close

Вход

Забыли?

вход по аккаунту

?

ответы к экзамену 3 курс

код для вставкиСкачать
1.Электрическая цепь...
Электри́ческая цепь - совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение.
Изображение электрической цепи с помощью условных знаков называют электрической схемой:
Неразветвленные и разветвленные электрические цепи
Рисунок 2 - Разветвленная цепь
Электрические цепи подразделяют на неразветвленные и разветвленные. На рисунке 1 представлена схема простейшей неразветвленной цепи. Во всех элементах ее течет один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 2. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 2), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Силой тока называется физическая величина, показывающая, какой заряд проходит через поперечное сечение проводника за 1 с.
Пусть, например, за время t=2 с через поперечное сечение проводника носители тока переносят зарядq=4 Кл. Заряд, переносимый ими за 1 с, будет в 2 раза меньше. Разделив 4 Кл на 2 с, получим 2 Кл/с. Это и есть сила тока. Обозначается она буквой І:
I - сила тока.
Итак, чтобы найти силу тока І, надо электрический заряд q, прошедший через поперечное сечение проводника за время t, разделить на это время:
Единица силы тока называется ампером (А) в честь французского ученого А. М. Ампера (1775-1836). Напряжение характеризует электрическое поле, создаваемое током.
Напряжение ( U ) равно отношению работы электрического поля по перемещению заряда
к величине перемещаемого заряда на участке цепи.
Единица измерения напряжения в системе СИ:
[ U ] = 1 B
1 Вольт равен электрическому напряжению на участке цепи, где при протекании заряда,
равного 1 Кл, совершается работа, равная 1 Дж: 1 В = 1 Дж/1 Кл.
ЭТО ИНТЕРЕСНО ! В 1979 г. в США было получено в лабораторных условиях самое высокое напряжение. Оно составило 32 ± 1,5 млн В.
Электри́ческое сопротивле́ние - физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему:
Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как
где
R - сопротивление;
U - разность электрических потенциалов на концах проводника;
I - сила тока, протекающего между концами проводника. 2. Электроизмерительные приборы.
Измерение - это определение физической величины опытным путём с помощью измерительных приборов.
Классификация приборов:
1.По назначению:
Амперметры
Вольтметры
Омметры
Ваттметры ....
2.По принципу действия:
Электромагнитные
Магнитоэлектрические
Термоэлектрические
Индукционные
Вибрационные
3.По форме корпуса:
Круглые Квадратные
Прямоугольные
4.По характеру применения:
Стационарные(закреплённые на столе)
Переносные
5.По положению при измерении:
Вертикальные
Горизонтальные
Под углом.
Виды:
* амперметры - для измерения силы электрического тока;
* вольтметры - для измерения электрического напряжения;
* омметры - для измерения электрического сопротивления;
* мультиметры (иначе тестеры, авометры) - комбинированные приборы
* частотомеры - для измерения частоты колебаний электрического тока;
* ваттметры и варметры - для измерения мощности электрического тока;
* электрические счётчики - для измерения потреблённой электроэнергии
* и множество других видов
Условные обозначения.
4.Закон Ома для участка цепи.
ГЕОРГ ОМ
Формулировка закона Ома
Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:
I = U / R; [A = В / Ом]
I - величина тока, протекающего через участок цепи;
U - величина приложенного напряжения к участку цепи;
R - величина сопротивления рассматриваемого участка цепи.
Ом установил, что сопротивление прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.
R = ρl / S,
где ρ - удельное сопротивление, l - длина проводника, S - площадь поперечного сечения проводника.
Довольно часто приходится сталкиваться с необходимостью понизить напряжение, например, с 12 до 3 вольт. Сделать это можно с помощью двух резисторов.Задача, в общем-то, не сложная. Требуется подобрать два резистора таким образом, чтобы падение напряжения на одном из них составляло 3 вольта, а на втором - (12 - 3) = 9 вольт (для нашего примера). Кроме того, необходимо знать ток, который должен протекать в цепи. Допустим, что в нашем случае ток должен быть равен 50 мА (0,05 А). Тогда, используя закон Ома для участка цепи, вычислим полное сопротивление цепи, то есть общее сопротивление резисторов R1 и R2:
R = U/I = 12 В / 0,05 А = 240 Ом
Напомню, что все единицы измерения должны соответствовать принятым в СИ, то есть напряжение измеряется в ВОЛЬТАХ, ток - в АМПЕРАХ, а сопротивление - в ОМАХ.
Поскольку на любом участке цепи из последовательно включенных элементов ток одинаков, то вычислить сопротивление резисторов R2 и R1 не составит труда:
R1 = U1 / I = 9 / 0,05 = 180 Ом
R2 = U2 / I = 3 / 0,05 = 60 Ом.
5.Измерение силы тока и напряжения.
Для измерения силы тока существует измерительный прибор - амперметр.
Условное обозначение амперметра на электрической схеме:
При включении амперметра в электрическую цепь необходимо знать :
1. Амперметр включается в электрическую цепь последовательно с тем элементом цепи, силу тока в котором необходимо измерить.
1. При подключении надо соблюдать полярность: "+" амперметра подключается к "+" источника тока,
а "минус" амперметра - к "минусу" источника тока. ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ
НА УЧАСТКЕ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Для измерения напряжения существуют специальный измерительный прибор - вольтметр.
Условное обозначение вольтметра на электрической схеме:
При включении вольтметра в электрическую цепь необходимо соблюдать два правила:
1. Вольтметр подключается параллельно участку цепи, на котором будет измеряться напряжение;
2.Соблюдаем полярность: "+" вольтметра подключается к "+" источника тока,
а "минус" вольтметра - к "минусу" источника тока.
___
Для измерения напряжения источника питания вольтметр присоединяют непосредственно к его зажимам.
Амперметр
Из свойств последовательного соединения:
1. Подсоединяется последовательно к измеряемому участку.
2. Чем меньше собственное сопротивление амперметра, тем меньшую погрешность он вносит.Расширение пределов измерения амперметра. Из свойств параллельного соединения: для изменения пределов измерения в n раз параллельно подсоединяют резистор (шунт).
I = nIa, где I - ток, который необходимо измерить, а Ia - максимальный ток, на который расчитан амперметр.Вольтметр.
Из свойств параллельного соединения:
2. Подсоединяется параллельно к измеряемому участку.
3. Чем больше собственное сопротивление вольтметра, тем меньшую погрешность он вносит.Из свойств последовательного соединения: для изменения пределов измерения в nраз последовательно подсоединяют резистор (дополнительное сопротивление).
U=nUv, где U - напряжение, которое необходимо измерить, Uv - максимальное напряжение, на которое рассчитан вольтметр.
7.Работа и мощность тока.
Работа тока - это работа электрического поля по переносу электрических зарядов вдоль проводника;
Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.
Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:
По закону сохранения энергии:
работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия
равна работе тока.
В системе СИ: А = 1 (Дж).
При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.
Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.
По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.
В системе СИ:
[Q] = 1 Дж
МОЩНОСТЬ ПОСТОЯННОГО ТОКА
- отношение работы тока за время t к этому интервалу времени.
В системе СИ:
Прямое измерение мощности тока
1.Возьмите ваттметр, присоедините его к потребителю, на котором необходимо измерить мощность. Подключите его клеммы к местам вывода потребителя в сеть. На шкале аналогового или экране цифрового ваттметра отобразится мощность данного потребителя. В зависимости от настроек прибора значение мощности можно будет получить в ваттах, киловаттах, милливаттах и т.д.
2.Изменение мощности с помощью вольтметра и амперметра
Соберите цепь, включив в нее потребителя электрического тока и амперметр. Вольтметр присоедините параллельно потребителю. Измерительные приборы подключайте, соблюдая полярность, если ток постоянный. Пустите электрический ток, подключив источник, и снимите показания приборов с амперметра значение силы тока в амперах, а с вольтметра значение напряжения в вольтах. Умножьте значение силы тока на напряжение P=U•I. Результатом будет мощность потребителя в ваттах.
3.Определение мощности тока при известном сопротивлении потребителя
Если сопротивление потребителя известно (найдите его значение на корпусе или измерьте омметром), и он рассчитан на известное напряжение, то его номинальную мощность можно найти, возведя это напряжение в квадрат и поделив на значение сопротивления (P=U²/R). Например, у лампочки с сопротивлением 484 Ома и при номинальном напряжении 220 В, мощность будет равна 100 Вт.
4.Если напряжение источника тока не известно, включите последовательно в цепь потребителя амперметр. Измерьте с его помощью силу тока, идущего через потребитель. Для расчета мощности возведите силу тока в квадрат и умножьте на значение сопротивления (P=I²•R). Если сила тока измерена в амперах, а сопротивление в Омах, то значение мощности будет получено в ваттах.
8.Параллельное соединение.
Проводники в электрических цепях могут соединяться последовательно и параллельно.
При параллельном соединении (рис. 1.9.2) напряжения U1 и U2 на обоих проводниках одинаковы: U1 = U2 = U.Сумма токов I1 + I2, протекающих по обоим проводникам, равна току в неразветвленной цепи: I = I1 + I2.Этот результат следует из того, что в точках разветвления токов (узлы A и B) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу A за время Δt подтекает заряд IΔt, а утекает от узла за то же время заряд I1Δt + I2Δt. Следовательно, I = I1 + I2.
Рисунок 1.9.2.
Параллельное соединение проводниковЗаписывая на основании закона Ома где R - электрическое сопротивление всей цепи, получим При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.
В случае, если проводников несколько:
10.Последовательное соединение.
При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова: I1 = I2 = I.
Рисунок 1.9.1.
Последовательное соединение проводниковПо закону Ома, напряжения U1 и U2 на проводниках равны U1 = IR1, U2 = IR2.Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2: U = U1 + U2 = I(R1 + R2) = IR,где R - электрическое сопротивление всей цепи. Отсюда следует: R = R1 + R2.При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.
Этот результат справедлив для любого числа последовательно соединенных проводников.
11.Электродвижущая сила.
Если в проводнике создать электрическое поле и не принять мер для его поддержания, то, как было уже установлено, перемещение носителей заряда приведет очень быстро к тому, что поле внутри проводника исчезнет и, следовательно, ток прекратиться. Для того чтобы поддерживать ток достаточно долго, нужно от конца проводника с меньшим потенциалом (носители тока предполагаются положительными) непрерывно отводить приносимые сюда током заряды, а к концу с большим потенциалом непрерывно их подводить. Т.е. необходимо осуществить круговорот зарядов, при котором они двигались бы по замкнутому пути (17.1). Циркуляция вектора напряженности электростатического поля, как известно равна нулю. Поэтому в замкнутой цепи наряду с участками, на которых положительные заряды движутся в сторону убывания потенциала, должны иметься участки, на которых перенос положительных зарядов происходит в направлении возрастания , т.е. против сил электростатического поля. Перемещение, зарядов на этих участках возможно лишь с помощью сил не электростатического происхождения, называемых сторонними силами. Таким образом, для поддержания тока необходимы сторонние силы, действующие либо на всем протяжении цепи, либо на отдельных ее участках. Они могут быть обусловлены химическими процессами, диффузией носителей заряда в неоднородной среде или через границу двух разнородных, веществ, электрическими (но не электростатическими) полями, порожденными меняющимися во времени магнитными полями и т.д.
