close

Вход

Забыли?

вход по аккаунту

?

Разработка метода прецизионной спектрометрии низкоэнергетических электронов, сопровождающих радиоактивный распад, и его применение в решении задач атомной и ядерной физики

код для вставкиСкачать
ФИО соискателя: Иноятов Анвар Хидоятович Шифр научной специальности: 01.04.16 - физика атомного ядра и элементарных частиц Шифр диссертационного совета: Д 720.001.03 Название организации: Объединенный институт ядерных исследований Адрес организации:
: 539.163
539.16.07
539.184 56
,
,
.
01.04.16. –
- 2012
.
:
,
,
:
, .
“___”_____________2012
.
720.001.03
, .
.
.
“____” _____________2012 .
.
.
,
,
,
-
.
.
,
)
.
,
,
.
,
.
.
,
,
,
-
(Q -=18.6
,
.
1/2=12.3
”
).
2
(
,
/c2 [1]
) [2]
[3].
IPJGU (
,
,
(~0.2
)
/c )
2
KATRIN [4].
(
0.1
)
.
.
.
KATRIN
,
,
(
)
.
1
-
:
)
,
,
; )
.
-
.
KLL-
Z
(35<Z<84).
,
,
L-
.
,
,
Z
.
(Z<35)
,
,
.
,
Z
.
(
)
(
В«
В»).
,
.
,
.
,
.
.
,
.
(XPS).
.
.
,
XPS,
.
,
,
2
,
,
[4]
.
,
( <20
).
.
.
,
:
~ 0.1
50
,
: )
,
; )
;
;
)
(
)
;
)
;
;
;
3
)
(Ee 22
)
-
;
.
1.
0.1-50
.
:
)
(
).
.
-5
10 )
.
,
=3.5
~20
,
.
2.
(
)
,
.
3.
10
64,
:
,
;
,
В«
f-
В»
,
d
,
.
.
,
f
5s,
LL, KLM
KMM
22
4.
99m
Tc
149
Eu
.
4
.
Na, 54Mn,
5.
99m
149
Eu
~2
14Г·21
.
0.1 – 50
.
.
ESA-12
.
,
,
50
.
,
).
.
.
99m
149
Tc
Eu.
KATRIN.
,
,
,
.
5
,
1.
( =0.1-50
:
)
)
;
(
,
,
)
)
.
2.
10 Z 64.
3.
22
54
Cr,
99m
149
Tc
Ne,
Sm.
4.
99m
149
Tc
Sm
.
5.
,
Z=24-95.
.
,
,
),
В» (
В»(
(
36, 56, 59, 60
,
,
(
),
,
, 1986), В«
, 1986),
, 1986), 5 6
В»(
,
, 2004, 2006), 33,
61
,
, 2007), ICNRP (
13
KATRIN (
,
,
, 2011).
.
38
,
16
: Nucl. Instr. Meth. – 1,
. .
( . .), - 1;
J. Electron Spectroscopy and Related Phenomena – 9; J. Phys. B – 1; Phys. Scripta – 1;
.
– 1; Eur. Phys. J. A - 2.
6
,
217
, 81
,
.
245
, 69
.
,
.
,
.
.
.
,
.
.
.
.
-
.
b initio
~2
(
)
10 Z 80.
b
initio
.
,
-
,
.
[5,6]
10 Z 100
.
,
,
,
,
.
jj
,
KLL
.
7
LS-,
,
,
Z>35.
(
Z>60.
jj-
)
Z (<35)
.
KL1L2(1P1;3P0)
,
2s , 2s12p5
KL2 L2(1S0)
0
KL1L1(1S0)
KLN
В»
В«
2p4
KL3L3(3P0).
KLM
.
(36
),
,
(15
)
jj
.
,
KL1M2, KL2M1, KL2M3,
KL2M45
jj
KL1M1,
Z>45
.
Z<45
.
