close

Вход

Забыли?

вход по аккаунту

?

ange.201710358

код для вставкиСкачать
Angewandte
Eine Zeitschrift der Gesellschaft Deutscher Chemiker
Chemie
www.angewandte.de
Akzeptierter Artikel
Titel: Cyclic (Amino)(Phosphonium-Bora-Ylide)Silanone: A Remarkably
Room Temperature Persistent Silanone
Autoren: Tsuyoshi Kato, Alfredo Rosas-Sánchez, Isabel AlvaradoBeltran, Antoine Baceiredo, Nathalie Saffon-Merceron,
Stéphane Massou, Daisuke Hashizume, and Vicenç
Branchadell
Dieser Beitrag wurde nach Begutachtung und Überarbeitung sofort als
"akzeptierter Artikel" (Accepted Article; AA) publiziert und kann unter
Angabe der unten stehenden Digitalobjekt-Identifizierungsnummer
(DOI) zitiert werden. Die deutsche Übersetzung wird gemeinsam mit der
endgültigen englischen Fassung erscheinen. Die endgültige englische
Fassung (Version of Record) wird ehestmöglich nach dem Redigieren
und einem Korrekturgang als Early-View-Beitrag erscheinen und kann
sich naturgemäß von der AA-Fassung unterscheiden. Leser sollten
daher die endgültige Fassung, sobald sie veröffentlicht ist, verwenden.
Für die AA-Fassung trägt der Autor die alleinige Verantwortung.
Zitierweise: Angew. Chem. Int. Ed. 10.1002/anie.201710358
Angew. Chem. 10.1002/ange.201710358
Link zur VoR: http://dx.doi.org/10.1002/anie.201710358
http://dx.doi.org/10.1002/ange.201710358
10.1002/ange.201710358
Angewandte Chemie
DOI: 10.1002/anie.200((will be filled in by the editorial staff))
²((Catch Phrase))
Cyclic (Amino)(Phosphonium-Bora-Ylide)Silanone: A Remarkably Room
Temperature Persistent Silanone
Abstract: Silanone 2 substituted by bulky amino- and phosphonium
bora-ylide substituents has been isolated in crystalline form. Thanks
to the exceptionally strong electron-donating phosphonium boraylide substituent, the life-time at room temperature of silanone 2 is
dramatically extended (t1/2 = 4 days) compared to the related
(amino)(phosphonium-ylide)silanone VI (t1/2 = 5 hours), allowing
easier manipulation and its use as precursor of new valuable silicon
compounds. The interaction of silanone with a weak Lewis acid such
as MgBr2 increases further its stability (no degradation after 3
weeks at room temperature).
[]
Dr. A. Rosas-Sánchez, Dr. I. Alvarado-Beltran, Dr. A.
Baceiredo, Dr. T. Kato
Université de Toulouse, UPS, and CNRS, LHFA UMR
5069, 118 route de Narbonne, F-31062 Toulouse (France)
Fax: (+33) 5-6155-8204
E-mail: kato@chimie.ups-tlse.fr
Homepage: http://hfa.ups-tlse.fr (Equipe - ECOIH)
Dr. N. Saffon-Merceron, Dr. S. Massou
Université de Toulouse, UPS, and CNRS, ICT FR2599, 118
route de Narbonne, F-31062 Toulouse (France)
Dr. D. Hashizume
Materials Characterization Support Unit, RIKEN Center for
Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako,
Saitama 351-0198 (Japan)
In contrast to carbonyl compounds (I), probably one of the most
important functional group in organic chemistry, the heavier silicon
analogue, silanones (II), are generally highly reactive transient
species[1] which were only observed either in argon matrix at low
temperature[2] or in the gas phase[3] and were evidenced by trapping
reactions.[4] Silanones present a strongly polarized Si=O double
bond (Si+-O-) with a considerably large bond energy difference
between SiO-- and --bonds,[5] and therefore, they easily
oligomerize to give polysiloxanes.[6] Recently, easy-to-handle
silanones stabilized as donor/acceptor- or donor-complexes, have
been reported.[7-11] Nevertheless, the synthesis of stable threecoordinate silanone derivatives remains a difficult task, although the
heavier analogue germanone III, well kinetically stabilized by bulky
aryl substituents, has been isolated by Matsuo/Tamao et al.[12] At
present only three examples are reported: (i) the transition-metal
substituted silanone IV, isolated at RT by Filippou et al.,[13] (ii) the
cyclic dialkylsilanone V, characterized in situ at -80 °C by the group
of
Iwamoto,[14]
and
(iii)
the
relatively
persistent
(amino)(ylide)silanones VI, reported by us.[15] Therefore, their
synthetic use is still limited because of the scarcity and limited lifetime (0.5 - 5 h, at RT for VI). Here we would like to report that the
introduction of a strongly donating phosphonium-bora-ylide
substituent considerably extends the life-time of silanone 2 (t1/2 = 4
days, at RT), which allows easier manipulation to study its
properties and reactivity.
