close

Вход

Забыли?

вход по аккаунту

?

Novel Catalytic Application of a Transition-Metal Cluster Spirocyclization of Alkyl Isocyanates.

код для вставкиСкачать
nyl-h3-phosphorin)= + 178). The UV spectrum of 5 is likewise consistent with the azulene structure15b1,
as is shown
by a comparison with the longwave absorption maxima of
l-methoxyazulene'61 and 1-phenylaz~lene"~.
In the [8 +2]-cycloaddition of 2 to 4, the tetrahydroazulene 6,or by primary formation of 3, the dihydroazulene 7
must be formed initially. The aromatization of 6 or 7 to 5
H
H OMe
OMe
-2H
7
6
must then proceed via a chlorotrimethylsilane elimination
and a dehydrogenation (spontaneous dehydrogenations to
azulenes are known'']). The 1-phenyl-2-phosphaazuleneto
be expected in a primary acid-catalyzed elimination of methanol could not be observed.
Received: July 18, 1983 [Z 475 IE]
German version: Angew. Chem. 95 (1983) 891
CAS Registry numbers:
2, 74483-17-3; 3, 76684-21-4; 4, 71133-64-7; 5, 87509-02-2.
111 R. Appel, W. Westerhaus, Angew. Chem. 92 (1980) 578; Angew. Chem.
Int. Ed. Engl. 19 (1980) 556; b) G. Mlrkl, E. Seidl, Angew. Chem. 95
(1983) 58; Angew. Chem. Int. Ed. Engl. 22 (1983) 57; Angew. Chem. Suppl.
1983, 75.
[2] G. MBrkl, G. Yu Jin, E. Silbereisen, Angew. Chem. 94 (1982) 383: Angew.
Chem. Int. Ed. Engl. 21 (1982) 370.
[3] W. F'ickl, W. Rieger, A. BBumler, G. Hirmer, J. Daub, Tetrahedron Lett.,
in press; K. M. Rapp, J. Daub, ibid. 1976, 2011; K. M. Rapp, T. Burgemeister, J. Daub, ibid. 1978, 2685; A. Hasenhiindl, K. M. Rapp, J. Daub,
Chem. Left. 1979, 597; W. Bauer, I. Betz, J. Daub, L. Jakob, W. Pickl, K.
M. Rapp, Chem. Ber. 116 (1983) 1154; J. Bindl, J. Daub, A. Hasenhiindl,
M. Meiner, K. M. Rapp, ibid. 116 (1983) 2408; see also K. Hafner, M.
Romer, W. aus der Fiinten, Jusfus Liebigs Ann. Chem. 1967, 376.
[4] Characteristic mass spectroscopic and correct elemental analysis data
were obtained.
[51 a) 'H-NMR spectrum (CDCI,, 250 MHz): 6=8.33 (d, with fine structure,
% . H / ~ H = 10 HZ,% H / ~ H =
1.1 HZ,4 J p / ~ =1.5 HZ, 8-H); 8.14 (d with fine
= 10.2 Hz, 4JpH,6H = 1.0 H Z , ~ Jii
~1.5
, ~ Hz, 4-H); 7.01
structure, 3JpH,5.H
(dd (pseudotriplet), ' J ~ . H / ~10.0
H = HZ; 4.f5 H / ~ . H = 1.10 HZ, 5 . f p / ~ 51.20
Hz, 5-H); 6.88 (dd, ' J d H / 7 H = 1 0 . 0 Hz, 'Jp/H=1.20 Hz,7-H); 7.32-8.00
(m,6-H probably at 7.44 (dd with fine structure) and phenyl-H); 4.26 (d,
4Jp/H=1.09 Hz, OMe); b) UV spectrum (n-hexane): Amax [nm] (&)=a60 sh
(126), 768 (224), 726 sh (210). 398 sh (1370), 386 (1420), 331 (11460), 303
(10600), 291 (11420), 273 sh (9990).
[6] L. L. Replogle, J. Org. Chem. 29 (1964) 2805.
[7] P. A. Plattner, A. Fiirst, M. Gordon, K. Zimmermann, Helu. Chim. Acta 33
(1950) 1910; E. P. Serebryakov, Zh. Org. Khim. 9 (1973) 2389.
181 W. Treibs, H. Froitzheim, Jusfus Liebigs Ann. Chem. 465 (1949) 43; see
also [I].
Novel Catalytic Application of a
Transition-Metal Cluster:
Spirocyclization of Alkyl Isocyanates
By Georg Suss-Fink*,Gerhard Hermann, and
[*] Dr. G. Suss-Fink If*], G. Herrmann
880
Laboratorium fur Anorgankche Chemie der Universitlt
Universitatsstrasse 30, D-8580 Bayreuth (Germany)
Prof. Dr. U. Thewalt
Sektion fiir R6ntgen- und Elektronenbeugung der UniversitBt
Oberer Eselsberg, D-7900 Ulm (Germany)
Present address: Laboratoire de Chimie de Coordination Organique,
Universite de Rennes, Campus de Beaulieu, F.35042 Rennes CCdex
(France)
0 Verlag Chemie GmbH, 6940 Weinheim. 1983
+
R
Me
Et
nPr
The composition of the compounds 1-3 is confirmed
by elemental analysis and (high resolution) mass spectrometry. The spectroscopic data (IR, 'H-NMR, I3C-NMR) are
consistent with a spirocyclic system of NR- and CO-structural units. The structure of the methyl derivative 1 was
determined by X-ray crystallography (Fig. 1).
Q
Ulj- 13lewalt
