close

Вход

Забыли?

вход по аккаунту

?

New Half-Sandwich Polysulfidorhenium Complexes.

код для вставкиСкачать
A,
A',
fl = 111.349(3),, V =1257.6
M , = 199.3, Z = 4,
F(000) = 440, pcd,c= 1.053 gcm-'. (c = 5.75 cm-'. Enraf-Nonius fourR
circle diffractometer, R!2@-scans. 20 C. Cu,, radiation. .;( =1.54179 .&.
R
graphite monochromator), 1390 independent reflections ( ? / m
k + I ) , of
TMSOTf
R
which 1903 were observed ( I > 2a(l), R, = 0.014). sinO:l,,,, = 0 621 for
o
+
(H&HC
:
62-67 oo/
(H3C)zHC+
solution and refinement. All hydrogen-atom positions located. 128 paraCH3
CHI
CHI
meters in the last refinement. R = 0.066 ( R - = 0.079), residual electron
density 0 . 2 e k ' . - 3b: Suitable single crystals were obtained from a
pentane solution at 0 C. Monoclinic. space group P2, n. (no. 14).
3 6:85% syn
15% onfi
a =7.218(2). h =14.904(3). c =14.536(3) .&, /j = 93.171(8) , V =
2d.e
1561.4A3, M,=261.37, Z = 4 . F(000)=568.p,,,,=1.111gcm~3. / I =
3 e: 79% syn
21% anti
0.78 cm- I . Enraf-Nonius four-circle diffrdctometer. R 2fJ-scans. 20 C-,
Mo, radiation, (i = 0.71069 A, graphite monochromator), 4714 indepcndent reflections (ih k 0.of which 1690 were observed ( I > 10(1).
R, = 0.01 1) and used in the refinement. sinO~j.,,, = 0.616 the solution and
Table 2. Physical data of 3a
refinement The positions of the hydrogen atoms of the /err-butyl group
were calculated, the others could he located. 173 parameters in the last
323: 5.p. 74 75 C.0.04Torr. m.p. 55 C . I H N M R (500MHz. CDCI,):
refinement. R = 0.065 ( R , = 0.048). residual electron density 0.3 e k , .
(5 = 0.96 (s. 9 H . C(CH,),, Z). 0.97 (d, J = 6.7 Hz. 3 H : CHCH,, Z).0.98 (s.
Both structures were solved by direct methods (GENSIN[l3]. G E N 9 H . C(CH,),. E ) , 1 .OO(d,J = 6.7 Hz, 3H;CHCH,, E). 2.13 (s, 3 H ; H,CC=O,
TANj141) with the XTAL3.0 program package[l5]. Further details of the
L).1.21 ( s . 3 H . H,CC=O. E).2.65-2.78(br.m. IH:CHCHO,Z).2.86-2.97
( ~ . I ~ ~ . C H C H O . E ) . ~ . ~ ~ ( ~ , ~ H ; N C H , . E ) , ~ . ~ O ( S , ~ H : Ncrystal
C H , structure
, E ) . ~investigation
. ~ ~ ( ~ , may be obtained from the Fachinformations~entrumKarlsruhe. Gesellschaft fur wissenschaftlich-technische InJ = l O H z , 1 H ; NCH, E ) . 4.94 (br d. J = l l HE, 1 H ; NCH, Z ) , 9.56 (d,
formation mbH, D-W-7514 Eggenstein-Leopoldshafen 2 (FRG) on quoJ = S H z . 1 H : CHO. Z ) , 9.71 (d. J = 7 H z , 1 H ; CHO, E ) ; " C N M R
ting the depository number CSD-56487, the names of the authors. and the
(125 MH7, CDCI,). 6 = 12.8 (CHCH,, Zj. 13.1 (CHCH,, E ) , 21.9 (H,CC=O.
journal.
