. G. Davies, M. L. H . Green, D. M. P. Mingos, Tetrahedron 1978.34,
3047-3077; b) P. L. Pauson, J. Organomet. Chem. 1980, 200, 207-221;
c) L. A. P. Kane-Maguire, E. D. Honig, D . A. Sweigart, Chem. Rev.
1984,84,525-543; d) R. C. Bush, R. J. Angelici, J. Am. Chem. Soc. 1986,
108, 2735-2746; e)J. P. Collmann, L. S. Hegedus, J. R. Norton, R. G .
Finke, Principles and Applications of OrganotrunsitionMetal Chemistry,
University Science Books, Mill Valley, 1987;f ) L. S. Hegedus, The Chemistry of the Metal-Carbon Bond, Vol. 2, Wiley Interscience, New York,
1985; g) J.-E. Backvall, J. L. Davidson, St. G . Davies, M. L. H. Green,
D. M. P. Mingos, J. A. S. Howell, P. Powell, Reactions of Coordinated
Ligands, Val. 1, Plenum, New York, 1986; D. A. Sweigart, Y. K. Chung,
E. D . Honig, T. J. Alavosus, W A. Halpin, J. C. Williams, P. G. Williard,
N. G. Connelly in Organometalltc Syntheses. vol. 4 (Ed.: R. B. King),
Elsevier, Amsterdam, 1988; R. D . Pike, D . A. Sweigart, Synlett 1990,
[Zl] S. G. Davies, OrganotransitionMetal Chemistry: Application 10 Organic
Synrhesis, Pergamon, Oxford, 1982.
[22] a) J. Smidt, W. Hafner, R. Jira, R. Sieber, J. Sedlmeier, A. Sabel, Angew.
Chem. 1962, 74,93-102; b) G. W. Parshall, Homogeneous Catalysis, Wiley, New York, 1980.
[23] P. Sautet, 0. Eisenstein, K. M. Nicholas, Organometallics1987,6, 18451849, and references therein.
[24] W. Beck, Polyhedron 1988, 7, 2255-2261; W. Beck, B. Niemer, J. Breimair, J. Heidrich, J. Organomer. Chem. 1989, 372, 79-83.
1251 a) W. Beck, B. Olgemoller, 1 Organomet. Chem. 1977, 127, C45-C47;
b) B. Olgemoller, W. Beck, Chem. Ber. 1981, 114, 867-876.
[26] J. E. Ellis, J. Organomet. Chem. 1975, 86, 1-56,
[27] R. E. Dessy, R. L. Pohl, R. B. King, 1 Am. Chem. Soc. 1966, 88, 51215124; M. S. Corraine, C. K. Lai, Y Zhen, M. R. Churchill, L. A. Buttrey,
J. W. Ziller, J. D. Atwood. Organometa/lics 1992, ff. 35-40.
[28] K. Raab, U. Nagel, W. Beck, Z . Naturforsch. 5 1983, 38, 1466-1476.
[29] W. Beck, K. Raab, Inorg. Synth. 1990, 28, 15-22.
[30] H . Werner, R. Werner, Chem. Ber. 1985, 118.4543-4552.
[31] W. Beck, K. Raab, U. Nagel, W. Sacher, AnZen,. Chem. 1985, 97, 498499; Angew. Chem. Int. Ed. Eng/. 1985,24, 505.
[32] J. Breimair, M. Steimann. B. Wagner, W. Beck, Chem. Ber. 1990, 123,
[33] J. L. Templeton, Adv. Organomet. Chem. 1989, 29, 1-100.
[34] a) W. Beck, H.-J. Miiller, U. Nagel, Angew. Chem. 1986, 98, 739-740;
Angew. Chem. Inr. Ed. Engl. 1986, 25, 734; b) H.-J. Miiller, K. Polborn,
M. Steimann, W. Beck, Chem. Ber. 1989, 122, 1901-1906.
[35I W Knauer, Dissertation, Universitdt Miinchen, 1992.
[36] a) M. Green, N. C . Norman, A. G . Orpen, J Am. Chem. Soc. 1981,103,
1269-1271; M . Green, N. C. Norman, A. G. Orpen, C. J. Schaverien, J.
Chem. Soc. Dalton Trans. 1984,2455-2465; M . Green, N. K. Jetha, R. J.
Mercer, N. C. Norman, A. G. Orpen, ibid. 1988, 1843-1851; b) D . Pufahl, W. E. Geiger, N. G. Connelly, Organometallics 1989, 8, 412-415.
[37] H:J. Miiller, U. Nagel, W. Beck, Organometallics 1987, 6, 193-194.
[38] H.-J. Miiller, U. Nagel, M. Steimann, K. Polborn, W Beck, Chem. Ber.
1989, 122, 1387-1393,2031,
[39] H.-J. Miiller, W. Beck, 1 Organomet. Chem. 1987, 330, C13-C36.
[40] B. Niemer, J. Breimair, B. Wagner, K. Polborn, W. Beck, Chem. Ber. 1991,
124, 2227 - 2236.
(411 B. Niemer, M. Steimann, W. Beck, Chem. Ber. 1988, 121. 1767-1769.
[42] B. Niemer, T. Weidmann, W, Beck, Z . Naturforsch. 5 1992,47, 509-516.
[43] R. C . Bush, R. A. Jacobson, R. J. Angelici, J. Organomet. Chem. 1987,
323, C25-C28.
[44] J.W. Faller, K.-H. Chao, J. Am. Chem. SOC. 1983, 105, 3893;
Organometallics 1984, 3, 927-932.
[45] B. E. R. Schilling, R. Hoffmann, J. W. Faller, J. Am. Chem. SOC.1979,
101, 592-598.
[46] J. B. Wakefield, J. M. Stryker, J. Am. Chem. Soc. 1991, 113, 7057-7059.
[47] S. Hiiffer, W. Beck, unpublished results.
[48] R. L. Beddoes, E. St. Davies, M. Helliwell, M. W. Whiteley, J.
Organomet. Chem. 1991, 421, 285-298.
[49] M. Tsutsui, A. Courtney, Adv. Organomet. Chem. 1977, 16, 241 -282.
[SO] K. Jonas, Angew. Chem. 1985,97,292-307; Angenl. Chem. lnt. Ed. Engl.
1985, 24, 295; K . Jonas, W. Riisseler, K. Angermund, C . Kriiger, ibid.
1986,98,904-905 and 1986,25,927; K. Jonas, W. Riisseler, C. Kriiger,
E. Raabe, ibid. 1986, 98, 905-906 and 1986, 25, 928.
I511 W. M. Lamanna, W. B. Gleason, D . Britton, Organometallics 1987, 6,
1583- 1584.
[52] a) D. A. Lesch, J. W. Richardson, Jr., R. A. Jacobson, R. J. Angelici, J.
Am. Chem. SOC.1984,106,2901-2906; b) R. J. Angelici, Ace. Chem. Res.
1988, 21, 387-394.
[53] a) W Beck, B. Niemer, B. Wagner, Angew. Chem. 1989,101,1699-1701;
Angew. Chem. Int. Ed. Engl. 1989, 28, 1705-1706; b)J. Breimair, B.
Niemer, K. Raab, W. Beck, Chem. Ber. 1991, 124, 1059-1063; c) B.
Niemer, J. Breimair, T. Volkel, B. Wagner, K . Polborn, W. Beck, Chem.
Ber. 1991, 124, 2237-2244.
1541 R. Hoffmann, Angeu,. Chem. 1982, 94,725-739; Angew. Chem. Int. Ed.
Engl. 1982.21, 711.
[55] F. L’Eplattenier, C. PClichet, Helv. Chim. Acta 1970,33, 1091- 1099; W. J.
Carter, J. W. Kelland, S. J. Okrasinski, K. E. Warner. J. R. Norton, Inorg.
Chem. 1982, 21, 3955-3960.
[56] J. R. Moss, W. A. G . Graham, Inorg. Chem. 1977, 16, 75-79.
1571 J. Breimair, C. Robl, W. Beck, Chem. 5 e r . 1990, 123, 1661 -1663.
I581 E. 0. Fischer, V. Kiener, J Organomet. Chem. 1970, 23, 215-223; rbid.
1972, 42. 447-457.
[591 a) C. E. Kampe, N. M. Boag, H. D. Kaesz, J. Mol. Caial. 1983,21,297312; b) C. E. Kampe, H. D. Kaesz, Inorg. Chem. 1984, 23,4646-4653.
[60] J. E. Ellis, Adv. Organornet. Chem. 1990, 31, 1-51; W. Beck, Angew.
Chem. 1991,103, 173-174; Angew. Chem. lnt. Ed. Engl. 1991,30, 168169.
[61] J. Breimair, C. Robl, W. Beck, J. Organornet. Chem. 1991, 4tf. 395-404.
[62] a) D. Seebach, Angew Chem. 1990, f02, 1363- 1409; Angeli’. Chem. Int.
Ed. Engl. 1990, 29, 1320; b) J. Ehrler, D. Seebach, Liebigs Ann. Chem.
1990, 379-388. We thank Prof. H. Bock, Universitlt Frankfurt, for
bringing this to our attention.
1631 See G. R. Lee, J. M. Maher, N. J. Cooper, J. Am Chem. Sac. 1987, 109,
2956 - 2962.
[64] G. Al-Takhin, J. A. Connor, H. A. Skinner, J. Organomet. Chem. 1983,
259, 313-320.
1651 E. 0. Fischer, J. K . R. Wanner, G. Miiller, J. Riede, Chem. Ber. 1985, 118,
3311-3319; see also J. Chen, Y. Yu. K. Liu. G. Wu, P. Zheng,
Orgunomerallics 1993, 12, 1213- 1220.
1661 J. D. Munro, P. L. Pauson, J. Chem. SOC.1961, 3475-3479; F. Zahedi,
M. L. Ziegler, Z . Naturforsch. B 1979, 34, 918-920; H. Adams, N. A.
Bailey, D. G. Willett, M. J. Wlnter, J. Organornet. Chem. 1987, 333, 61 69; W. D. Closson, P. Wriede, S. Bank, .lAm. Chem. SOC. 1966, 88,
[67] W. E. Geiger, T. Gennett, G. A. Lane, A. Salzer, A. L. Rheingold,
Orgunomerallics 1986, 5, 1352- 1359.
[68] N. El Murr. J. E. Sheats, W. E. Geiger, J. D. L. Holloway, Inorg. Chem.
1979, 18, 1443-1446.
[69] W. McFarlane, L. Pratt, G. Wilkinson, J. Chem. Soc. 1963, 2162-2166.
[70] J.-R. Hamon, D . Astruc, P. Michaud, 1 Am. Chem. Soc. 1981, 103,
1711 E. 0. Fischer, D.Wittmann, D. Himmelreich, D. Neugebauer, Angew.
Chem. 1982, 94,451-452; Angew. Chem. Inr. Ed. Engl. 1982, 21,444.
[72] a) R. L. Thompson, S. J. Geib, N.J. Cooper, J. Am. Chem. Sac. 1991, 113,
8961 -8963; b) J. Takats, Polyhedron 1988, 7, 931-941.
[73] M. V. Gaudet, A. W. Hanson, P. S. White, M. 1. Zaworotko,
Orgonomelallics 1989, 8, 286- 293.