Сторонние силы можно охарактеризовать работой, которую они совершают над перемещающимися по цепи зарядами. Эта работа складывается из работы, совершаемой против электрического поля внутри источника тока (Аист и работы, совершаемой против сил сопротивления среды (А'), т.е. Аст = Аист + А'
Величина, равная отношению работы, которую совершают сторонние силы при перемещении точечного положительного заряда вдоль всей цепи, включая и источник тока, к заряду , называется электродвижущей силой источника тока:
ИЛИ:
Электродвижущая сила (ЭДС) - Работа, совершаемая сторонними силами внутри источника при перемещении между его полюсами единичного заряда
Электродвижущая сила (ЭДС) так же, как и напряжение, измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого источника равна нулю.
В формуле мы использовали :
- Электродвижущая сила (ЭДС)
- Работа (Дж)
- Заряд (Кл)
- Напряженность поля сторонних сил (В)
- Разность потенциалов источника
- Работа сторонних сил против механического сопротивления среды источника (Дж)
13.Магнитное поле. Взаимодействие токов.
Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет тому назад. В Европе он появился приблизительно в XII веке новой эры. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле.
Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х. Эрстеда. Эти опыты показали, что на магнитную стрелку, расположенную вблизи проводника с током, действуют силы, которые стремятся ее повернуть. В том же году французский физикА. Ампер наблюдал силовое взаимодействие двух проводников с токами и установил закон взаимодействия токов.
По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.
Источниками магнитного поля являются движущиеся электрические заряды (токи). Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).
Ученые XIX века пытались создать теорию магнитного поля по аналогии с электростатикой, вводя в рассмотрение так называемые магнитные заряды двух знаков (например, северныйN и южный S полюса магнитной стрелки). Однако опыт показывает, что изолированных магнитных зарядов не существует.
Магнитное поле токов принципиально отличается от электрического поля. Магнитное поле, в отличие от электрического, оказывает силовое действие только на движущиеся заряды (токи).
Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции который определяет силы, действующие на токи или движущиеся заряды в магнитном поле.
За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно ориентирующийся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора Такое исследование позволяет наглядно представить пространственную структуру магнитного поля. Аналогично силовым линиям в электростатике можно построить линии магнитной индукции, в каждой точке которых вектор направлен по касательной. Пример линий магнитной индукции полей постоянного магнита и катушки с током приведен на рис. 1.16.1.
Рисунок 1.16.1.
Линии магнитной индукции полей постоянного магнита и катушки с током. Индикаторные магнитные стрелки ориентируются по направлению касательных к линиям индукцииОбратите внимание на аналогию магнитных полей постоянного магнита и катушки с током. Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников - магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми. Картину магнитной индукции можно наблюдать с помощью мелких железных опилок, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль линий индукции.
Единица измерения В (Тл)-Тесла (в честь англ.физика)
Взаимодействие токов:
МАГНИТНОЕ ПОЛЕ
- это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.
СВОЙСТВА ( стационарного) МАГНИТНОГО ПОЛЯ
Постоянное (или стационарное) магнитное поле - это магнитное поле, неизменяющееся во времени .
1. Магнитное поле создается движущимися заряженными частицами и телами, проводниками с током, постоянными магнитами.
2. Магнитное поле действует на движущиеся заряженные частицы и тела, на проводники с током, на постоянные магниты, на рамку с током.
3. Магнитное поле вихревое, т.е. не имеет источника.
МАГНИТНЫЕ СИЛЫ
- это силы, с которыми проводники с током действуют друг на друга.
.................. МАГНИТНАЯ ИНДУКЦИЯ
- это силовая характеристика магнитного поля.
Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.
Единица измерения магнитной индукции в системе СИ:
ЛИНИИ МАГНИТНОЙ ИНДУКЦИИ
- это линии, касательными к которой в любой её точке является вектор магнитной индукции.
Однородное магнитное поле - это магнитное поле, у которого в любой его точке вектор магнитной индукции неизменен по величине и направлению; наблюдается между пластинами плоского конденсатора, внутри соленоида (если его диаметр много меньше его длины) или внутри полосового магнита.
Магнитное поле прямого проводника с током:
или
где - направление тока в проводнике на нас перпендикулярно плоскости листа,
- направление тока в проводнике от нас перпендикулярно плоскости листа.
Магнитное поле соленоида:
Магнитное поле полосового магнита:
- аналогично магнитному полю соленоида.
СВОЙСТВА ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ
* имеют направление;
* непрерывны;
* замкнуты (т.е. магнитное поле является вихревым);
* не пересекаются;
* по их густоте судят о величине магнитной индукции.
НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ
- определяется по правилу буравчика или по правилу правой руки.
Правило буравчика ( в основном для прямого проводника с током):
Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.
Правило правой руки ( в основном для определения направления магнитных линий внутри соленоида):
Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.
14.Измерение работы и мощности тока.
Для определения работы или мощности тока можно использовать специальный измерительный прибор - ваттметр.
При отсутствии ваттметра пользуются одновременным подключением двух измерительных приборов к нужному участку цепи: амперметра и вольтметра.
Далее проводится расчет работы и мощности тока по формулам:
P = UI ......... и ....... A = UIt.
Измерение мощности.1. Косвенный метод измерения
Использование амперметра и известного сопротивления:
2.Прямой метод
Измерение ваттметром (шкала проградуирована в ваттах)
Использование амперметра и вольтметра:
16.Устройство и принцип действия трансформатора.
Трансформатор - статический электромагнитный аппарат, его действие основано на явлении электромагнитной индукции, он предназначен для преобразования электрической энергии переменного тока одного напряжения в энергию переменного тока другого напряжения, но той же частоты.
Потребность трансформирования - повышения и понижения переменного напряжения - вызвана необходимостью передачи электрической энергии на большие расстояния. Чем выше напряжение, чем при равной мощности источника энергии меньше ток. Следовательно, для передачи энергии требуются провода меньшего сечения, что приводит к значительной экономии цветных металлов, из которых изготовляются провода линий электропередачи. Потери электрической энергии в проводах также уменьшаются с уменьшением тока. При передаче электрической энергии от электростанций к потребителям происходит многократное повышение и понижение напряжения.
Трансформатор состоит из обмоток и магнитопровода - стального сердечника, набранного из листов электрической стали толщиной 0,35...0,5 мм для уменьшения потерь от вихревых токов. Листы сердечника покрываются лаком для изоляции друг от друга. Части магнитопровода, на которых располагаются обмотки, называются стержнями. Части магнитопровода, замыкающие стержни, называются ярмом. Трансформатор имеет не менее двух обмоток, связанных между собой общим магнитным потоком. Обмотки электрически изолированы друг от друга; исключением в этом отношении являются автотрансформаторы, у которых обмотка низшего напряжения является частью обмотки высшего напряжения.
Обмотку, подключенную к источнику питания, принято называть первичной, а обмотку, к которой подключаются приемники, - вторичной.
17.Электромагнитная индукция.
Явление электромагнитной индукции
- возникновение электрического тока в замкнутом проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле так, что число линий магнитной индукции, пронизывающих контур, меняется. Чем быстрее меняется число линий магнитной индукции, тем больше индукционный ток.
Способы получения индукционного тока
........... 1. перемещение магнита и катушки относительно друг друга; 2. перемещение одной катушки относительно другой; 3. изменение силы тока в одной из катушек;
4. замыкание и размыкание цепи; 5. перемещение сердечника; МАГНИТНЫЙ ПОТОК ( или поток магнитной индукции)
Магнитным потоком через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции В на площадь S и косинус угла между векторами В и n.
Магнитный поток пропрционален числу линий магнитной индукции, пронизывающих поверхность площадью S.
Магнитный поток характеризует распределение магнитного поля по поверхности , ограниченной контуром.
Магнитный поток в 1Вб создается однородным магнитным полем с индукцией 1Тл через поверхность площадью 1м2, расположенной перпендикулярно вектору магнитной индукции.
НАПРАВЛЕНИЕ ИНДУКЦИОННОГО ТОКА
Прямолинейный проводник
Направление индукционного тока определяется по правилу правой руки:
Если поставить правую руку так, чтобы вектор магнитной индукции входил в ладонь, отставленный на 90 градусов большой палец указывал направление вектора скорости, то выпрямленные 4 пальца покажут направление индукционного тока в проводнике.
Замкнутый контур
Направление индукционного тока в замкнутом контуре определяется по правилу Ленца.
Правило Ленца
Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению магнитного потока, которым он вызван.
Применение правила Ленца
1. показать направление вектора В внешнего магнитного поля; 2. определить увеличивается или уменьшается магнитный поток через контур; 3. показать направление вектора Вi магнитного поля индукционного тока ( при уменьшении магнитного потока вектора В внешнего м.поля и Вi магнитного поля индукционного тока должны быть направлены одинаково, а при увеличениии магнитного потока В и Вi должны быть направлены противоположно ); 4. по правилу буравчика определить направление индукционного тока в контуре.
19.Сила Ампера. Правило левой руки.
СИЛА АМПЕРА
- это сила, с которой магнитное поле действует на проводник с током.
Модуль силы Ампера равен произведению силы тока в проводнике на модуль вектора магнитной индуции, длину проводника и синус угла между вектором магнитной индукции и направлением тока в проводнике.
Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.
Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю.
Направление силы Ампера определяется по правилу левой руки:
Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а 4 вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на проводник с током.
Примеры:
или ДЕЙСТВИЕ МАГНИТНОГО ПОЛЯ НА РАМКУ С ТОКОМ
Однородное магнитное поле ориентирует рамку (т.е. создается вращающий момент и рамка поворачивается в положение, когда вектор магнитной индукции перпендикулярен плоскости рамки).
Неоднородное магнитное поле ориентирует + притягивает или отталкивает рамку с током.
20.Резонанс в цепи переменного тока.
Электрическим резонансом называется явление совпадения частоты источника переменного тока с частотой собственных свободных колебаний электрической цепи. Электрические колебания возникают в цепи, которая включает в себя индуктивность(катушку) и емкость(конденсатор).
Изначально емкость заряжается до начального напряжения Uн, после чего ее замыкают на индуктивность, в результате чего в цепи возникает постепенно увеличивающийся ток i. Сила тока возрастает постепенно, так как ее увеличению препятствует э. д. с. самоиндукции. При увеличении силы тока в магнитном поле индуктивности L накапливается энергия.
Ток достигает максимального значения, после чего уменьшается постепенно, так как его уменьшению препятствует э. д. с. самоиндукции. Она поддерживает ток, благодаря чему конденсатор перезаряжается в обратном направлении.
В случае, когда в колебательном контуре нет потерь, перезарядка емкости продолжается до тех пор, пока емкость не зарядится до первоначального напряжения Uн. Резонанс возникает в цепи, когда цепь подключена к внешнему источнику, а частота этого источника равна частоте.
Существуют два основных вида резонанса: резонанс напряжений, который возникает при последовательном соединении реактивных элементов, и резонанс токов - при параллельном соединении.
Положительное действие резонанса проявляется в радиотехнике, проволочной телефонии, в автоматике и т. п. Резонанс токов возникает при параллельном соединении источника и колебательного контура. Явления резонанса напряжения и тока и колебательный контур получили весьма широкое применение в радиотехнике и высокочастотных установках. При помощи колебательных контуров мы получаем токи высокой частоты в различных радиоустройствах и высокочастотных генераторах. Колебательный контур - важнейший элемент любого радиоприемника. Он обеспечивает его избирательность, т. е. способность выделять из радиосигналов с различной длиной волны (т. е. с различной частотой), посланных различными радиостанциями, сигналы определенной радиостанции.