(
KLM
jj
)
.
KLM
KL2M2,3
.
,
KL3M2,3
,
I(KL2M2,3)/I(KL3M2,3)
.
,
.
Z<40
(I(KMM)/I(KLL)~0.02-0.08) KMM
,
KLM
.
.
KMM(+KMX+KXY)
(46 Z 84).
KMM
.
(Z<46)
8
.
,
KMM
,
.
,
,
,
,
.
,
XPS.
.
.
,
3
235m
76.8
U. В«
57
Fe,
83
В»
Kr, Sn,
119
125
2.17
99m
Tc,
169
Te
Tm
.
,
XPS,
11
,
,
.
: )
,
)
“
(~10; )
”,
.
,
.
.
(
,
20
)
ESA-12 (
)
ESA-50 (
,
.
,
),
.
,
(
,
,
/p<0.1%)
В«
Ee>20
В»
9
.
,
,
.
,
(
~3
~3
~1
)
.
,
.
“
”
.
ESA-50,
0.1-50
,
.
,
:
(
.1).
“
”
.
. 1.
ESA-50: 1 (
); 2 -
; F1 -
; 3 ;5–
; 4 –
.
,
.
,
.
,
.
.
10
,
:
)
U (
u
);
)
u
(
U
)
U
( )
);
u
(
.
)
u
.
.
-5
0
50
,
; )
10 ;
; )
1
: )
U
)
; )
,
.
,
1
.
~1x10-6
.
,
.
,
15
. 2
.
,
.
,
U
57
169
Tm (8.4, 20.7, 63
).
Ee~20
.
),
15%.
Fe (14.4
)
( 0.5
=3.5
~ 0.2%
4 .
5 -
U
1/U (
. 3).
: E
u
1.833(2) Г— (u( )-100) + 189.4(5) .
,
Fe Tm,
Ee,
Umax
) = 1.00044(5) Г— U
)+
,
~0.6
11
[7].
. 2.
. 3.
~7
(
,
ESA-50
ESA-50
).
U
-
U0/U.
: )
; )
(
)
);
.
.
(
,
,
12
)
.
.
,
,
,
,
-
.
,
.
,
.
.
(
)
.
100 %
,
,
.
.
.
57
ESA-50
Fe
169
Tm,
. 4.
. 4.
=3.5
7
1
-14.4
2 ,
57
Fe
M-20.7
.
, WG -
, WL -
(
), DEL -
.
13
169
Tm,
-
S(Ee)
1
2,
(
,
:
)=
(
(
)Г— (
,
,
)
(
)
(
)
)
.
,
(
(
)
,
)
(
.
).
.
(
,
:
,
)
Ne(Ee,Ee0)=[(Ee-Ee0)2-( /2)2]-1
–
,
,
(
,
-
).
-
,
,
,
.
,
,
(
.
.
),
,
,
.
,
ESA-12
ESA-50,
.
rika,
Brundibar
.
.
14
SOFIE.
,
rika
,
.
,
2
(
),
,
.
Brundibar
.
В«
В».
,
.
,
.
SOFIE
,
,
.
.
,
”
.
,
.
.
”
“
(
).
.
(
, GEANT
PENELOPE).
.
KLL, KLM
KMM
12
В»)
.
KLL
KLM
.
KL2L3
[5,6],
15
67
Zn
10 Z 62
(
. 5
. 5.
KLL
67
KLM
Zn,
Brundibar
.
2
=7
.
.
[5,6]
(1Г·4
[7]
[5]
).
.
KL2L3, KL2,3M2,3
23 Z 64,
,
~6
(1-2
XPS.
.
[5,6]
.
20
(
,
. 6),
KL2L3
).
,
6.
[6]
–
KL2L3
XPS.
.
–
16
;
(
)
.
[5,6]
(Ne Ar),
KL2L3
,
L3M4,5M4,5
Z<30,
M4
M5
.
