close

Вход

Забыли?

вход по аккаунту

?

j.energy.2017.10.107

код для вставкиСкачать
Accepted Manuscript
Novel fuel cell/battery/supercapacitor hybrid power source for fuel cell hybrid
electric vehicles
Hassan Fathabadi
PII:
S0360-5442(17)31812-1
DOI:
10.1016/j.energy.2017.10.107
Reference:
EGY 11751
To appear in:
Energy
Received Date:
27 May 2017
Revised Date:
21 October 2017
Accepted Date:
23 October 2017
Please cite this article as: Hassan Fathabadi, Novel fuel cell/battery/supercapacitor hybrid power
source for fuel cell hybrid electric vehicles, Energy (2017), doi: 10.1016/j.energy.2017.10.107
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT
Highlights
 Novel PEMFC/battery/SC hybrid power source proposed to be utilized in FCHEVs
 Higher efficiency (96.2%) compared to the state-of-the-art power sources of FCHEVs
 Highly accurate DC-link voltage regulation
 Providing higher speed (161km/h) compared to the state-of-the-art power sources
 Providing 0-100 km/h acceleration in 12.2 sec and significant cruising range (545km)
ACCEPTED MANUSCRIPT
Novel fuel cell/battery/supercapacitor hybrid power source
for fuel cell hybrid electric vehicles
Hassan Fathabadi
School of Electrical and Computer Engineering, National Technical University of Athens (NTUA),
Athens, Greece. Email: h4477@hotmail.com
Abstract
A fuel cell hybrid electric vehicle (FCHEV) is more advantageous compared to a gasoline-powered
internal combustion engine based vehicle or a traditional hybrid electric vehicle (HEV) because of
using only one electric motor instead of an internal combustion engine or an electric motor in
combination with an internal combustion engine. This study proposes a novel fuel cell (FC)/battery/
supercapacitor (SC) hybrid power source to be utilized in FCHEVs. The power source includes a 90
kW proton exchange membrane fuel cell (PEMFC) stack used as the main power source and a 19.2 kW
Lithium (Li)-ion battery together with a 600 F SC bank used as the auxiliary energy storage devices. A
prototype of the FC/battery/SC hybrid power source has been constructed, and experimental
verifications are presented that explicitly substantiate having a power efficiency of 96.2% around the
rated power, highly accurate DC-link voltage regulation and producing an appropriate three-phase
stator current for the traction motor by using PWM technique are the main contributions of this work.
Providing a maximum speed of 161 km/h, 0-100 km/h acceleration in 12.2 sec and a cruising range of
545 km are the other advantages. The proposed FC/battery/SC hybrid power source is also compared to
the state of the art of all kinds of power sources used in FCHEVs and reported in the literature that
clearly demonstrates its better performance such as higher speed and acceleration.
Keywords
Fuel cell hybrid electric vehicle; fuel cell; Lithium- ion battery; supercapacitor; power source.
1
ACCEPTED MANUSCRIPT
Nomenclature
C
Capacitance occurring between the anode and cathode of the fuel cell (F).
Cstack
Total capacitance of fuel cell stack (F).
C1
Parasitic capacitance of the N-MOSFET switch of the converter connected to the
PEMFC stack (F).
C2
Secondary-side serial capacitor of the converter connected to the PEMFC stack (F).
C dc
DC-link capacitor (F).
C fc
Input capacitor of the converter connected to the PEMFC stack (F).
Cout
Output capacitor of the converter connected to the PEMFC stack (F).
D
Diffusion constant ( m 2 s 1 ).
D1 & D2
Diodes of the converter connected to the PEMFC stack.
Dbat char
Duty cycle of the switching pulse supplied to the converter connected to the Li-ion
battery in charging mode.
Dbat disc
Duty cycle of the switching pulse supplied to the converter connected to the Li-ion
battery in discharging mode.
Dscchar
Duty cycle of the switching pulse supplied to the converter connected to the SC bank in
charging mode.
Dsc disc
Duty cycle of the switching pulse supplied to the converter connected to the SC bank in
discharging mode.
D fc
Duty cycle of the converter connected to the PEMFC stack.
fs
Constant switching frequency of the converter connected to the PEMFC stack (Hz).
F
Faraday’s constant (96485.3 C mol1 ).
2
ACCEPTED MANUSCRIPT
i (t )
Fuel cell current (A).
i0
Exchange current (A).
iL
Limiting current (A).
I bat
Li-ion battery output current (A).
I sc
SC bank output current (A).
I fc
PEMFC stack output current (A).
I load
Load current supplied to the three-phase inverter and traction motor (A).
Llk1
Primary-side leakage inductor of the transformer of the converter connected to the
PEMFC stack (H).
Llk 2
Secondary-side leakage inductor of the transformer of the converter connected to the
PEMFC stack (H).
Equivalent magnetizing inductor of the transformer of the converter connected to the
Lm
PEMFC stack (H).
N2
N1
Turns ratio of the transformer of the converter connected to the PEMFC stack.
n
Number of electrons involved in the fuel cell reaction.
N cell
Fuel cells number in the FC stack.
Pbat char
Charging power of the Li-ion battery (W).
Pbat disc
Discharging power of the Li-ion battery (W).
Pfc
PEMFC stack output power (W).
Pscchar
Charging power of the SC bank (W).
Psc disc
Discharging power of the SC bank (W).
3
ACCEPTED MANUSCRIPT
Pload
Total electric power supplied to the three-phase inverter and traction motor (W).
R
Gas constant (8.314 J mol1K 1 ).
Ract
Activation resistance associated with  act (  ).
Rconc
Concentration resistance of the fuel cell associated with  conc (  ).
Rbat esr
Equivalent series resistance (ESR) of the Li-ion battery (  ).
Resr
ESR of the DC-link capacitor (  ).
Rsc esr
ESR of the SC bank (  ).
Ri
Internal resistance of the fuel cell (  ).
Rin
Input resistance of the converter connected to the PEMFC stack (  ).
RL
Equivalent load resistance observed from the output terminal of the converter connected
to the PEMFC stack (  ).
Rload
Load resistance connected to the fuel cell (  ).
R Lbat
Resistance of the inductance Lbat of the bidirectional boost-buck converter connected to
the Li-ion battery (  ).
RLsc
Resistance of the inductance Lsc of the bidirectional boost-buck converter connected to
the supercapacitor bank (  ).
Rohm
Ohmic resistance of the fuel cell associated with  ohm (  ).
S fc
N-MOSFET switch used in the converter connected to the PEMFC stack.
ti
Transference number.
T
Fuel cell temperature (K).
Ts
Switching period of the converter connected to the PEMFC stack (sec).
4
ACCEPTED MANUSCRIPT
Tsc
Switching period of the control signal supplied to the converter connected to the SC
bank (sec).
Vbat
Li-ion battery output voltage (V).
Vdc
DC-link voltage (V).
V fc (t )
FC stack output voltage (V).
Voc (t )  E cell Open-circuit voltage of the fuel cell (V).
Vout (t )
Fuel cell voltage under load (V).
Vsc
SC bank output voltage (V).