Recently, we have described that the electropositive boronbased substituent (phosphonium bora-ylide)[16,17], with an
exceptionally strong electron donating character, is able to
efficiently stabilize highly reactive species such as N-heterocyclic
silylene 1, the related silylium ion and transition-metal-silylenecomplexes featuring a trigonal-planar geometry around the silicon
center.[18] We thus have considered the use of the same set of
substituents for the stabilization of the silanone moiety. Taking into
account the better donating ability of phosphonium bora-ylide
function than that of classical (carbo)ylides,[18] we can expect a
better stabilization effect with this substituent set than that used for
the previously persistent silanone VI.
Prof. V. Branchadell
Departament de Química
Universitat Autònoma de Barcelona
08193 Bellaterra (Spain)
[]
We are grateful to the CNRS, the European Research
Council (ERC Starting grant agreement no. 306658), the
université de Toulouse (IDEX-SANDCOMPLEX), the
Spanish MEyC (grant CTQ2016-77978-R) and the CNRSJSPS Bilateral Open Partnership Joint Research Projects
(SANDTEC-PICS, no. I2017650) for financial support of this
work.
Supporting information for this article is available on the
WWW under http://www.angewandte.org or from the
author.
Scheme 1. Synthesis of (amino)(bora-ylide) silanone 2
The (amino)(bora-ylide)silylene 1[15] immediately reacts with
N2O in THF solution, at –20 °C, indicated by an instantaneous color
change of the solution from red to orange, to afford the
corresponding silanone 2 (Scheme 1). The silanone 2 was isolated
as yellow crystals from saturated C6D6 solution at RT (yield:
73.6 %). In the 29Si-NMR spectrum, a broad quartet signal appears
1
This article is protected by copyright. All rights reserved.
Accepted Manuscript
Alfredo Rosas-Sánchez, Isabel Alvarado-Beltran, Antoine Baceiredo, Nathalie Saffon-Merceron,
Stéphane Massou, Daisuke Hashizume, Vicenç Branchadell, Tsuyoshi Kato*
at significantly down field (71.3 ppm) compared with donorstabilized silanones (-55 to -91 ppm) [7-11] or the previously reported
(amino)(ylide)silanones VI (39.1 - 40.8 ppm). Nevertheless this
signal is considerably up-field shifted relative to those observed for
the silylene 1 (295 ppm) [18] as well as for other three-coordinate
silanones such as IV (170 ppm)[13] and V (129 ppm),[14] probably
due to the presence of two -donating substituents. The 29Si-NMR
chemical shift of 2 is solvent-independent (THF or toluene),
suggesting the absence of any donor-acceptor interaction between
the silanone and solvent. The 31P-NMR spectrum displays a quartet
signal at = 48.3 ppm (1JPB = 190.9 Hz) in the same region as
observed for the starting silylene 1 (38.0 ppm). [16] The 11B-NMR
resonance is shifted upfield at  = -24.3 ppm (JPB = 190.2 Hz)
relative to that of silylene 1 (15.3 ppm),[15] suggesting a decreased
-interaction between bora-ylide function and the silicon centre. The
IR spectroscopy of 2 shows a signal at 1130 cm-1 in C6D6 which was
assigned to the Si=O stretching. This value, in good agreement with
the DFT calculated (Si=O (1128 cm-1), is red-shifted compared to
those observed for IV (1157 cm-1), [13] V (1150 cm-1)[14] and
Me2Si=O (1204 cm-1 in argon matrix),[2b] probably due to the
presence of strongly -donating substituents attached to the silanone.