22.Сила Лоренца. Правило левой руки
Сила Лоренца
- сила, действующая со стороны магнитного поля на движущуюся электрически заряженную частицу.
где q - заряд частицы;
V - скорость заряда; B - индукции магнитного поля;
a - угол между вектором скорости заряда и вектором магнитной индукции.
Направление силы Лоренца определяется по правилу левой руки:
Если поставить левую руку так, чтобы перпендикулярная скорости составляющая вектора индукции входила в ладонь, а четыре пальца были бы расположены по направлению скорости движения положительного заряда (или против направления скорости отрицательного заряда), то отогнутый большой палец укажет направление силы Лоренца
. Так как сила Лоренца всегда перпендикулярна скорости заряда, то она не совершает работы (т.е. не изменяет величину скорости заряда и его кинетическую энергию).
Если заряженная частица движется параллельно силовым линиям магнитного поля, то Fл = 0 , и заряд в магнитном поле движется равномерно и прямолинейно.
Если заряженная частица движется перпендикулярно силовым линиям магнитного поля, то сила Лоренца является центростремительной
и создает центростремительное ускорение равное В этом случае частица движется по окружности.
. Согласно второму закону Ньютона: сила Лоренца равнв произведению массы частицы на центростремительное ускорение тогда радиус окружности а период обращения заряда в магнитном поле
Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды.
23.Типы трансформаторов. Их применение.
Трансформатор - статический электромагнитный аппарат, его действие основано на явлении электромагнитной индукции, он предназначен для преобразования электрической энергии переменного тока одного напряжения в энергию переменного тока другого напряжения, но той же частоты.
Потребность трансформирования - повышения и понижения переменного напряжения - вызвана необходимостью передачи электрической энергии на большие расстояния. Чем выше напряжение, чем при равной мощности источника энергии меньше ток. Следовательно, для передачи энергии требуются провода меньшего сечения, что приводит к значительной экономии цветных металлов, из которых изготовляются провода линий электропередачи. Потери электрической энергии в проводах также уменьшаются с уменьшением тока. При передаче электрической энергии от электростанций к потребителям происходит многократное повышение и понижение напряжения.
Трансформатор состоит из обмоток и магнитопровода - стального сердечника, набранного из листов электрической стали толщиной 0,35...0,5 мм для уменьшения потерь от вихревых токов. Листы сердечника покрываются лаком для изоляции друг от друга. Части магнитопровода, на которых располагаются обмотки, называются стержнями. Части магнитопровода, замыкающие стержни, называются ярмом. Трансформатор имеет не менее двух обмоток, связанных между собой общим магнитным потоком. Обмотки электрически изолированы друг от друга; исключением в этом отношении являются автотрансформаторы, у которых обмотка низшего напряжения является частью обмотки высшего напряжения.
Обмотку, подключенную к источнику питания, принято называть первичной, а обмотку, к которой подключаются приемники, - вторичной.
Типы трансформаторов.
Основная классификация трансформаторов.
* По назначению: измерительные трансформаторы тока, напряжения, защитные, лабораторные, промежуточные.
* По способу установки: наружные, внутренние, шинные, опорные, стационарные, переносные.
* По числу ступеней: одноступенчатные, многоступенчатые (каскадные).
* По номинальному напряжения: низковольтные, высоковольтные.
* По типу изоляции обмоток: c сухой изоляцией, компаундной, бумажно-маслянной.
Основные типы трансформаторов Силовые трансформаторы - наиболее распространенный тип электро. трансформаторов. Они предназначены для изменения энергии переменного тока в электросетях энергосистем, в сетях освещения или питания электрооборудования.
Классифицируются по количеству фаз и номинальному напряжения.
Измерительные трансформаторы- электротехнические устройства, предназначенные для изменения уровня напряжения с высокой точностью трансформации. Автотрансформаторы - устройства, обмотки которого соеденены гальванически между собой. Благодыря малым коэффициентам трансформации, автотрансформаторы имеют меньшие габариты и стоимость оп сравнению с многообмоточными. Из недостатков необходимо отметить невозможность гальванической изоляции цепей. Основные сферы использования автотрансформаторов - изменение напряжения в пусковых устройствах крупных электрических машин переменного тока, в системах релейной защиты при плавном регулировании напряжения. В случае реализации в конструкции автотрансформатора изменения количества рабочих витков вторичной обмотки, появляется возможность сохранять уровень вторичного напряжения при изменении первичного напряжения. Наибольшее распространение данный данный механизм используется в стабилизаторах напряжения.
Импульсный трансформатор - это устройство с ферромагнитным сердечником, используемый для изменения импульсов тока или напряжения. Импульсные трансформаторы наиболее часто используются в электронновычислительных устройствах, системах радиолокации, импульсной радиосвязи и т.д. в качестве измерительного устройства в счетчиках электроэнергии.
Основное требование импульсным трансформаторам, - при изменении импульса форма импульса должна сохраняться. Это достигается максимальным уменьшением межвитковой емкости, индуктивности рассеивания за счет использования применением сердечников малой величины, взаимным расположение и уменьшением числа обмоток. Первая, и наиболее, пожалуй, важная сфера применения трансформаторов - выработка и подача электроэнергии. Если необходимо организовать ее подачу на большие расстояния, чтобы избежать значительных потерь на нагревание, имеет смысл применять небольшие токи, но значительные напряжения. В то же время, с бытовыми целями применение больших напряжений, с одной стороны, нецелесообразно - ведь придется расходовать большое количество изолирующих материалов. С другой же стороны, использование тока большого напряжения еще и небезопасно. Чтобы сгладить это противоречие, и используются трансформаторы, причем применяются они неоднократно, и задействуются различные их виды. Сначала на электростанциях они применяются для повышения напряжения перед тем, как начнется транспортировка электроэнергии. А затем - для понижения, чтобы потребитель получал ток оптимального для себя уровня напряжения.
Еще одно назначение трансформатора - разделительное. Дело в том, что использование электрических приборов таит в себе определенную опасность. Если человек одновременно коснется заземленного предмета и прибора, корпус которого плохо заизолирован, или фазового провода, его может ударить током, так как тело его в этом случае послужит для замыкания электрической цепи. Чтобы избежать подобной опасности, электроприбор можно включать через трансформатор. Так как вторичная его цепь не контактирует с "землей", опасности поражения током нет.
25.ЭДС индукции в движущихся проводниках.
Прямолинейный проводник АВ движется в магнитном поле с индукцией В по проводящим шинам, которые замкнуты на гальванометр.
На электрические заряды, перемещающиеся вместе с проводником в магнитном поле, действует
сила Лоренца:
Fл = /q/vB sin a q - заряд (Кл)
V - скорость (м/с)
B - магнитная индукция (Тл)
Её направление можно определить по правилу левой руки.
Под действием силы Лоренца внутри проводника происходит распределение положительных и отрицательных зарядов вдоль всей длины проводника l.
Сила Лоренца является в данном случае сторонней силой, и в проводнике возникает ЭДС индукции, а на концах проводника АВ возникает разность потенциалов.
Причина возникновения ЭДС индукции в движущемся проводнике объясняется действием силы Лоренца на свободные заряды.
ЗАДАНИЕ.
1. При каком направлении движения контура в магнитном поле в контуре будет возникать индукционный ток?
2. Укажите направление индукционного тока в контуре при введении его в однородное магнитное поле.
3. Как изменится магнитный поток в рамке, если рамку повернуть на 90 градусов из положения 1 в положение 2 ?
4. Будет ли возникать индукционный ток в проводниках, если они движутся так, как показано на рисунке?
5. Определить направление индукционного тока в проводнике АБ, движущемся в однородном магнитном поле.
6. Указать правильное направление индукционного тока в контурах.
26.Энергосистема.
Энергетическая система (энергосистема) - совокупность электростанций, электрических и тепловых сетей, соединённых между собой и связанных общностью режимов в непрерывном процессе производства, преобразования, передачи и распределения электрической и тепловой энергии при общем управлении этим режимом.
Характеристика структуры Единой энергетической системы России
Что такое ЕЭС России?
Единая энергетическая система России - развивающийся в масштабе всей страны высокоавтоматизированный комплекс электростанций, электрических сетей и объектов электросетевого хозяйства, объединенных единым технологическим режимом и централизованным оперативно-диспетчерским управлением.
ЕЭС России - крупнейшее в мире синхронно работающее электроэнергетическое объединение, охватывающее с запада на восток около 7 тыс. км и с севера на юг - более 3 тыс. км.
ЕЭС России обеспечивает надежное, экономичное и качественное электроснабжение отраслей экономики и населения Российской Федерации, а также поставки электроэнергии в энергосистемы зарубежных государств.
Развитие ЕЭС России и его современная структура
Развитие ЕЭС России происходило путем поэтапного объединения и организации параллельной работы региональных энергетических систем, формирования межрегиональных объединенных энергосистем (ОЭС) и их последующего объединения в составе Единой энергетической системы.
Переход к такой форме организации электроэнергетического хозяйства был обусловлен необходимостью более рационального использования энергетических ресурсов, повышения экономичности и надежности электроснабжения страны.
На конец 2005 г. в составе ЕЭС России параллельно работали шесть объединенных энергосистем (см. рис. 2.1) - Северо-Запада, Центра, Средней Волги, Урала, Юга, Сибири. ОЭС Востока, включающая 4 региональные энергосистемы Дальнего Востока, работает раздельно от ОЭС Сибири. Точки раздела между этими объединенными энергосистемами находятся на транзитной высоковольтной линии (ВЛ) 220 кВ "Читаэнерго" - "Амурэнерго" и устанавливаются оперативно в зависимости от складывающегося баланса обоих энергообъединений1.
Опыт более чем 40 летней работы ЕЭС России показал, что создание целостной единой системы, несмотря на относительную слабость сетевых связей Европейская часть России - Сибирь и Сибирь - Дальний Восток, дает ощутимую экономию затрат на производство электроэнергии за счет эффективного управления перетоками электрической энергии и способствует надежному энергоснабжению страны.
ОЭС Северо-Запада
В составе ОЭС Северо-Запада работают энергообъекты, расположенные на территориях г. Санкт-Петербурга, Мурманской, Калининградской, Ленинградской, Новгородской, Псковской, Архангельской областей, республик Карелия и Коми. ОЭС обеспечивает синхронную параллельную работу ЕЭС России с энергосистемами стран Балтии и Белоруссии, а также несинхронную параллельную работу (через конвертор) с энергосистемой Финляндии и экспорт электроэнергии в страны, входящие в объединение энергосистем Скандинавии НОРДЕЛ (Дания, Финляндия, Норвегия, Швеция).
Отличительными особенностями ОЭС Северо-Запада являются:
* протяженные (до 1000 км) одноцепные транзитные ВЛ 220 кВ (Вологда - Архангельск - Воркута) и 330 кВ (Санкт-Петербург - Карелия - Мурманск);
* большая доля электростанций, работающих в базовом режиме (крупные АЭС и ТЭС), обеспечивающие около 90% суммарной выработки электроэнергии в ОЭС. В связи с чем регулирование неравномерности суточного и сезонного суммарных графиков электропотребления ОЭС происходит, в основном, за счет межсистемных перетоков мощности. Это приводит к реверсивной загрузке внутри-и межсистемных транзитных линий 220-750 кВ практически до максимально допустимых величин.