Activity coefficient; 0    1 .
 conc
Concentration polarization of the fuel cell (V).
 act
Activation polarization of the fuel cell (V).
 ohm
Ohmic polarization of the fuel cell (V).

Equivalent conductance of reacting ion ( m 2 Ω 1 equiv 1 or m 2 Ω 1 mol1 ).
1. Introduction
Nowadays, environmental problems and economic considerations cause an upward trend in developing
electric vehicles (EVs) rather than the vehicles with internal combustion engines [1]. In particular, a
traditional HEV consists of an internal combustion engine used as the main power source and an
auxiliary energy storage device with the capability of storing energy such as a battery. The auxiliary
energy storage device is mainly used to extend the cruising range of the vehicle, to provide the extra
energy needed whenever the vehicle accelerates, and to store the regenerative energy produced during
braking. A FCHEV is a type of HEV that utilizes a FC stack as the main power source combined with a
SC and/or battery used as the auxiliary energy storage device to power the vehicle’s traction motor
5
ACCEPTED MANUSCRIPT
which is an electric motor, not an internal combustion engine [2]. A FCHEV is more advantageous
compared to a traditional HEV or an internal combustion engine based vehicle because as mentioned it
uses an electric motor instead of a gasoline-powered internal combustion engine, so it not only satisfies
the environmental issues but also is more efficient [3-4]. It is reminded that even a plug-in hybrid
electric vehicle (PHEV) uses an internal combustion engine to extend its cruising range [5], and to
produce the electric power needed to be supplied to the vehicle’s electric motor when the level of the
vehicle’s battery becomes low and gets to a predetermined state of charge (SOC) [6]. A FC stack
produces electric power through the chemical reaction basically occurs in the presence of hydrogen,
oxygen and an electrolyte. Compared to an internal combustion engine based power source, relatively
higher efficiency [7], lower pollution, the usage of clean energy resources with lower price such as
methanol [8], and being appropriate for various industrial applications [9] such as distributed power
generations [10] and vehicular systems [11-12] are some benefits of utilizing FC stacks. Among the
different FC systems available in the market, the PEMFC technology is more appropriate to be utilized
in vehicles because of higher density in electric power production along with lower heat generation
causing a lower temperature which is a necessity in a vehicle equipped with a FC stack [13-14]. The
first drawback of utilizing a FC stack in a vehicle is that, the FC stack cannot provide appropriate
responses to sudden variations in the load demand of the vehicle [15-17]. For instance, the FC stack
cannot efficiently respond to the sudden upward and downward powers needed respectively during
accelerating and decelerating, or the considerable initial electric power required to start up the vehicle
[18-19]. The second drawback is that the FC stack cannot store the regenerative power produced during
decelerating and braking, so an extra energy storage device such as a rechargeable battery or SC bank
is also needed [20-21]. The two above-mentioned drawbacks demonstrate that an additional device
with a suitable storage capacity and high-speed dynamic response should be utilized as an auxiliary
energy storage device along with the FC stack.
6
ACCEPTED MANUSCRIPT
Because of the advantages of FCHEVs explained in detail, this study focuses on this type of HEV, and
proposes a novel FC/battery/SC hybrid power source to be utilized in FCHEVs. The power source
includes a 90 kW PEMFC stack used as the main power source and a 19.2 kW Li-ion battery together
with a 600 F SC bank used as the auxiliary energy storage devices. A prototype of the FC/battery/SC
hybrid power source has been built, and experimental verifications are presented that demonstrate
having a power efficiency of more than 96% around the rated power, highly accurate DC-link voltage
regulation, and producing an appropriate three-phase current using pulse-width modulation (PWM)
technique which is supplied to the traction motor are some contributions of this work. The power
source presented in this study is also compared to the state-of-the-art power sources used in FCHEVs
that demonstrates the better capability of the proposed power source. The rest of this paper is organized
as follows. The behavior of a FC stack in response to sudden variations in load demand is presented in
Section 2. The proposed FC/battery/SC hybrid power source is designed and implemented in Section 3.
Details about the constructed power source, experimental verifications and comparing the proposed
power source to the state-of-the-art power sources used in FCHEVs are given in Section 4. Finally, the
paper is concluded in Section 5.
2. Behavior of a FC stack in response to sudden variations in load demand
Fig. 1 shows a simple schematic diagram of a typical FCHEV in which a PEMFC stack has been used
as the main power source to supply the power needs of the FCHEV, in particular, its traction motor
which is an electric motor. Electric power is produced in a PEMFC via a set of the chemical reactions
which can be expressed and summarized as [22]:
At Anode :
2H 2  4H   4e 
At Cathode : O 2  4H   4e   2H 2 O
(1)

Over all :
2H 2  O 2  2H 2 O
7
ACCEPTED MANUSCRIPT
At steady state, the output voltage of a FC is expressed as [23]:
Vout (t )  E cell   conc   act   ohm  Ri i (t )
(2)
where Ri represents the internal resistance of the fuel cell consisting of the resistances of the
electrolyte, anode, cathode and any diaphragms available between the anode and cathode that the
electrons pass through them. Concentration polarization  conc is caused by changing in the
concentration gradients at the surface of the two electrodes resulting from the continuous chemical
reactions, and activation polarization  act is due to the slowness of the individual chemical reactions
performed at the two electrodes. Ohmic polarization  ohm shows the voltage drop caused by the change
in specific conductivity resulted from the electro-chemical reactions occurring inside the fuel cell. To
formulize the three mentioned polarizations, the activation polarization  act of a fuel cell is expressed
using Tofel equation as [24]:
 act 
RT
RT
ln(i0 )  2.303
ln[i (t )]
 nF
 nF
(3)
The concentration polarization  conc of the same fuel cell can be formulized as:
 conc 
RT  i L  i (t ) 
ln 

n F  iL 
(4)
Similarly, the ohmic polarization  ohm of the fuel cell is obtained as:
 ohm 
 i  i (t ) 
nFD
ln  L