Z).2~.4(H,CC=O.E),28.4(C(CH,),.Z).28.7(C(CH,),, E),31.0(NCH3.Z),
1131 "GENSIN", I.: Suhrumaniun, S. R. Hull XTAL3.0 Rc,/.frrcnw M ~ m i r u l
33.2 (NCH,. E ) . 35.8 (C(CH,),. Z ) . 36.6(C(CH3),, E ) , 46.7 (CHCHO, E , Z ) .
(Eds: S. R. Hall. J. M. Stewart), Universities of Western Australin and
59.0 (hr. NCH. Z). 65.4 (N-CH. E ) . 171.6 (C=O. Ej. 171.9 (C=O, Z). 201.4
Maryland. 1990.
(CHO. Ei. 201.4 (CHO. Z )
[14] "GENTAN". S. R. Hull XTAL3.0 Refwenre Munuul (Eds.: S . R. Hall.
J. M. Stewart), Universities of Western Australia and Maryland. 1990.
[15] XTAL3.0 RCference Munuul(Eds: S . R. Hall. .I.
M. Stewart), Universities
of Western Australia and Maryland. 1990.
structure analysis to have a Z configuration, showed almost
[16] E. Keller. Chem. Unserer Zfit 1986. 20. 178.
0
I
-
c = 10.8412(7)
0
+
b0
+ +
exclusively the Z form. With time, however, the rotamers
attained equilibrium, at which the E rotamer is the minor
form.
In contrast to the rearrangement of 0-vinyl-0,O-acetals,
the diastereoselectivity of the formation of 3 does not depend
on the configuration of the double bond in 2. For example,
both 40:60 and 83:17 mixtures of cislirans 2d yielded 3d
with the same synlanii ratio of 8 5 : 15. Pure cis 2 b (prepared
by isomerization of l a with KOC(CH,),/DMSO, 37%
yield) provided the syn diastereomer 3 b with the same selectivity (de = 88 %) as that obtained from 28:72mixture of cis
and trans 2 b. We presume that the rearrangement 2 + 3 proceeds intermolecularly ; the mechanism is currently under
investigation.
E.uperimenta/ Procedure
To a solution o f 3 0 minol of 2 in 15 mL of CH,CI, at 0 'C under nitrogen was
added dropwise the appropriate amount (Table 1) of TMSOTf. The reaction
mixture %as stirred for 24 h at 0 - C then poured into a cooled, saturated solution of K,CO,. The organic phase was removed and the aqueous phase extracted with CHzCl, ( 3 x 15 mL). The combined organic layers were dried over
MgSO, After the solvent was removed, products 3 were isolated by distillation
under reduced pressure or by recrystallization (etheripentane = 311) (Table 2).
Received: September 2 , 1992 [25551 IE]
German version. A n g w . Chem. 1993, I05, 74
[ I ] D. Seebach. C . Betschart, M. Schiess. H d i . Chin?. A r f u 1984. 67. 1593.
[1]H. Kun7. W. Pfrengle. A n p r . Chem. 1989, 1 0 1 . 1041; Anjieii.. Chwn. I n / .
Ed. En~71.1989, 28. 1067.
[3] E. G. Nolan, A Alloco. M . Broody, A . Zuppa, Etruhedron Lerr. 1991,32,
73.
[4] B. de Lmge, F. van Bolhuis. B. L. Feringa, Terruhfvfron 1989, 45, 6799.
[ 5 ] M. J. Brown, He/wocj,clm 1989. 29, 2225.
161 D. J. Hart. D.-C. Ha. Chmm. R e v 1989. 89. 1447.
[7] T. Arenz, H. Frauenrath, Anjieiv. Chem. 1990, 102,929; Anjieir. Chem. I n f .
E C ~E. ~ Z / 1990.
.
29,932.
[XI H. Frauenrath. H. T o n n i e k n , unpublished.
191 H . Bohine. K. Hartke. Chcm.Ber. 1963, 96. 600.
[lo] H. Frauenrath, J. Runsink. J. Orji. Chem. 1987. 32. 2709.
[ l l ] Compounds 3 were obtained as racemates. For simplification, only one
enantiomer of each is shown in the schemes.