ОЭС Центра
ОЭС Центра является наиболее крупной (по сосредоточенному в ней производственному потенциалу) объединенной энергосистемой в ЕЭС России. В составе ОЭС Центра работают энергообъекты, расположенные на территориях г. Москвы, Ярославской, Тверской, Смоленской, Московской, Ивановской, Владимирской, Вологодской, Костромской, Нижегородской, Рязанской, Тамбовской, Брянской, Калужской, Тульской, Орловской, Курской, Белгородской, Воронежской и Липецкой областей, а генерирующие мощности электростанций объединения составляют около 25% от суммарной генерирующей мощности ЕЭС России.
Отличительными особенностями ОЭС Центра являются:
* ее расположение на стыке нескольких ОЭС (СевероЗапада, Средней Волги, Урала и Юга), а также энергосистем Украины и Белоруссии;
* самая высокая в ЕЭС удельная доля атомных электростанций в структуре генерирующей мощности;
* большое количество крупных узлов электропотребления, связанных с предприятиями черной металлургии, а также крупных промышленных городских центров (Вологодско-Череповецкий, Белгородский, Липецкий, Нижегородский);
* наличие крупнейшей в России Московской энергосистемы, которая предъявляет повышенные требования к обеспечению надежности режимов энергоснабжения и отличается в настоящее время высокими темпами и большой величиной прироста электропотребления;
* необходимость широкого привлечения энергоблоков тепловых электростанций к процессу регулирования частоты и перетоков мощности для повышения гибкости управления режимами и надежности ОЭС.
28.Трёхфазная система тока.
В настоящее время во всем мире получила наибольшее распространение трехфазная система переменного тока.
Трехфазной системой электрических цепей называют систему, состоящую из трех цепей, в которых действуют переменные,ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода (φ=2π/3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют простотрехфазным током.
Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока. По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них ЭДС сдвинуты друг относительно друга на одну треть периода, как это показано на рис. 1.
Рис. 1. Графики зависимости от времени ЭДС, индуцированных в обмотках якоря генератора трехфазного тока
Как осуществляется подобный генератор легко понять из схемы на рис. 2.
Рис. 2. Три пары независимых проводов, присоединенных к трем якорям генератора трехфазного тока, питают осветительную сеть
Здесь имеются три самостоятельных якоря, расположенных на статоре электрической машины и смещенных на 1/3 окружности (120о). В центре электрической машины вращается общий для всех якорей индуктор, изображенный на схеме в виде постоянного магнита.
В каждой катушке индуцируется переменная ЭДС одной и той же частоты, но моменты прохождения этих ЭДС через нуль (или через максимум) в каждой из катушек окажутся сдвинутыми на 1/3 периода друг относительно друга, ибо индуктор проходит мимо каждой катушки на 1/3 периода позже, чем мимо предыдущей.
Каждая обмотка трехфазного генератора является самостоятельным генератором тока и источником электрической энергии. Присоединив провода к концам каждой из них, как это показано на рис. 2, мы получили бы три независимые цепи, каждая из которых могла бы питать те или иные электроприемники, например электрические лампы.
В этом случае для передачи всей энергии, которую поглощают электроприемники, требовалось бы шесть проводов. Можно однако, так соединить между собой обмотки генератора трехфазного тока, чтобы обойтись четырьмя и даже тремя проводами, т. е. значительно сэкономить проводку (соединения звездой и треугольником).
29.Электронно-лучевые трубки.
Общие принципы устройства.
В баллоне ЭЛТ создан глубокий вакуум. Для создания электронного луча применяется устройство, именуемое электронной пушкой. Катод, нагреваемый нитью накала, испускает электроны. Изменением напряжения на управляющем электроде (модуляторе) можно изменять интенсивность электронного луча и, соответственно, яркость изображения. Покинув пушку, электроны ускоряются анодом. Далее луч проходит через отклоняющую систему, которая может менять направление луча. В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие. Электронный луч попадает в экран, покрытый люминофором. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.
31.Электрические станции.
Электроста́нция - электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производстваэлектрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.
1.ТЭС
Согласно общепринятому определению, тепловые электростанции - это электростанции, вырабатывающие электроэнергию посредством преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.
Первые ТЭС появились еще в конце XIX века в Нью-Йорке (1882 год), а в 1883 году первая тепловая электростанция была построена в России (С.Петербург). С момента своего появление, именно ТЭС получили наибольшее распространение, учитывая все увеличивающуюся энергетическую потребность наступившего техногенного века. Вплоть до середины 70-х годов прошлого века, именно эксплуатация ТЭС являлась доминирующим способом получения электроэнергии. К примеру, в США и СССР доля ТЭС среди всей получаемой электроэнергии составляла 80%, а во всем мире - порядка 73-75%.
Данное выше определение хоть и емкое, но не всегда понятное. Попытаемся своими словами объяснить общий принцип работы тепловых электростанций любого типа.
Выработка электричества в ТЭС происходить при участии множества последовательных этапов, но общий принцип её работы очень прост. Вначале топливо сжигается в специальной камере сгорания (паровом котле), при этом выделяется большое количество тепла, которое превращает воду, циркулирующую по специальным системам труб расположенным внутри котла, в пар. Постоянно нарастающее давление пара вращает ротор турбины, которая передает энергию вращения на вал генератора, и в результате вырабатывается электрический ток.
Система пар/вода замкнута. Пар, после прохождения через турбину, конденсируется и вновь превращается в воду, которая дополнительно проходит через систему подогревателей и вновь попадает в паровой котел.
Существует несколько типов тепловых электростанций. В настоящее время, среди ТЭС больше всего тепловых паротурбинных электростанций (ТПЭС). В электростанциях такого типа, тепловая энергия сжигаемого топлива используется в парогенераторе, где достигается очень высокое давление водяного пара, приводящего в движение ротор турбины и, соответственно, генератор. В качестве топлива, на таких теплоэлектростанциях используется мазут или дизель, а также природный газ, уголь, торф, сланцы, иными словами все виды топлива. КПД ТПЭС составляет около 40 %, а их мощность может достигать 3-6 ГВт.
2.ГЭС
Гидроэлектроста́нция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.
Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонобразные виды рельефа.
Принцип работы
Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.
Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.
Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.
Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:
* мощные - вырабатывают от 25 МВт и выше;
* средние - до 25 МВт;
* малые гидроэлектростанции - до 5 МВт.
Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.
Типичная для горных районов Китая малая ГЭС (ГЭС Хоуцзыбао, уезд Синшань округа Ичан, пров. Хубэй). Вода поступает с горы по чёрному трубопроводу
Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:
* высоконапорные - более 60 м;
* средненапорные - от 25 м;
* низконапорные - от 3 до 25 м.
* 3.ТЭС
А́томная электроста́нция (АЭС) - ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом) Принцип действия атомных электростанций во многом схож с действием электростанций на органическом топливе. Главное различие - это топливо. На атомной электростанции применяется уран - предварительно обогащенная природная руда, и пар производится посредством расщепления ядра, а не сжигания нефти, газа или угля. Атомные электростанции не сжигают топливо, благодаря чему не загрязняется атмосфера. Процесс происходит следующим образом: Крошечные частицы урана, которые называются атомы, расщепляются. Во время расщепления высвобождаются еще более малые элементы атома - нейтроны.
Нейтроны сталкиваются с атомами урана, в результате выделяется тепло, необходимое для выработки электричества.
32.Генератор постоянного тока.
Генератор постоянного тока преобразует механическую энергию в электрическую.
Якорь генератора приводится во вращение каким-либо двигателем, в качестве которого могут быть использованы электрические двигатели внутреннего сгорания и т.д. Генераторы постоянного тока находят применение в тех отраслях промышленности, где по условиям производства необходим или является предпочтительным постоянный ток (на предприятиях металлургической и электролизной промышленности, на транспорте, на судах и др.). Используются они и на электростанциях в качестве возбудителей синхронных генераторов и источников постоянного тока.
В последнее время в связи с развитием полупроводниковой техники для получения постоянного тока часто применяются выпрямительные установки, но несмотря на это генераторы постоянного тока продолжают находить широкое применение.
Генераторы постоянного тока выпускаются на мощности от нескольких киловатт до 10 000 кВт.
Якорь имеет форму цилиндра и набирается из отдельных штампованных листов электротехнической стали толщиной 0,5 мм. Листы изолированы друг от друга слоем лака или тонкой бумаги. Впадины, выштампованные по окружности каждого листа, при сборке якоря и сжатии листов образуют пазы, куда укладываются изолированные проводники обмотки якоря.
На валу якоря укрепляется коллектор, состоящий из отделы ных медных пластин, припаянных к определенным местам обмотки якоря. Пластины коллектора изолированы друг от друга миканитом. Коллектор служит для выпрямления тока и отвода его при помощи неподвижных щеток во внешнюю сеть (см. дальше).
Электромагниты генератора постоянного тока состоят из стальных полюсных сердечников, привернутых болтами к станине. Станина генератора отливается из стали. У машин очень малой мощности станина отливается вместе с полюсными сердечниками. В остальных случаях сердечники полюсов набираются из отдельных листов электротехнической стали. На сердечники надеваются катушки, изготовленные из медной изолированной проволоки. Пропущенный через обмотку возбуждения (электромагнитов) постоянный ток создает магнитный поток полюсов. Для лучшего распределения магнитного потока в воздушном зазоре к ярму прикрепляют полюсы с наконечниками, собранные из отдельных стальных листов. Внешняя цепь соединяется с цепью якоря машины постоянного тока при помощи щеток, укрепленных в щеткодержателях, которые располагаются на щеточных болтах траверсы. Болты изолируются от траверсы при помощи изолирующих втулок и шайб.
При вращении якоря обмотка его пересекает магнитные линии полюсов. По закону электромагнитной индукции.
34.Мощность и работа тока.(см. Б.7)
35.Диоды.
Дио́д ( означающего путь) - двухэлектродный электронный прибор, обладающий различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключаемый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькоесопротивление), называют анодом, подключаемый к отрицательному полюсу - катодом.
Чтобы представить как работает диод, возьмем для примера ситуацию с накачиванием колеса при помощью насоса. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выйти через ниппель не может. По сути воздух, это тот же электрон в диоде, вошел электрончик, а обратно выйти уже нельзя. Если вдруг ниппель выйдет из строя то колесо сдуется, будет пробой диода. А если представить что ниппель у нас исправный, и если мы будем нажимая на пипку ниппеля выпускать воздух из камеры, причем нажимая как нам хочется и с какой длительностью - это будет управляемый пробой. Из этого можно сделать вывод что диод пропускает ток только в одном направлении (в обратном направлении тоже пропускает, но совсем маленький) Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.
Диоды Полупроводниковые Не полупроводниковые Газозаполненные Вакуумные
Применение диодов.
Диоды применяются очень широко в электронике. Пожалуй, наиболее часто диоды используются для выпрямления переменного напряжения. Без диодов и полупроводников вообще вы бы не смогли прочитать этот документ в электронном виде, так как компьютера у вас бы просто не было (ну во всяком случае такого, который можно купить за разумные деньги и который поместится в комнате))).
37.Предохранители. Стабилизаторы.
Предохранитель - электрический аппарат, выполняющий защитную функцию (защищает электрич. цепь и её элементы от перегрева и возгорания при протекании тока высокой силы).
Виды:
1.Плавкий предохранитель - компонент силовой электроники одноразового действия, выполняющий защитную функцию. В электрической цепи плавкий предохранитель является слабым участком электрической цепи, сгорающий в аварийном режиме, тем самым разрывая цепь и предотвращая последующее разрушение высокойтемпературой[1].
