вход по аккаунту


Preparation of Triethyl Ortho-3-butynoate and its Conversion into 5-Oxo-3-alkynoate Esters and into Derivatives of 3 5-Dioxoalkanoate Esters.

код для вставкиСкачать
state. The Konigs-Knorr synthesis in the presence of silver
carbonate probably occurs analogously.
Received: February 26, 1970
[ Z 173 IE]
German version: Angew. Chem. 82, 480 (1970)
Publication delayed at authors' request
[*I Dr. G. Wulff, Dipl.-Chem. G. Rohle, and
Dip1.-Chem. W. Kriiger
Institut fur Organische Chemie und Biochemie
der Universitat
53 Bonn 1, Meckenheimer Allee 168 (Germany)
[**I Glycoside Synthesis, Part 1. - This work was supported
by the Deutsche Forschungsgemeinschaft.
[ l ] Extracts from the Habilitationsschrift by' G. WuZfl, Bonn,
[2] H. Lettre and A . Hagedorn, Hoppe-Seylers Z . physiol.
Chem. 242, 210 (1936).
131 C. Meysfre and K . Miescher, Helv. chim. Acta 27, 231
[4] N . K . Kochetkov, A . J . Khorlin, and A . F. Bochkov, Tetrahedron 23, 693 (1967).
[ 5 ] After conclusion of this work, Professor B . Helferich informed us that he had obtained ethyl @-D-ghcoside from
2,3,4,6-tetra-o-acetyl-or-o-glucopyranosy~bromide and ethanol
in the presence of silver salts of dicarboxylic acids (unpublished
Crystalline x-Radicals Containing Lead Isotropic 207Pb-ESRHyperfine Structure
By Hartinut B. Stegmann, Klaus Schefller, and
Fritz Stocker [*I
Dedicated to Professor Eugen Miiller on the occasion of his
65th birthday
Attempts to prepare solutions of paramagnetic organolead
compounds - in particular by dissociation of hexaaryldiplumbanes "1 - have so far been unsuccessful. We have now
been able to isolate lead-containing radicals as products of
the reaction of 2-amino-4,6-di-tert-butylphenoxyl
( I ) with
diaryllead dihalides. Reaction of the aminoaroxyl ( I ) with,
e.g., di-p-tolyllead dichloride in ethanol affords violet-brown
crystals, m.p. 143-145 "C. Elemental analysis and mass
spectrum suggest structure (2). While solid (Zb) gives an
intense ESR signal exhibiting exchange narrowing, its solution in benzene gives a multicomponent spectrum.
Figure: ESR spectrum of the di-p-tolyllead radical (2b) in benzene at
room temperature.
The central section of the hyperfine structure (HFS) of this
spectrum (see Figure) can be interpreted in terms of magnetic
coupling of the free electron with two pairs of protons and
one 14N nucleus. The less intense components lying on the
left- and right-hand sides can be attributed to further coupling
with a z07Pb nucleus. This isotope (I = 1/2) has a n abundance
of 22.62% in natural lead. The observed spectrum agrees very
well with this figure, as is shown by the successful simulation
(CDC 3300) of a n enlarged spectrum.
The isotopic spectrum is masked by the main spectrum only
in the central region, which corresponds to the 77.38% of
nonmagnetic lead nuclei present; thus if both groups of satellites are taken into consideration, the whole 207Pb HFS can
be observed. Exact measurements show that the distances
between the satellite centers and the center of gravity of the
whole spectrum differ in the upfield and downfield directions.
This asymmetry is attributable to a second order shift such
as has already been detected quantitatively for radicals
containing tin [21.
In agreement with other findings, the ESR spectra show the
new organolead derivatives to be 11,ll-disubstituted 1,3,7,9tetra-tert-butyldibenzo[d,g]- [1,3,6,2]dioxazaplumbocin-5-yls.
The coupling parameters were initially assigned by analogy
with the corresponding tin compounds 121.
ESR data for the radicals (2) (gauss), recorded in benzene at room temperature;
A H = line width.
(a). R
(bj, R
1 1 1 1 1 1
As expected, the substituent R has only a limited effect on
the coupling constants. The exceptional line broadening
(% 0.7 gauss) is probably due either to an unresolved proton
HFS o r to unfavorable relaxation conditions. Since the
spectra remain essentially unchanged between -70 and
+120°C, the line broadening cannot be due to mechanical
movement. The g factors of compounds (2a) and (26) are
remarkably small, owing to interaction of the free electron
and the P b nuclei which has also been determined from the
HFS spectra.
Received: December 16, 1969
[ Z 205 IE]
German version: Angew. Chem. 82, 481 (1970)
Publication delayed at authors' request
[*I Priv.-Doz. Dr. H . B. Stegmann and F. Stocker
Chemisches Institut der Universitat
74 Tiibingen, Wilhelmstrasse 33 (Germany)
Dr. K. Scheffler
Present address: Conseil Europeen pour la Recherche
CH-1211 Geneve-Meyrin (Switzerland)
[ l ] Cf. e.g., E. Muller, F. Gunther, K . Scheffler, and H . Fettel,
Chem. Ber. 91,2888 (1958); G. Bahr and G. Zoche, ibid. 88, 542
(1955); R. Preckei and P . W . Selwood, J. Amer. chem. SOC.62,
2765 (1940); U.Belluco, G. Tagliavini, and P. Favero, Ricerca
sci. Rend. Suppl. A 32, 98 (1962); Chem. Abstr. 57, 13786
121 H . B. Stegmann, K. Schefller, and F. Stocker, Chem. Ber.
103, 1279 (1970).