 (1  t i )  i L 
(5)
Using linearization at a given fuel cell current such as i (t )  in and by defining the three resistances
Ract (T ) , Rconc (T ) and Rohm (T ) , Eqs. (3)-(5) are rewritten as:


 conc  conc
i (t )  Rconc (T ) i (t )
Eq.
i i(6)

Substituting
in in Eq. (2) results that:

 act

i (t )  Ract (T ) i (t )
 act 

i

i in



 ohm
i (t )  Rohm (T ) i (t )
 ohm
 i i i
n

(6)
8
ACCEPTED MANUSCRIPT
Vout (t )  E cell  Rconc (T ) i (t )  Ract (T ) i (t )  Rohm (T ) i (t )  Ri i (t )
(7)
Noting Eq. (7) and adding the effect of the electric field appearing between the two electrodes of the
FC (cathode and anode), a FC can be modeled as the electric circuit shown in Fig. 2, where the
capacitor C with a large capacity at the level of 1-9 Farad represents the electric capacity resulted from
the electric field occurring between the cathode and anode. The model is in fact a first-order circuit
with the time constant of  oc  ( Rconc  Ract  Rohm ) C . As shown in Fig. 3, under loading condition,
the electric power produced by the FC is supplied to a load ( Rload ), so the time constant is expressed
as:

( Rconc  Ract  Rohm )( Ri  Rload )
C
Rconc  Ract  Rohm  Rload  Ri
(8)
Eq. (8) demonstrates that a time delay of 2.2  appears when the FC responds to sudden variations in
load demand. In industrial applications, a FC stack with the required rated power and voltage is
constructed by connecting in series an appropriate number ( N cell ) of FCs, so under steady state
condition, the output voltage of a FC stack is found by using Eq. (7) as:
V fc (t )  N cell Vout (t )  N cell E cell  N cell Rconc (T ) i (t )
 N cell Ract (T ) i (t )  N cell Rohm (T ) i (t )  N cell Ri i (t )
(9)
On the one hand, Eq. (1) substantiates that the electric power production in a PEMFC stack is resulted
from a set of the low-speed chemical reactions. On the other hand, the time constant (  ) of a FC given
in Eq. (8), and hence, the associated time delay ( 2.2  ) occurring in the response of a FC to sudden
variations in load demand explicitly demonstrates that a FC stack is actually a power source with a
low-speed dynamic response. To provide experimental evidence, a PEMFC stack H-1000
manufactured by Horizon company has been used [25], the dynamic response of the stack obtained
experimentally by varying the resistive load connected to the stack is shown in Fig. 4. The dynamic
response simulated by using the proposed model depicted in Fig. 2 is also shown as blue curve in Fig.
9
ACCEPTED MANUSCRIPT
4. The model parameters obtained from Eq. (6) at the stack operating point ( in  35 A , T=300 K) and
the technical specification of the H-1000 PEM fuel cell stack reported in its user manual [25] are
presented in Table 1. The experimental and simulation results shown in Fig. 4 explicitly verify that a
FC stack really has a low-speed dynamic response. This point demonstrates that a PEMFC stack cannot
respond to sudden variations in the load demand of an EV such as sudden upward and downward
powers needed during transient states such as acceleration and deceleration, or the considerable initial
electric power required to start up the EV. As another important point, it is reminded that a FC stack
cannot store the regenerative power produced during decelerating and braking, so an additional device
such as a rechargeable battery or a SC bank with appropriate capacity is also needed. It can be
summarized that an additional device with high-speed dynamic response is also needed to be utilized as
an auxiliary power source in a FCHEV to assist the FC stack in providing effective responses to
different instant load demands and also saving the regenerative power.
3. Implementation of the FC/battery/SC hybrid power source proposed for FCHEVs
The configuration of the FC/battery/SC hybrid power source proposed to be utilized in FCHEVs is
shown in Fig. 5. It is composed of a PEMFC stack used as the main power source, a Li-ion battery
together with a SC bank used as the auxiliary energy storage devices, a unidirectional DC/DC boost
converter connected to the PEMFC stack, two similar bidirectional DC/DC boost-buck converters
connected to the battery and SC bank, a three-phase bidirectional PWM DC/AC inverter connected the
traction motor which is a three-phase induction motor, in practice, a three-phase permanent magnet
synchronous motor (PMSM), and a power control unit. The DC-link voltage is continually regulated to
a specific constant value by the power control unit. Fig. 6 shows the electric circuit of the
unidirectional DC/DC boost converter connected to the PEMFC stack. The average power efficiency of
the converter is 98% and its gain is given as [26]:
10
ACCEPTED MANUSCRIPT
Vdc
n

V fc 1  D fc
(10)
The DC-link voltage can be obtained from Eq. (10) as:
Vdc  (
n
) V fc
1  D fc
(11)
Eq. (11) demonstrates that when the PEMFC stack output voltage varies over time the DC-link voltage
can be continuously regulated to a specific value by changing the duty cycle D fc . When D fc is
changed by the power control unit to regulate the DC-link voltage, the available output power of the
PEMFC stack also varies in accordance with the following power equation:
Pfc  V fc I fc 
V fc 2
Rin

V fc 2
(1  D fc ) 2
n2
(12)
RL
where Rin and RL introduced in Nomenclature section are shown in Figs. 5-6. As shown in Fig. 5, the
PEMFC stack output current and voltage, and hence, the stack output power is continuously measured
by the power control unit. The electric circuit of the bidirectional DC/DC boost-buck converter with the
average power efficiency of 90% connected to the SC bank is shown in Fig. 7. The discharging power
of the SC bank is given as:
Pscdisc  Vsc I sc
(13)
The SC bank output voltage and current ( Vsc and I sc ), and hence, the discharging and charging powers
of the SC bank are continuously measured by the power control unit as shown in Fig. 5. Noting Fig. 7
demonstrates that in discharging mode, the converter operates as a boost converter, and the discharging
power of the SC bank is expressed as:
11
ACCEPTED MANUSCRIPT
Psc disc

1

) Vsc  Vdc
(

1  Dsc disc
1 
1


(
) Vsc

0.9  1  Dsc disc
0.001  Resr










(14)
where Dsc disc is the duty cycle of the control signal supplied to the gate of the insulated gate bipolar
transistor (IGBT) Q1 (SC discharge switch) as shown in Fig. 7. It is deduced from Eq. (14) that the
discharging power can be regulated to a required rated power by varying the duty cycle Dsc disc . In
charging mode, the direction of the SC bank current becomes reverse, the converter operates as a buck
converter, and the charging power is found as:
 Dsc char Vdc  Vsc
Psc char  Dsc char Vdc 
 0.001  Rsc esr  R L
sc