Предохранители с плавкими вставками состоят из пустотелого керамического корпуса с резьбой на цоколе и сменной трубчатой вставкой, в которую впаяна тонкая проволочка. Автоматические предохранители и автоматические выключатели содержат электромагнитный расцепитель, защищающий сеть от коротких замыканий, и биметаллический расцепитель от длительных перегрузок по току. Недостатки
1.Возможность использования только один раз.
2.Большим недостатком плавких предохранителей является конструкция, дающая возможность шунтирования, то есть использования "жучков", приводящих к пожарам.
3.В цепях трёхфазных электродвигателей при сгорании одного предохранителя инициируется пропадание одной фазы, что может привести к выходу из строя электродвигателя (рекомендуется использовать реле контроля фаз).
4.Возможность необоснованной замены на предохранитель номиналом выше.
5.Возможный перекос фаз в трёхфазных электроцепях при больших токах.
Преимущества
1.В асимметричных трёхфазных цепях при аварии на одной фазе, питание пропадёт только на одной фазе, а остальные две фазы продолжат дальше снабжать нагрузку (не рекомендуется такое практиковать при больших токах, так как это может привести к перекосу фаз)
2.Из-за более простой конструкции чем у автомата защиты, почти исключена возможность т. н. "поломки механизма" - в случае аварийной ситуации предохранитель полноценно обесточит цепь.
2. Автоматический предохранитель
Основная статья: Автоматический выключатель
Устройство автоматического предохранителя
1 - тумблерный вкл/выключатель
2 - механический привод
3 - контактная система
4 - разъёмы (2 шт)
5 - тепловой расцепитель
6 - калибровочный винт
7 - электромагнитный расцепитель
8 - дугогасительная камера
Автоматический предохранитель (правильное название: Автоматический выключатель, также называется "автомат защиты", "защитный автомат" или же просто "автомат") состоит из диэлектрического корпуса, внутри которого располагаются подвижный и неподвижный контакты. Подвижный контакт подпружинен, пружина обеспечивает усилие для быстрого расцепления контактов. Механизм расцепления приводится в действие одним из двух расцепителей: тепловым или электромагнитным.
Применение: предохранители используются в приложениях, где возможны перегрузки: для защиты трансформаторов, двигателей, источников питания постоянного тока, схем освещения, контакторов, реле и другого электрооборудования.
Стабилизаторы - преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного напряжения и сопротивления нагрузки.
Виды стабилизаторов:
1. Газоразрядный стабилизатор ( стабилитрон) представляет собою лампу с двумя холодными электродами, заполненную аргоном или неоном. При определенном напряжении на электродах стабилитрона в лампе возникает тлеющий разряд, и часть катода начинает светиться. При увеличении напряжения площадь свечения возрастает, сопротивление лампы падает и ток, проходящий через нее, увеличивается. Допустимые пределы изменения входного напряжения зависят от допустимых пределов изменения тока в стабилитроне, величину которых указывают в паспорте. 2. Кремниевый 38. Типы ЭС. Влияние ЭС на окруж. среду.
Окружающая среда - основа жизни человека, а ископаемые ресурсы и вырабатываемая из них энергия являются основой современной цивилизации. Без энергетики у человечества нет будущего это очевидный факт. Однако современная энергетика наносит ощутимый вред окружающей среде, ухудшая условия жизни людей. Основа современной энергетики - различные типы электростанций. На заре развития отечественной индустрии, 70 лет назад, основная ставка была сделана на крупные ТЭС. В то время о влиянии ТЭС на окружающую среду задумывались мало, так как первоочередной задачей было получение электроэнергии и тепла. Технология производства электрической энергии на ТЭС связана с большим количеством отходов, выбрасываемых в окружающую среду. Сегодня проблема влияния энергетики на природу становится особенно острой, так как загрязнение окружающей среды, атмосферы и гидросферы с каждым годом всё увеличивается. Если учесть, что масштабы энергопотребления постоянно увеличиваются, то и соответственно увеличивается отрицательное воздействие энергетики на природу. Если в период становления энергетики в нашей стране в первую очередь руководствовались целесообразностью с точки зрения экономических затрат, то сегодня всё чаще при возведении и эксплуатации объектов энергетики на первый план выдвигаются вопросы их влияния на экологию.
Тепловые электростанции работают на относительно дешевом органическом топливе - угле и мазуте, это невосполнимые природные ресурсы. Сегодня основными энергетическими ресурсами в мире являются уголь(40%), нефть (27%) и газ (21%). По некоторым оценкам этих запасов хватит на 270, 50 и 70 лет соответственно и то при условии сохранения нынешних темпов потребления.
При сжигании топлива на ТЭС образуются продукты сгорания, в которых содержатся: летучая зола, частички несгоревшего пылевидного топлива, серный и сернистый ангидрид, оксид азота, газообразные продукты неполного сгорания. При зажигании мазута образуются соединения ванадия, кокс, соли натрия, частицы сажи. В золе некоторых видов топлива присутствует мышьяк, свободный диоксид кальция, свободный диоксид кремния, которые наносят значительный вред всему живому.
Загрязняют окружающую среду и сточные производственные воды ТЭС, содержащие нефтепродукты. Эти воды станция сбрасывает после химических промывок оборудования, поверхностей нагрева паровых котлов и систем гидрозолоудаления.
Окись серы, попадающая с выбросами в атмосферу, наносит большой ущерб животному и растительному миру, она разрушает хлорофилл, имеющийся в растениях, повреждает листья и хвою. Окись углерода, попадая в организм человека и животных, соединяется с гемоглобином крови, в результате чего в организме возникает недостаток кислорода, и, как следствие, происходят различные нарушения нервной системы.
Оксид азота снижает прозрачность атмосферы и способствует образованию смога. Имеющийся в составе золы пентаксид ванадия отличается высокой токсичностью, при попадании в дыхательные пути человека и животных, он вызывает сильное раздражение, нарушает деятельность нервной системы, кровообращение и обмен веществ. Своеобразный канцероген бензапирен может вызывать онкологические болезни.
ГЭС.
Самой крупной отраслью водопользования является гидро-энергетика. При сооружении равнинных ГЭС отрицательным моментом является затопление огромных территорий. Для снижения площади затопления земель необходимо сооружение защитных дамб. Необходимо следить за уровнем воды в водохранилищах, что бы избежать временного затопления берегов; очищать ложе будущего водохранилища от кустарников, деревьев, и.т.д.; на водохранилищах создавать условия для развития рыбных хозяйств, так как ГЭС наносят ущерб не только сельскому хозяйству, но и рыболовному промыслу.
Все гидроэлектростанции наносят колоссальный ущерб рыбному промыслу. Ранее события шли в постоянной эволюционной последовательности: весеннее половодье, ход рыбы на нерест, скатывание молоди в море. А в настоящее время гидроэлектростанции этот порядок нарушают. Половодье, называемое попуском воды, происходит среди зимы, к весне ледяной слой оседает на затопленные острова, придавливает зимующую рыбу в зимовальных ямах, нарушая биологические сроки созревания икры. А это значит, что пройдёт два года прежде чем незрелая икра рассосётся и заложится новая.
Водохранилища повышают влажность воздуха, способствуют изменению ветрового режима в прибрежной зоне, атак же температурный и ледяной режим водостока. Это приводит к изменению природных условий, что сказывается на хозяйственной деятельности населения и жизни животных.
Производство работ по строительству ГЭС следует проэктировать с минимальным экологическим ущербом природе. При разработке необходимо рационально выбирать карьер, месторасположение дорог и т.д. По завершения строительства должны быть проведены работы по рекультивации нарушения земель и озеленение территории. Наиболее эффективным природоохранным мероприятием является инженерная защита. Строительство дамб сокращает территорию затопления земель, сохраняя её для сельскохозяйственного использования; уменьшает площадь мелководий; сохраняет естественные природные комплексы; улучшает санитарные условия водохранилища. Если строительство дамбы экономически не оправдалось, то мелководья можно использовать для разведения птиц или других хозяйственных нужд.
АЭС.Обычно, когда говорят о радиационном загрязнении, имеют в виду гамма-излучение, легко улавливаемое счетчиками Гейгера и дозиметрами на их основе. В то же время есть немало бета-излучателей, которые плохо обнаруживаются существующими массовыми приборами. Также как радиоактивный йод концентрируется в щитовидной железе, вызывая ее поражение, радиоизотопы инертных газов, в 70-е годы считавшиеся абсолютно безвредными для всего живого, накапливаются в некоторых клеточных структурах растений (хлоропластах, митохондриях и клеточных мембранах). Одним из основных выбрасываемых инертных газов является криптон-85. Количество криптона-85 в атмосфере (в основном за счет работы АЭС) увеличивается на 5 % в год. Еще один радиоактивный изотоп, не улавливаемый никакими фильтрами и в больших количествах производимый всякой АЭС - углерод-14. Есть основания предполагать, что накопление углерода-14 в атмосфере (в виде CO2) ведет к резкому замедлению роста деревьев. Сейчас в составе атмосферы количество углерода-14 увеличено на 25% по сравнению с доатомной эрой. Важной особенностью возможного воздействия АЭС на окружающую среду является необходимость демонтажа и захоронения элементов оборудования, обладающих радиоактивностью, по окончании срока службы или по другим причинам. До настоящего времени такие операции производились лишь на нескольких экспериментальных установках.
При нормальной работе в окружающую среду попадают лишь немногие ядра газообразных и летучих элементов типа криптона, ксенона, йода. Расчёты показывают, что даже при увеличении мощностей атомной энергетики в 40 раз её вклад в глобальное радиоактивное загрязнение составит не более 1% от уровня естественной радиации на планете.
На электростанциях с кипящими реакторами (одноконтурными) большая часть радиоактивных летучих веществ выделяется из теплоносителя в конденсаторах турбин, откуда вместе с газами радиолиза воды выбрасываются эжекторами в виде парогазовой смеси в специальные камеры, боксы или газгольдеры выдержки для первичной обработки или сжигания. Остальная часть газообразных изотопов выделяется при дезактивации растворов в баках выдержки.
На электростанциях с реакторами, охлаждаемыми водой под давлением, газообразные радиоактивные отходы выделяются в баках выдержки.
Газообразные и аэрозольные отходы из монтажных пространств, боксов парогенераторов и насосов, защитных кожухов оборудования, ёмкостей с жидкими отходами выводятся с помощью вентиляционных систем с соблюдением нормативов по выбросу радиоактивных веществ. Воздушные потоки из вентиляторов очищаются от большей части аэрозолей на тканевых, волокнистых, зерновых и керамических фильтрах. Перед выбросом в вентиляционную трубу воздух проходит через газовые отстойники, в которых происходит распад короткоживущих изотопов (азота, аргона, хлора и др.).
Помимо выбросов, связанных радиационным загрязнением, для АЭС, как и для ТЭС, характерны выбросы теплоты, влияющие на окружающую среду. Примером может служить атомная электростанция "Вепко Сарри". Её первый блок был пущен в декабре 1972 г., а второй - в марте 1973 г. При этом температура воды у поверхности реки вблизи электростанции в 1973г. была на H4єC выше температуры в 1971г. и максимум температур наблюдался на месяц позже. Выделение тепла происходит также в атмосферу, для чего на АЭС используются т.н. градирни. Они выделяют 10-400 МДж/(мІ·ч) энергии в атмосферу. Широкое применение мощных градирен выдвигает рад новых проблем. Расход охлаждающей воды для типового блока АЭС мощностью 1100 МВт с испарительными градирнями составляет 120 тыс. т/ч (при температуре окружающей воды 14єC). При нормальном солесодержании подпиточной воды за год выделяется около 13,5 тыс. т солей, выпадающих на поверхность окружающей территории. До настоящего времени нет достоверных данных о влиянии на окружающую среду этих факторов.