XPS
,
.
KLL
KL2L3
(
)
.
.
,
,
9
KLL
23 Z 62.
Z>55-60.
(
,
KL1L1
(
KLL
jj
)
jj
)
~Z<40:
<10%,
1
.
3
1
KL1L2
0
(
3
(
)
0,
. 7).
,
3
0
Z~26.
,
0
2s 2
6
2
2s 2
,
4
1
1
S0 2s0
6
S0
3
J=0.
2s22
0
.
2s02
,
6
2s22
Z<28,
1
2s 2
.
17
4
Z
0
S0
4
6
2
2s 2
4
KL1L2(1 1,3 0)
(NR ICCI)
.
. 7.
–
(R ICCI)
Z.
–
.
KLM
6
23 Z 48.
jj
15
KLM
,
.
KLM
,
jjKLM
48.
KL1M1, KL2M1, KL1M4,5 KL2,3M4,5
2p53d9
jj
.
5
5
2 3
(jj-
KLM
.
1 1
5 1
1
9
2s 3s , 2p 3s , 2s 3d
, KL2M2,3
.
5
2 53
,
)
.
5
KL3M2,3
I(KL2M2,3)/I(KL3M2,3)
Z
KLM
,
Z 48
,
(
KMM
26 Z 48.
3s13s1, 3s13p5
. 8).
4
Z>40
5
3p 3p
5
,
.
18
Z<40
5
.8
Z.
–
(NR jj)
–
KL3M2,3
(R jj)
(NR IC1), (NR IC2);
.
KL2M2,3
jj
;
–
jj
36
. 9.
( . 9).
92.
KM1M1, KM1M2,3
Z.
(R ICCI)
jj)
–
KM2,3M2,3
jj (R
;
–
;
–
KMM
.
,
,
19
,
.
,
Z,
,
.
25
KMM
36
.
,
.
В«
В»
,
.
67
KL2L3( D2), KL3M2,3(3P0,2)
L3M4M5(1G4)
Zn,
67
67
1
Ga
Cu,
KL2L3( D2)
64Gd,
152,154,155
Eu,
.
: 30Zn – 3d-, 64Gd – 4f. 10.
1
L3M4M5(1G4)
153,155,156
Tb
.
. 10.
Ga,
67
KL2,3L2,3
Gd,
67
-
Zn,
-
152,154,155
=7
2
-
67
EC
Cu
153,155,156
Eu EC
=21
4
Tb.
. DEL -
.
Zn
-
,
(
.
(~15
),
Zn (~2
Gd,
. 1).
Gd
).
Gd
,
”
.
4f- (
Zn
20
)
5f- (
)
1.
EXYV (EC)-EXYV ( ) (
EC
-
-
Zn
)
.
Ee=Ee(EC)-Ee
Zn
1
Gd,
)
Gd
KL2L3( D2)
2.1(2)
13.9(9)
KL3M2,3(3P0,2)
2.4(2)
--
L3M4M5(1G4)
1.6(2)
16.3(3)
(
67
)
u
Zn
,
f-
,
d
f-
f
5s,
67
Ga,
(+2).
,
,
.
.
-
22
- ( Ne,
(
99m
Tc,
149
Sm)
1s22s22p6,
KLL
.
Ne (
22
Na.
,
KLL
Ne,
. 11. KLL
(822.4(19)
Cr)
.
,
KL2L3(1D)
54
)
1
. 11),
E = 4
.
22
Ne
18
,
.
21
.
,
XPS.
,
KLL
.
KLL
Mn
54
54
Cr
.
54
Mn,
.
В«
Mn+3
2.
(
В»
Mn+4 (
)
. 2).
(%) KL2L3
,
54
Mn.