Figure 1. Molecular structure of 2. Thermal ellipsoids represent 30 %
probability. H atoms and solvent molecules (C6D6) are omitted for
clarity. Selected bond lengths [Å] and angles [°]: Si1-O 1.5432(12),
N1-Si1 1.7631(12), Si1-B 1.8985(15), B-C3 1.5680(18), B-P
1.8175(16), P-C1 1.7596(15), C1-C2 1.362(2), C2-N1 1.3689(19), N1Si1-B 114.56(6), N1-Si1-O 114.09(6), O-Si1-B 131.32(6).
-1.27 O
Ar
N
Si
(1.09)
B
O
NHC
PR2
2A
Ar
N
Si
O
NHC
B
PR2
2B
Ar
N
Si
LA
O
B
NHC Ar
PR2
2C
N
Si
B
NHC
PR2
8B
Figure 2. Some possible resonance structures of 2 and 8. Calculated
NBO charges and bond order (in parenthesis) of 2.
The molecular structure of 2 reveals a planar geometry around B
and N1 atoms (°C = 359.9°, °N1 = 358.4°, Figure 1).[19] The
structure also reveals a trigonal planar geometry around Si1 atom
(°Si = 360.0°) and a Si1-O bond length [1.543(3) Å] which is
longer than that found by rotational spectroscopy for H2Si=O (1.515
Å) and those observed for the metal substituted silanone IV (1.523
Å) and for the (amino)(ylide)silanone VI (1.533 Å), suggesting a
strong polarization of Si=O bond due to the strong electron donation from the bora-ylide function to the silicon center (2B in
Figure 2). Indeed, this B→Si -interaction is clearly indicated by the
short B-Si1 distance [1.899(2) Å], which is only slightly longer than
those observed for Si=B double bonded compounds (1.838-1.859 Å).
In contrast, the N1-Si1 bond distance [1.763(2) Å] is significantly
longer than those observed for other cyclic diaminosilaimines (1.705
Å)[20] or cyclic diaminophosphasilene (1.694 Å),[21] suggesting a
weaker interaction with the amino group. This bond length is longer
than observed in (amino)(ylide)silanone VI (1.731 Å), certainly due
to much stronger electron donation of phosphonium-bora-ylide
function compared to the phosphonium-ylide function. These
structural data indicate that the electronic structure of 2 is best
represented by the canonical structure 2-B with a strong interaction between trivalent Si1 center and phosphonium-bora-ylide
moiety (Figure 2).
To gain more insight into the electronic structure of silanone 2,
DFT calculations have been performed at the M06-2X/6-31G(d)
level of theory. The optimized structure of 2 agrees quite well with
the experimental data, particularly the calculated Si1-O (1.548 Å),
Si1-B (1.885 Å) and Si1-N1 bond distances (1.782 Å). The highest
occupied molecular orbital (HOMO, -4.83 eV) corresponds to the
bora-ylide lone pair delocalizing to phosphonium and silanone
fragments, which mixes with the lone pair of N2.[22] As expected,
due to the presence of electron-donating substituents, the energies of
*Si=O (LUMO+6: 2.05 eV), nO (HOMO-5 and -6: -7.60 and -7.75
eV) and Si=O (HOMO-8: -8.19 eV) bond orbitals are significantly
higher than those of Me2Si=O [LUMO(*Si=O): -0.89 eV,
HOMO(nO): -9.56 eV, HOMO-1(Si=O): -10.27 eV]. Furthermore,
NBO analysis demonstrates an increased negative charge on the
oxygen centre (-1.27e) and a decreased bond order (1.09) of
silanone Si=O fragment compared with those calculated for
Me2Si=O (-1.12e and 1.37 respectively), which clearly demonstrates
an increasing polarization of silanone function due to the -donating
effect of amino and phosphonium-bora-ylide substituents (canonical
structures 2B and 2C in Figure 2).