На АЭС предусматриваются меры для полного исключения сброса сточных вод, загрязнённых радиоактивными веществами. В водоёмы разрешается отводить строго определённое количество очищенной воды с концентрацией радионуклидов, не превышающей уровень для питьевой воды. Действительно, систематические наблюдения за воздействием АЭС на водную среду при нормальной эксплуатации не обнаруживают существенных изменений естественного радиоактивного фона. Прочие отходы хранятся в ёмкостях в жидком виде или предварительно переводятся в твёрдое состояние, что повышает безопасность хранения.
40.См.билет 14 (вопр.40)
41.Элементы промыш. электроники - конденсаторы.
Конденсатор - это устройство для накопления заряда. Состоит из двух проводников - обкладок, разделённых диэлектриком.
Обозначение на схеме: Свойство конденсатора - накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд.
Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:
В системе СИ единица электроемкости называется фарад (Ф): Простейший конденсатор - система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским. В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными. Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.
Рис. 182. Плоский (а) и цилиндрический (б) конденсаторы
В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями. Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.
Способы соединения конденсаторов. Конденсаторы можно соединять последовательно и параллельно. При последовательном
Рис. 187. Последовательное (а) и параллельное (б) соединения конденсаторов.
Применение: Конденсаторы находят применение практически во всех областях электротехники.
1.Конденсаторы (совместно с катушками индуктивности и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
2.При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках, электромагнитных ускорителях,импульсных лазерах с оптической накачкой, генераторах Маркса, (ГИН; ГИТ), генераторах Кокрофта-Уолтона и т. п.
3.Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
4.Измерителя уровня жидкости. Непроводящая жидкость заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня
5.Аккумуляторов электрической энергии. В этом случае на обкладках конденсатора должно быть достаточно постоянное значения напряжения и тока разряда. При этом сам разряд должен быть значительным по времени. В настоящее время идут опытные разработки электромобилей и гибридов с применением конденсаторов. Так же существуют некоторые модели трамваев в которых конденсаторы применяются для питания тяговых электродвигателей при движении по обесточенным участкам.
43. Проблемы и перспективы производства электроэнергии.
Одним из основных факторов, которые обусловили возможность достижения человечеством его нынешнего уровня техники и технологий, стало открытие электричества, и основных способов его получения. Электроэнергию сегодня используют повсеместно: жилые дома, загородная недвижимость , промышленные предприятия, автомобили, самолеты и так далее.
Однако столь высокая зависимость от электричества способна в ближайшем будущем стать одной из самых больших проблем общества, так как запасы горючих ископаемых и материалов неуклонно истощаются, а вред, наносимый здоровью людей и экологии атомными и тепловыми электростанциями огромен. Поэтому практически каждый человек, который приобретает участок под строительство коттеджа или собственный дом, старается выбрать место как можно дальше от промышленных объектов или электростанций.
Все это стало причиной активных поисков альтернативных источников электроэнергии, которые бы позволяли обеспечить электричеством всех его потребителей, и в тоже время обеспечивали бы если и не полную экологическую чистоту производства, то хотя бы минимальный уровень наносимого окружающей среде урона.
Наиболее популярными сегодня альтернативными источниками электричества являются использование силы воды - гидроэлектростанциями, а также энергии солнца и ветра. Однако лишь ГЭС способны дать относительно достаточное количество электроэнергии, поскольку ветрогенераторы занимают слишком большую площадь, а солнечные батареи в пасмурный день бесполезны. Его суть заключается в том, что на ряде островов следует построить несколько низменных бассейнов, установить ветрогенераторы, панели солнечных батарей и возвести несколько гидроэлектростанций. Получаемая от ветра и солнца электроэнергия будет использована для того, чтобы из этих бассейнов выкачивалась вода, и затем снова заполняла их, проходя через лопасти гидротурбин ГЭС. Разница температур и давления над водой и сушей позволит обеспечить стабильный ветер, и таким образом получение энергии практически полностью перестанет зависеть от природы. Достоинство такого способа добычи электроэнергии в том, что не нарушается экология, а коэффициент полезного действия каждого цикла может превышать 75%.
Перспективы развития энергетики Возможность энергетики народного хозяйства упорно возрастает. Она возникает вследствие концентрации мощностей в линиях электропередачи и на электростанциях, централизации электроснабжения, экономному и комплексному применению энергетических ресурсов, использованию, а также разработке новейших источников энергии. Вопреки опережающему развитию энергетики формируется неплохое основание в прогрессе во всех сферах промышленности, транспорта, строительства, сельского хозяйства, и конечно же в области роста культурного уровня и достатка людей. Однако, растущая потребность в разных видах энергии призывает к реализации немалых мероприятий по увеличению эффективности работы энергетических установок и предприятий, а также поиску путей применения и образования новых источников энергии. Главы государств выказывают немалую заботу о своевременном вводе в действие больших энергетических объектов, более результативного использования наличествующих электростанций, ускорении сооружения линий электропередачи, а также бесперебойном обеспечении энергией населения страны и народного хозяйства. Для более рационального применения энергетических ресурсов понижают долю нефти как топлива, заменяя её углём и газом, невероятно стремительно развивается атомная энергетика, идёт поиск принципиально новейших источников энергии. В настоящее время в нашей стране и странах ближнего зарубежья достигли высокого уровня развития все сферы энергетики - ветроэнергетика, электроэнергетика, гидроэнергетика, теплоэнергетика, ядерная и атомная энергетика. Техники, инженеры, ученые, а также передовые рабочие ведут разработки и изучения новейших методов приобретения и применения энергии. На основе открытий в области ядерной физики родилась атомная энергетика. Появление новейшей, перспективной области народного хозяйства - ядерной энергетики - было ознаменовано в 1951 г. 27 июня запуском первой в мире атомной электростанции мощностью 5 тыс. кВт, возведенной в Обнинске. За истечением времени в разных странах было включено в действие более ста атомных электростанций совместной мощностью около 40 млн. кВт. Также начали действовать среди них Кольская и Ленинградская атомные электростанции, и другие. Затем велась постройка ещё ряда атомных электростанций. Благодаря использованию атомной энергии, по мнению ведущих специалистов, в перспективе будет работать половина всех электростанций. К формированию новых типов реакторов на быстрых нейтронах привело развитие техники применения ядерного деления. В этих реакторах кроме производства электроэнергии, также исполняется воспроизводство ядерного горючего. Атомные электростанции делает более экономичными строительство реакторов на быстрых нейтронах. Ученых навели изучения свойств атомных ядер на открытие технологии приобретения ядерной энергии, в образе которого присутствует синтез лёгких элементов. К примеру, в слиянии ядер изотопов водорода (трития и дейтерия) создастся ядро атома гелия и от этого выдается колоссальная энергия. Тем не менее, определенные трудности лежат на пути промышленного применения энергии ядерного синтеза: надобна высокая температура (до 100 млн. °С); необходимость реализовать управление процессом ядерного синтеза. Ученые разных стран занимаются этими проблемами. Ещё одно улучшение процесса производства на тепловых электростанциях электроэнергии определяется внесением бинарных энергетических агрегатов. К примеру, теплота, выделяющаяся на момент сгорания топлива, в ртутно-водяных энергетических установках подаётся парам ртути, которые в свою очередь делают полезно-необходимую работу в ртутной турбине. Далее пары ртути определяются в конденсатор-испаритель и оставшуюся всю энергию дают пару, проводящему работу в пароводяной турбине. Наша страна достигла гигантских успехов в развитии гидроэнергетики. Следующие улучшения гидроэнергетической техники сориентировано на разработку конструкций так сказать ещё более мощных гидротурбин, а также увеличение их полезного действия, целесообразное применение энергии воды и конечно уменьшение затрат на постройки гидротехнических сооружений. Немалая внимательность отводится комплексному применению гидроэнергетических ресурсов с итогом получения электроэнергии, исполнения работ по ирригации земель, в создании условий эффективности рыбоводства, с его увеличением, с обязательным использованием мер в охране окружающей среды. Перспективна и работа над новыми гидроресурсами - энергии отливов и приливов. В ходе преобразования теплоты в механическую энергию, а после механической энергии в электрическую проходят немалые потери энергии. Вследствие чего более экономный перспективный путь получение электрической энергии производится путем прямого преобразования теплоты в электрическую энергию. Это воплощается в действительность в магнито-гидродинамических генераторах, термоэлектронных и термоэлектрических элементах. На момент высоких температур совершается ионизация газов, кое-какие газы в это время превращаются в плазму. Если же пропустить плазму при большой скорости в тесно-ограниченном канале внутри полюсов магнита, то на стенках противоположных каналу появится электрическое напряжение. Этим самым, получается магнито-гидродинамический генератор. Производятся мощные такие генераторы, но время их промышленного применения стоит рад решений проблем в создании не дорогих материалов, и выдачи сильных магнитных полей. Так же прогрессивны методы получения электроэнергии за счёт прямого преобразования энергии химических связей. Аккумуляторы и гальванические элементы, где осуществляется такое преобразование, используют давно. Тем не менее, их не применяют с целью энергетических установок, оттого, что они не обеспечивают необходимое непрерывное получение электроэнергии и располагают слишком ограниченным запасом хим-горючего. В этом отношении более прогрессивными являются топливные элементы как значимые части электрохимических генераторов. Электрическая энергия в топливном элементе образуется за счёт окислителя в присутствии катализатора и окислительно-восстановительной реакции топлива. К примеру, в качестве катализатора может быть серебро, платина, в качестве окислителя кислород, в качестве топлива водород; тогда выходит кислородно-водородный топливный элемент. Резерв химического горючего в кислородно-водородных топливных элементах постоянно пополняется: металлические пластины помещены в растворе электролита, пропускающие в свою очередь водород и кислород; реакция соединения водорода с кислородом происходит в этом растворе, впоследствии чего на пластинах появляется электрическое напряжение. Ученые продолжают работать над дальнейшим совершенствованием: сменой водорода природным газом, увеличением мощности элементов. Применение полупроводниковых материалов в термоэлектрической технологии получения электроэнергии является перспективным в энергетических целях, преобразование солнечной энергии в электроэнергию. Поиск новых источников энергии продолжают осуществлять инженеры и ученые, более предоставляющих и эффективных методов её получения, употребления и передачи.
44. Типы источников света.
Источник света - любой объект, излучающий энергию в световом спектре. Источники света делятся на :
1. Тепловые (лампы накаливания, инфракрасные нагреватели и др.)
2. Газоразрядные (люминесцентные лампы и др.)
Важной характеристикой является срок службы, который измеряется в часах (от 200 до 20 000 ч).
Рассмотрим конструкцию некоторых источников.
1. Лампы накаливания.
Ла́мпа нака́ливания - электрический источник света, в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный или заполненный инертным газом сосуд, нагревается до высокой температуры за счёт протекания через него электрического тока, в результате чего излучает в широком спектральном диапазоне, в том числе видимый свет. В качестве тела накала в настоящее время используется в основном спираль из сплавов на основе вольфрама. Конструкция современной лампы. На схеме: 1 - колба; 2 - полость колбы (вакуумированная или наполненная газом); 3 - тело накала; 4, 5 - электроды (токовые вводы); 6 - крючки-держатели тела накала; 7 - ножка лампы; 8 - внешнее звено токоввода, предохранитель; 9 - корпус цоколя; 10 - изолятор цоколя (стекло); 11 - контакт донышка цоколя. Преимущества и недостатки ламп накаливания
Преимущества:
* налаженность в массовом производстве
* малая стоимость
* небольшие размеры
* отсутствие пускорегулирующей аппаратуры
* быстрый выход на рабочий режим
* невысокая чувствительность к сбоям в питании и скачкам напряжения
* отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации
* возможность работы на любом роде тока
* возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)
* отсутствие мерцания при работе на переменном токе (важно на предприятиях).