Preparation of Trieihyl Ortho-3-butynoate and its
Conversion into 5-0x0-3-alkynoate Esters and into
Derivatives of 3,5-Dioxoalkanoate Esters 111 [**I
By Rolf Finding and Ulrich Schmidt [*I
Dedicated to Professor Eugen Miiller on the occasion of his
65th birthday
In triethyl ortho-3-butynoate (4,4,4-triethoxy-l-butyne)( I )
[which we obtained from propargylmagnesium bromide and
tetraethyl orthocarbonate) masking of the carboxyl group
as orthoester protects i t from attack by alkali-metal acetylides
and prevents rearrangement of the acetylenic linkage t o the
a,P-position or to a n allenic unit. The orthoester can thus be
Angew. Chem. internat. Edit.
1 Vol. 9
(1970) f No. 6
metalated and then acylated to afford triethyl 5-oxoortho3-alkynoates ( 2 ) , which can be converted into enol ethers of
3,5-dioxoalkanoic esters ( 3 ) by base-catalyzed addition of
alcohols. Dimethylamine adds almost quantitatively to (2)
giving triethyl 3-(dimethylamino)-5-oxoortho-3-alkenoates
( 4 ) which yield copper(r1) complexes of the P-polycarbonyl
compounds on treatment with a solution of copper(rr)
acetate in aqueous acetic acid. The reaction sequence ( I ) +
(2) + (3) or ( 4 ) permits extension of a carboxylic acid chain
by two acetyl units. The structures of compounds (I)-(4)
are in agreement with their NMR spectra.
B. p. ( "C/torr)
60/0.001 [a]
SO/O.OOl [a]
70-80/0.001 [a]
[a] Bath temperature on distillation from a bulb-tube.
A Simple Synthesis of a-Methylene y-Lactones
By Elisabeth Ohler, Klaus Reininger, and Ulrich Schmidt [*I
Dedicated to Professor 0 . Hromatka on the occasion of his
65th birthday
Studies of syntheses in the lysergic acid series have revealed
a simple route leading to the hitherto difficultly accessible
a-methylene y-lactones 111. In tetrahydrofuran, a-(bromomethy1)acrylic esters ( I ) 121 readily form organozinc com-
pounds which react with aldehydes and ketones to give
methylene lactones ( 2 ) in very good yields. A single step
technique in which the bromo ester is treated with zinc in the
presence of the carbonyl compound has many advantages.
Many higher and polycyclic ketones give almost quantitative
yields [e.g. l-benzoyl-5-oxo-l,2,2a,3,4,5-hexahydrobenz[cd]indole gives ( 3 / , m.p. 190-195 "C]1-31. Formaldehyde
affords a mixture of a-methylenebutyrolactone and yhydroxy-a-methylenebutyricester in low yield.
Triethyl 5-oxoortho-3-hexynoate (2a) from triethyl ortho-3butynoate ( I )
A solution of propargylmagnesium bromide [21(43 g) in ether
(160 ml) is dropped slowly under Nz into a solution of tetraethyl orthocarbonate (48 g) in anhydrous ether (80 ml) at
-30 OC (internal temperature). When the temperature is
slowly raised, an exothermic reaction sets in at 25 ' C ; external
cooling is applied to prevent the temperature rising above
3OoC; after 30 min the mixture is hydrolyzed by saturated
N H 4 C l solution, whereafter working up gives ( I ) (17.3 g).
The orthoester ( I ) (6.9 g) is metalated in tetrahydrofuran
(30 rnl)and ether (60 ml) under nitrogen and at -60 "C by an
equivalent amount of a 2 N solution of butyIlithium in light
petroleum. The mixture is allowed to warm to 0°C and then
dropped into a solution of acetic anhydride (5 g) in ether
(50 ml) kept at -60°C. Allowing the resulting mixture to
warm to room temperature, shaking it with saturated NH4C1
solution, and then distillation afford (2a) (4.08).
105-1 lO/O.OOl
100-1 lO/l8
49-54 [cl
[a] Based on carbonyl compound.
[b) Bath temperature on bulb-tube distillation.
[cl Described as an oil in ref. [lbl.
Triethyl 3-ethoxy-5-oxoortho-3-hexenoate
The product (2a) (2.3 g) in ethanol (2 ml) is dropped into a
solution of Na (0.23 g) in ethanol (10 ml) cooled to 0 "C and
after a few min is warmed to room temperature. After 30 min,
addition of HzO (50ml),extraction with ether, and distillation
afford (3a) (1.25 9).
Received: March 28. 1970
[ Z 191 IE]
German version: Angew. Chern. 82, 482 (1970)
[*I R. Finding and Prof. Dr. U. Schmidt
Organisch-Chernisches Institut der Universitat
A-1090 Wien, Wahringerstrasse 38 (Austria)
[**I This work was supported by the Austrian Forschungsrat.
111 P-Polycarbonyl Compounds, Part 6. - Part 5: A . Hochrainer, S . Hellweger, W. Silhan, and U.Schmidt, Mh. 99, 2153
[21 M . Gaudemar, Ann. Chirnie [13], I , 161 (1955 ).
Angew. Chem. internat. Edit.
1 Vol. 9 (1970) 1No. 6
General procedure:
A solution of bromomethylacrylic ester ( I ) 121 (50 mmoles) in
anhydrous tetrahydrofuran (30 ml) is added dropwise with
vigorous stirring under nitrogen to a mixture of granulated
zinc (3.5 g, 53.5 mmoles, 20mesh) and the carbonyl compound (45 mmoles) in anhydrous tetrahydrofuran (15 ml).
Once the reaction has started, addition is adjusted such that
the temperature does not rise above 4+50 'C. The reaction
mixture is stirred for about an hour at 50"C, cooled, and
Без категории
Размер файла
216 Кб
preparation, triethyl, esters, butynoate, alkynoates, dioxoalkanoate, oxo, conversion, derivatives, ortho
Пожаловаться на содержимое документа