Ever since transition-metal clusters were discussed as catalysts''l, a great variety of such compounds have been pre-
[**I
pared and characterized'']. However, novel catalytic applications of these complexes still remain to be di~covered'~1.
Herein we report a novel homogeneously catalyzed spirocyclization of alkyl isocyanates providing a surprisingly
simple access to [4.5]-spiroheterocycles.The reaction proceeds in the presence of triethylsilane and the cluster anion
[ H R U ~ ( C O ) , ~ ( S -,
~ Ediscovered
~ ~ ) ~ ] recently in catalytic silylation reactions'", as the catalyst (precursor).
Reaction
of
MeNCO
with
Et3SiH
and
[N(PPh3)2][HRu3(CO),o(S&t3)2]
(SO00:1000 :1) in tetrahydrofuran solution at 150°C yields the spirocyclic compound 1, which upon cooling crystallizes from the reaction solution. Triethylsilanol and its condensation product
hexaethyldisilanol are formed as by-products. The oxygen
atom of one of the five isocyanate molecules incorporated
in 1 is apparently removed by triethylsilane. Other aliphatic isocyanates react analogously, but the spirocyclization products, because of their better solubility, are only
isolable by chromatographic methods. Phenyl isocyanate
does not react under these conditions. The cluster anion
employed as the catalyst is actually altered under the reaction conditions, but the organometallic residue obtained
from the solution remains catalytically active on further
use.
Fig. 1. Structure of the spiroheterocycle 1 in the crystal. Bond lengths [A] in
the rings: Nl.-C2 1.353(3), C2-N3 1.40414). N3-C4 1.352(3), C4-C5
1.556(4), C5-Nl 1.454(3), C5-N6 1.442(3), N6-C7 1.355(3), C7-N8
1.377(3), N8-C9 1.378(4), C9-NlO 1.35913). N10-C5 1.446(3). Further details of the crystal structure investigation are available on request from the
Fachinformationszentrum Energie Physik Mathematik, 75 14 EggensteinLeopoldshafen on quoting the depository number CSD 50537, the names of
the authors, and full citation of the journal.
Both rings in the molecule of 1 are almost planar and
are perpendicular with respect to each other (deviations of
the ring atoms from each of the best planes <0.04 A; angle
between planes 90.5O). Except for the CN bonds protruding from the spiro-atom CS, whose length suggests single
057&0833/83/1111-0880 $02.50/0
Angew. Chem. Int. Ed. Engl. 22 (1983) No, 11
bonding (mean value 1.447 A), all the remaining ring C N
bonds (1.352 to 1.404 A) exhibit double bond character.
Received: July 19, 1983; revised: August 19, 1983 [Z 476 IE]
German version: Angew. Chem. 95 (1983) 899
The complete version of this communication appears in:
Angew. Chem. Suppl. 1983, 1203-1208
CAS Registry numbers:
1, 87482-40-4; 2, 87482-41-5; 3, 87482-42-6; MeNCO, 624-83-9;
(N(PPh3)ZI[HRu3(CO)lo(SiEt3)2],80376-22-3; EtNCO, 109-90-0; RNCO,
110-78-1
[ I ] B. F. G. Johnson, J. Lewis, Pure Appl. Chem. 44 (1975) 43; E. L. Muetterties, Bull. SOC.Chim. Belg. 84 (1975) 959; R. Ugo, Catal. Rev. Sci. Eng. I 1
(1975) 225.
[2] B. F. G. Johnson: Transition Metal Clusters, Wiley, New York 1980.
131 E. L. Muetterties, M. J. Krause, Angew. Chem. 95 (1983) 135; Angew.
Chem. Int. Ed. Engl. 22 (1983) 135.
141 G. Suss-Fink, Angew. Chem. 94 (1982) 72; Angew. Chem. Int. Ed. Engl. 21
(1982) 73; Angew. Chem. Suppl. 1982, 1 1 ; G. Suss-Fink, J. Reiner, J. Organomet. Chem. 221 (1981) C36.
According to a single crystal structure analysis the molecule is almost planar (Fig. I). Only one carbonitrile group
C3N3 slightly deviates from the plane of the thiadiazole
ringfz1.The packing leads to a contact distance of 305.0(2)
pm between S and N4' of an adjacent molecule; this distance is substantially shorter than the sum of the van der
Waals' radii (335 pm). All other intermolecular distances
are too long for participation of bonding between molecules.
Received: October 14, 1982 [Z 174 IE]
Publication delayed at authors' request