1741 N. G. Connelly, M. D. Kitchen. R. F. D. Stansfield, S. M. Whiting, P.
Woodward, J. Orgunonzet. Chem. 1978, 155,C34-C36.
[75] P. S. Waterman, W. P. Giering. 1 Organomet. Chem. 1978, 155, C47C50.
[76] R. P. Aggarwal, N. G. Connelly, B. J. Dunne, M. Gilbert, A. G. Orpen,
J. Chem. SOC.Dalton Trans. 1991, 1-9.
[77] J. Edwin, W E. Geiger, A. Salzer, U. Ruppli, J. Am. Chem. Soc. 1987,109,
7893-7894, J. Edwin, W. E. Geiger, ibid. 1990, 112, 7104-7112.
[78] J. H. Bieri, T. Egolf, W. von Philipsborn, U. Piantini, R. Prewo, U. Ruppli, A. Salzer. Organometallics1986, 5 , 2413-2425.
[79] W. E. Geiger, A. Salzer, J. Edwin, W. von Philipsborn, U. Piantini, A. L.
Rheingold, J. Am. Chem. Soc. 1990, 112, 7113-7121; U. Kolle, Angew.
Chem. 1991, 103.970-972; Angew. Chem. Int. Ed. Engl. 1991,30, 956.
[80] S. G. Bott, L. Brdmmer, N. G. Connelly, M. Green, A. G. Orpen, J. F.
Paxton, C. J. Schaverien, S. Bristow, N. C. Norman, J. Chem. So<.Dalton
Trans. 1990, 1957-1969; L. A. Brady, A. F. Dyke, S. E. Garner, S. A. R.
Knox, A. Irving, S. M. Nicholls, A. G. Orpen, ibid. 1993, 487-488.
[Sl] B. Bachmann, J. Heck, G. Meyer, J. Pebler, T. Schleid, Inorg. Chem. 1992,
31, 607-614.
[82] N. G. Connelly, Chem. SOC.
Rev. 1989, 18, 153-185.
[83] a) A. N. Nesmeyanov, N. N. Sedova, Y V. Volgin, Sazonova, Izv. Akad.
Nuuk. SSSR Ser. Khim. 1977, 10, 2353-2354; W. A. Herrmann, D. Andrejewski, E. Herdtweck, J. Organornet. Chem. 1987, 319, 183-195;
b) G. H. Worth, B. H . Robinson, J. Simpson, Organometallics 1992, 11,
[84] H. G. Raubenheimer, G. 1. Kruger, H. W. Viljoen, J. Chem. SOC.Dalton
Trans. 1985, 1963-1966.
[85] W. Beck, J. Breimair, W. Knauer, T. Weidmann in Transition Metal Carbyne Complexes, (Ed.: F. R. Kreissl), Kluwer. Dordrecht. 1993, pp. 189199.
[86] a) T. Weidmann, Dissertation, Universitat Miinchen, 1992; b) W.
Knauer, Dissertation, Universitat Miinchen, 1992.
Angew. Chem. Int. Ed. Engl. 1993, 32, 923-949
[87] T. Desmond, F. I. Ldlor. G. Ferguson, M . Parvez, J. Chem. Soc. Chem.
Commun. 1984, 75-77.
[88] B. D. Dombeck. R. J. Angelici, J. Am. Chem. Soc. 1974, 96, 7568-7569;
S . Lotz. R. R . Pille, P. H. Van Rooyen, Inorg. Chem. 1986.25.3053-3057.
[89] D. H.Gibson. I. 0 . Franco, M. T. Harris. T.S. Ong, OrgunometulliCs
1992, I / , 1993-1994.
[90] D. A. Brown, I. Burns, I . El-Gamati, W. K. Glass, K. Kreddan, M. Salama, D . Cunningham, T. Higgins, P. McArdle. J. Chem. Sue. Chem. Cummun. 1992, 701 -702.
[91] L. A. P. Kane-Maguire, C. A. Mansfield. J. Chem. Soc. Chem. Commun.
1973, 540-541.
[92] A. J. Birch. P. E.Cross, J. Lewis, D. A. White, S. B. Wild. J. Chem. Sor.
A 1968. 332-340.
[93] A. N . Nesmeyanov, N. N. Sedova, V. A. Sazanova, L. S. Borodina, Dokl.
Aliurl. Nauk. SSSR 1972, 207, 617-620; Dokl. Chem. (Engl. Trunsl.]
1972, 202;207, 899-901.
[94] C . Elschenbroich, J. Heck, Angen. Chem. 1977. 89, 497-498; Angea.
Chcm. In!. Ed. Engl. 1977, 16. 479; C . Elschenbroich. J. Heck, W. Massa.
M. Birkhahn, Chem. Ber. 1990, 123. 2321-2324.
1951 H. Airoldi. G. Deganello. G. Dia, P. Saccone, Inorg. Chim. Artu 1980,41,
1 7 1 178.
1961 M . Moll, P. Wiirstl. H.Behrens, P. Merbach, Z . Naiurforsth. B 1978.33.
1304- 1308.
[97] J.-R. Hamon, D. Astruc, E. Roman, J. Am. Chem. Sue. 1981, 103, 2431 2433.
[98] a ) V. Guerchais, J. Chem. Sac. Chem. Cummun. 1990, 534-536; b) C. P.
Casey, M. S. Konings, K . I. Haller, J. Orgunornet.Chem. 1986,301, C55C58.
[99] A . J. Pearson. V. D. Khetani, J. Chrm. Sue. Chem. Commun. 1986, 17221774.
[IOO] K. E.Schwarzhans, W. Stolz, Monarsh. Chem. 1987, 118. 875-878; G.
Ingram. P. Jaitner. K. E. Schwarzhans, Z . Nuturforsch. B 1990.45, 781 784.
[loll N. G. Connelly, A. G. Orpen. 1. C. Quarmby. I. B. Sheridan, J.
Orgunumer. Chem. 1986, 299, C51 4 3 5 .
[lo21 D. Astruc. D. Mandon, A. Madonik, P. Michdud, N. Ardoin, F. Varret.
Organome/ullics 1990, 9, 2155-2164.
[lo31 C. L. Sterzo, J. K . Stille. Organornetallits 1990,9, 687-694; C. L. Sterzo.
hid. 1990. 9. 3185-3188.
[lo41 F. Rose-Munch. 0. Bellot, L. Mignon, A. Semra, F. Robert, Y Jeannin,
J. Orgunomer. Chem. 1991, 402, 1-16.
[I051 J. Breimair. M. Wieser. B. Wagner, K. Polborn, W. Beck, J. Organomet.
Chem. 1991. 421, 55-64.
[lo61 a ) J. Breimair, T. Weidmann, B. Wagner, W. Beck, Chem. Ber. 1991, i24,
2431 - 2434; b) C. Kelley, M. R. Terry, A. W Kaplan, G. L. Geoffroy, N.
Lugan, R. Mathieu, B. S. Haggerty, A. L. Rheingold, Inorg. Chim. Arru
1992. 198- 200. 601 -611.
11071 M. Wieser. K . Siinkel, C. Robl, W. Beck, Chem. Ber. 1992, 125, 13691373.
[lo81 J. Breimair. M. Wieser, W. Beck. J. Orgunornet. Chem. 1992, 441, 429440.
11091 M. Wieser. K. Karaghiosoff, W. Beck, Chem. Ber., 1993,126.1081- 1089.
[llO] P. McArdle, H. Sherlock, J. Organornet. Chem. 1976, 116, C23-C24.
[1111 T. C. T. Chang, B. M. Foxman, M. Rosenblum. C. Stockmann, J. Am.
(%em. Sor. 1981,103.7361-7362; A. Rosan, M. Rosenblum, I. Tancrede.
ibid. 1973, 9s. 3062-3064; J. C. Wdtkins, M. Rosenblum, Terrahedron
Lett. 1984. 25. 2097-2100; A. Sanders, T. Bduch, C.V. Magatti, C.
Lorenc. W. P. Giering, J. Orgunornet. Chrm. 1976. 107, 359-375.
[112] P. J. Lennon. A. Rosan, M. Rosenblum, I. Tancrede, P. Waterman, J. Am.
Cl7~m. Soi.. 1980. 102. 7033-7038; T. W. Bodnar, A. R. Cutler,
Or,qunornetallic.s 1985, 4, 1558- 1565. Review: M. Rosenblum, J.
Organornet. Chem. 1986, 300. 191-218.
[I 131 T. Bodnar. A. R. Cutler, J. Orgunornet. Chem. 1981, 213, C31 -C36; M.
Brookhart. J. R. Tucker. G. R. Husk. J. Am. Chem. Soc. 1983, 105, 258264.
[I141 A. Ddvison, J. P.Solar, J. Orgunomel. Chrm. 1978,155. C8-Cl2; N. Ye.
Kolobova, V. V. Skripkin, G. G. Alexandrov. Yu. T. Struchkov, ibicl.
1979. 169, 293-300; I. P. Selegue, J. Am. Chrm. Soc. 1983, 105, 5921 5923: B. E. Boland-Lussier, R. P. Hughes, Orgunornetallits 1982, I . 635639: L. Kollar, B. Floris, J. Organomet. Chem. 1992, 441, 117-123.
[1151 E. G. Perevalova. A. N. Pushin, E. I. Klimova, Y. L. Slovokhotov, Y. T.
Struchkov. Orgunomer. Chem. USSR 1989,2, 745-749.
[I 161 W. A. Herrmann, K. Weidenhammer, M. L. Ziegler, Z . Anorg. Allg.
c'hem. 1980, 460,200-206.
[117] a ) D. W. Macomber. M.-H. Hung. A. G. Verma, R. D. Rogers,
Orgunomerullics1988, 7, 2072-2074; b) D . W. Macomber, M.-H. Hung,
P. Madhukar. M. Liang, R. D. Rogers, rbid. 1991.10.737-746; c) D. W.
Macomber. M.-H. Hung, J. Orgunomer. Chem. 1989, 366, 147-154;
d) D. W. Macomber, P. Madhukar, R. D. Rogers, Orgunomrtullics 1991,
10. 2121 -2126.
[llx] D. W. Macomber, P. Madhukar. R. D. Rogers, Orgunometullics 1989,8.
1275- 1282.
[1191 S. Kamiyama, A. Kasahara, T. Izumi, I. Shimizu, H. Watabe, Bull. Chem.
Sor. Jpn. 1981, 54, 2079-2082.
Angi'lt'. Chrm. Inr. Ed. Engl. 1993. 32, 923-949
[120] A. A. Koridze, I. T. Chizhevsky, P. V. Petrovskii, E. I . Fedm, N. E.
Kolobova, L. E. Vinogradova, L. A. Leites, V. G. Andrianov, Y. T.
Struchkov, J. Orgunomer. Chem. 1981,206,373-391; L. M. Sandilands.
C. J. L. Lock. R. Faggiani. N. Hao, B. G. Sayer, M. A. Qurlliam, B. E.
McCarry, M. 3. McGiinchey, ;bid. 1982, 224, 267-283.
[I211 a) E. 0 . Fischer, F. I. Gammel. D . Neugebauer, Chem. Ber. 1980, 113.
1010-1019; E. 0. Fischer, F. J. Gammel, I. 0. Besenhard, A. Frank. D.