G (kcal/mol)
O
O
O
Si
Si
Si
-97
H 2N
-88
H 2N
-83
H
O
H
NH2
N
Si
C
H
PH 2
VI'
-77
O
H
N
Si
B
N
C N
H
PH 2
-59
2
2'
-16
Figure 3. Gibbs free energy for dimerization of different silanones
The calculated Gibbs-free energies for the dimerization of
different silanones indicate that the stabilization effect of
phosphonium-bora-ylide substituent is significantly larger than those
of amino and of phosphonium-ylide groups (G: -83 kcal/mol for
diaminosilanone, -77 kcal/mol for VI' and -59 kcal/mol 2’ in Figure
3). In addition to electronic effects, another important factor to
explain the considerable stability of silanone 2 is the steric
protection provided by bulky substituents, which is indicated by the
significantly decreased G for sterically well-shielded 2 relative to
the parent derivative 2' (G2-2' = 43 kcal/mol).
In spite of stabilization effects, the dimerization process remains
exergonic (G3-2 = -16 kcal/mol). Indeed, although silanone 2 is
remarkably persistent, it slowly transforms at RT to give the
cyclodisiloxane 3. The formation of 3 certainly starts with the
dimerization of 2 to generate the expected head-to-tail dimer 4
(Scheme 2). Then, an electrocyclic ring-opening reaction of 4 to
heterotriene 4’ including a highly reactive silaborene function,
which isomerizes further by a 1,3-migration of an amino group on
the phosphorus toward silicon atom, affords the isolated siloxane 3
(Scheme 2). The rate of this transformation is exceptionally slow,
and the estimated half-life time (t1/2) at RT is 4 days (2 in C6D6
2
This article is protected by copyright. All rights reserved.
Accepted Manuscript
10.1002/ange.201710358
Angewandte Chemie
10.1002/ange.201710358
Angewandte Chemie
2
25 °C
(t 1/2 = 4 days)
Ar
N
O
Si
O
B
R2P
3
R 2P
4
Ar
Ar
N
N
O
Si
Si
O
B
B
P
NHC NHC
N
tBu
N
tBu
Si
tBu
N
N tBu
Ar
N OSiH Ph
2
Si
H3SiPh
B H
X
P
P
C
VII
Fe2(CO)9
NHC 5
Ar
N O
Si
C O
B O
R2P
CO2
LA
LA = MgBr2THF) (a)
or B(C 6F5)3 (b)
R 2P
8
Ar
N O
Si C
B O
Fe(CO)4
NHC
7
2
NHC 6
Si
Ar LA
N
Si O
B
NHC
Scheme 3. Reactivity of cyclic amino(bora-ylide)silanone 2.
X = CR2, NR, O, S
NHC NHC
N
Ar
R2P
R2P
R2P
Si
B
1.781(3) Å in the range of P=B double bonds of base-stabilized
phosphaborenes (1.794 - 1.809 Å).[25] The P1-C1 bond length of
1.718(3) Å is elongated compared to those observed for
bis(methylene)-phosphoranes (1.641 - 1.684 Å) probably due to the
presence of the electron withdrawing imine substituent. Both P=B
and P=C double bonds are slightly twisted [torsion angles: N2-P1B1-Si1 = 14.9°, N2-P1-C1-C3 = 35.57°].
Ar
Ar
N
N
O
Si
Si
O
B
B
tBu
P
N
NHC NHC tBu N Si
4'
Scheme 2. Dimerization of 2.
Figure 5. Molecular structure of 7 (left) and 8a (right). Thermal
ellipsoids represent 30 % probability. H and disordered atoms and
solvent molecules (benzene) are omitted for clarity. Selected bond
lengths [Å] and angles [°]: 7: Si1-O1 1.807(2), Si1-O2 1.761(2), O1C4 1.312(4), O2-C4 1.326(4), C4-Fe 1.913(3), N1-Si1 1.726(2), Si1-B
1.864(3), B-P 1.827(4), Fe-Caverage 1.781, C-Oaverage 1.149, N1-Si1-B
118.65(14), O1-Si1-O2 72.17(10), Si1-O1-C4 90.20(19), O1-C4-O2
105.6(3). 8a: Si1-O1 1.553(2), O1-Mg 1.882(2), N1-Si1 1.744(2), Si1B 1.865(3), B-C3 1.580(4), B-P 1.852(3), P1-C1 1.763(3), C1-C2
1.363(4), C2-N1 1.370(3), Si1-O1-Mg 155.85(13), N1-Si1-O1
111.63(10), O1-Si1-B 131.60(12), N1-Si1-B 116.51(12).