(15)
where Dscchar is the duty cycle of the switching pulse supplied to the gate of the IGBT Q2 (SC charge
switch) as shown in Fig. 7. Thus, the charging power is regulated to a required power rate by varying
the duty cycle Dscchar . The discharging power of the Li-ion battery is obtained as:
Pbat disc  Vbat I bat
(16)
Similar to SC bank, a bidirectional DC/DC boost-buck converter has been also connected to the Li-ion
battery, so similar to the SC bank, the battery discharging power is expressed as:
Pbat disc

1

) Vbat  Vdc
(

1  Dbat disc
1 
1


(
) Vbat

0.9  1  Dbat disc
0.001  Resr










(17)
Similarly, the battery charging power is given as:
 Dbat char Vdc  Vbat
Pbat char  Dbat char Vdc 
 0.001  Rbat esr  R L
bat





(18)
12
ACCEPTED MANUSCRIPT
As shown in Fig. 5, the power control unit also measures the DC-link voltage ( Vdc ) and load current (
I load ), and then computes the total electric power ( Pload ) supplied to the three-phase bidirectional
PWM DC/AC inverter connected to the three-phase traction motor as:
Pload  Vdc I load
(19)
The power control in the FC/battery/SC hybrid power source proposed for FCHEVs is performed by
the power control unit as below:
Case 1 (charging mode): If 0.98 Pfc  Pload , then the power control sets the Li-ion battery and SC
bank in charging mode by activating the switching pulses with the duty cycles Dbat char and Dscchar as
shown in Figs. 5 and 7. In this case, the power balance in the hybrid power source is expressed as:
0.98 Pfc  Pload 
1
Psc char
0.9
(20)
So, the electric power consumed to charge the SC bank is given as:

Psc char  0.9 0.98 Pfc  Pload

(21)
It is derived from comparing Eq. (10) with Eq. (16) that:
 Dsc char Vdc  Vsc
Dsc char Vdc 
 0.001  Rsc esr  R L
sc


  0.9 0.98 Pfc  Pload




(22)
Eq. (22) explicitly demonstrates that in this case (charging mode), the power control unit measures Pfc
and Pload , and then regulates the charging power of the SC bank to the required amount specified in Eq.
(21) by varying Dscchar . When the charging current of the SC bank reaches below 0.5 A, the SC bank
becomes fully charged. Then, the control unit stops charging the SC bank, and sets the Li-ion battery in
charging mode, so the power balance is expressed as:
0.98 Pfc  Pload 
1
Pbat char
0.9
(23)
The electric power required to charge the battery is obtained as:
13
ACCEPTED MANUSCRIPT

Pbat char  0.9 0.98 Pfc  Pload

(24)
It is deduced from substituting Eq. (18) in Eq. (24) that:
 Dbat char Vdc  Vbat
Dbat char Vdc 
 0.001  Rbat esr  R L
bat


  0.9 0.98 Pfc  Pload




(25)
Similar to the SC bank, Eq. (25) demonstrates that the charging power of the battery is regulated to the
amount demanded in Eq. (24) by varying Dbat char .
Case 2 (discharging mode): If 0.98 Pfc  Pload , then the power control unit sets the SC bank in
discharging mode by activating the duty cycle Ddisc as shown in Fig. 5 to provide the additional electric
power needed. In this case, the power balance in the hybrid power source is expressed as:
0.98 Pfc  0.9 Psc disc  Pload
(26)
In this case, the amount of the supplementary electric power that should be provided by discharging the
SC bank is found from Eq. (26) as:
Psc disc 

1
Pload  0.98 Pfc
0.9

(27)
By replacing Psc disc from Eq. (14) in Eq. (27), it is found that:
1

) Vsc  Vdc
(
1  Dsc disc
1

(
) Vsc

1  Dsc disc
0.001  Resr




  P  0.98 P
fc
 load


14
(28)
ACCEPTED MANUSCRIPT
It is deduced from Eq. (28) that in this case (discharging mode), the power control unit measures Pfc
and Pload , and then regulates the discharging power of the SC bank to the amount demanded in Eq. (27)
by varying Dsc disc . When the discharging current of the SC bank reaches below 0.5 A, the SC bank
becomes fully discharged, the control unit stops discharging the SC bank, and sets the Li-ion battery in
discharging mode, so the power balance is expressed as:
0.98 Pfc  0.9 Pbat disc  Pload
(29)
The supplementary electric power that should be provided by discharging the battery is found from Eq.
(29) as:
Pbat disc 