Neugebauer, J. Orgunomel. Chem. 1980, 191. 261-282; E.0. Fischer.
V. N. Postnov. F. R. Kreissl, ;bid. 1982, 231, C73-C77; P. M. Fritz. J.
Breimair, B. Wagner, W. Beck, ibid.1990,426,343-350; b) J. A. Heppert,
M. E. Thomas-Miller, P. N. Swepston, M. W. Extine, J. Chem. Soc.
Chem. Commun. 1988,280-282; c) E.0 . Fischer, W Roll, N. H. T Huy,
K. Ackermann, Chem. Ber. 1982, I I S , 2951-2964; d) N. Q. Dao. H.
Ferrier, M. Jouan, E.0 . Fischer, W. Roll, J. Organomel. Chem. 1984.275,
191 -207; e) N. H. T. Huy, P. Lefloch, F, Robert, Y. Jeannin, rbid. 1987,
327,211 -221; f) D. M. Anderson, G. B. Bristow. P. B. Hitchcock, H. A.
Jassim. M. F. Lappert, B. W. Skelton, J. Chem. Sot. Dalton Trans. 1987.
2843 - 2851.
[122] M. Cais (Technicon Research and Development Foundation Ltd), USA 3 138625, 1962/64; Chem. Abslr. 1964. 61, 9530); W. P. Hart, D . Shihua, M. D. Rausch, J. Organomel. Chem. 1985, 282, 111-121; Y-P.
Wang, 1. M. Hwu, ibid. 1990, 399, 141-147; N. J. Gogdn. S. I. DeSilva,
OrganomelaNics 1990, 9, 1970- 1972.
[123] P. Hackett, B. F, G. Johnson, I. Lewis, G. Jaouen, J. Chem. Soc. Dallon
Trans. 1982, 1247-1251 ; A . Hafner, J. H. Bieri, R. Prewo, W. von Philipsborn, A. Salzer, Angru. Chem. 1983,95,736-737; Angen. Chem. Int. Ed.
Engl. 1983, 22, 713.
[I241 V. I. Boev, A. V. Dombrovskii, J. Org. Chim. 1980, 16, 2098.
[I251 (Denki Kagaku Kogyo) IP-A 58189164. November 4, 1983; Chem.
Absrr. 1984, 100, 138962.
[126] K. Yasufuku, H . Jamazaki, J. Orgunomer. Chem. 1976, 121,405-411.
11271 Review: R. Gleiter, Angew. Chem. 1992, 104, 29-46; Angeu. Chem. Int.
Ed. Engl. 1992, 31, 27; R. Gleiter, G. Pflisterer, B. Nuber, J. Chem. Soc.
Chem. Commun. 1993,454-456.
[128] R. M. Chin, W. D. Jones, Angew. Chem. 1992, 104. 340-341; Angra.
Chem. Int. Ed. Engl. 1992, 31. 357.
[129] J. Besancon, S. Szymoiak, C. Moise, L Organomet. Chem. 1992, 426,
325-330; C. M. Adams, E. M. Holt, Organome/uIlirs 1990. 9,980-986.
[I301 a ) M . D. Rausch, J. Org. Chem. 1961, 26, 1802- 1805; A. N . Nesmeyanov, N. N. Sedovd, Yu. T. Struchkov, V. G. Andrianov. E. N.
Stakheevd, V. A. Sazonova, J. Organomet. Chem. 1978. 153. 115-122;
b) C. LeVanda, K. Bechgaard, D. 0. Cowan, U. T. Mueller-Westerhoff,
P. Erlbracht. G. A. Candela, R. L. Collins, J. Am. Chem. Sdc 1976, 98.
3181 -3187; D. R. Talham, D. 0. Cowan, 0rgunomerullic.s 1987.6.932937; T.-Y. Dong, T.-Y. Lee, H.-M. Lin, J. Orgunomel. Chem. 1992. 427,
101 110; E.W. Neuse, M . S. Loonat, Trunsiriun M e t . Chem. 1981,6,260.
(1311 A. Koray, M. Ertas. 0. Bekaroglu, J. Orgunomet. Chem. 1987, 319. 99101.
[1321 a) D. W. Macomber, P. Madhukar, J. Organomel. Chem. 1992,433,279285; b) D. C. O C o n n o r Salazar, D. 0.Cowan. ibid. 1991.408,219-225;
H . K . Sharma, F. Cervantes-Lee, K. H . Pannell, ibid. 1992,438,183- 194;
c) N . E.Kolobovd, Z. P. Valueva. K.N . Anisimov, G. Z. Suleimanov,
I n . Akud. Nuuk SSSR Ser. Khim. 1978.910; d) P. D. Harvey. J. G. Sharman, Cun. J. Chem. 1990.68. 223.
[133] a) C. L. Sterzo, Orgunometullics 1990, 9. 3185-3188; b) C. L. Sterzo,
M. M. Miller, J. K. Stille, hid. 1989, 8, 2331 -2337; C. L. Sterzo. I K.
Stille, rbrd. 1990, 9 , 687-694.
[1341 G. Erker, R. Pfaff, C . Kriiger, S. Werner, Organometulh 1991, 10,
3559-3568; G. Erker. F. Sosna, R. Pfaff, R. Noe. C. Sarter, A. Kraft. C.
Kriiger, R. Zwettler, J. Orgunornet.Chem. 1990.394.99 - 112; G. Erker,
B. Menjbn, Chem. Ber. 1990, 123, 1327-1329; G. Erker. Polyhedron
1988. 7,2451-2463;G. Erker, R. Lecht, F. Sosna, S. Uhl, Y.-H. Tsay. C.
Kruger, H . Grondey, R. Benn, Chem. Ber. 1988, 121. 1069-1074;
Orgunomelullics (Eds.: A. de Meijere, H. tom Dieck). Springer. Heidelberg, 1987, pp. 143-167; K. Mashlma, K . Jyodoi, A. Ohyoshi, H.
Takaya. J. Chem. SOC.Chem. Cummun. 1986. 1145-1 146, Orgunomefullies 1987, 6. 885-887, Bull. Chrm. Sue. Jpn. 1991, 64, 20652076.
I1351 J. M. OConnor. R. Uhrhammer, A. L. Rheingold, D . L. Staley, R . K.
Chadha. J. Am. Chrm. Sue. 1990, 112, 7585-7598; J. M. O'Connor, R.
Uhrhammer, A. L. Rheingold, D. M. Roddick. ibid. 1991, 113, 45304544.
[1361 P. F. Engel, M. Pfeffer, J. Fischer, A. Dedien. J. Chem. Sot Chem. Cummun. 1991, 1274-1276.
[137] R. S. Keng, Y-C. Lm, Orgunometullics 1990, 9. 289-291.
[I381 E. Baralt, Ch. M . Lukehart. A. T. McPhail, D. R. McPhail, Orgunomerullm 1991, 10, 516-520.
11391 See, for example M. F. Semmelhack, G. R. Clark, J. L. Harrison, Y.
Thebtaranonth, W. Wulff, A. Yamashita, Tetrahedron 1981, 37, 39573965.
[I401 J. A. Heppert, M. A. Morgenstern, D. M. Scherubel, F. Takusagdwd.
M. R. Shaker, Organometul/ics 1988, 7.1715-1723; J, A. Heppert, M. E.
Thomas-Miller, D. M. Scherubel, F. Takusagawa, M. A. Morgenstern,
M. R. Shaker, ibid. 1989.8. 1199-1206.
[141] G. B. Richter-Addo, A. D. Hunter. N. Wichrowska, Cun. J CAem. 1990,
68, 41 -48.
[142] V. Galamb. G. Pilyi. F. UngvBry. L. Marko, R. Boese, G. Schmid, J. Am.
Chem. Soc. 1986, 108, 3344-3351.
[143] a) A. N . Nesmeyanov. L. G. Makarova und V. N. Vinogradova. 1;s.
Akud. Nuuk S S S R Ser. Khim 1971,892 (Chem. Ab.str. 1971,75,49290g);
hid. 1972. 1600-1604 (and 1972. 77, 140255 b); b) A. N. Nesmeyanov;
L. G. Makarova, V. N. Vinogradova, ihid. 1973. 2796-2798 (and 1974,
80.96 133w); Bull. Acud. Scr. USSR. Div. Chem. Sci. 1973.2731 ;c) K. H.
Pannell. J B. Cassias. G. M. Crawford, A. Flores, Inorg. Chon. 1976. 15.
2671 2675; d) A. G. Osborne. R. H. Whiteley, J. Orgunornvt. Chenr.
1979. 181. 425-437.
[144] M. Herberhold. H. Kniesel. L. Haumaier, A. Gieren, C . Ruiz-Perez, 2.
Narurforsrh. B 1986. 41, 1431-1436.
[145] M. Herberhold. H. Kniesel. J. Orgunornet. Chem. 1987, 334. 347-358.
[146] a) M. Herberhold. W. Feger, U . Kolle, J. Orgunomer. Cl7t.m. 1992. 436.
333-350; b j M. Tsutsui. N . Ely, A. Gebala, Inorg. Chem. 1975. 14. 7881.
(1471 F. H. KBhler. W A. Geike. P. Hofmann, U. Schubert, P. Stauffert. Chem.
Ber. 1984. 117,904-914.
[148] a) H. Lehmkuhl, R. Schwickardi, C. Kriiger. G. Raabe. Z. Anorg. A&.
Chem. 1990. 581. 41 -47: b) H . Lehmkuhl, Pure Appl. Chem. 1990, 62.
731 740.
[149] A. Agdrwai, M. J. McGlinchey. T.-S. Tan,J. Orgunonfer. Chem. 1977,141,
[lSO] K.-H. Thiele. C. Kruger. R. Boese. G. Schmid. T. Bartik, G. Palyi. 2.
Anorx. Allg. Chem. 1990. 590. 55.- 64.
[151] K. Sunkel. U. Birk. Chemiedozententagung. 1993, Dresden.
[152] T. Orlova. V. N. Setkina, P. V. Petrovskii. A. 1. Ydnovskii, A. S. Batsanov. Y. T. Struchkov. Orgunornet. Chem. USSR 1988. 1, 725-728.
11531 P. Harter, G. Boguth, E. Herdtweck, J. Riede, Angew. Chum. 1989, 101,
1058-1059; Angew. Chem. In/. Ed. Engl. 1989,28, 1008.
[154] T.-M. Chung, Y. K. Chung, Orgunometullrcs 1992. If, 2822-2826.
[155] A. Salzer, T. Egolf, W. von Philipsborn. Helv. Chrm. Acru 1982.65. 11451157; R. G. Ball, F. Edelmann. G.-Y. Kiel. J. Takats. R. Drews,
Orgunomerullics 1986,5.829-839; F. Edelmann, J. Takats. J Orgunonwr.
Chem. 1988, 344. 351 --356; F. Edelmann. G. Y. Kiel, J. Takats, A. Vasudevamurthy. M.-Y. Yeung, J. Chem. Soc. Chem. Commnn. 1988.296297.
I1561 S. Lotz, M. Schindehutte, P. H. van Rooyen. Orgunonietullics 1992, (1.
629-639: P. H. van Rooyen, M. Schindehutte, S. Lotz, ibid. 1992, 11.