Figure 4. Molecular structure of 3. Thermal ellipsoids represent 20 %
probability. H and disordered atoms and solvent molecules (THF) are
omitted for clarity. Selected bond lengths [Å] and angles [°]: P1-N2
1.701(2), P1-C1 1.718(3), P1-B1 1.781(3), B1-C5 1.572(5), B1-Si1
2.013(3), Si1-N3 1.779(2), Si2-N2 1.758(3), N2-C4 1.521(4), C1-C2
1.427(4), C1-C3 1.527(4), Si1-O1 1.698(2), Si1-O2 1.675(2), Si3-O1
1.704(2), Si3-O2 1.712(2), N4-Si3 1.800(2), Si3-B2 1.939(3), B2-P2
1.819(3), C1-P1-B1 133.15(15), N2-P1-C1 114.29(14), N2-P1-B1
110.32(14). °P1 = 357.8°, °N2 = 359.8°, °C1 = 360.0°, °B1 = 359.8°
Disiloxane 3 was isolated as dark purple crystals from a
saturated THF solution of 3 at RT. The structure of 3 reveals an
asymmetric spirocyclic disiloxane ring connected to two sixmembered heterocyles (Figure 4). The elongation of Si3-O bonds
[1.704(2) and 1.712(2) Å] relative to the Si1-O bonds [1.698(2) and
1.675(2) Å may probably attributed to the strong electron donating
bora-ylide moiety connected to the Si3 centre. The
(borylene)(methylene)-phosphorane fragment presents an essentially
planar geometry around the P1, B1 and C1 atoms (°P1 = 357.8°,
°B1 = 359.8°, °C1 = 360.0°) and a relatively large B1-P1-C1 angle
[133.2(2)°]. The structure also shows a short B1-P1 bond of
Silanone 2 immediately reacts either with phenylsilane or CO2
to afford the corresponding 1,2-adduct 5 or [2+2]-cycloadduct 6,
respectively (Scheme 3). This reactivity is very similar to that
already observed with the previously reported persistent silanone VI.
[15]
Moreover, 2 readily reacts with diiron nonacarbonyl complex via
formally a [2+2]-cycloaddition between the silanone and C=O to
form a four-membered cyclic dioxocarbene complex 7. The
structure of 7 is similar to that of previously reported five-membered
cyclic dioxocarberne-iron complex.[26] These results clearly
demonstrate the remaining silanone character of 2 in spite of its
significant electronic perturbation by the strongly electron donating
amino and phosphonium-bora-ylide substituents. Probably due to
the strong polarization of silanone function, 2 readily forms stable
complexes 8 with Lewis acids such as MgBr2 or B(C6F5)3 (Scheme
3). Although no significant NMR data differences were observed
between 8 [29Si-NMR: 70.9 and 77.7 ppm, 11B-NMR: -23.4
and -22.3 ppm, 31P-NMR: 49.2 and 49.2 ppm (JPB = 194.4 and 187.1
Hz) for 8a and 8b respectively] and 2 [29Si-NMR: 71.3 ppm,
11
B-NMR: -24.3 ppm, 31P-NMR: 48.3 ppm (JPB = 190.9 Hz)], the
3
This article is protected by copyright. All rights reserved.
Accepted Manuscript
solution, M = 0.055 mmol/ml), which is dramatically extended
compared to the previous (amino)(ylide)silanone VI (t1/2 = 0.5 - 5 h).
The complete conversion was achieved at 60 °C in one day. In this
transformation it is reasonable to postulate that the rate-determining
step should be the dimerization of 2 (no intermediate could be
detectable), and the driving force for the isomerization of dimer 4
should be the release of excessive steric congestion around the
central disiloxane ring. Indeed, calculations show that the optimized
structure of dimer 4 presents considerably elongated Si-O bonds [SiO1 1.705 Å, Si-O2 1.742 Å], which could be attributed to the steric
effects.[23] Of particular interest is the unique structure of 3 featuring
a (borylene)(methylene)-phosphorane function which is, to the best
of our knowledge, the first example of three-coordinate phosphorane
including a group-13-element (VII in scheme 2).[24]
molecular structure of complex 8a indicates an enhanced
polarization with a pronounced Si=B double bond character (8B in
Figure 2). Therefore, the Si1-O1 and P-B bond lengths are elongated
and the Si1-B bond length is shorten [Si1-O1: 1.553 Å, P-B: 1.852
Å, Si1-B: 1.865 Å] relative to those observed for 2 [Si1-O1
1.5432(12) Å, B-P 1.8175(16) Å, Si1-B 1.8985(15) Å] (Figure 5left). Of particular interest, the coordination of Lewis acid increases
the stability, and in contrast to the free silanone 2, complexes 8 are
perfectly stable (no traces of decomposition after 3 weeks in toluene
solution at RT).