1
Pload  0.98 Pfc
0.9

(30)
By substituting Pbat disc from Eq. (17) in Eq. (30), it is found that:
1

) Vbat  Vdc
(
1  Dbat disc
1

(
) Vbat

1  Dbat disc
0.001  Resr




  P  0.98 P
fc
 load


(31)
It is deduced from Eq. (31) that the power control unit measures Pfc and Pload , and regulates the
discharging power of the Li-ion battery to the required amount specified in Eq. (30) by varying Dbat disc
.
The electric circuit of the proposed three-phase bidirectional PWM six-switch DC/AC inverter
connected the traction motor is shown in Fig. 8. It comprises the six IGBTs that convert the DC-link
voltage into a three-phase three-level PWM AC voltage supplied to the stator of the traction motor
which is in practice a three-phase PMSM. Since the traction motor acts as a three-phase inductive load,
the current delivered to the stator is the integral of the three-level PWM AC voltage, and so the current
waveform is close to a sinusoidal form. As shown in Fig. 8, each IGBT itself includes an emitter-tocollector connected diode, the six diodes operate as a three-phase rectifier to convert the three-phase
15
ACCEPTED MANUSCRIPT
AC voltage resulted from the regenerative power produced by the traction motor during decelerating
and braking into the DC-link voltage which is used to charge the SC bank and battery. Thus, the
proposed three-phase PWM six-switch DC/AC inverter is a bidirectional inverter.
4. Construction of the FC/battery/SC hybrid power source and experimental verifications
The detailed specifications of all the components used to construct the FC/battery/SC hybrid power
source proposed to be utilized in FCHEVs are listed in Table 2. As reported in Table 2, an 80 kW
three-phase PMSM used as the traction motor, a 90 kW PEMFC stack, a 19.2 kW Li-ion battery and
a SC bank with the rated capacitance of 600 F composed of the four parallel-connected blocks that
each block itself consists of 20 series-connected SC cells ESHSR-3000C0-002R7A5T have been
utilized. The waveforms of the line voltages ( V AB and VBC ) supplied to the PMSM and the DC-link
voltage are shown in Fig. 9. The waveforms of the line voltages show that they are the three-level
AC voltages with correct magnitude and phase produced using PWM technique by the three-phase
bidirectional DC/AC inverter. This point explicitly verifies the correct operation of the three-phase
bidirectional PWM six-switch DC/AC inverter connected to the traction motor. Similarly, the
waveform of the DC-link voltage explicitly demonstrates that the DC-link voltage is exactly
regulated to the appointed value (400 V) by the unidirectional DC/DC boost converter connected to
the PEMFC stack in accordance with Eq. (10). The waveforms of the currents ( I A and I B ) supplied
to the stator of the PMSM are shown in Fig. 10. The periodic switching pulse with the switching
frequency of 25 kHz and the duty cycle D fc determined according to Eq. (10) to regulate the DClink voltage along with the regulated DC-link voltage is also shown in Fig. 11. As mentioned, the
periodic switching pulse is supplied to the switch S fc of the unidirectional DC/DC boost converter
connected to the PEMFC stack. The electric power supplied to the traction motor (output power),
and the total of the electric power provided by the PEMFC stack power production, discharging the
16
ACCEPTED MANUSCRIPT
SC bank and Li-ion battery (input power) were measured point by point. Then, the power efficiency
of the proposed FC/battery/SC hybrid power source was computed point by point as:
Power efficiency 
Output power
100
Input power
(32)
The power efficiency curve resulted from the point by point computing is shown in Fig. 12. The
following points which are the main contributions of this study are deduced from the experimental
results shown in Figs. 9-12:
● The power efficiency curve explicitly demonstrates that the proposed FC/battery/SC hybrid power
source provides a power efficiency of 96.2% around the rated power.
● The DC-link voltage is high accurately regulated to the appointed value (400 V).
● The traction motor is well supplied by the sinusoidal currents resulted from the three-level AC
voltages produced by using PWM technique.
The other benefit of the FC/battery/SC hybrid power source presented in this study is its flexibility, so
that, it can be also utilized as a FC/battery or FC/SC power source. In detail, on the request, the power
control unit disables the switching pulses with the duty cycles Dscchar and Dsc disc supplied to the
converter connected to the SC bank, so the SC bank is isolated from the system, and the system
changes into a FC/battery power source. Similarly, the proposed power source operates as a FC/SC
hybrid power source by disabling the switching pulses with the duty cycles Dbat char and Dbat disc
supplied to the converter connected to the Li-ion battery. Thus, the power source can be utilized in the
three modes; FC/battery/SC, FC/battery and FC/SC. The technical parameters of the power source in
the three modes are summarized and compared in Table 3. The comparison demonstrates that utilizing
the SC bank mainly improves the acceleration of the vehicle, while the Li-ion battery provides longer
cruising range, so that, a FCHEV with the weight of 1880 kg equipped with the proposed
FC/battery/SC hybrid power source has a maximum speed of 161 km/h, 0-100 km/h acceleration in
12.2 sec, and a cruising range of 435 km on one
17
ACCEPTED MANUSCRIPT
tank of hydrogen with the fuel capacity/tank pressure of 5.4 kg/5000 psi and 110 km on the 19.2 kWh
Li-ion battery (totally, 545 km).
As another attempt to prove the contributions of this work, a comparison between the proposed
FC/battery/SC hybrid power source and the state of the art of all kinds of power sources reported in the
literature to be used in FCHEVs is performed in Table 4 [15], [27-63]. It is worthwhile to note that
while the majority of the other works are only simulated models, the comparison explicitly
demonstrates the excellent performance of the proposed FC/battery/SC hybrid power source such as
higher speed and acceleration.
5. Conclusion