1121 3 a Suitable single crystals were obtained from a pentane solution at O'C.
Monoclinic. space group P2,/n. (no. 14). u =7.9891(6). h =15.5901(6).
.4npeis. < ' I i i ~ iI ~n r. . E d Enp/. 1993, 32, N o . f
New Half-Sandwich Polysulfidorhenium
Complexes
By Max Herberhold,* Guo-Xin Jin, and Wolfgang Milius
Many oligo- and polysulfido complexes have been synthesized during the last two
From this work it
became apparent that rhenium complexes with sulfur-rich
coordination spheres--similar to the inolybdenum and tungsten complexes[3. previously studied in more detail^ -could
be interesting structure-chemical models for metal sulfide
catalysts, for example, for hydrodesulf~rizatioi~.[~~
Thus,
in the mononuclear Re" ion [ReS(S,),]-, the monosulfido
ligand is the apex and the two tetrasulfido chelate ligands are
the base of a tetragonal p ~ r a r n i d . ' ~ In
. ~ ]the binuclear Re"
ion [Re2(S)2(S,),(S,),]2 -, a tetrasulfido chelate ring is coordinated to each Re atom; the formal Re-Re double bond
(2.636 A) is spanned by two monosulfido and two trisulfido
bridges."' The highly symmetrical, tetranuclear Re'" ion
[Re,S,(S,),]' - consists of a distorted Re,@,-S), cube,
whose six faces are bridged with S,
Complexes of
the type [Re,(p3-S),(S,),(S,),-n14- are also known,[91containing both S, and S, bridges between the Re'" centers.
The structural diversity of the complexes is reduced if part
of the coordination sphere is blocked by the voluminous Cp*
ligand (Cp* = C,Me,). In the following, the first two Cp*Re
complexes are described, which contain exclusively sulfido
ligands in the remainder of the coordination sphere."']
Starting from [Cp*Re(O)CI,] (l)[". two products (2
and 3) can be obtained by the reaction with Na,S, in THF.
An equimolar ratio of 1 and Na,S, gives almost only the
[*] Prof Dr. M. Herberhold, Dr. G.-X Jin) ' I Dr. W. Milius
Laboratorium fur Anorganische Chemie der Universitht
Postfach 10 12 51, D-W-8580 Bayreuth ( F R G )
['I
Permanent address:
Institute for Coordination Chemistry
University of Nanjing (People's Republic of China)
s:' VCH Verlu~.s~~.si~llrrrhqf/
mbH, W-6940
Weinheim. I993
1)570-0833;93~0101-0085X 10.00+ .25'0
85
black 0x0 complex 2, which had been previously prepared
from 1 and [Cp,TiS,] as the source of s u l f ~ r . ~With
' ~ ] increasing excess of Na,S,, mixtures of 2 and 3 are obtained
with a rising share of 3. The green complex 3 is formed
almost quantitatively if an excess of a solution of (NH,),S,T
( ~ ~ 1 in0 methanol
)
is added. Desulfurization of 3 with
triphenylphosphane leads to the black binuclear complex 4.
Re,
\s-t
S 4 and S 6 to approach each other to a distance of 3.369 and
3.438
respectively. The corresponding rhodium compound [CpTRh,S,J[181is less symmetrical.
A,
S
5-S
Fig. 2. Crystal structure of4.Selected distances [A] and angles [ 1: Re(l)-S(I)
2.283(3). Re(l)-S(4) 2.294(3). Re(l)-S(S) 2.29012); Re(2)-S(l) 2.291(2), Re(2)S ( 5 ) 2.2660). Re(2)-S(8) 2.287(3); Re(l)-Re(2) 2.618(1); Re(1)-Cp* (center)
1.961. Re(2)-Cp* (center) 1.958. S(l)-S(2) 2.315(4), S(2)-S(3) 2.022(5). S(3)-S(4)
2.080(4). S(S)-S(6) 2.302(4), S(6)-S(7) 2.027(4). S(7)-S(8) 2.082(4): S(1)-Re(1)S(5) 109.7(1). S(l)-Re(Z)-S(S) 110.3(1). Re(l)-S(l)-Re(Z) 69.9(1). Re(l)-S(5)Re(2) 70.2( 1 ).