* отсутствие гудения при работе на переменном токе
* непрерывный спектр излучения
* приятный и привычный в быту спектр
* не боятся низкой и повышенной температуры окружающей среды, устойчивы к конденсату
Недостатки:
* низкая световая отдача
* относительно малый срок службы
* хрупкость, чувствительность к удару и вибрации
* бросок тока при включении (примерно десятикратный)
* при термоударе или разрыве нити под напряжением возможен взрыв баллона
* резкая зависимость световой отдачи и срока службы от напряжения
* лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 25 Вт - 100 °C, 40 Вт - 145 °C, 75 Вт - 250 °C, 100 Вт - 290 °C, 200 Вт - 330 °C. При соприкосновении ламп с текстильными материалами их колба нагревается ещё сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.[20]
2.Люминесцентные лампы.
Достоинства и недостатки. К достоинствам люминесцентных ламп относятся высокая световая отдача (до 77 лм/Вт) и большая долговечность. Недостатки - высокая начальная стоимость лампы и светильника, шум дросселя стартера и мерцание. Хотя перечень недостатков обширнее, достоинства столь велики, что уже к 1952 лампы накаливания в США были вытеснены люминесцентными лампами в качестве основного электрического источника света.
46.Проблемы энергосбережения.
В сегодняшнем мире проблемы энергосбережения и экологии становятся всё более актуальными. Использование энергосберегающих технологий способствует не только сокращению затрат на электроэнергию, но и уменьшить вредное воздействие, которое оказывает человек на природу в процессе своей жизнедеятельности, с учётом всё более растущих его потребностей. Человек всё больше начинает ценить экологически чистые натуральные материалы, чистую воду, чистый воздух. Люди стали строить деревянные дома и оборудовать их мебелью из дерева, покупать в магазинах очищенную бутилированную воду, использовать в домах и автомобилях системы, которые очищают и увлажняют воздух. Человек стал задумываться, каким воздухом он дышит, какую воду он пьёт, и как в перспективе это влияет на его здоровье и продолжительность жизни.
Загрязнением окружающей среды называют отрицательные изменения биологических, физических, химических характеристик атмосферы, воды, почвы, неблагоприятно влияющих на жизнь человека, животных и растений, источающих ресурсы планеты в целом.
Основными источниками загрязнения являются тепловые электростанции, предприятия нефтехимической промышленности, чёрная и цветная металлургия, производство строительных материалов и химическая промышленность, авто и авиатранспорт. Одни только электростанции наносят огромный ущерб окружающей среде. Даже обычные электролампы, которыми мы пользуемся, загрязняют среду нашего обитания, особо это относится к лампам дневного света, содержащим свинец ртуть и люминофор.
Использование для освещения светодиодных ламп существенно снижает пагубное воздействие на природу, потребление электроэнергии при использовании таких ламп уменьшается до десяти раз, а вредное излучение в процессе эксплуатации сводится к минимуму, также минимально выделение вредных веществ в окружающую среду и при последующей утилизации.
Самым эффективным способом уменьшения вредных выбросов в атмосферу, таких как диоксид углерода, является усовершенствование способов производства, передачи и последующей утилизации энергии. Ежегодно количество выбросов парниковых газов эквивалентных CO2 составляют около 44 миллиардов тонн. Внедрение новых высоко экологичных технологий позволит сократить количество этих выбросов до 25 миллиардов.
Так, теплоэлектростанции, на которых используются комбинированные паро- и газотурбинные установки, имеют КПД до 60%, тогда как КПД традиционных ТЭЦ в среднем составляет 46%. К тому работа электростанций с комбинированными установками более эффективна, а также отличается меньшим количеством вредных выбросов.
Значительный вклад в снижение выбросов диоксида углерода может внести использование экологичных технологий в строительстве, в частности, применение экологически безопасных строительных материалов.
Современные системы кондиционирования воздуха, отопления и нагрева воды, повышенная теплоизоляция способны уменьшить количество выбросов эквивалента CO2 примерно на 2 миллиарда тонн, а применение светодиодных энергосберегающих ламп позволит значительно экономить электроэнергию и намного меньше засорять окружающую среду.
Человек с помощью новейших достижений технического прогресса в области энергосбережения, эффективно используя возобновляемые экологически чистые источники энергии, правильно утилизируя отходы, трансформируя их в биогаз, электроэнергию или другие производные, способен свести к минимуму вредное воздействие на природу.
В деле спасения планеты важно осознать угрозу бездействия, оценить возможности, предоставленные нам техническим прогрессом для её спасения. Предпринять решительные шаги в этом направлении необходимо уже сейчас.
47.Погрешности измерений.
Никакие измерения не могут быть абсолютно точными. Измеряя какую-либо величину, мы всегда получаем результат с некоторой погрешностью (ошибкой). Другими словами, измеренное значение величины всегда отличается от истинного ее значения. Задачей экспериментатора является не только нахождение самой величины, но и оценка допущенной при измерении погрешности. В зависимости от свойств и причин возникновения различают систематические и случайные погрешности и промахи. Систематическими называются погрешности, которые при многократных измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов, остаются постоянными.
Систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Они соответствуют отклонению измеренного значения от истинного всегда в одну сторону - либо в большую, либо в меньшую. Систематические погрешности могут быть обусловлены, во-первых, неисправностью или неправильной работе на используемых приборах (например, неправильной установкой "нуля"). Во-вторых, их причиной может быть несовершенство используемой методики измерения или неучет постоянных факторов, влияющих на исследуемое явление. Например, можно получать завышенные значения температуры плавления кристалла, если проводить измерения при повышенном внешнем давлении.
Помимо погрешностей, возникающих в процессе измерений, систематическими являются погрешности, связанные с применением приближенных ("упрощенных") формул, и ошибки, обусловленные отличием реального объекта от принятой модели. Так, например, при определении плотности может возникнуть большая систематическая ошибка, если исследуемый образец не является однородным и содержит внутри пустоты.
После выявления причин систематическую погрешность можно устранить, вводя соответствующую поправку. Обнаружить же систематическую погрешность и установить ее причину бывает не всегда просто, и экспериментатору часто приходится проводить дополнительные исследования. Предполагается, что в задачах физического практикума систематические погрешности сведены к минимуму при постановке задачи, и их можно не учитывать.
Случайными называются погрешности, которые при многократных измерениях в одинаковых условиях изменяются непредсказуемым образом.
Случайные ошибки обусловлены множеством неконтролируемых причин, действие которых неодинаково в каждом опыте. В результате этого при измерении одной и той же величины несколько раз подряд в одинаковых условиях получается целый ряд значений этой величины, отличающихся от истинного значения случайным образом как в сторону увеличения, так и уменьшения.
Природа случайных погрешностей может быть различной: флуктуации нулевого положения указателя измерительного прибора; несовершенство органов чувств экспериментатора (например, невозможность включить секундомер точно в нужный момент); случайные неконтролируемые изменения внешних воздействий - температуры, влажности, давления; наводки в электрической цепи и т.д., которые практически невозможно учесть. Случайные ошибки всегда присутствуют в эксперименте.
Приборной погрешностью называется разность между показаниями любого прибора и истинным значением измеряемой величины. Она может содержать случайную и систематическую составляющие. Промахи (или грубые погрешности) проявляются обычно в резком отклонении результата отдельного измерения от остальных. Промахи обусловлены главным образом недостаточным вниманием экспериментатора или неисправностями средств измерения. Результаты таких измерений отбрасываются.
См. тетрадь.(формулы+определения)
49.Диэлектрики.
Диэлектрики (изоляторы) - вещества, которые плохо проводят или совсем не проводят электрический ток. К диэлектрикам относят воздух, некоторые газы, стекло, пластмассы, различные смолы, многие виды резины.
В таких телах нет свободных электрически заряженных частиц, способных перемещаться в теле под действием внешнего электрического поля. Вещества, не содержащие свободных электрически заряженных частиц, называют диэлектриками или изоляторами.
Виды:
1.Твёрдые (стекло, керамика, пластмасса, резина и др.)
2.Жидкие (трансформаторное масло, которым заливают силовые трансформаторы, из всех жидких электроизоляционных материалов находит наибольшее применение в электротехнике;Конденсаторное масло служит для пропитки бумажных конденсаторов, в особенности силовых, предназначенных для компенсации индуктивного сдвига фаз. При пропитке бумажного диэлектрика повышается как его диэлектрическая проницаемость, так и электрическая прочность; то и другое дает возможность уменьшить габариты, массу и стоимость конденсатора при заданных рабочем напряжении, частоте и емкости;
Кабельные масла используются в производстве силовых электрических кабелей; пропитывая бумажную изоляцию этих кабелей, они повышают ее электрическую прочность, а также способствуют отводу тепла потерь. Кабельные масла бывают различных типов.
Конденсаторное масло сходно с трансформаторным, но требует особо тщательной очистки адсорбентами. 3.Газообразные (воздух, который в силу своей всеобщей распространенности даже помимо нашей воли часто входит в состав электрических устройств и играет в них роль электрической изоляции, дополнительной к твердым или жидким электроизоляционным материалам. В отдельных частях электрических установок, например на участках воздушных линий электропередачи между опорами, воздух образует единственную изоляцию между голыми проводами линии. При недостаточно тщательно проведенной пропитке изоляции электрических машин, кабелей, конденсаторов в ней могут оставаться воздушные включения, часто весьма нежелательные, так как они при высоком рабочем напряжении изоляции могут стать очагами образования ионизации, азот).
Свойства:
1.Электрические - электропроводность(Любой радиотехнический материал - проводник, полупроводник или диэлектрик - проводит электрический ток. Но в диэлектриках протекают токи очень малой величины, если даже они находятся под воздействием большого напряжения (500 В и выше).Электрический ток в диэлектриках - это направленное движение электронов и ионов: положительных и (или) отрицательных ионов).
2.Тепловые (Нагревостойкость - способность электроизоляционных материалов и изделий без вреда для них выдерживать воздействие высокой температуры и резких смен температуры. Определяют по температуре, при которой наблюдается существенное изменение механических и электрических свойств, например, в органических диэлектриках начинается деформация растяжения или изгиба под нагрузкой.
Теплопроводность - процесс передачи тепла в материале). 3.Влажностные (Влагостойкость - это надежность эксплуатации изоляции при нахождении ее в атмосфере водяного пара близкого к насыщению. Влагостойкость оценивают по изменению электрических, механических и других физических свойств после нахождения материала в атмосфере с повышенной и высокой влажностью; по влаго- и водопроницаемости; по влаго- и водопоглощаемости.
Влагопроницаемость - способность материала пропускать пары влаги при наличии разности относительных влажностей воздуха с двух сторон материала.
Влагопоглощаемость - способность материала сорбировать воду при длительном нахождении во влажной атмосфере близкой к состоянию насыщения.
Водопоглощаемость - способность материала сорбировать воду при длительном погружении его в воду.
Тропикостойкость и тропикализация оборудования - защита электрооборудования от влаги, плесени, грызунов).