In this paper, a novel FC/battery/SC hybrid power source was proposed to be used in FCHEVs. A 90
kW PEMFC stack, a 600 F SC bank and a 19.2 kW Li-ion battery were used to construct a prototype of
the FC/battery/SC hybrid power source. The experimental results demonstrated that the power
efficiency of 96.2% around the rated power, highly accurate DC-link voltage regulation and providing
a suitable three-phase current by using PWM technique that is supplied to the stator of the traction
motor are the main contributions of this work. For a FCHEV with the weight of 1880 kg, the proposed
power source provides a total cruising range of 545 km on one tank of hydrogen with the fuel
capacity/tank pressure of 5.4 kg/5000 psi, a maximum speed of 161 km/h and 0-100 km/h acceleration
in 12.2 sec. The proposed hybrid power source was also compared to the state-of-the-art power sources
used in FCHEVs and reported in the literature that clearly substantiated its better parameters such as
higher speed and acceleration, while most of the other works were simulated models.
References
[1] H. Fathabadi, Utilization of electric vehicles and renewable energy sources used as distributed
generators for improving characteristics of electric power distribution systems, Energy 90 (2015)
1100-1110.
18
ACCEPTED MANUSCRIPT
[2] R. Koubaa, L. krichen, Double layer metaheuristic based energy management strategy for
a Fuel Cell/Ultra-Capacitor hybrid electric vehicle, Energy 133 (2017) 1079-1093.
[3] K. Rajashekara, Hybrid fuel-cell strategies for clean power generation, IEEE Transactions on
Industry Applications 41 (3) (2005) 682-689.
[4] A. Lucas, R.C. Neto, C.A. Silva, Energy supply infrastructure LCA model for electric and hydrogen
transportation systems, Energy 56 (2013) 70-80.
[5] H. Fathabadi, Novel grid-connected solar/wind powered electric vehicle charging station with
vehicle-to-grid technology, Energy 132 (2017) 1-11.
[6] H. Fathabadi, High thermal performance Lithium-ion battery pack including hybrid active-passive
thermal management system for using in hybrid/electric vehicles, Energy 70 (2014) 529-538.
[7] A. Abdon, X. Zhang, D. Parra, M.K. Patel, J. Worlitschek, Techno-economic and environmental
assessment of stationary electricity storage technologies for different time scales, Energy 139
(2017) 1173-1187.
[8] K. Sankar, N. Thakre, S.M. Singh, A.K. Jana, Sliding mode observer based nonlinear control of
a PEMFC integrated with a methanol reformer, Energy 139 (2017) 1126-1143.
[9] F.J. Asensio, J.I.S. Martín, I. Zamora, J. Garcia-Villalobos, Fuel cell-based CHP system modelling
using Artificial Neural Networks aimed at developing techno-economic efficiency maximization
control systems, Energy 123 (2017) 585-593.
[10] M. Sorace, M. Gandiglio, M. Santarelli, Modeling and techno-economic analysis of the integration
of a FC-based micro-CHP system for residential application with a heat pump, Energy 120 (2017)
262-275.
[11] H. Hemi, J. Ghouili, A. Cheriti, Combination of Markov chain and optimal control solved by
Pontryagin’s Minimum Principle for a fuel cell/supercapacitor vehicle, Energy Conversion and
Management 91 (2015) 387-393.
19
ACCEPTED MANUSCRIPT
[12] T. Wakui, N. Wada, R. Yokoyama, Energy-saving effect of a residential polymer electrolyte fuel
cell cogeneration system combined with a plug-in hybrid electric vehicle, Energy Conversion and
Management 77 (2014) 40-51.
[13] R. Lin, Y.S. Ren, X.W. Lin, Z.H. Jiang, Y.T. Chang, Investigation of the internal behavior in
segmented PEMFCs of different flow fields during cold start process, Energy 123 (2017) 367-377.
[14] A. Emadi, K. Rajashekara, S.S. Williamson, S.M. Lukic, Topological overview of hybrid electric
and fuel cell vehicular power system architectures and configurations, IEEE Transactions on
Vehicular Technology 54 (3) (2005) 763-770.
[15] H. El Fadil, F. Giri, J.M. Guerrero, A. Tahri, Modeling and nonlinear control of fuel
cell/supercapacitor hybrid energy storage system for electric vehicles, IEEE Transactions on
Vehicular Technology 63 (7) (2014) 3011-3018.
[16] P. Thounthong, S. Rael, B. Davat, Control strategy of fuel cell and supercapacitors association for
a distributed generation system, IEEE Transactions on Industrial Electronics 54 (6) (2007) 32253233.
[17] X. Hu, N. Murgovski, L.M. Johannesson, B. Egardt, Optimal dimensioning and power
management of a fuel cell/battery hybrid bus via convex programming, IEEE/ASME Transactions
on Mechatronics 20 (1) (2015) 457-468.
[18] D.D. Boettner, G. Paganelli, Y.G. Guezennec, G. Rizzoni, M.J. Moran, Proton exchange
membrane fuel cell system model for automotive vehicle simulation and control, Journal of Energy
Resources Technology 124 (1) (2002) 20-27.
[19] A. Khaligh, Li. Zhihao, Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for
electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art, IEEE
Transactions on Vehicular Technology 58 (6) (2010) 2806-2814.
[20] W.F. Powers, P.R. Nicastri, Automotive vehicle control challenges in the 21st century, Control
Engineering Practice 8 (6) (2000) 605-618.
20
ACCEPTED MANUSCRIPT
[21] A. Emadi, M. Ehsani, J.M. Miller, Vehicular electric power systems, New York: Marcel Dekker
Inc., 2004.
[22] S. Yerramalla, A. Davari, A. Feliachi, Dynamic modeling and analysis of polymer electrolyte fuel
cell, Proceeding of IEEE-Power Engineering Society Summer Meeting 1 (2002) 82-86.
[23] H. Fathabadi, Fuel cell/back-up battery hybrid energy conversion systems: Dynamic modeling and
harmonic considerations, Energy Conversion and Management 103 (2015) 573-584.
[24] S. Yerramalla, A. Davari, A. Feliachi, Dynamic modeling and analysis of polymer electrolyte fuel
cell, Proc. of IEEE-Power Engineering Society Summer Meeting 1 (2002) 82-86.
[25] H-1000 PEM fuel cell stack user manual, Horizon fuel cell technologies Co., Aug. 2013.
[26] H. Fathabadi, Novel high efficiency DC/DC boost converter for using in photovoltaic systems,
Solar Energy 125 (2016) 22-31.
[27] O. Hegazy, J. Van Mierlo, P. Lataire, Design optimization and optimal power control of fuel cell
hybrid electric vehicles based on swarm intelligence, International Review of Electrical