1104- 11 11. A review on dimetallic o,rc-arene complexes will appear i n
Adi,. Orgunornet. Chem. (S. Lotz. University of Pretoria, South Africa,
personal communication).
[157] M. L. H. Green. N. D. Lowe, D. O’Hare. J. Chem. Soc. Chem. Commun.
1986, 1547- 1548.
[158] W. Weigand, Universitht Miinchen, personal communication.
I1591 1. Weinstock. C. Floriani. A. Chiesi-Villa, C. Guastini, J. Am. Chem. Soe.
1986, 108, 8298-8299.
[160] T. Aoki, Y Ishii. Y. Mizobe, M. Hidai, Chem. Lerr. 1991, 615-618.
[161] V. Dufaud. J. Thivolle-Cazat, J.-M. Basset, R. Mathieu, J. Jaud, J. Waissermann, Orgunometullics 1991, 10.4005-4015: J. F. Carpentier, F. Petit,
A. Mortreux. V. Dufand, J.-M. Basset, J. Thivolle-Cazat. J. M ol. Cur.
1993, 81. 1-15.
[162] a) P. K. Monaghan. R. J. Puddephdtt, J. Chem. Soc. Dalton Truns. 1988.
595-599; J. D. Scott. R. J. Puddephatt, Orgunomerullics 1986. 5 , 15381544; b) A. J. Canty, A. A. Watson, lnorg Chim. Acru 1988, 154, 5-7;
c) J. Campora, E. Carmona, E. Gutierrez, P. Palma. M. L. Poveda. C.
Ruiz, 0rganomerallic.s 1992. 11, 11-13; J. Campora, E. Gutierrez, A.
Monge, M. L. Poveda, E. Carmona, ibid. 1992. / I , 2644-2650.
[163] R. D. W. Kemmit, A. W. G. Platt. J. Chem. Soc. Dalton Truns. 1986,
1603- 1607.
[164] S. Achar, J. D. Scott, R. J. Puddephatt, Orgunomrtullics 1992. 11, 23252326.
[165] a) W. P. Fehlhamtner, H. Stolzenberg in Comprehensive Orgunometullic
Chemistrv. Vol. 4 (Eds.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon, 1982. pp. 513-613; F. Edelmann. K . J. Jens. U. Behrens, Chem.
Ber. 1978, 111. 2895-2900: N. E. Kolobova, L. L. Ivanov, 0. S.
Zhvanko, t v . Akad. Nuuk. S S S R Ser. Khim. 1984, 1667; K. Jonas. E.
Diffense, D. Hobermann. Angew. Chem. Suppl. 1983, 1005-1016; U.
HBnisch, E. Tagliaferri, R. Roulet, P. Vogel, Helv. Chrm. Actu 1983. 66,
2182-2190: b) F. H. Kdhler. A. Steck. J. Orgunomet. Chem. 1993. 444,
165- 177, and references therein; c j J. W. Merker. W. E. Geiger. M. N.
Paddon-Row, A. M. Oliver, A. L. Rheingold. Orgunometullics 1992. 11.
[166] a) E. 0. Fischer, W. Hafner, Z. Narnrforsrh. B. 1955, 10, 665-668:
b) A. N Nesmeyanov. N. N. Zaitseva, L. P. Yur’eva, R. A. Stukan. Izv.
Akud. Nuuk. S S S R Ser. Khrm. 1978. 1420: c) M.-H. Desbois, D. Astruc,
Organomerallics 1989, 8, 1841- 1847.
[167] R. Davis. L. A. P. Kane-Maguire in Comprehensive Orgunometullic
Chemislry. Vol. 3 (Eds.. G. Wilkinson, F. G. A. Stone. E. W. Abel). Pergamon. 1982, p. 1001 pp.
[168] a) I. U. Khand. C. A. L. Mahaffy. P. L. Pauson, J. Chem. Res. Miniprint
1978,4454-4455: b) A N Nesmeyanov, V. V. Krivykh, P. V. Petrovskii,
V. S. Kaganovich. M. I.Rybinskaya, J. Organomet. Chem. 1978. 162.
[169] V. S . Kagdnovich, M. I. Rybinskaya, Izv. Akud. Nunk SSSR Ser. Khirn.
1985. 1644-1647: Bull. Akad. Scr USSR Drr. Chem. Sci. 1985, 15031506.
[I701 C. Elschenbroich, J. Schneider. M. Wiinsch. J.-L. Pierre. P. Baret. P.
Chautemps. Chem. Ber. 1988, 121. 177-183.
[171] N . E. Kolobova, L. V. Goncharenko, I x . Akud. Nuuk. SSSR Ser. Khim.
1979, 900: T. E. Bitterwolf, Polrm. M a w . Sci. Eng. 1983, 49, 368.
11721 See for example H. Werner. A. Salzer, S w l i . lnorg. Mrr. Org. Chpm.
1972. 2. 239- 248; A. Salzer. H. Werner. An~yoir.Chrm. 1972. 84. 949950: Angeir. Chem. Int. €d. Engl. 1972. I / . 930-931 : A. Salzer. T. Egolf,
W. von Philipsborn, J Orgunomet. Chem. 1981.221.351-360; W. Siebert,
Pure Appl. Chem. 1988. 60, 1345 -1348: V. Bockelheide, h i d . 1986. 58,
1-6; M. N. Boschkarer. I. L. Fedushkin. V. K. Cherkasov. H. Schumann. F. H. Gorlitz. lnorg. Chim. Acru 1992, 20t. 69- 74.
11731 W. H . Morrison. Jr.. E. Y Ho, D. N. Hendricksen, J. Am. Chem. Soc.
1974. 96. 3603-3608.
[174] a) P. J. Fagan. M. D. Ward, J. C. Caiabrese. J Am. Chem. Sue. 1989. 111.
1698-1719; b) S. P. Nolan, K. L. Martin. E. D. Stevens. P. J. Fagan,
Orgunometullics 1992. 11, 3947-3953.
[175] U. Kolle. M. H. Wang. Orgunometullics 1990, 9, 195-198.
11761 X. D. He. B. Chaudret. F. Dahan,Y.-S. Huang. Orgunometullics 1991.t0,
[177] 1. Chavez. M. Otero. E. Roman. U. Miiller. J. Orgunomer. Chem. 1992,
427, 369-378.
[I781 a) A. R. Kudinov, P. V. Petrovskii, Y. T. Struchkov, A. I. Yanovskii,
M. I.Rybinskaya, J Orgunomer. Chem. 1991.421.91 - 115; b) A. Lenz,
W. Beck, unpublished results.
[179] H. Wadepohl. W. Galm, H. Pritzkow. A n g w Chem. 1989, 101. 357-358;
Angeu,. Chem. In!. Ed. Engl. 1989, 28, 345-347; H. Wadepohl. H.
Pritzkow. ibid. 1987. Y9. 132-134 and 1987. 26? 127.
[180] H. Wadepohl. W. Galm, H. Pritzkow. Angeir Chem. 1990,102,701 -703,
Angen. Chern. Int. Ed. Engl. 1990. 29, 686.
[lSl] H. W. Bosch, H:U. Hund, D. Nietlispach. A. Salzer, Orgunomerullics
1992. I / .2087-2098.
[182] Review: P. A. McGovern, K. P. Vollhardt, Synlerr 1990. 493-500.
[183] M. R. Gregg, J. Powell. J. F. Sawyer, J. Orgunomer. Chem. 1988. 352.
357 - 366
[I841 C. G. Kreiter, W. Lipps, Chmi. Ber. 1982,115.973-988; K.-H. Franzreb.
C. G. Kreiter, 2. Norurforsch. B 1982,37. 1058-1069; M. Leyendecker.
C. G. Kreiter, J. Orgunomet. Chem. 1984, 260, C677C70; C. G. Kreiter,
M. Leyendecker, 2nd. 1985, 292, C18-C20; C. G. Kreiter, M . Leyendecker. W. S. Sheidrick. ibid. 1986,302. 35-46; ibid. 1986,302, 217 -234;
C. G. Kreiter, W Michels, R. Exner, 2. Nuruforsch. B 1990,45,793-802.
[IS51 C. G. Kreiter, E. Michels, J. Kaub, J. Orgunomer. Chem. 1986, 3t2, 221 240; C. G. Kreiter, E. Michels. ibid. 1986, 312, 59-66.
[186] A. N. Nesmeyanow. M. I. Rybinskaya. L. V. Rybin. V. S. Kaganovich, J
Orgunomer. Chem. 1973, 47, 1-32. Many early examples of dinuclear
complexes with hydrocarbon bridges are listed in this article.
11871 a) P. Steil. W. Beck, F. G. A. Stone, J. Orgunomer. Cl7em. 1989.36X. 7781; b) D. L. Lawrence, T. W. Bodnar, A. R. Cutler. J. Orgunomet. Chem.
1993.44X. 139-149.
[188] See for example C. P. Casey, P. C. Vosejpka, Organometullics 1988, 7,
934-936; I. Moldes, J. Ros, R. Mathieu, X. Solans, M. Font-Bardia, J.
Chem. So(. Dulton Trans. 1987. 1619-1622; M. Rashidi, R. J. Puddephatt. Orgunomr/ullics 1988, 7, 1636-1641; H. Suzuki, H. Omori, Y
Moro-Oka, ihid. 1988, 7,2579-2581: S. A. R. Knox, Pure Appl. Chem.
1984.56. ni -89.
11891 See for example G. Erker. K. Kropp, J. L. Atwood. W. E. Hunter,
Orgunomerullics 1983, 2, 1555- 1561.
[190] H. Werner, R. Weinand. W. Knaup, K. Peters, H . G. von Schnering,
Orgunometallics 1991, 10, 3967-3977.
11911 a) H. Werner. J. Wolf. G. Miiller, C . Kriiger. J. Orgunomet. Chem. 1988,
342, 381 - 398; b) H. Werner. T. Rappert. J. Wolf, Isr. J Chem. 1990, 30,
[192] A. Wojcickt. C. E. Shuchart, Coord. Chem. Rev. 1990, /US, 35-60; A.
Wojcicki, J. Clusrrr Sci., in press: C. E. Shuchart, G. H . Young, A. Wojcicki. M. Calligaris. G. Nardin, OrgunomeruNics 1990, 9. 2417-2420;
G. H. Young, M. V. Raphael, A. Wojcicki, M. Calligaris, G. Nardin, N.
Bresciani-Pahor. ihid. 1991, 10. 1934.- 1945: C. E. Schuchart, R. R.
Willis, A. Wojcicki, J. Orgunomer. Chem. 1992, 424, 185- 198. and references therein.
[193] a) C. E. Housecroft, B. F. G. Johnson, M. S. Khan, J. Lewis, P.R. Raithby, M. E. Robson, D. A. Wilkinson, J. Chem. Soc. Dullon Trans. 1992,
3171-3178; Y Rubin. C. B. Knobler, F. Diederich, J. Am. Chem. Soc.
1990, 112. 4966-4968; Y. Ito. M. Inouye. M. Murakami. M. Shiro, J.
Orgunomer. Chem. 1990.385.399-408; b) A. Wienand, H.-U. Reissig. H.