Mn+n
KL23L23
20 oC
100 oC
200 oC
300 oC
20 oC
100 oC
200 oC
300 oC
Mn+2
0
0
0
0
57(3)
59(3)
55(2)
57(3)
Mn+3
-5.5(2)
-5.1(2)
-5.2(10)
-5.2(10)
24(2)
25(2)
21.0(14)
13(2)
Mn+4
--
--
-10.5(12)
-10.5(12)
--
7.9(15)
13(3)
В«
+2
,
Mn ,
В» В«
В»
В«
,
В»
,
+3
Mn ,
200
В°
Mn+4.
В»
В»
,
.
.
M1+E2
149
Eu
149
22.5
.
149
EuF3,
Sm,
149
(Eu)
+3,
(
).
Sm
Eu
,
,
Sm2O3
Eu2O3
149
ECSm,
Eu
Eu2O3 EuF3,
SmF3 ,
.
(
. 12).
22
. 12.
Sm,
149
M+N+O+P ( )
,
=7
11
Sofie
O+P ( )
,
.
2.5
2
.
149
Sm
149
Eu.
(
. 3).
,
Sm
3.
22.5
(
149
)
Eu2O3
149
Sm,
M1+E2
149
EuF3.
Ei(Eu2O3) - Ei(EuF3)
s1/2
p1/2
p3/2
L
1.7(1)
1.7(1)
1.8(1)
M
2.8(2)
2.6(2)
2.7(2)
N
2.3(2)
--
2.3(3)
O
3.9(2)
P
5.7(9)
M1, M2
4.2(2)
--
.
N3 Sm (13.4(3), 5.9(3)
P1
,
).
23
--
2.3(8) ,
Sm2O3 SmF3 (1.1(6)
)
6.8(11)
.
3
99m
2.17
.
,
2.17
,
.
99m
(
,
)
5-
2.17
.
5)~
)(
(<10
-7
2
(
–
. 13, (a))
)
.
,
).
(
. 13, (b))
.
5)
(
. 13, (c, d))
,
.
. 13.
5
99m
: )
Tc
В»
В«
В»
,
.
24
; b)
2;
c, d)
4
2.17
(
99
,
,
~2
.
.
M1+E2
22.5
149
Sm.
22.5
,
E2 (| (E2/M1)|)
,
(L1-3, M1-3, N1,3, O1-3, P1)
.
(0.8
149
Eu
Etr=22500.2(8)
Etr
)
(
. 4)
[8].
22.5
Ee
4.
(
)
22.5
Ekin,e
14.7
21
.
149
Sm Etr,
. Ebin –
[7]
Ekin,e
14764.4(10)
15188.7(10)
15783.9(11)
20775.4(13)
20958.2(13)
21081.6(13)
22152.1(13)
22252.6(13)
22460.2(14)
.
L1
L2
L3
M1
M2
M3
N1
N3
O1
.
Ebin
7736.8(5)
7311.8(4)
6716.2(5)
1722.8(8)
1540.7(12)
1419.8(11)
345.7(9)
247.4(15)
37.4(15)
.
Etr
22501.2(11)
22500.5(11)
22500.1(12)
22498.2(15)
22498.9(18)
22501.4(17)
22497.8(16)
22500.0(20)
22497.6(21)
22499.9(9) )
22501.2(17) )
)
| (E2/M1)|
(
25
. 5).
| (E2/M1)|=0.0784В±0.0009
0.0715В±0.0011.
,
,
| (E2/M1)|
,
[8]
[8]
.
,
1
(FW(M1 115)
(
,
5.
22.5
)
,
,
.
2 (| (E2/M1)|)
,
.
1
2
3
,
)
)
)
(E2/M1)|
-2.0(10) 0.0784(9)
2.9(12) 0.0742(18)
1.5(15) 0.0722(20)
)
1.29
0.55
1.14
)
;
BriccNH [10]
2
(E2/M1)|
0.0770(9)
1.30(6)
0.0757(28) 1.19(14)
0.0737(29) 1.81(21)
2
[9]+
-1.0(10)
0.4(17)
-1.1(20)
tot
[8];
)
.
tot
[8]
,
(LEES).