Engineering 6 (4) (2011) 1727-1738.
[28] C. Zheng, C. Oh, Y. Park, S. Cha, Fuel economy evaluation of fuel cell hybrid vehicles based on
equivalent fuel consumption, International Journal of Hydrogen Energy 37 (2012) 1790-1796.
[29] C.-Y. Li, G.-P. Liu, Optimal fuzzy power control and management of fuel cell/battery hybrid
vehicles, Journal of Power Sources 192 (2009) 525-533.
[30] C-j. Xie , S-h. Quan , Q-h. Chen, Control strategy of hybrid power system for fuel cell electric
vehicle based on neural network optimization, Proceedings of IEEE International Conference on
Automation and Logistics (2008 ICAL) (2008) 753-757.
[31] H. Hong-wen, Z. Ying-qi, W. Fan, Control strategies design for a fuel cell hybrid electric vehicle,
Proceedings of IEEE Vehicle Power and Propulsion Conference (2008 VPPC'08 IEEE) (2008) 1-6.
[32] Y. Shuang, Z. Junzhi, W. Lifang, Power management strategy with regenerative braking for fuel
cell hybrid electric vehicle, Proceedings of
21
ACCEPTED MANUSCRIPT
Asia-Pacific Power and Energy Engineering Conference (APPEEC 2009: IEEE) (2009) 1-4.
[33] D. Xiao, W. Qi, H. Jin, J. Fang, Modeling and simulation for golf fuel cell electric vehicle control
system, Proceedings of IEEE Spring Congress on Engineering and Technology (S-CET) (2012) 14.
[34] X. Li, L. Xu, J. Hua, J. Li, M. Ouyang, Regenerative braking control strategy for fuel cell hybrid
vehicles using fuzzy logic, Proceedings of IEEE international conference on electrical machines
and systems (2008 ICEMS) (2008) 2712–2716.
[35] M.A. Mallouh, B. Surgenor, P. Dash, L. McInnes, Performance evaluation and tuning of a fuzzy
control strategy for a fuel cell hybrid electric auto rickshaw, Proceedings of American Control
Conference (2012 IEEE Fairmont) (2012) 1321–1326.
[36] N. Ouddah, M. Boukhnifer, A. Raisemche, Two control energy management schemes for
electrical hybrid vehicle, Proceedings of 10th IEEE international multi-conference on systems,
signals and devices (SSD) (2013) 1-6.
[37] O. Sundström, A. Stefanopoulou, Optimal power split in fuel cell hybrid electric vehicle with
different battery sizes, drive cycles, and objectives, Proceedings of computer aided control system
design, 2006 IEEE International Symposium on Intelligent Control (2006) 1681-1688.
[38] L. Karunarathne, J.T. Economou, K. Knowles, Model based power and energy management
system for PEM fuel cell/Li-Ion battery driven propulsion system, Proceedings of 5th IET
International Conference on Power Electronics, Machines and Drives (PEMD 2010) (2010) 1-6.
[39] H. Alloui, M. Becherif, K. Marouani, Modelling and frequency separation energy management of
fuel cell-battery hybrid sources system for Hybrid Electric Vehicle, Proceedings of 21st
Mediterranean Conference on Control & Automation (MED) IEEE (2013) 646–651.
[40] S. Kelouwani, K. Agbossou, Y. Dubé, L. Boulon, Fuel cell plug-in hybrid electric vehicle
anticipatory and real-time blended-mode energy management for battery life preservation, Journal
of Power Sources 221 (2013) 406-418.
22
ACCEPTED MANUSCRIPT
[41] A. Benrabeh, F. Khoucha, O. Herizi, M. Benbouzid, A. Kheloui, FC/battery power management
for electric vehicle based interleaved DC-DC boost converter topology, Proceedings of 15th
European Conference on Power Electronics and Applications (EPE) IEEE (2013) 1-9.
[42] M. Uzunoglu, M. Alam, Modeling and analysis of an FC/UC hybrid vehicular power system using
a novel-wavelet-based load sharing algorithm, IEEE Transactions on Energy Conversion 23 (2008)
263-272.
[43] P. Rodatz, G. Paganelli, A. Sciarretta, L. Guzzella, Optimal power management of an
experimental fuel cell/supercapacitor-powered hybrid vehicle, Control Engineering Practice 13
(2005) 41-53.
[44] M. Kisacikoglu, M. Uzunoglu, M. Alam, Load sharing using fuzzy logic control in a fuel
cell/ultracapacitor hybrid vehicle, International Journal of Hydrogen Energy 34 (2009) 1497-1507.
[45] J.S. Martínez, D. Hissel, M.-C. Péra, M. Amiet, Practical control structure and energy
management of a testbed hybrid electric vehicle, IEEE Transactions on Vehicular Technology 60
(2011) 4139-4152.
[46] Q. Li, W. Chen, Y. Li, S. Liu, J. Huang, Energy management strategy for fuel
cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic, International Journal of Electrical
Power & Energy Systems 43 (1) (2012) 514-525.
[47] D. Gao, Z. Jin, Q. Lu, Energy management strategy based on fuzzy logic for a fuel cell hybrid bus,
Journal of Power Sources 185 (2008) 311–317.
[48] M. Hannan, F. Azidin, A. Mohamed, Multi-sources model and control algorithm of an energy
management system for light electric vehicles, Energy Conversion and Management 62 (2012) 123130.
23
ACCEPTED MANUSCRIPT
[49] P. García, J.P. Torreglosa, L.M. Fernández, F. Jurado, Control strategies for high-power electric
vehicles powered by hydrogen fuel cell, battery and supercapacitor, Expert Systems with
Applications 40 (12) (2013) 4791-4804.
[50] Z. Yu, D. Zinger, A. Bose, An innovative optimal power allocation strategy for fuel cell, battery
and supercapacitor hybrid electric vehicle, Journal of Power Sources 196 (2011) 2351-2359.
[51] X. Liu, D. Diallo, C. Marchand, Design methodology of fuel cell electric vehicle power system,
Proceedings of 18th IEEE International Conference on Electrical Machines (ICEM) (2008) 1-6.
[52] A. Melero-Pérez, W. Gao, I.J. Fernández-Lozano, Fuzzy logic energy management strategy for
Fuel Cell/Ultracapacitor/Battery hybrid vehicle with multiple-input DC/DC converter, Proceedings
of Vehicle Power and Propulsion Conference (VPPC'09 IEEE) (2009) 199-206.
24
ACCEPTED MANUSCRIPT
Fig.1. Schematic diagram of a typical FCHEV.
25
ACCEPTED MANUSCRIPT
Fig. 2. Electric circuit representing the behavior of a FC.
Fig. 3. Electric circuit representing the behavior of a FC under loading condition.
26
ACCEPTED MANUSCRIPT
Fig. 4. Dynamic response of a PEMFC stack H-1000.
27
ACCEPTED MANUSCRIPT
Fig. 5. Configuration of the FC/battery/SC hybrid power source proposed to be utilized in FCHEVs.
28
ACCEPTED MANUSCRIPT
Fig. 6. Unidirectional DC/DC boost converter connected to the PEMFC stack.