Fischer, D. Pflumm, C. Troll, J. Orgunomcr. Chem. 1992,427, C9-Cl4;
L. Jordi. J. M. Moreto. S. Ricart. J. M. Vinas, M. Mejias, E. Molins.
Orgunomemllics 1992. 11. 3507- 3510.
[194] C. Cordier, M. Gruselle. J. Vaiserrnann, L. L. Troitskaya, V. 1. Bakhmutov. V. I. Solokov. G. Jaouen. Orgunometullics 1992, / I , 3825-3832.
[195] A. J. Carty. Pure Appl. Chrm. 1982, 54, 113-130; A. J. Cdrty, A . A .
Angeu. Chem. Int. Ed. Engl. 1993, 32, 923- 949
Cherkas. L. Randall. Poljhedron 1988, 7, 1045- 1052. and references
therein; R. Nast. Coord. Chem. Rev. 1982, 47, 89-124; E. Sappa, A.
Tiripicchio. P. Braunstein. Chem. Ree. 1983. 83, 203-239; 0 . M. Abu
Salah. M . I . Bruce. J. Chmi. Soc. Dulron f i uns. 1974. 2302-2304; M.
Clriano. J. A. K. Howard, J. L. Spencer, F. G. A. Stone, H. Wadepohl.
ihrd. 1979.1749~-1756; N. E. Kolobova. V. V. Skripkin. T. V. Rozantseva,
Y. T. Struchkov, G. G. Aleksandrov. V. G. Andrianov. J. Orgunomer.
('hem. 1981.218.351-359; A. T. Hutton, B. Shebanzadeh. B. L. Shaw. J.
Chcm. Soc. Chem. Commun. 1984. 549-551; A.T. Hutton. C. R.
Langrick, D. M. McEwan, P. G . Pringle, B L. Shaw. J Chem. Sue. Dul/on 7i.un.s. 1985, 2121 -2130: S. P. Deraniyagala. K. R. Grundy,
0rgunometullic.s 1985.4,424-426: M. Cowie. S. J. Loeb, i h d . 1985. 852X57; Ci. A. Carriedo. D . Miguel. V. Rierd. X. Solans. M. Font-Altaba. M .
Coll, J. Orgunomer. Cheni. 1986.2YY. C43-C46; D. Seyferth, J. B. Hoke,
D. R. Wheeler. ihicl. 1988. 341. 421-437; G . Erker, W. Fromberg. R.
Benn. R. Mynott. K. Angermund. C. Kruger, Organume/ul/ic.s1989. 8,
911 -920: P. N. V. P. Kumar, E. D. Jemmis, J. Am. Chcm. Soc. 1988. 110.
11961 W. Beck, K. Sunkel. Chem. Rev. 1988, 88. 1405-1421.
[197] a) M. Appel. J. Heidrich. W. Beck, Chrm. Ber. 1987, 120. 1087- 1089;
b) P. M. Fritz. K . Polborn, M. Steimann. W. Beck. ihid. 1989,122. 889x91
[198] K. G. Frank. J. P. Selegue. J. Am. Chem. Sor. 1990, 112. 6414-6416.
[199] a ) M. Akita. M. Terada, S. Oyama, Y. Moro-oka, Organornetallics 1990,
9. 816-825: b) M. Akita, N. Ishii. M. Tanaka. Y Moro-oka. hid in
[200] a ) G. A. Carriedo, D. Miguel. V. Riera. X. Soldns. J. Chem. Soc. D U / I U ~ Z
Truns. 1987,2867-2873; b) H. Lang, M. Herres, L. Zsolnai. W. Imhof. J.
Organornet. Chem. 1991,409, C7-Cll.
[20l] a) K . Yasufuku, H . Yamazaki, Bull. Cheni. Soc. Jpn. 1972.45,2664; b) H.
Lang, W. Imhof, Chem. Bw. 1992. 125, 1307-1311.
[202] H. Lang, L. Zsolnai, J. Orgunumet. Chem. 1991. 406, C5SC8.
[203] M. Ciriano. J. A. K. Howard. J. L. Spencer, F. G. A. Stone. W. Wadepohl,
J. Chrm. Soc. Duiton Truns. 1979. 1749-1756.
[204] a ) J. Fornies. M. A. Gomez-Saso, E. Ldlinde, E Martinez, M. T.Moreno,
Orgunomrtu//ics1992. 11, 2873 -2883; b) J. R. Berenguer, L. R. Falvello.
J. Fornies. E. Labinde. M. Tomas, hid. 1993. 12, 6-7.
12051 A. T. Hurton. C. R. Langrick. D. M. McEwan. P. G. Pringle, B. L. Shaw,
J. Chem. Sue. Datton Trans 1985. 2121-2130; S. W. Carr, P. G. Pringle.
B. L. Shaw. J. Orgunornet. Cl7em. 1988.341. 543-548.
[206] G. L. Wood, C. B. Knobler. M. F. Hawthorne, Inorg. Chem. 1989. 28.
382 -388: U . Rosenthal. H. Gorls. J. Organomrt. Chem. 1992,439, C36C41.
[207] J. Muller. M. Tschampel, J. Pickardt, J. Orgunomer. Chem. 1988, 355,
51 3-524.
[ZOS] G. Erker, W. Fromberg. R. Benn, R. Mynott, K. Angermund, C. Kruger,
0rgunomrtullic.s 1989, 8.91 1-920; N. Metzler. H. Noth, J. Orgonomet.
Chrm., in press.
[209] J. H . Teuben. H. J. De Liefde Meijer, J Orgunornet. Chew. 1969, 17,
87 93.
12101 D. G. Sekutowski, G. D. Stucky, J. Am. Chem. Soc. 1976, 98, 13761382.
[211] W. J. Evans. R. A. Keyer, J. W. Ziller. Organomrrullics 1990, 9. 26282631.
[212] T. Cuenca, R. Gomez. P. Gbmez-Sal, G. M. Rodriguez, P. Royo,
Orgunomerullirs 1992. 11, 1229- 1234.
12131 a ) E. Lindner, M. Pabel, K. Eichele, J. Organornet. Chem. 1990, 386,
187-194; b) E. Lindner, M. Pabel, ihid. 1991, 414, C19-C21.
12141 a) R. B. King, J. Am. Chem. Soc. 1963,S.T.1922-1926; b ) C . P. Casey. J.
C'hrm. Soc. Chem. Commun. 1970, 1220- 1221 ; J.-A. M. Garner, A. Irving. J. R. Moss, Orgunometullics 1990. 9, 2836-2840.
[215] R. B. King. D. M. Braitsch, J. Orgunornet. Chem. 1973. 54. 9-14.
I2161 M . Cooke. N . J. Forrow, S. A. R. Knox. J. Orgunornet.Chem. 1981.222,
C21 -C24; J . Chem. Sue. Dalron Truns. 1983, 2435-2440.
[2171 Y. C. Lin. J. C. Calabrese, S. S. Wreford, J. Am. Cl7rm. Sue. 1983. 105,
1679- 1680.
(2181 a ) K . P. Finch. J. R. Moss, M. L. Niven. lnurg. Chim. Artu 1989. 166,
181 -188; b) M. R. Domingo. A. Irving, Y.-H. Liao, J. R Moss, A. Nash,
.I Orgunomet. Chem. 1993, 443, 233-240; K. P. Finch, J. R. Moss, hid.
1988,346,253-266; H. B. Friedrich, J. R. Moss, Ad!,. Orgunomel. Chem.
1991. 33, 235-290.
12191 H. Adarns. N. A. Bailey, M. J. Winter. J. Chem. Sor. Dulron Trans 1984,
[220l E Lindner, M. Pabel. R. Fawzi, H. A. Mayer, K. Wurst, J. Orgonomet.
C h ~ m1992.
435. 109-121.
12211 S. F. Mapolie. J. R. Moss, J. Chem. Soc. Dulton Trans. 1990, 299-305.
[2221 C. Roger, T:S. Peng, J. A. Gladysz, J. Or~unomer.Chem. 1992, 439,
12231 a) T. E. Bauch, W. P. Giering. J Orgunornet. Chem. 1978,144, 335-349;
b) M:H. Cheng, H:G. Shu, G.-H. See. S.-M. Peng, R -S. Liu, Organom i ~ t u / / ~1993.
12, 108-115.
12241 a ) H. B. Friedrich, J. R. Moss, B. K . Williamson. J. Organomer. Chem.
1990, 394. 313-327; b) S. J. Archer, K. P. Finch, H. B. Friedrich. J. R.
Moss. Inorg. Chim. Artu 1991, 182,145-152, c) I. Ahmed, J. U. Ahmed,
Angot. Chem. Int. Ed. EngI. 1993, 32. 923-949
M. M . Karim, S . 1. Sarder. S. S. Ullah, Indiun J. Chcvn. 1992, 31 A. 699
[225] a) E. Lindner, E. Schauss. W. Hiller, R. Fawzi, Angrw. Clfem. 1984. 96.
727-728; Angew. Chem. I n / . Ed. Engl. 1984, 23. 711; b) E. Lindner, E.
Schauss, W. Hiller, R. Fawzi. Chem. Ber. 1985, 118, 391553931.
[226] E. Lindner. W. Wassing, 0rgunometulhc.s 1991. 10, 1640 1642.
[227] a) E. Lindner, R.-M. Jansen. H. A. Mayer, Angew. Chmi. 1986. 98,
1000-1001; Angew. Chem. I n / . Ed. EngI. 1986, 25, 1008; E. Lindner,
R.-M. Jansen, H. A. Mayer, W. Hiller, R. Fawzi. Orgunomerulhcs 1989.
8. 2355-2360; b) E. Lindner, R.-M. Jansen. W. Hiller, R Fawzi. Chem.
Ber. 1989, 122, 1403-1409.
[228] R. T. Hembre, C. P. Scott, J. R. Norton, J. Am. C/ii,m. Soc. 1987. 109.
12291 E. Lindner, Ad,'. He/eroryr/. Chem. 1986, 39. 237-279; J. Takats. J.
Clusrer Sci., in press.
12301 F. A. Cotton. P. A. Kibala, Inorg. Chrm. 1990, 29, 3192-3196.
(2311 a) C. J. Burns, R. A. Andersen. J. Am. Clfem. Soc. 1987. I O Y , 915 917;
bj W. J. Evans. T. A. Ulibarri, J. W. Ziller, ibid. 1990. 112. 219 -223.
[232] a) H. Sinn, W. Kaminsky. Adv. Orgonomet. Cliem. 1980. I X . 99-149;
b) W. Kaminsky. J. Kopf, H. Sinn, H.-J. Vollmer, Angcw. ChPrn. 1976.88.
688-693; Angow. Chem. I n t . Ed. Engl. 1976. 15, 629.
[233] a) J. E. Bercaw, J. R. Moss, 0rgunomerullic.s 1992. If. 639- 645; K. P.
Finch, M. A. Gafoor. S. F. Mapolie, J. R. Moss. Po/vht&on 1991. 10.
963-972; b) J. R. Moss, L. G. Scott. J Orgunomc>.t.C'hem. 1989, 363,
351 -370.
12341 M. Kobayashi, 1. D. Wuest. Orgunomr/ulhrs1989. 8. 2843-2850.
(2351 R. B. King, A. Efraty, W. C. Zipperer, J Orgunornet. Chem. 1972. 3X.