In conclusion, we have successfully synthesized a new isolable
heterocyclic silanone 2 stabilized by two different -donating
substituents such an amino group as well as a more electropositive
and exceptionally strong boron-based -donating phosphonium
bora-ylide function. The combination of these two substituents
dramatically extends the life-time of silanone at room temperature
(t1/2 = 4 days), allowing easier manipulation and its use as precursor
of new valuable silicon compounds. Applications of this new stable
silanone 2 are under active investigation.
Received: ((will be filled in by Received: ((will be filled in by the
editorial staff))
Published online on ((will be filled in by the editorial staff))
Keywords: silanone ·borylene ·phosphine ·bora-ylide ·NHC Chem.
Eur. J. 2015, 21, 15100
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
a) C. Friedel, J. M. Crafts, Ann. Chim. Phys. 1866, 9, 5; b) F. S.
Kipping, L. L. Lloyd, J. Chem. Soc. Trans. 1901, 79, 449; c) R.
Robison, F. S. Kipping, J. Chem. Soc. Trans. 1908, 93, 439.
a) H. Schnöckel, Z. Anorg. Allg. Chem. 1980, 460, 37; b) C. A.
Arrington, R. West, J. Michl, J. Am. Chem. Soc. 1983, 105, 6176; c) R.
Withnall, L. Andrews, J. Am. Chem. Soc. 1985, 107, 2567; d) V. N.
Khabashesku, Z. A. Kerzina, E. G. Baskir, A. K. Maltsev, O. M.
Nefedov, J. Organomet. Chem. 1988, 347, 277; e) V. N. Khabashesku,
Z. A. Kerzina, K. N. Kudin, O. M. Nefedov, J. Organomet. Chem.
1998, 566, 45; f) M. M. Linden, H. P. Reisenauer, D. Gerbig, M.
Karni, A. Schäfer, T. Müller, Y. Apeloig, P. R. Schreiner, Angew.
Chem. Int. Ed. 2015, 54, 12404.
R. J. Glinski, J. L. Gole, D. A. Dixon, J. Am. Chem. Soc. 1985, 107,
5891.
a) N. Takeda, N. Tokitoh, R. Okazaki, Chem. Lett. 2000, 244; b) S.
Tsutsui, H. Tanaka, E. Kwon, S. Matsumoto, K. Sakamoto, J.
Organomet. Chem. 2006, 691, 1341.
a) H. Suzuki, N. Tokitoh, R. Okazaki, S. Nagase, M. Goto, J. Am.
Chem. Soc. 1998, 120, 11096; b) J. Kapp, M. Remko, P. v. R.
Schleyer, J. Am. Chem. Soc. 1996, 118, 5745; c) V. G. Avakyan, V. F.
Sidorkin, E. F. Belogolova, S. L. Guselnikov, L. E. Gusel’nikov,
Organometallics 2006, 25, 6007.
a) T. Kudo, S. Nagase, J. Am. Chem. Soc. 1985, 107, 2589; b) A. K.
Jissy, Sanjay K. Meena, A. Datta, RSC Adv. 2013, 3, 24321; c) T.
Kudo, S. Nagase, J. Phys. Chem. 1984, 88, 2833.
a) S. Yao, M. Brym, C. van Wìllen, M. Driess, Angew. Chem. Int. Ed.
2007, 46, 4159; b) S. Yao, Y. Xiong, M. Brym, M. Driess, J. Am.
Chem. Soc. 2007, 129, 7268; c) Y. Xiong, S. Yao, M. Driess, J. Am.
Chem. Soc. 2009, 131, 7562; d) S. Yao, Y. Xiong, M. Driess, Chem
Eur. J. 2010, 16, 1281; e) Y. Xiong, S. Yao, R. Mìller, M. Kaupp, M.