Fig. 7. Bidirectional DC/DC boost-buck converter connected to the SC bank.
29
ACCEPTED MANUSCRIPT
Fig. 8. Three-phase bidirectional PWM six-switch DC/AC inverter.
30
ACCEPTED MANUSCRIPT
Fig. 9. Experimental results: The waveforms of the line voltages ( V AB and VBC ) supplied to the
PMSM, and the regulated DC-link voltage.
31
ACCEPTED MANUSCRIPT
Fig. 10. Experimental results: The waveforms of the currents ( I A and I B ) supplied to the stator of the
PMSM.
32
ACCEPTED MANUSCRIPT
Fig. 11. Experimental results: The periodic switching pulse supplied to the switch S fc of the DC/DC
boost converter connected to the PEMFC stack, and the regulated DC-link voltage.
33
ACCEPTED MANUSCRIPT
Fig. 12. Experimental results: Point by point measured power efficiency of the FC/battery/SC hybrid
power source.
34
ACCEPTED MANUSCRIPT
Table 1. Technical specification of the PEM fuel cell stack H-1000 [25] and model parameters obtained
from Eq. (6) at the stack operating point ( in  35 A ) and T=300 K.
Technical specification of the
PEM fuel cell stack H-1000
48
N cell
Model parameters obtained from Eq. (6)
at the stack operating point ( in  35 A )
and T=300 K
E0 (V)
46
Stack efficiency
40% @ 28.8 V
Rconc ()
0.0374
Rated power (W)
1000
Ract ()
0.1092
Operating point
28.8 V @ 35 A
Rohm ()
0.0637
Max. stack temperature ( C  )
65
Ri ()
0.1224
Over current shut down (A)
42
C (F)
4.8623
H 2 pressure (bar)
0.45-0.55
Cstack (F)
0.1013
Flow rate at max. output
power (lit/min)
13
35
ACCEPTED MANUSCRIPT
Table 2. Technical specification of the components used in the constructed FC/battery/SC hybrid power
source.
Traction motor
Product name
DC/DC boost converter connected to PEMFC
stack
C fc ( μ F )-Aluminum
LSRPM 200 L
electrolytic capacitor/400 V
Converter switching
frequency: f s (kHz)
470
Made by
Leroy-Somer Co.
Type
3-phase,
permanent magnet
synchronous
motor (PMSM)
electrolytic capacitor/600 V
220
Nominal line voltage (V)
400
DC-link voltage Vdc (V)
400
Rated power (kW)
80
C2 ( μ F )-Premium metallized
Rated torque (Nm)
170
Rated current (A)
157
Speed range (rpm)
0-4500
Efficiency (%)
95.7
MOSFET switch S fc
IRFPS40N60K
Maximum torque/Rated
torque
Magnet material
1.4
Diodes: D1 - D2
15ETH06S
Cout ( μ F )-Aluminum
polypropylene capacitor/600 V
C1 ( n F )-Parasitic capacitance
of IRFPS40N60K
Type of transformer T
N2
NdFeB
Maximum current/Rated
current
Moment of inertia ( kg.m 2 )
Weight (kg)
N1
25
22
15.6
Pulse
11
10
 13
PEMFC stack
1.5
Product name
HD-90
0.15
145
Made by
Hydrogenics Co.
Peak efficiency
55%
Rated power (kW)
90
Supercapacitor cell
Product name
ESHSR-3000C0002R7A5T
Maximum power (kW)
99
Made by
Nesscap Co.
Stack operating pressure (kPa)
<120
Rated voltage (V)
2.7
Operating current (A)
0-500
Surge voltage (V)
2.85
Operating voltage (V)
180-360
Rated capacitance (F)
3000
Average capacitance
tolerance (%)
5
Maximum continuous
current (A)
148
DC/DC converter connected to the
supercapacitor bank
Type
Bidirectional
boost-buck
IGBT switches: SW, Q1-Q2 STGY40NC60VD
6
36
ACCEPTED MANUSCRIPT
Maximum leakage current
(mA)
5.2
Average ESR ( mΩ )
0.14
Maximum stored energy
(Wh)
Maximum specific energy
(Wh/kg)
3.03
Parallel-connected blocks
4
5.67
20
Usable specific power
(kW/kg)
Nominal weight (g)
6.28
Series-connected
supercapacitor cells in each
block
Rated capacitance (F)
600
535
Rated voltage (V)
54
Maximum continuous current
(A)
Maximum stored energy (Wh)
592
242.4
Average ESR ( Rsc esr ( mΩ ))
0.7
RLsc ( mΩ )
Supercapacitor bank
Three-phase bidirectional PWM six-switch
DC/AC inverter
IGBT switches: Q9-Q14
13.3
STGY40NC60VD
5
C dc ( μ F )-Aluminum
220
electrolytic capacitor/600 V
DC/DC converter connected to the Li-ion
battery bank
Type
IGBT switches: SW, Q1Q2
R Lbat ( mΩ )
Battery bank:
Sixteen 12 V/100 Ah Li-ion batteries
Rated voltage (V)
48
Bidirectional
boost-buck
STGY40NC60VD
Current capacity (Ah)
400
Capacity (kWh)
19.2
Series-connected batteries
4
Parallel-connected sets
4
Average ESR ( Rbat esr ( mΩ ))
2.9
8
10.8
Table 3. Comparison between the technical parameters of the hybrid power source in different modes.
Mode of the
power source
Analysis
type
FC/Battery/SC
FC/SC
FC/Battery
Experiment
Experiment
Experiment
Cruising
range
(km)
545
435
530
Max.
speed
( km/h)
161
158
155
37
0-100 km/h
Max.
Fuel
Tank
Vehicle
acceleration efficiency capacity Pressure weight
(sec)
(%)
(kg)
(psi)
(kg)
12.2
96.2
5.4
5000
1880
12.2
96.2
5.4
5000
1880
13.4
96.1
5.4
5000
1880
ACCEPTED MANUSCRIPT
Table 4. Comparison between the proposed FC/battery/SC hybrid power source and the state-of-the-art
power sources used in FCHEVs and reported in the literature.
Power source type
DC-link Max. speed
Analysis type voltage (V)
( km/h)
PEMFC/battery/SC Experiment
PEMFC/Battery
Simulation&
experiment
PEMFC/Battery
Simulation
PEMFC/Battery
Simulation
PEMFC/Battery
Simulation
PEMFC/Battery
Simulation &
experiment
PEMFC/Battery
Simulation
PEMFC/Battery
Simulation
PEMFC/Battery
Simulation
PEMFC/Battery
Simulation
PEMFC/Battery
Simulation
PEMFC/Battery
Simulation
PEMFC/Battery
Simulation
PEMFC/Battery
Simulation
PEMFC/Battery
Simulation
PEMFC/Battery
Simulation
PEMFC/SC
Simulation
PEMFC/SC
Simulation
PEMFC/SC
Simulation
PEMFC/SC
Simulation
PEMFC/Battery/SC Experiment
PEMFC/Battery/SC
Simulation
PEMFC/Battery/SC Experiment
PEMFC/Battery/SC
Simulation
PEMFC/Battery/SC Simulation &
experiment
PEMFC/Battery/SC
Simulation
PEMFC/Battery/SC
Simulation
PEMFC/Battery/SC Simulation &
experiment
545
400
161
–
0-100 km/h
acceleration
(sec)
12.2
–
–
–
300
450
–
108
80
90
–
–
–
–
62
30
40
40
[28]
[29]
[30]
[31]
–
–
–
–
60
–
–
400
–
–
400
188
340
206
560
–
400
120
750
60
88.5
–
120
–
129
–
50
144
120
120
91
120
91
20
160
23.4
47
50
–
–
–
–
–
–
–
–
–
–
12.5
–
–
–
–
–
–
–
–
130
75
–
80
2
80
2
8
4
60
48
60
60
40
40
40
120
3
400
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[15]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
300
300
400
128
120
–
–
–
–
100
58
38.5
[50]
[51]
[52]
38
Max. power
(kW)
Reference
99
30
This work
[27]
Документ
Категория
Без категории
Просмотров
4
Размер файла
954 Кб
Теги
107, 2017, energy
1/--страниц
Пожаловаться на содержимое документа