,
,
.
,
60
Z=56Г·71,
,
.
,
,
.
LEES
,
ESA-50.
100
,
Z=24Г·95.
.
1.
,
26
.
- 50
0.1
.
,
:
(
(
(
)
).
=3.5
)
,
.
(
)
,
.
,
.
2.
K-
L-
14
10 Z 64,
.
,
.
,
.
,
В«
В»
f
f
5s,
.
,
2s-22
,
2s22 -2
Z<28.
,
27
6
9
23 Z 62
(
)
KL1L2(1P1,3P0).
,
Z.
,
Z 48
KLM
-1
2
3
-1
(
).
jj
KMM
Z 30.
3.
22
Na,
54
149
Mn
Eu
-
.
22
KLL
22
Ne,
.
54
Pt
Mn,
.
.
В«
54
В»
KL2,3L2,3
Cr.
В«
149
В»
149
Sm
Eu.
,
.
M1, M2
N3
Sm
P1
4.
Tc-
Sm2O3
,
02
04
2.17
5
28
SmF3.
99m
Pt
.
5
(<10
-7
2
)
)
.
5.
99m
Tc
Etr=22.5002(8)
149
Sm,
~2
14.7-21
,
.
6.
,
ESA-50.
100
,
Z=24-95.
:
1.
2.
3.
4.
5.
6.
7.
Ch. Briançon, B. Legrand, R. J. Walen, Ts. Vylov, A. Minkova, A. Inoyatov. A new
combined electrostatic electron spectrometer. Nucl. Instr. Meth., 221 (1984) 547
.
,
.
,
.
.
0.5-50
.
.:
,
. 13,
,
, 1984, . 12-21.
A. Kovalik, M. Rysavy, V. Brabec, O. Dragoun, A. Inoyatov, A.F. Novgorodov, Ts.
Vylov, and A. Minkova. The KLL and KLX Auger Electrons of Arsenic from the
75
Se Decay. J. Electron Spec. and Rel. Phenomena, 43 (1987) 225-232.
A. Kovalik, A. Inoyatov, A.F. Novgorodov, V. Brabec, Ts. Vylov et al. K-Auger
spectrum of iron from the 57Co decay. J. Physics B, 20 (1987) 3997.
A. Kovalik, M. Rysavy, V. Brabec, O. Dragoun, A. Inoyatov, A.F. Novgorodov, Ts.
Vylov, and A. Minkova. The KLL and KLM Auger Electrons of Vanadium and
Chromium from the Radioactive Decay. Phys. Scripta 37 (1988) 871-875.
M. Fisher, V. Brabec, O. Dragoun, N. Dragounova, M. Rysavy, A.Kh. Inoyatov.
Use of 99mTc as an Energy Standard for Electron Spectroscopy: Promise and
Limitations. Measurement Techniques 40 (1997) 807-810.
Ts. Vylov, V.M. Gorozhankin, A. Kovalik, …, A. Inoyatov et al.: Catalogue of
Radionuclide Low Energy Electron Spectra (LEES). Dubna, 2003 JINR preprint E62003-31; http://adm.jinr.ru/info/ATLAS2/.
29
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
A. Kovalik, A.V. Lubashevsky, A. Inoyatov, D.V. Filosofov, N.A. Korolev, V.M.
Gorozhankin, Ts. Vylov and I. Е tekl. A Detailed Experimental Investigation of the
Low Energy Electron Spectrum Generated in the EC-decay of 67Ga. J. Electron
Spec. and Rel. Phenomena, 134 (2004) 67-79.
A. Inoyatov, A.V. Lubashevsky, A. KovalГ­k et al. A Detailed Experimental
Investigation of the KMM+KMN+KNN Auger Electron Spectrum of 111Cd from the
EC-decay of 111In. J. Electron Spec. and Rel. Phenomena, 151 (2006) 193-198.