Driess, Nat. Chem. 2010, 2, 577; f) Y. Xiong, S. Yao, R. Mìller, M.
Kaupp, M. Driess, J. Am. Chem. Soc. 2010, 132, 6912; g) Y. Xiong, S.
Yao, M. Driess, Dalton Trans. 2010, 39, 9282; h) Y. Xiong, S. Yao,
M. Driess, Angew. Chem. Int. Ed. 2010, 49, 6642; i) J. D. Epping, S.
Yao, M. Karni, Y. Apeloig, M. Driess, J. Am. Chem. Soc. 2010, 132,
5443; j) K. Hansen, T. Szilvási, B. Blom, E. Irran, M. Driess, Chem.
Eur. J. 2015, 21, 18930.
a) R. S. Ghadwal, R. Azhakar, H. W. Roesky, K. Prçpper, B. Dittrich,
S. Klein, G. Frenking, J. Am. Chem. Soc. 2011, 133, 17552; b) R. S.
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
Ghadwal, R. Azhakar, H. W. Roesky, K. Prçpper, B. Dittrich, C.
Goedecke, G. Frenking, Chem. Commun. 2012, 48, 8186.
a) T. Muraoka, K. Abe, Y. Haga, T. Nakamura, K. Ueno, J. Am. Chem.
Soc. 2011, 133, 15365; b) T. Muraoka, K. Abe, H. Kimura, Y. Haga,
K. Ueno, Y. Sunada, Dalton Trans. 2014, 43, 16610.
a) R. Rodriguez, T. Troadec, D. Gau, N. Saffon-Merceron, D.
Hashizume, K. Miqueu, J.-M. Sotiropoulos, A. Baceiredo, T. Kato,
Angew. Chem. Int. Ed. 2013, 52, 4426; b) R. Rodriguez, D. Gau, T.
Troadec, N. Saffon-Merceron, V. Branchadell, A. Baceiredo, T. Kato,
Angew. Chem. Int. Ed. 2013, 52, 8980; c) T. Troadec, M. Lopez Reyes,
R. Rodriguez, A. Baceiredo, N. Saffon-Merceron, V. Branchadell, T.
Kato, J. Am. Chem. Soc. 2016, 138, 2965; d) M. Lopez-Reyes, T.
Troadec, R. Rodriguez, A. Baceiredo, N. Saffon-Merceron, V.
Branchadell, T. Kato, Chem. Eur. J. 2016, 22, 10247; e) R. Rodriguez,
D. Gau, J. Saouli, A. Baceiredo, N. Saffon-Merceron, V. Branchadell,
T. Kato, Angew. Chem. Int. Ed. 2017, 56, 3935.
For a recent review of silanones and their heavier Group 14 congeners,
see: Y. Xiong, S. Yao, M. Driess, Angew. Chem. Int. Ed. 2013, 52,
4302.
L. Li, T. Fukawa, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka, K.
Tamao, Nature Chem. 2012, 4, 361.
A. C. Filippou, B. Baars, O. Chernov, Y. N. Lebedev, G.
Schnakenburg, Angew. Chem. Int. Ed. 2014, 53, 565.
S. Ishida, T. Abe, F. Hirakawa, T. Kosai, K. Sato, M. Kira, T.
Iwamoto, Chem. Eur. J. 2015, 21, 15100.
I. Alvarado-Beltran, A. Baceiredo, N. Saffon-Merceron, V.
Branchadell, T. Kato, Angew. Chem. Int. Ed. 2016, 55, 16141.
A. Rosas-Sánchez, I. Alvarado-Beltran, A. Baceiredo, D. Hashizume,
N. Saffon-Merceron, V. Branchadell, T. Kato, Angew. Chem. Int. Ed.
2017, 56, 4814.
The phosphonium bora-ylide can also be seen as a phosphinestabilized borylene. For a recent review and some selected articles on
the chemistry of Lewis base-stabilized borylenes, see: a) M.
Soleilhavoup, G. Bertrand, Angew. Chem. Int. Ed. 2017, 56, 10282; b)
R. Kinjo, B. Donnadieu, M. A. Celik, G. Frenking, G. Bertrand,
Science 2011, 333, 610; c) D. A. Ruiz, M. Melaimi, G. Bertrand,
Chem. Commun. 2014, 50, 7837; d) L. Kong, Y. Li, R. Ganguly, D.