I2361 a) M. Schweiger. Dissertation, Universitlt Munchen, 1988. W. Beck,
M. J. Schweiger, G. Miiller. Chem. Ber. 1987. 120. 889-893; R. Gompper, E. Kottmair, Z. Nutnrfbrsch. B 1990,45,833-847; b) E. Lindner. M.
Pabel, R . Fawzi. M. Steimann, J. Orgunornet. Chem. 1992, 441. 63 -74,
and references therein; c) R. P. Hughes. R. T. Carl, S. J. Dolg. R. C. Heniond. D. E. Samkoff, w. L. Smith. L. C. Stewart. R. E. Davis. K. D.
Holland, P. Dickens. R. P. Kashyap. Orgunomeful/ic.s1990. 9. 27322745; R. P. Hughes, S. J. Doig, R. C. Hernond, W. L. Smith, R. E. Davis,
S. M. Gddol, K . D. Holland. ibid. 1990. 9, 2745-2753.
[237] M . Akita, A. Kondoh, T. Kazvahara, T. Takagi, Y . MOro-oka,
1988, 7, 366-374; M. Akita. T. Kawahara. M Terada.
N. Kakinuma. Y Moro-oka, ihid. 1989, 8. 687V693; M. Akita. A. Kondoh, Y. Moro-oka, J. Chem. Soc. Dalton Truns. 1989, 1627-1630; M.
Akita, H. Andoh, 0. Mitani, T. Oku, Y. Moro-oka, J. Mu! Cut. 1989.56.
107.- 116.
[238] W. Schulze, H. Hartl, K. Seppelt, Angew. Chem. 1986. 98. 189. A n g w .
Chem. I n t . Ed. Engl. 1986, 25, 185.
[239] D. Lentz, D . Preugschat. Angew. Chem. 1990. 102, 308- 310; Angen..
Chem. lnt. Ed. Engl. 1990. 29, 315.
12401 V. Weinrich. W. Beck, unpublished results.
12411 S. F. Mapolie, J. R. Moss. Po1.vhedi-m 1991. 10. 717-723.
[242] a) A. D. Hunter, A. B. Szigety. 0rgunometullic.s 1989, 8. 2670-2679;
b ) A . D . Hunter, ibid. 1989, 8, 1118-1120; A. D. Hunter, J. L. McLernon. ihrd. 1989,8,2679-2688, and references therein; R. Chukwu. A. D.
Hunter, B. D. Santarsiero, ihid. 1991,10,2141-2152; R. Chukwu, A. D.
Hunter. B. D . Santarsiero, S. G. Bott. J. L. Atwood, J. Chassaignac. ihid.
1992. 11, 589-597; c) A. D. Hunter. D. Ristic-Petrovic. J. L. McLernon,
[bid. 1992, 11. 864-871; g) G. B. Richter-Addo, A. D. Hunter, Inorg.
Chem. 1989, 28,4063-4065.
[243] E. J. M. de Boer, J. d e With, N. Meijboom. A. G. Orpen. Orpnometullirs
1985,4.259 - 264.
[244] M.-T. Lee, B. M. Foxman. M. Rosenblum, Orgunomeru//ir.s1985.4,539547; H. M. Nugent. M. Rosenblum. J. An7. Chem. Soc. 1993.fIS. 38483849, and references therein.
12451 H. Werner, Inorg. Chim. Acru 1992, 198'200, 715-721; H. Werner. M .
Treiber. A. Nessel, F. Linnert. P. Betz, C. Kruger, Chem. Brr. 1992. 125.
[246] W. Weng, K. Kunze, A. M. Arif, R . D. Ernst, Orgunometullws. 1991. 10,
12471 P. D. Beer. 0. Kocian, R. 1. Mortimer, J. Chem. Soc. Dulton Truns. 1990,
[248] a) C. J. Curtis, R. C. Haltiwanger, 0rganometullic.s1991, 10. 3220- 3226;
b) M. D. Rausch, W. C. Spink, B. G. Conway, R. D. Rogers, J. L. Atwood. J. Orgunornet. Chem. 1990,383,227-~252:c) P. Jutzi, J. Schnittger.
B. Neumann, H:G. Stammler. ibid. 1991, 410. C13-Cl9.
[249] U. T. Mueller-Westerhoff. Angew. Chem. 1986, 98, 700 -716; Angew.
Chem. I n t . Ed. EngL 1986,ZS. 702; L.M. Alvaro, T. Cuenca. J. C. Flores.
P. Royo. M. A. Pellinghelli, Orgunometaks 1992, I f , 3301 -3306; T. J.
Haas, U. T. Miiller-Westerhoff, Svnth. RPUCI.Inorg. Met. Org. Chrm.
1991.22, 227-245.
[250] A. P. Kahn, D. A. Newman, K. P. C . Vollhdrdt, Synlett 1990, 141 - 142.
12511 H. Plenio, OrgunometuNicr 1992. 11, 1856 -1859.
[252] H. Schottenberger, G. Ingram. D. Obendorf. R. Tessadn. Synlvrf 1991.
905 -907.
[253] R. Boese, R. L. Myrabo, D. A. Newman. K. P. C. Vollhardt. Anxew.
Chtm. 1990, 102, 589-592: Angew. Chem h i . Ed. Engi. 1990, 29, 549.
[254] D. Astruc, Ace. Chem. Res. 1986. 19, 377-383: D. Astruc, Comments
Inorg. Chem. 1987, 6, 61
[255] a) D. Astruc, Tfrruhedron 1983, 39. 4027-4095: Chem. Rev. 1988, 88,
1189-1216; M. Lacoste. D. Astruc, M.-T. Garland, F, Varret, Orgunome1ullic.r 1988, 7, 2253-2255; M.-H. Desbois. D. Astruc, J. Guillin. F. Varret. A. X. Trautwein, G. Villeneuve, J. Am. Chem. Soc. 1989, I l l , 5800-
5809; M. Lacoste, H. Rabaa, D. Astruc, N. Ardoin. F. Varret, JLY.
Saillard, A. Le Beuze, rhd. 1990, 112,9548-9557; D. Astruc, M. Lacoste.
L. Toupet, J. Chem. Soc. Chem. Commun. 1990,558-561; M.-H. DelvilleDesbois, D. S. Brown, K. P. C. Vollhardt, D . Astruc, J. Chem. Soc. Chem.
Commun. 1991, 1355-1357; M:H. Delville, M. Lacoste. D. Astruc. J.
Am. Chem. Soc. 1992,114.8310-8311,s. Rittinger, D. Buchholz, M.-H.
Delville-Desbois, J. Linares, F. Varret, R. Boese, L. Zsolnai, G. Huttner,
D. Astruc, Orgunometallics 1992, 11. 1454-1456; b) M. H. Delville, S .
Rittinger, D. Astruc, J. Cliem. Soc. Chetn. Commun. 1992, 519-520.
[256] P. Hudeczek. F. H. Kohler, Orgunometullics 1992, 11, 1773-1775.
[2571 T.-Y. Dong, C.-C. Schei. M:Y. Hwang, T.-Y Lee, J. Orgunornet. Chem.
1991, 410, C39-C43. Review: W. E. Geiger. N. G. Connelly, Adv.
Organomel. 1984, 24, 87-130.
[258] D. Obendorf, H. Schottenberger, C. Rieker. Orgunomerullics 1991, 10,
1293- 1297.
[259] a) E. E. Bunnel, L. Valle, N. L. Jones, P. J. Carroll, C. Barra, M. Gonza-
lez, N. Munoz, G. Visconti, A. Aizman, J. M. Manriguez, J Am. Chem.
Soc. 1988, 110, 6596-6598; b) W. L. Bell, C. J. Curtis. C. W. Eigenbrot,
Jr., C. G . Pierpont. J. L. Robbins, J. C. Smart. Orgunometallics 1987, 6,
266-273; c) N . Maigrot, L. Richard, C. Charner, F. Mathey, Angew.
Chem. 1992, 104. 1082-1084; Angeis. Chem. In/. Ed. Engl. 1992. 31,
[260] a) A. Scholz. A. Smola, J. Scholz, J. Loebel, H. Schumann. K.-H. Thiel,
Angew. Chem. 1991,103,444-445; Angew. Chem. Inr. Ed. Engl. 1991,30,
435; b) F. Bickelhaupt, Angew. Chein. 1987. 99, 1020-1035; AngeH.
Chem. 1111.Ed. Engl. 1987, 26, 990.
[261] a) H. Ogoshi, J. Setsume, Z. Yoshida, J. Am. Chem. Sor. 1977, 99, 38693870; b) K. J. Del Rossi, B. B. Wayland. J. Chem. Soc. Chcm. Commun.
1986, 1653-1655; c) R. S . Paonessa. N. C. Thomas, J. Halpern, J. Am.
Chem. Sor. 1985, 107, 4333-4335.
[262] B. B. Wayland, Y. Feng, S. Ba, Orgunomerullics 1989, 8, 1438-1441.
[263] N. Rajapakse, B. R. James, D. Dolphin, Can. J. Chetn. 1990, 68, 22742277.
[264] a) W. P. Griffith, G. Wilkinson, J. Chem. So<. 1959, 1629-1630; M. E.
Kimball. J. P. Martella, W. C. Kaska, Inorg. Chem. 1967, 6 , 414-416;
b) P. S. Santos, K. Kawai.0. Sala, Inorg. Cbrm. Acru 1977.22. 155-159;
K. D. Grande. A. J. Kunin, L. S . Stuhl. B. M. Foxman, Inorg. Chem.
1983, 22, 1791-1794.
[265] a) See forexample D. M. Hoffman, R. Hoffmann. Orgunomerullics 1982,
1. 1299-1302; J. T. Mague, Po/.yhedron 1992,11,677-686: Organometullies 1986.5.918-926; R. W. Hilts, R. A. Franchuk, M. Cowie, ;hid. 1991.
10, 304-316: M . Rdshidi. G . Schoettel. J. J. Vittal, R. J. Puddephatt, ;bid.
1992, 11, 2224-2228; b) M. R. Gagne, J. Takats, ihid. 1988. 561-563:
M. J. Burn, G. Yu, Kiel. F. Seils, J. Takats, J. Washington, J. Am. Chem.
Soc. 1989, ill,
[266] a ) B. L. Booth, R. N. Haszeldine, P. R. Mitchell. J. J. Cox, J Chem. Sol
Chem. Commun. 1967, 529-530; b) J. J. Bonnet, R. Mathieu, R. Poilblanc, J. A. Ibers, J. Am. Chem. Sac. 1979, 101, 7487V7496.
[267] M. Green, A. Laguna, J. L. Spencer, F.G. A. Stone, J. Chem. Soc. Dullon
Trans. 1977, 1010-1016.
[268] R. D. Adams, L. Cheng, W. Wu. Organomerallics 1992, 11. 3505-3507.
[269] a) C. M. Mitchel, F. G. A. Stone, J. Chem. Soc. Chem. Commun. 1970,
1263-1264; b) J. A. J. Jarvis, A. Johnson, R. J. Puddephatt, ibid. 1973,
373-374; A. Johnson, R . J. Puddephatt, J. L. Quirk. J. Chem. Soc. Dullon
Trans. 1978, 980-985.