2
X-ray structure analyses were carried out for complexes 3
and 4 (Figs 1 and 2, respectively).1251In the mononuclear
complex 3 Re' is the center of a tetragonal pyramid; complex
3, like 1 and 2, is a 16-electron complex. The Re-S distances
to the S:- chelate ligands (2.301(2), 2.336(3)
are significantly shorter than those to the S:- chelate ring (2.350(2),
2.395(3)
but still longer than those in 2 (2.244(2) and
2.264(1 j A).1131The Cp* ring is unsymmetrically Ir-coordihowever, this is
nated (Re-C distances 2.257(9t2.443(8)
not unusual for mononuclear Cp*Re complexes with unsymmetrical tripodal structure." ',1 4 - 161
A)
Surprisingly, there are clear differences between the structures of 4 and the formally analogous 18-electron compIex
[Re,(CO)6(p-S,j,]2- (5), formed by the action of sulfur on
[Re(CO),]-.1'91 Both complex 4 with approximate C , symmetry and complex 5 with Ci symmetry have a planar Re$,
A),
A),
center, but only in 4 exists a binding Re-Re interaction
(Re=Re 2.618(1) in 4,Re... Re 4.07 A in 5). Consequently only 5 has acute angles at the rhenium atoms (73.7(3)").
The simultaneous coordination of a S:- and a S:- chelate
ligand in 3 is remarkable; indications for the formation of
[Cp*Re(S,),] have so far not been found. Complexes with
Ss- chelate ligands such as [(PMe,),M(S,)] (M = Ru,
O S ) I *and
~ ~ [(S7),Bi(p-S,)Bi(S7)~]4-[z11
are known, but are
rare. The selenium analogues of the complexes 2, 4[**]
and
5[,j1were also characterized by X-ray crystallography; they
are isostructural with the corresponding sulfur complexes.
A
Fig. 1. Crystal structure of 3. Selected distances [A] and angles ['I: Re-S(1)
2.350(2), Re-S(4) 2.395(3), Re-S(5) 2.301 (2). Re-S(7). 2.336(3), Re-Cp* (center)
1.993. Re-C(l) 2.406(7), Re-C(2) 2.443(8), Re-C(3) 2.330(9). Re-C(4) 2.257(9).
Re-C(5) 2.276(8). S(l)-S(2) 2.090(4). S(2)-S(3) 2.010(4), S(3)-S(4)2.083(4); S(5)S(6) 2.042(4); S(6)-S(7) 2.054(3); S(l)-Re-S(4) 89.6(1). S(5)-Re-S(7) 75.6(1).
S(I)-Re-S(7) 82.7(1); S(4)-Re-S(5) 76.5(1).
Experimental Procedure
The binuckar Re"' complex 4 contains two S:- chelate
ligands, which are arranged so that one S atom of each
ligand bridges the Re atoms (Fig. 2). In contrast to the oligosulfido chelate ligands in 2 and 3, which are formally twoelectron ligands, the s:- ligands in 4 function as four-electron ligands. The Re-Re distance (2.618(f)A) lies in the
range for a double bond (2.38-2.65 A);1171
thus 4 is formally
an 18-electron complex. The cisoid arrangement of the two
S: - ligands in 4 causes the sulfur atoms S 2 and S 8 as well as
86
<> VCH Verlugsgesellschufi mhH. W-6940 Weinhurm, 1993
3: A green solution of 1 (0.18 g, 0.44 mmol) [11.12] in THF (80 mL) was treated
with a solution of (NH,),S, (.x= 10) in MeOH 1241 and stirred for 4h. After
removal of the solvent, the green residue was purified by chromatography on
silica gel (Merck, Kieselgel 60). S, was eluted with toluene/pentane (2:1), and
3 was eluted with CH,CI,. Recrystallization from CHCl,/hexdne at -25'-C
gave dark green cryst& of 3 (0.23g. 95.8%. m.p. 194 ' C ) . IR (Cs1)J[cm-I] = 499 ( p - S3); ' H NMR (CDCI,). 6 =1.90 (s, C,Me,); "C NMR
(CDCI,): S = 11.3 ( C 5 M r s ) .104.4 (C,Me,); El-MS (70 eV): m/r = 546 ( M ' ,
4%). 514 ( M ' - S, 3%). 482 ( M i - 2s. 70%). 450 ( M i - 3S, 14%), 418
( M + - 4s. i n o m .