Vidovic, R. Kinjo, Angew. Chem. Int. Ed. 2014, 53, 9280; e) L. Kong,
R. Ganguly, Y. Lib, R. Kinjo, Chem. Sci. 2015, 6, 2893; f) H.
Braunschweig, R. D. Dewhurst, F. Hupp, M. Nutz, K. Radacki, C. W.
Tate, A. Vargas, Q. Ye, Nature 2015, 522, 328; g) M. Arrowsmith, D.
Auerhammer, R. Bertermann, H. Braunschweig, G. Bringmann, M. A.
Celik, R. D. Dewhurst, M. Finze, M. Grgne, M. Hailmann, T. Hertle, I.
Krummenacher, Angew. Chem. Int. Ed. 2016, 55, 14464.
A. Rosas-Sánchez, I. Alvarado-Beltran, A. Baceiredo, N. SaffonMerceron, S. Massou, V. Branchadell, T. Kato, Angew. Chem. Int. Ed.
2017, 56, 10549.
CCDC-1578136 (2), CCDC-1578301 (3), CCDC-1578302 (7) and
CCDC-1578303 (8) contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from the
Cambridge
Crystallographic
Data
Centre
via
www.ccddc.cam.ac.uk/data_request/cif.
L. Kong, C. Cui, Organomatallics 2010, 29, 5738; b) P. P. Samuel, R.
Azhakar, R. S. Ghadwal, S. S. Sen, H. W. Roesky, M. Granitzka, J.
Matussek, R. Herbst-Irmer, D. Stalke, Inorg. Chem. 2012, 51, 11049.
K. Hansen, T. Szilvasi, B. Blom, S. Inoue, J. D. Epping, M. Driess, J.
Am. Chem. Soc. 2013, 135, 11795.
See supporting information for the molecular orbital of 2.
See supporting information for the calculated structure of dimer 4.
Numerous three-coordinate (methylene)phosphoranes derivative
constituted of group-14 and -15 elements (VIII in scheme 2) have
been synthesized to present. a) R. Apple, Multiple bonds and low
coordination in phosphorus chemistry (Ed.:M. Regitz, O. Scherer),
Thieme Medical Publishers, Stuttgart, 1990, pp 367-364; b) H. Heydt,
Multiple bonds and low coordination in phosphorus chemistry (Ed.:M.
Regitz, O. Scherer), Thieme Medical Publishers, Stuttgart, 1990, pp
375-391.
E. Rivard, W. A. Merrill, J. C. Fettinger, P. P. Power, Chem. Commun.
2006, 3800; b) A. N. Price, M. J. Cowley, Chem. Eur. J. 2016, 22,
6248.
J. Daub, G. Endress, U. Erhardt, K. H. Jogun, J. Kappler, A. Laurner,
R. Pfiz, J. J. Stezowski, Chem. Ber. 1982, 115, 1787.
4
This article is protected by copyright. All rights reserved.
Accepted Manuscript
10.1002/ange.201710358
Angewandte Chemie
10.1002/ange.201710358
Angewandte Chemie
Entry for the Table of Contents (Please choose one layout)
((Catch Phrase))
Cyclic (Amino)(Phosphonium-BoraYlide)Silanone: A Remarkably Room
Temperature Persistent Silanone
A Silanone substituted by bulky amino- and phosphonium-bora-ylide substituents
has been synthesized and isolated in crystalline form. Thanks to the exceptionally
strong electron-donating phosphonium-bora-ylide substituent, the life-time is
dramatically extended (t1/2 = 4 days), allowing easier manipulation and its use as
precursor of new valuable silicon compounds. The interaction of silanone with a
weak Lewis acid such as MgBr2 increases further its stability and no degradation of
silanone was observed after 3 weeks at room temperature.
5
This article is protected by copyright. All rights reserved.
Accepted Manuscript
A. Rosas-Sánchez, I. Alvarado-Beltran,
A. Baceiredo, N. Saffon-Merceron, S.
Massou, D. Hashizume, V. Branchadell,
T. Kato,* __________ Page – Page
Документ
Категория
Без категории
Просмотров
6
Размер файла
878 Кб
Теги
angel, 201710358
1/--страниц
Пожаловаться на содержимое документа