[270] H. Ogawa. T. Joh, S. Takahashi. J. Chem. Soc. Chem. Commun. 1988,
561 -562.
[271] M. Herberhold, M. Biersack, J. Orgunomer. Chem. 1990, 381. 379- 389;
ihid. 1993,443, 1-8; M. Herberhold. H.-D. Brendel. U. Thewdlt, Angeic.
Chem. 1991, 103, 1664-1665; Angeu. Chem. I n [ . Ed. Engl. 1991, 30,
[272] G . Kreisel, P. Scholz, W. Seidel, Z. Anorg. A&. Chem. 1980, 460, 51 - 5 5 .
[273] N. A. Ustynyuk, V. N . Vinogradovd. D. N. Kravtsov, Y. F.Orunenko.
V. A. Piren, Orgunomel. Chem. USSR 1988. 1, 488.
[274] R. J. Cross, M. F. Davidson, A. J. McLennan, J Orgunomel. Chem. 1984,
265, C37-C39; R. J. Cross, M. F. Davidson. J. Chem. Soc. Dalton Trans.
1986.41 1-414.
[275] H. Ogawa, T. Joh, S . Takahashi, K. Sonogashtra, J. Chem. Sor. Chem.
Conimun. 1985, 1220-1221; H. Ogawa, K. Onitsuka, T. Joh, S. Takahashi, Y Yamamoto, H. Yamazaki, 0rgunometullrc.s 1988, 7,2257- 2260.
[2761 a) W. Beck. B. Niemer, J. Breimair. J. Heidrich, J Orgunomet. Chem. 1989.
372, 79-83. b) J. Heidrich, M. Steimann. M. Appel, W. Beck, J. R.
Phillips, W. C. Trogler, Orgunometullics 1990, 9, 1296- 1300.
[277] M. Akita, M. Terada. S. Oyama, S. Sugimoto, Y. Moro-oka,
Orgunometullics 1991. 10. 1561- 1568.
[278] a) R. M. Bullock, F. R. Lemke, D. J. Szalda. J Am. Chem. Soc. 1990. /12,
3244-3245; b) F. R. Lemke. D. J. Szalda. R. M. Bullock, ihid. 1991, 113,
[279] M. St. Clair, W. P Schaefer, J. E. Bercaw, Orgonometullics 1991,fO. 525527.
[280] N. A. Ustynyuk, U . N. Vinogradovd, D. N. Kravtsov, Orgunomer.
Cheni. USSR 1988. 1 45.
[281] J. A. Davies, M. El-Ghanam, A. A. Pinkerton, D. A. Smith, J.
Orgunomer. Chem. 1991,4119, 367-376.
(2821 A. Ramsden, W. Weng, A. M. Arif, J. A. Gladysz, J. Am. Chem. Soc. 1992,
114.5890; J. A. Ramsden, W Weng, J. A. Gbadysz, Orgunomerullics 1992,
11. 3635 - 3645.
12831 a) R. Nast. U. Kirner, Z . Anorg. Allg. Chem. 1964,330, 311 -316; b) R.
Nast, P. Schneller, A. Hengefeld. J. Organomer. Chem. 1981, 214, 273276.
[284] K. Siinkel. Universitdt Miinchen. personal communication.
[285] M:C. Chen, Y.-J. Tsai, C.-T. Chen, Y.-C. Lin, T.-W. Tseng, G.-H. Lee, Y.
Wang, Organomeraiiics 1991. 10. 378- 380.
[286] P. Binger. P. Miiller, P. Philipps. B. Gabor, R. Mynott. A. T. Herrmann,
E Langhauser, C. Kriiger, Chem. Ber. 1992, 125, 2209-2212.
[287] G. A. Koutsantonis. J. P. Selegue, J A m . Chcm. Sot. 1991. 113. 23162317.
[288] D. R. Neithammer, R. E. LaPointe, R. A. Wheeler, D . S. Richeson,
G. D. Van Duyne, P. T. Wolczanski, J. Am. Chem. So<. 1989,111,90569072.
12891 a) M. L. Listemann. R. R. Schrock, OrganomeruNicx 1985, 4, 74-83;
b) K. G. Caulton, R. H. Cayton, M. H. Chisholm, J. C. Huffman, E. B.
Lobkovsky, Z. Xue, &id. 1992, 11, 321-326; c)T. M. Gilbert. R. D.
; M. H. Chisholm, K.
Roger. J. Organomel. Chem. 1991. 421. C I - ~ C 5d)
Folting. J. C. Huffman. E. A. Lucas, Orgunomeiullics 1991.10.535-537.
[290] a) D. M. Hoffmann, R. Hoffmann, C. R. Fisel, J; Am. Chem. Soc. 1982,
1114. 3858-3875: P. R. Raithby. M. J. Rosales. Adv. Inorg. Radiochem.
1985.29. 169-247; E. Sappa, A. Tiripicchio, P. Braunstein, Chem. Rev.
1983, 83. 203-239; b)D.-K. Hwang. Y. Chi, S.-M. Peng, G.-H. Lee,
Orgunomeiulhcs 1990, 9 , 2709-2718; Y. Chi, H.-Y Hsu, S.-M. Peng,
G.-H. Lee, J. Chem. Soc. Chem. Commun. 1991, 1023-1025. and references therein in [243]; c) G. Erker. W. Fromberg, K. Angermund, R.
Schlund. C. Kriiger. ibid. 1986,372-374; d) C. P. Casey, F.R. Askham,
L. M. Petrovich, J. Orgunomel. Chem. 1990. 387, C31 -C35.
[291] A. D. Horton. A. G. Orpen, Angew. Chem. 1992, 104, 912-914, Anger.
Chem. I n f . Ed. Engl. 1992, 31, 876-878.
[292] a) T. Weidmann, V. Weinrich. B. Wagner, C. Robl, W. Beck, Chem. Ber.
1991, /24$1363-1368: b) G . A. K o u t s h o n i s , J. P. Selegue, J.-G. Wang,
Orgunomrrullrcs 1992, 11, 2704-2708; c) M. Akita, M. Terada. M. Tanaka, Y. Moro-oka. ihrd. 1992, I f , 3468-3472; d) ibid. 1992, 11. 18251830.
I2931 F. R. Lemke. D. J. Szalda, R. M. Bullock, Orgunome/u/hcs 1992, 11,876884; F. R. Lemke. R. M. Bullock, ibid., 1992, 11 4261-4267.
[294] T. Rappert, 0. Niirnberg, H. Werner, OrgunomeruNics, 1993, 12, 13591364; H. Werner, Nuchr. Chem. Tech. Lab. 1992, 40, 435-444.
[295] A. Wong. P. C. W. Kang. C. D. Tagge, D. R. Leon, 0rgunomerallic.r 1990,
9, 1992- 1994.
[296] R. Crescenzi, C. L. Sterzo. Orgunomerullics 1992. 11, 4301 -4305.
[297] a) C. J. Cardin, D. J. Cardin, M. F. Lappert, J. Chem. Soe. Dalton Truns.
1977. 767-779: b) A. Sebald, C. Stader, B. Wrackmeyer. J. Orgunornet.
Chrm. 1986. 311, 233-242.
[298] T. Debaerdemaeker. C. Weisemann, H.-A. Brune, J. Orgonomet. Chem.
1988,350.91 99; R. Hohenadel, H.-A. Brune, ibid. 1988,350,101 108;
C. Weisemann. G. Schmidtberg, H.-A. Brune, h i d . 1989,365,403-412:
rhrd. 1989,362,63-76, H.-A. Brune, R. Hohenadel, G . Schmidtberg, U.
Ziegler, ihid. 1991, 402, 179-199.
[299] S. Kotani. K. Shuna, K. Sonogashira, J. Orgunomer. Chem. 1992, 429,
403-413; J. P. Selegue, K. Swarat, University of Kentucky, personal
[300] a) P. J. Stang, C. M. Crittell, Orgunomerullics 1990, 9, 3191-3193; P. J.
Stang, R. Tykwinski. J. Am. Chem. Soc. 1992, 114,4411-4412; b) L. D.
Field. A. V. George. F. Laschi, E. Y. Malouf, P. Zanello, J, Orgunomer.
Chem. 1992. 435. 347-356.
G. H. Worth. B. H. Robinson, J. Simpson, Orgunometullics 1992. 11,
501 -513; S. M. Elder. B. H. Robinson, J. Simpson, J. Orgunornet. Chem.
1990, 398. 165-176; B. F. G. Johnson, J. Lewis, P. R. Raithby, D . A .
Wilkinson. ibrd. 1991. 408. C9-C12.
S. L. Latesky. J. P. Selegue, J. Am. Chem. Soc. 1987, 109, 4731 -4733.
a) D. Mansuy. J.-P. Lecomte, J.-C. Chottard, J.-F. Bartoli, Inorg. Chem.
1981, 20. 3119-3121: V. L. Goedken, M. R. Deakin, L. A. Bottom1ey.J.
Chem. Soc. Cbmi. Comtnun. 1982.607-608; D. R. English, D. N. Henrickson. K. S. Suslick, Inorg. Chem. 1983,22,367-368; b) G. Rossi, V. L.
Goedken, C. Ercolani, J. Chetn. Soc. Chem. Commun. 1988.46-47: E. N .
Bakshi, C. D. Delfs, K. S. Murray. B. Peters, H. Homborg, Inorg. Chem.
1988. 27, 4318-4320; C. Ercolani, M. Gardini, V. L. Goedken, G. Pennesi, G. Rossi. U . Russo, P. Zanonato, h i d . 1989, 28. 3097-3099.
W. Beck, W. Kuauer, C. Robl, Angew. Chem. 1990, 11~2,331-333: Angew.
Chem. 1111. Ed. Engl. 1990, 29, 293.
a) M. Etienne. P. S White, J. L. Templeton. J. Am. Chem. Soc. 1991, 113.
2324-2325; b) G. M. Jamison. A E. Bruce, P. S . White. J. L. Templeton,
ihid. 1991. 113, 5057-- 5059; c) G. M. Jamison, P. S. White, D. L. Harris,
J. L. Templeton in Trunyition Merul Curhyne Cornpiexes (Ed.: F. R.
Angew. Chem. In!. Ed. Engl. 1993, 32, 923-949
Kreissl). Kluwer, Dordrecht, 1993; d) T. Desmond, F. J. Lalor, G. Ferguson. M. Parvez, J. Chem. Sue. Chem. Commun. 1984, 75-77.
[306] M. Green, J. A. K. Howard, A. P. James, C. M. Nunn. F. G. A. Stone, J.
Chem. Sor. Dulron Trans. 1986, 187-197; J. E. Goldberg, D. F. Mullica,
E Sappenfield, F. G. A. Stone, ibid. 1992, 2495, and references therein;
F. G. A. Stone, Adv. Organomet. Chem. 1990, 31. 53-89.
[3071 W. Weng, A. A. Arif, J. A. Gladysz, Angew. Chem. 1993,105,937; Angew.
Chem. Inr. Ed. Engl. 1993,32, 891 ;W. Weng, J. A. Ramsden, A. M. Arif,
J. A. Gladysz, J. Am. Chem. Soc. 1993, 115, 3824-3825.
[308] P. J. Fagan. J. C. Calabrese, B. S. Malone, Acc. Chem. Res. 1992. 25.98;
P. J. Fagan. J. C. Calabrese, 8. S . Malone, J. Am. Chem. Soc. 1991, 113,
[309] a ) A . L. Balch, J. W. Lee, C. Noll, M. M. Olmstead, J. Am. Chem. Sue.