4: A solution of 3 (0.1 5 g. 0.27 mmol) and PPh, (0.29 g. 1.10 mmol) in CHCI,
or CH,CI, (ca. 30 mL) was stirred for 10 h Upon Chromatography on silica gel
0570-0833/9310101-(~0#6
$ 10.00+ .25/0
Angew. Chem. hi.Ed. EngI. 1993, 32. No. I
Ph,PS h a s eluted with CH,CI,, followed by 4 with CH,CI,/THF ( 5 : I ) . Compound 4 was slowly crystallized from CH,CI, (black prisms, 0 03 g, 24.5%.
m.p. 225 C). 'H N M R (CDCI,): 6 = 2.02 (s. C,Me,),
N M R (CDCI,):
d =11.S(C,Me5).
100.6(C,MeS):EI-MS(70eV): m!; = 8 3 6 ( M ' - 2S.7°/0).
8 0 4 ( M + - 3 S . Y U h ) . 7 7 2 ( M t - 4 S , 100°%), 7 4 0 ( M t - 5 S . 3 0 % ) . 708
(M'
6 s . ZX'!C).
~
Received: September 8, 1992 [Z5561 IE]
German version. Angeiv. Clirm. 1993. 105, 127
Reviews: a ) M. Draganjac, T. B. Rauchfuss. Angel!,.Clirm. 1985.97. 745;
.Angru. Cliwi?. I n t . Ed. Engi. 1985.24,742; b) A. Muller, E. Diemann, Adi..
Cliiwi. 1987. 3i. 89; c) J. W. Kolis. Coord. Clwni. Rri,. 1990, 105. 195.
J Wachter. .J. Coord. Chem. 1987, 15. 219: Angew. Cliern. 1989. iO1. 1645;
/iiwg.
.4iigi,ir.
Cliimi. In!. Ed. Engl. 1989. 28, 1613.
A. Muller. Pol~&vfron1986. 5 , 323: M. A. Harmer, T. A. Halbert, W.-H.
Pan. C. L Coyle. S. A. Cohen, E. I. Stiefel. ihid. 1986, 5. 341 : D. Coucou-
\;inis. A. Hadjkyriacou. M. Drdgdnjac. M. G. Kanatzidis. 0. Ileperuma.
;hid 1986. 5, 349.
M. Herberhold. G.-X. Jin. A. Muller. M. Penk. Z. Nuturforsch. i?1991,46.
35.
F. A. Cotton. P. A. Kibala. M. Matusz. PoljAedron 1988. 7. 83.
A . Muller. E. Krickemeyer. H. Bogge, 2. Anorg. ANg. Cliem. 1987.554.61
A. Mhller, E. Krickemeyer, V. Wittneben. H. Bogge. M. Lemke, A n g ~ i r .
Chiwi. 1991. 103. 1501 ; Angeu,. Cliem. In!. Ed. Engl. 1991, 30. 1512.
A . Muller. E. Krickemeyer, H. Bogge, Angeiv. Chmi. 1986. 911. 258;
Aiigcii. Ch~wi.Inr. Ed Engl. 1986, 25. 272.
A . Muller. unpublished, cited from [I b].
[Cp*ReSJ is unknown and the existence of [Cp:Re,S,] has not been
proven unequivocally.