German version: Angew. Chem. 95 (1983) 904
The complete version of this communication appears in:
Angew. Chem. Suppl. 1983. 1323-1332
111 H. W. Roesky, N. Amin, G. Remmers, A. Gieren, U. Riemann, B. Dederer, Angew. Chem. 91 (1979) 243; Angew. Chem. Int. Ed. Engl. 18 (1979)
223.
[2] Cf. F. Kurzer, Adu. Heferocycl. Chem. 5 (1965) 119; J. Goerdeler, I. El
Tom, Chem. Ber. 98 (1965) 1544; J. Goerdeler, P. Mertens, ibid. 103
(1970) 1805.
1,2,4-Thiadiazole-3,5-dicarbonitrile
by Reaction of Cyanogen with Sulfur**
By Herbert W. Roesky*, Klaus Keller, and Jan. W. Bats
Cyanogen 1 reacts with sulfur trioxide in a criss-cross
cycloaddition (molar ratio 1 :2) to give a bicycle in which
the CC bond of the cyanogen remains intact"'. Reactions
of 1with elemental sulfur have so far never been described
in the literature. As product of such a reaction in dimethylformamide at 120°C according to
1/8 Ss
+ 2(CN)*
1
-t
(CN)4S
2
we have now isolated colorless crystals of the compound 2
(m.p. 67"C, yield 29%). It follows from the I3C-NMR
spectrum that 2 contains four non-equivalent carbon
atoms (6=161.5, 147.6, 111.7, 110.1). No bands appear in
the C=N stretching vibration range in the IR spectrum,
whereas the Raman spectrum shows three bands at 2248,
2256, and 2267 cm-I. In the FI-mass spectrum of 2 the
molecule appears at m/z = 136 and the fragment (CN)$3+
at m/z.= 84.
Reaction Control by Catalysts with Variable
Specificity : Stable Palladium-Phthalocyanine as
Hydrogenation Catalyst with Three Catalytic
Patterns**
By Heiner Eckert*, Gudrun Fabiy, Yvonne Kiesel,
Gabriele Raudaschl, and Christoph Seidel
The directed control of the course of a reaction might be
realized by means of a catalyst having variable specificity"'. The specificity of a metal-complex catalyst is dependent upon internal and external parameters (respectively,
the metal and its valence z, type of ligand field etc.13',and
carrier material, reaction medium, reaction conditions, res-
P d 'Pc
pH<9
z=2
Pd'Pc
pH 3 11
FI-A
Fig. 1. Stfucture of 1,2,4-thiadiazole-3,5-dicarbonitrile2 in the crystal. Bond
lengths [A] and angles ["I: Nl-S 1.621(2), C2-S 1.697(2), C2-N2 1.301(3),
CI-N2 1.357(3), Cl-NI 1.300(3), C2-C4 1.428(3), C4-N4 1.139(3), C1-C3
1.438(3), C3-N3
1.129(3); Nl-S-C2
92.1(1), C1-Nl-S
107.9(2),
Nl-Cl-N2
120.3(2), Cl-N2-C2 106.7(2), N2-C2-S 113.1(2). Further details of the crystal structure investigation are available on request from the
Fachinformationszentrum Energie Physik Mathematik, D-7514 EggensteinLeopoldshafen, on quoting the depository number CSD 50279, the names of
the authors, and full citation of the journal.
Dr. H. W. Roesky, K Keller
Institut fur Anorganische Chemie der Universitst
Tammannstrasse 4, D-3400 Gdttingen (Germany)
Dr. J. W. Bats
Institut fiir Kristallographie und Mineralogie der Universitst
Senckenberganlage 30, D-6000 Frankfurt am Main I 1 (Germany)
This work was supported by the Deutsche Forschungsgemeinschaft and
Hoechst AG.
Angew. Chem. lnr. Ed. Engl. 22 (1983) No. I 1
I
P =
1
EtOH
A
Y
PdI'Pc
Scheme I. Reaction control by directed variation of the specificity of the catalyst Pd'Pc with the catalytic patterns P,-P,. F=functional group, A=alkyl or aryl residue (see also Table I).
[*I Prof.
[**I
I
['I
["I
Dr. H. Ecken, G. Fabry, G. Raudaschl, C. Seidel, Y. Kiesel
Organisch-chemisches Institut der Technischen UniversitBt Miinchen
Lichtenbergstrasse 4, D-8046 Garching (Germany)
Metal-Phthalocyanine Catalysts, Part 3. This work was supported by the
Deutsche F0rschungsgemeinschaft.-Part 2: [3a].
0 Verlag Chemie GmbH. 6940 Weinheim, 1983
057(F0833/83/1111-0881 .$02.50/0
88 1
Документ
Категория
Без категории
Просмотров
0
Размер файла
230 Кб
Теги
alkyl, clusters, application, metali, isocyanates, catalytic, transitional, novem, spirocyclization
1/--страниц
Пожаловаться на содержимое документа