1992, 114. 10984-10985; A. L. Balch. J. W. Lee, M. M. Olmstead,
Angew. Chem. 1992,104,1400- 1402; Angew. Chem. In/. Ed. Engl. 1992,
31,1356-1358; b) F. Diederich,Y. Rubin, ibid. 1992,104,1123-1146and
1992, 31, 1101.
[310] a) C. U.Pittman, C. E. Carraher, J. E. Sheats, M. D. Timken, M. Zeldin
in Inorganic and Metal-Conraining Polymeric Marerials (Eds. : J. E.
Sheats, C. E. Carraher, C. U. Pittman, M. Zeldin, B. Currell), Plenum,
New York. 1989, p. 1; C. U. Pittmann in Comprehensive Organomedlic
Chemistry. Vol. 8 (Eds: G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon, 1982. pp. 553-605; A. K. Saha, M. M. Hossein, J. Orgunomet.
Chem. 1993, 445, 137-141; V. A. Sergeev, L. I. Vdovina, Organomef.
Chem. U S S R 1989, 2(1), 77-82; b) F. S. Arimoto, A. C. Havan. J. Am.
Chem. Soc. 1955, 77, 6295-6297; c)S. Afeworki, P. K . Baker, 0. L.
Parri, C . D’Silva, J. Organomet. Chem. 1992, 431, 81 -86.
[311] M. H. Chisholm, Angew. Chem. 1991, 103,690-691; Angew. Chem. Inr.
Ed. Engi. 1991,30, 673; H. S. Nalua, Appl. Orgunornet. Chem. 1991,5,
349-377; A. M. Giroud-Godqum, P. M. Maitlis, Angew. Chem. 1991,
103.370-398; Angew. Chem. Inf. Ed. Engl. 1991,30,375-402; G. Frapper. M. Kertesz, lnorg. Chem. 1993, 32, 732-740, and references therein
13121 a ) K. Sonogashira, S. Takahashi, N. Hagihara, Absrr. 81h I n t . Conf
Organomef.Chem.. Kyoto, Japan, 1977,59;b) S. Takahashi, H. Monmoto. E. Murato, S. Kataoka, K. Sorogashira, N. Hagihara, J. Polym. Sci.
Pofwn. Cilem. Ed. 1982, 20. 565; c) T. Kaharu, H. Matsubara, S. Takahashi, J. M a w . Chem. 1991, I , 145-146; d) N. Hagaihara, K. Sonogashira. S. Takahashi, Adv. Polym. Sci. 1980, 41, 149.
13131 a ) S. J. Davies, B. F. G. Johnson, M. S. Khan, J. Lewis, J. Chem. Sac.
Cltem. Commun. 1991,187-188; b) M. S. Khan, S. J. Davies, A. K. Kakkar, D. Schwartz, B. Lin, B. F. G. Johnson, J. Lewis,J. Orgunornet. Chem.
1992, 424, 87-97, and references therein; c) J. Lewis, M. S. Khan, A. K.
Kakkdr, B. F. G. Johnson, T. B. Mdrder, H. B. Fyfe, F. Wittmann, R. H.
Friend, A. E. Dray, ibid. 1992, 425, 165-176; d)S. J. Davies, B. F. G.
Johnson, J. Lewis, M. S. Khan, ibid. 1991, 40t. C43-C45; e) B. F. G.
Johnson, A. K. Kakkar, M. S. Khan, J. Lewis, [bid. 1991,409,C12-C14;
f ) S . J. Davies, B. F. G. Johnson. J. Lewis, P. R. Raithby, ibid. 1991,414.
C51 -C53.
[314] a) M. S. Khan, D. J. Schwartz, N. A. Dasha, A. K. Kakkar, B. Lin, P. R.
Raithby, J. Lewis, Z . Anorg. Allg. Chem. 1992,616,121; b) M. E. Wright,
Macromolecules 1989, 22, 3256 -3259.
[3151 a) K . Onitsuka, H. Ogawa, T. Joh, S. Takahashi, Y Yamamoto, H. Yamazaki, J Chem. Soc. Dalton Trans. 1991, 1531-1536; b) Onitsuka, T.
Joh. S.Takahashi, Angew. Chem. 1992,104,893-894; Angew. Chem. I n / .
Ed. Engl. 1992.31, 851 -852.
[316] H.B. Fyfe, M. Mlekuz, D. Zargarian, N. J. Taylor, T. B. Marder, J.
Chem. Suc. Chem. Commun. 1991, 188-190.
[317] M. Hanack, S. Deger, A. Lange, Coord. Chem. Rev. 1988,83, 115-136.
[3181 a)T. P. Pollagi, J. Manna, T. C. Stoner, S. F. Geib, M. D. Hopkins, in
Trunsition Metal Curbyne Complexes, (Ed.: F, R. Kreissl), Kluwer,
Dordrecht. 1993; b) J. Mana, S. J. Geib, M. D. Hopkins, J. Am. Chem.
Soc. 1992, 114, 9199-9200.
A n @ ” . Chem. I n l . Ed. Engl. 1993,32, 923-949
[319] a) R. McDonald, K. C Sturge, A. D. Hunter, L. Shilliday, Organome/nllics 1992, 11, 893-900; b) K. C. Sturge, A. D. Hunter, R. McDonald,
B. D. Santarsiero, ibid. 1992, 11, 3056-3062.
13201 M. Herberhold, H.-D. Brendel, 0. Nuyken, T. Pohlmann, J Organomel.
Chem. 1991, 413, 65-78; P. F. Brandt, T. B. Rauchfuss, J. Am. Chem.
Soc. 1992, 114, 1926.
(3211 D. A. Foucher, B.-Z. Tang, I. Manners, J. Am. Chem. Snc. 1992, 114.
[322] a) H. Funaki, K. Aramaki, H. Nishihara, Chem. Leu. 1992,2065-2068;
b)S. I. Yaniger, D. J. Rose, N. P. McKenna, E. M. Eyring. Mucromoiecufes 1984, 17, 2579; c) A. Ohkubo, K. Aramaki, H.Nishihard,
Chem. Letf. 1993, 271-274.
[323] a) S. C. Tenhaeff, D. R. Tyler, Organomerallics 1991, 10, 473-482:
b)ibid. 1991, 10, 1116-1123;c)ibid. 1992, 11. 146661473.
13241 C. P. Casey, P. J. Fagan, W. H. Miles, J. Am. C k m . So(. 1982, /04.
1134-1136; C. P. Casey, E. A. Austin, Organometallics 1986, 5, 584585; C. P. Casey, M. A. Gohdes, M. W. Meszaros, &id. 1986,5,196- 199;
C. P. Casey, M. W. Meszaros, R. E. Colborn, D. M. Roddick, W. H.
Miles, M. A. Gohdes, ibid. 1986,5, 1879-1886; C . P. Casey, L. K. Woo,
P. J. Fagan, R. E. Palermo, B. R. Adams. ibid. 1987, 6, 447-454; C. P.
Casey, L. K. Woo, J Organonlet. Chem. 1987,328, 161 -168; C. P. Casey,
E. A. Austin, A. L. Rheingold, Orgunomerullics 1987, 6, 2157-2164;
C. P. Casey, Chem. Scr. 1987, 27, 501 -503; C. P. Casey, M. S. Konings,
S. R. Marder, Y Takezawa, J. Organomer. Chem. 1988, 358. 347-361:
C. P. Casey, M. S. Konings, S. R. Marder, ibid. 1988,345,125- 134; C. P.
Casey, M. Crocker, P. C. Vosejpka, A. L. Rheingold, OrganomeruNics
1989,8,278-282; C. P. Casey, P. C. Vosejpka, M. Crocker. J. Organomer.
Chem. 1990, 394, 339--347.
13251 S. A. R. Knox, Pure Appl. Chem. 1984,56,81-89; M. J. Fildes, S. A. R.
Knox, A. G. Orpen, M. L. Turner, M. J. Yates, J. Chem. Soc. Chem.
Commun. 1989, 1680- 1682.
13261 C. P. Casey, M. S. Konings, M. A. Gohdes. M. W. Meszaros,
Organomefallics 1988, 7, 2103-2107.
[327] C. P. Casey, S. R. Marder, A. L. Rheingold, Organomerallics 1985, 4,
762 - 766.
[3281 C. P. Casey, M. S. Konings, S. R. Marder. Pof-yhedron1988, 7,881-902;
W. P. Schaefer, J. M. Spotts, S. R. Marder. Acru Crysfullogr. Secr. C
1992,48, 811 -814.
[329] W. P. Fehlhammer, A. Schroder, J. Fuchs, E.-U. Wiirthwein, Angew.
Chem. 1992, 104, 604-606; Angew. Chem. I n f . Ed. Engl. 1992, 3t, 590.
13301 W. A. Herrmann, J. Plank, J. L. Hubbard, G. W. Kriechbaum, W.
Kalcher, B. Koumbouris, G. Ihl, A. Schifer. M. L. Ziegler, H. Pfisterer,
C. Pahl, J. L. Atwood, R. D. Rogers, 2. Narurforsch. 5, 1983.38. 13921398.
[331] U.Zenneck, Angew. Chem. 1990, 102, 171-182: Angew. Chrm. I n / . Ed.
Engl. 1990, 29, 138.
13321 a) K. C. Ott, R. H. Grubbs, J. Am. Chrm. Soc. 1981, 103. 5922-5923;
b) P. B. Mackenzie, K. C. Ott, R. H. Grubbs, Pure Appl. Chem. 1984,56,
59-61; J. W. Park, P. B. Mackenzie, W. P. Schaefer, R. H. Grubbs, J. Am.
Chem. Soc. 1986,108,6402-6404; F. Ozawa, J. W. Park, P. B. Mackenzie,
W. P.Schaefer, L. M. Henling, R. H. Grubbs,ibid. 1989.111.1319-1327;
c) M. J. Hostetler, R. G. Bergman, J A m . Chem. SOL..1990. 112,8621 8623; M. J. Hostetler, M. D. Butts, R. G. Bergman, Inorg. Chim. Acru
1992. 198-200, 377-392; J. Am. Chem. Soc. 1993, 115. 2743-2752;
d) J. F. Buzinkai, R. R. Schrock. lnorg. Chem. 1989,28, 2837-2846.
[333] H. H. Fox, J.-K. Lee, L. Y. Park, R. R. Schrock, Organomerallics 1993,
12, 759 -768.
13341 M. D. Fryzuk, W. E. Piers. St. J. Rettig, J. Am. Chem. SUL..1985, t07.
[335] P. Binger, F. Langhauser, B. Gabor. R. Mynott, A. T. Herrmann, C.
Kriiger, J. Chem. Soc. Chem. Commun. 1992, 505-506.
[336] See F. A. Cotton, Chem. Eng. News 1992, 10.4- 5.
Без категории
Размер файла
2 687 Кб
without, bond, synthesis, metali, hydrocarbonic, metalцmetal, method, transitional, complexes
Пожаловаться на содержимое документа