A. Inoyatov, D.V. Filosofov, V.M. Gorozhankin, A. Kovalik, N.A. Lebedev, A.V.
Lubashevskiy, A.F. Novgorodov, L.L. Perevoshchikov, Ts. Vylov, E.A. Yakushev.
The KLL Auger spectrum of neon from the EC-decay of 22Na. J. Electron Spec. and
Rel. Phenomena, 154 (2007) 79–82.
A. Inoyatov, D.V. Filosofov, V.M. Gorozhankin, A. Kovalik et al. Effects of
relativity and “atomic structure” in the KLL Auger spectrum of 88Sr generated in the
EC-decay of 88Y. J. Electron Spec. and Rel. Phenomena 160 (2007) 54–57.
A.Kh. Inoyatov, D.V. Filosofov, L.L. Perevoshchikov, A. Kovalik, V.M.
Gorozhankin, Ts. Vylov. Experimental investigation of chemical effects on the
KL2,3L2,3 Auger spectrum of 54Cr from the EC-decay of 54Mn. J. Electron Spec.
and Rel. Phenomena 168 (2008) 20–24.
A.Kh. Inoyatov, L.L. Perevoshchikov, A. Kovalik, D.V. Filosofov, V.M.
Gorozhankin. The KLL Auger spectrum of 65Cu measured from the EC decay of
65
Zn. J. Electron Spec. and Rel. Phenomena, 171 (2009) 53–56.
A.Kh. Inoyatov, A. Kovalik, D.V. Filosofov, N.A. Lebedev, L.L. Perevoshchikov,
V.S. Pronskih. The first observation of all the basic components of the KLL Auger
spectrum of Sm generated in the radioactive decay of 147,148,149Eu atoms in a solid
state source. J. Electron Spec. and Rel. Phenomena, 184 (2011) 52–56
A.Kh. Inoyatov, D.V. Filosofov, V.M. Gorozhankin, A. Kovalìk, I. Adam, L.L.
Perevoshchikov, M. RyЕЎavy. Improved characteristics of the 22.5 keV (M1+E2)
nuclear transition in 149Sm. Eur. Phys. J. A, 47 (2011) 64.
A.Kh. Inoyatov, L.L. Perevoshchikov, V.M. Gorozhankin, A. Kovalìk, V.I.
Radchenko, D.V. Filosofov. Searching for influence of the “atomic structure effect”
on the KLL and LMM Auger transition energies of Zn (Z = 30) and Gd (Z = 64). –
J. Electron Spec. and Rel. Phenomena, 184 (2011) 457–462.
. Kh. Inoyatov, L. L. Perevoshchikov, A. KovalГ­k, O. Dragoun, D. V. Filosofov.
Experimental investigation of ligand effects on the conversion electron spectrum of
the 22.5 keV M1+E2 nuclear transition in 149Sm. Eur. Phys J. A, 47 (2011) 84-91.
30
[1] http://pdg.lbl.gov/
[2] Aseev V.A., et al. arXiv:1108.5034v1 [hep-ex] 25 Aug 2011
[3] Kraus Ch. et al., EPJ C, 40(2005)447
[4] http://www-ik.fzk.de/katrin
[5] Shirley D.A., Phys. Rev. A, 7(1973)1520
[6] Larkins F.P., ADNDT, 20(1977)311
[7] Sevier K.D., ADNDT, 24 (1979) 323
[8] Singh B., Nucl. Data Sheets for A=149, 102 (2004) 1
[9] Antman S. et al., Z. Phys., 237 (1970) 285
[10] Kibedia T. et al., NIM A 589 (2008) 202; http://physics.anu.edu.au/nuclear/bricc/
31
Документ
Категория
Физико-математические науки
Просмотров
13
Размер файла
1 075 Кб
Теги
Докторская
1/--страниц
Пожаловаться на содержимое документа