W. A. Herrmann. U. Kusthardt, M. Floel. J. Kulpe, E. Herdtweck, E. Voss.
J. Or,gunoinct. Cliein. 1986. 314, 151.
W. A. Herrmaiin. M. FIoel, J. Kulpe, J. K. Felixberger, E. Herdtweck, J.
Ur,qiinonicr. CIimn. 1988. 355. 297.
J Kulpc. E. Herdtweck. G. Weichseibaumer, W. A . Herrmann. J.
U r g u n o i i ~ i ~Chen~.
r.
1988, 348. 369.
W. A Herrmann. E. Herdtweck. M. Floel. J. Kulpe, U. Kusthardt. J. Okudn. Polslieclron 1987, 6. 1165.
M. Herberhold. B. Schmidkonr, M. L. Ziegler. 0. Serhadle. Z . Nuturm.51,il.
i? 1987.42. 739.
W. A. Herrmann. G. Weichselbaumer. R. A. Paciello, R. A. Fischer, E.
Herdtweck, J. Okuda. D. W. Marz. Orgunometullics 1990. 9, 489.
W. A. Herrmann, R. Serrano, A. Schifer. U. Kusthardt, J. Orgunonwl.
Cliiw. 1984. 272. 55.
H. Brunner. N. Janietz, W. Meier. B. Nuber. J. Wachter, M. L. Ziegler.
4rig1,ii.. C l i ~ m1988.
.
100. 717; Angeis. Clirm. I n [ . Ed. Engl. 1988, 27. 708.
T. S. A. Hor. B. Wagner. W. Beck, 0r~onometullic.r1990, 9, 2183.
J Gotzip. A . L. Rheinpold. H. Werner. Angeir. Clieni. 1984. 96. 813;
Atigiw. Cliein. lnr. Ell. Engl. 1984, 23. 814.
A. Muller. M. Zimmermann. H. Bogge, Angeir. C h i n . 1986. 98. 259,
Air,q% Chmi. lnr. Ed. Engl. 1986, 25. 273.
M . Herberhold, G.-X. Jin. W. Milius. unpublished.
S. C O'Neal. W. T. Pennington, J. W. Kolis. Con. .
I
Client 1989. 67. 1980.
M Herberhold. G.-X. Jin. W. Kremnitr, A. L. Rheingold, B. S. Haggerty,
Z.Nuriirforsi~li.i? 1991. 46. 500.
Date for the crystal structure analyses of C,,H,,S,Re (3) and
C,,,H,,S,Re, (4): diffractometer: Siemens P4 (Mo,,. j. = 0.71073 A.
graphite monochromator). 3: monoclinic: P2,irt. u =7.177(2), h =
14.238(3). c = 35.878(3) A. B = 95.35(3)'. Z = 4, dark red platelets. dimensions 0 . 2 0 ~ 0 . 2 0 ~ 0 . 0 1 5 m mMeasured
.
range: 3 ' 1 2 0 1 5 5 - ; measured octants hkl and Ak7; T = 295 K: measured reflections: 4935: independent reflections: 3574. of which observed (F> 3u(F)):2767; empirical
absorption correction (I) scan), minimumimaximum transmission factors:
0.269810.7718 (pMu= 84.06 cm- I ) ; structure solution with direct methods
(SHELXTL PLUS); number of refined parameters: 164; R = 0.043;
wR = 0.028 ( i v - ' = uz(k-)):maximum/minimum residual electron density: 1.76'-1 2 5 e k ' . 4 : monoclinic; P2Jn. a = 8.946(2), h =14.230(3).
c = 20.874(4) A. fl = 90.23(3) , Z = 4, black, prismatic crystals, dimensions 0.15 x 0.15 x 0.20 mm. Measured range: 3 <20<50 : measured octnnts hkl and hk7: T = 295 K; measured reflections: 6384; independent
reflections: 4675. of which observed ( F t Ou(F)): 4675; absorption correction with DIFABS (N. Walker. D. Stuart. Actu Crutullogr. Swi. A 1983.
39. 158) (liMil= 108.3 cm-I); structure solution with direct methods
(SHELXTL PLUS); number of refined parameters: 271; R = 0.054,
= u 2 ( F ) ) ;maximum/minimum residual electron densiwR = 0.034 (11.ty' 1.90,-1.62 e k ' . Further details of the crystal structure investigation
ma! be obtained from the Fachinformationszentrum Karlsruhe,
Gesellschaft fur wissenschaftlich-technische Information mbH, D-W-7514
Egpenstein-Leopoldshafen 2 ( F R G ) on quoting the depository number
CSD-56683. the names of the authors. and the journal citation.
Anget$.. Clicvm In!. Ed. EngI.
1993. 32, No. I
I(q5-CH,C,H,)Mn(CO)(dppfe)J : Two Isomers
Distinguished by their Characteristic CO Stretching Frequencies, which Differ Only in Rotation of
the Methylcyclopentadienyl Ligand:
Evidence for an Intramolecular
M-CO *.* H-C Interaction
By Satoru Onaka,* Hiroyuki Furuta, and Shigeru Tukugi
The importance of C-H ... 0 interactions in determining
the molecular and solid-state properties of organic compounds is well known." -41 Hirota and Nishio recently reported that the intramolecular interaction of C-H groups
with x-electron system is another important factor for the
conformation of organic molecules.[5. 61 For organometallic
compounds, however, we know of few papers that have suggested a C-H ... OC-M interaction in the form of either a
C-H ... 0 hydrogen bond o r an interaction between C-H
and the x system of C0,r71although there are a significant
number of compounds in which a particular conformation is
supposed to be induced by intramolecular C-H ... OC-M
interactions. Here we report a serendipitious example in
which such a C-H...OC-M interaction is responsible for
one of the conformations of a carbonyl (methylcyclopentadieny1)manganese derivative.
When we allowed crystals of the title compound
to
grow from CH,Cl,/hexane, we found that 1 crystallizes in
two different crystal forms with slightly different colors, an
orange-yellow isomer (la) and an orange-red isomer (lb).
The two isomers were obtained in approximately 1 : 1 ratio
and separated under a microscope with a needle. The orange-yellow isomer l a (Nujol mull) exhibits a strong v(C0)
band at 1835 m - ' , while the orange-red isomer l b (Nujol
mull) exhibits a strong w(C0) peak at 1810 cm- The molecular structures for l a and l b are shown in Figure 1, projec-
Fig. 1. Left. Crystal structure of l a . Selected bond lengths (A]. Mn-PI
2.2274(9), Mn-P2 2.2096(8). Mn-C 1.741(3), C - 0 1.172(4). C2-C3 1.502(5),
Mn-C3 2.161(3), Mn-C4 2.125(4). Mn-CS 2.124(4), Mn-C6 2.156(3). Mn-C7
2.160(3). Right: Crystal structure of Ib. Selected bond lengths [A]. Mn-PI
2.216(2), Mn-P2 2.208(2). Mn-C 1.754(7), C - 0 1.169(9), C2-C3 1.50(1). Mn-C3
2.151(8), Mn-C4 2.151(8). Mn-CS 2.154(9), Mn-C6 2.147(9), Mn-C7 2.128(8).
[*] Prof. Dr. S. Onaka, H. Furuta. Dr. S. Takagi
Department of Chemistry, Nagoya Institute of Technology
Gokiso-cho, Showa-ku, Nagoya 466 (Japan)
I**] dppfe = 1,l'-bis(dipheny1phosphino)ferrocene.
G VCH Verlog.~ge.~ellscliufi
mbH, W-6940 Weinheim, t Y Y 3
0570-0833/93/0iOt-0087$ 10.01)i .25/0
87
Документ
Категория
Без категории
Просмотров
3
Размер файла
377 Кб
Теги
polysulfidorhenium, complexes, sandwich, half, new
1/--страниц
Пожаловаться на содержимое документа