Особый класс - Твердеющие диэлектрики - материалы, которые в исходном состоянии являются жидкостями, а в процессе изготовления изоляции - твердеют (лаки, эмали, компаунды).
50.Электромагниты.
Электромагнит - устройство, создающее магнитное поле при прохождении электрического тока. Обычно электромагнит состоит из обмотки иферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке тока. В электромагнитах, предназначенных, прежде всего, для создания механического усилия также присутствует якорь (подвижная часть магнитопровода), передающий усилие.
Обмотку электромагнитов изготавливают из изолированного алюминиевого или медного провода, хотя есть и сверхпроводящие электромагниты. Магнитопроводы изготавливают из магнитно-мягких материалов - обычно из электротехнической или качественной конструкционной стали, литой стали и чугуна, железоникелевых и железокобальтовых сплавов. Для снижения потерь на вихревые токи (токи Фуко) магнитопроводы выполняют из набора листов.
Простейший электромагнит: вокруг
ферромагнитного сердечника намотан
электропровод в изоляции
История: В 1825 году английский инженер Уильям Стёрджен изготовил первый электромагнит, представляющий собой согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки. Для изолирования от обмотки стержень был покрыт лаком. При пропускании тока железный стержень приобретал свойства сильного магнита, но при прерывании тока он мгновенно их терял. Именно эта особенность электромагнитов и позволила широко применять их в технике.
Применение:
Большинство технических применений магнитов основывается на их способности притягивать и удерживать железные предметы. И в этих применениях электромагниты имеют огромные преимущества перед постоянными магнитами, ибо изменение силы тока в обмотке электромагнита позволяет быстро изменять его подъемную силу. Сила, с которой магнит притягивает железо, резко убывает по мере увеличения расстояния между магнитом и железом. Поэтому для определенности подъемной силой магнита условились называть силу, с которой магнит удерживает железо, расположенное в непосредственной близости к нему; другими словами, подъемная сила магнита равна той силе, которая необходима, чтобы оторвать от магнита притянутый к нему кусок чистого мягкого железа.
Чтобы получить электромагнит с возможно большей подъемной силой, нужно увеличить площадь соприкосновения полюсов магнита с притягиваемым железным предметом (который носит название якоря) и добиться того, чтобы линии магнитного поля проходили только в железе, т. е. устранить всякие воздушные зазоры или щели между якорем и полюсами магнита.
52.Стабилизаторы.
Стабилизаторы - преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного напряжения и сопротивления нагрузки.
Виды стабилизаторов:
1. Газоразрядный стабилизатор ( стабилитрон) представляет собою лампу с двумя холодными электродами, заполненную аргоном или неоном. При определенном напряжении на электродах стабилитрона в лампе возникает тлеющий разряд, и часть катода начинает светиться. При увеличении напряжения площадь свечения возрастает, сопротивление лампы падает и ток, проходящий через нее, увеличивается. Допустимые пределы изменения входного напряжения зависят от допустимых пределов изменения тока в стабилитроне, величину которых указывают в паспорте. 2. Кремниевый Применение.
Стабилизатор напряжения для качественного электроснабжения частных домов, коттеджей, дачных домиков. Где уровень напряжения редко достигает нормальных значений 220В. Чем дальше расположен населенный пункт от крупного города, чем хуже соблюдаются нормы электроэнергии. Чаще всего это сильно пониженное напряжение или завышенное напряжение. По одной линии напряжение меняется в больших пределах. Первые дома от подстанции страдают завышенным напряжением, последние дома по это линии страдают от заниженного напряжения. Энергетики специально завышают напряжение, что бы в конце линии напряжение не было чересчур низким. При напряжениях ниже 190В, без стабилизатора напряжения пользоваться техникой (холодильники, кондиционеры, сплиты, стиральные машины) не рекомендуется. При таком напряжение, чаще всего происходит перегрев двигателей, да и при завышенном напряжении происходит то же самое. Такое напряжение увеличивает износ двигателя и уменьшает срок службы. При таком напряжении в случае поломки гарантия не распространяется.
Стабилизатор напряжения промышленного значения, для предприятий, заводов
Стабилизатор напряжения промышленного значения, для предприятий, заводов, где в результате включения мощного потребителя, диапазон изменения напряжения выходят за нормы допустимые ГОСТом 13109-97 "Нормы качества электрической энергии в системах электроснабжения общего назначения", в результате скачков напряжения, происходят сбои в оборудовании поточных линий. Само оборудование из строя может и не выйти, но срабатывание датчиков и остановка потока - это вполне вероятно. Сколько убытков приносят такие остановки при простое оборудования. Если сложить эти убытки за короткий промежуток времени, то стоимость стабилизатора переменного напряжения будет намного ниже. Получается при установки стабилизатора Вы не тратитесь, а наоборот экономите.
Стабилизатор напряжения для торгового оборудования
Стабилизатор напряжения для торгового оборудования. Чаще всего торговые точки устанавливаются на остановках и в отдаленных местах, подключаясь к уличной электросети. В этой линии заведомо заниженное напряжение, для уменьшения энергопотребления и увеличения срока служб ламп освещения. А низкое напряжения плохо влияет на оборудование имеющие в своем составе двигатели или компрессоры. При установки стабилизатора напряжения оборудование начинает работать без перебоев.
Стабилизатор напряжения для охранных систем
Стабилизатор напряжения для охранных систем. Стоимость камер слежения весьма велика. Тут только один этот довод, уже говорит о защите их по напряжению со стороны электросетей. Ведь гарантия на камеру, при выходе камеры из строя от скачка напряжения или постоянно завышенного напряжения, не распространяется.
Стабилизатор напряжения для медицинского оборудования.
Стабилизатор напряжения для медицинского оборудования. Здесь стоимость оборудования достигает значительных сумм. И все оборудование требует жесткие определенные параметры напряжения (особенно импортная техника). Поэтому в данном случае установка стабилизатора напряжения необходима.
53.Проводники-
вещества, хорошо проводящие электрич. ток, т. е. обладающие высокой электропроводностью (низким сопротивлением ).
Проводниками электрического тока могут служить твердые тела, жидкости, а при соответствующих условиях и газы.
Твердыми проводниками являются металлы, металлические сплавы и некоторые модификации углерода.
К металлам относят пластичные вещества с характерным для них блеском, которые хорошо проводят электрический ток и теплоту. Среди материалов электронной техники металлы занимают одно из важнейших мест.
К жидким проводникам относятся расплавленные металлы и различные электролиты. Как правило, температура плавления металлов высока, за исключением ртути, у которой она составляет -39°С. Поэтому при нормальной температуре в качестве жидкого металлического проводника может быть применена только ртуть. Температуру плавления, близкую к нормальной (29,8°С), имеет еще галлий. Другие металлы являются жидкими проводниками лишь при повышенных или высоких температурах.
Механизм прохождения тока по металлам в твердом и жидком состояниях обусловлен движением свободных электронов, вследствие чего их называют проводниками с электронной электропроводностью или проводниками первого рода.
Электролитами, или проводниками второго рода, являются растворы (в основном водные) кислот, щелочей и солей, а также расплавы ионных соединений. Прохождение тока через такие проводники связано с переносом вместе с электрическими зарядами частей молекул (ионов), в результате чего состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза.
Все газы и пары, в том числе и пары металлов также являются проводниками.
55.Мощность тока.
Обычно электрический ток сравнивают с течением жидкости по трубке, а напряжение или разность потенциалов - с разностью уровней жидкости.
В этом случае поток воды, падающий сверху вниз, несет с собой определенное количество энергии. В условиях свободного падения эта энергия растрачивается бесполезно для человека. Если же направить падающий поток воды на лопасти турбины, то последняя начнет вращаться и сможет производить полезную работу.
Работа, производимая потоком воды в течение определенного промежутка времени, например, в течение одной секунды, будет тем больше, чем с большей высоты падает поток и чем больше масса падающей воды.
Точно так же и электрический ток, протекая по цепи от высшего потенциала к низшему, совершает работу. В каждую данную секунду времени будет совершаться тем больше работы, чем больше разность потенциалов и чем большее количество электричества ежесекундно проходит через поперечное сечение цепи.
Мощность электрического тока это количество работы, совершаемой за одну секунду времени, или скорость совершения работы.
Количество электричества, проходящего через поперечное сечение цепи в течение одной секунды, есть не что иное, как сила тока в цепи. Следовательно, мощность электрического тока будет прямо пропорциональна разности потенциалов (напряжению) и силе тока в цепи.
Для измерения мощности электрического тока принята единица, называемая ватт (Вт).
Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В.
Для вычисления мощности постоянного тока в ваттах нужно силу тока в амперах умножить на напряжение в вольтах.
Если обозначить мощность электрического тока буквой P, то приведенное выше правило можно записать в виде формулы
P = I*U. Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.
В этом случае мы воспользуемся знакомым нам соотношением из закона Ома:
U=IR
и подставим правую часть этого равенства (IR) в формулу (1) вместо напряжения U.
Тогда формула (1) примет вид:
P = I*U =I*IR
или
Р = I2*R. 56. Производство, передача и распределение электрической энергии.
Электричество, потребляемое в жилых домах, учреждениях и на заводах, вырабатывается на электростанциях, большинство из них работает на угле или природном газе, используя мазут в качестве резервного топлива. Некоторые электростанции работают на основе ядерной энергии или используют энергию воды, низвергающейся с высоких плотин. В России в 2002 году теплоэлектростанциями выработано 65,6 % электроэнергии, на долю гидроэлектростанций и атомных станций пришлось 18,4 % и 16 % соответственно. (см. Билет 13,14)
Необходимость Передачи электроэнергии на расстояние обусловлена тем, что электроэнергия вырабатывается крупными электростанциями с мощными агрегатами, а потребляется сравнительно маломощными электроприёмниками, распределёнными на значительной территории. Тенденция к концентрации мощностей объясняется тем, что с их ростом снижаются относительные затраты на сооружение электростанций и уменьшается стоимость вырабатываемой электроэнергии. Размещение мощных электростанций производится с учётом целого ряда факторов, таких, например, как наличие энергоресурсов, их вид, запасы и возможности транспортировки, природные условия, возможность работы в составе единой энергосистемы и т.п. Часто такие электростанции оказываются существенно удалёнными от основных центров потребления электроэнергии. От эффективности Передачи электроэнергии на расстояние зависит работа единых электроэнергетических систем, охватывающих обширные территории.
Передача электроэнергии по воздуху на неограниченные расстояния является давней мечтой человечества. В настоящее время используют воздушные линии электропередач (ВЛ или ВЛЭП) и подземные (подводные) кабельные линии (КЛ). У каждого из двух способов передачи электроэнергии есть свои достоинcтва и недостатки. У ВЛ основным достоинством является относительная дешевизна строительства и хорошая ремонтопригодность. Недостатками ВЛЭП являются широкая полоса отчуждения, уязвимость для внешних воздействий и внешняя непривлекательность. У КЛ основным достоинством является отсутствие вредного воздействия на людей. Несмотря на высокую стоимость передавать электроэнергию по кабелю в земле часто бывает предпочтительно, так как опоры ЛЭП громоздки, а провода под напряжением излучают вредное электромагнитное излучение. Строительство ВЛ в черте города вообще практически невозможно из-за высокой стоимости земли и плотности застройки. Для снабжения электричеством отдаленных территорий предпочтительно использовать воздушные линии, а для снабжения электроэнергией объектов внутри границ населенных пунктов лучше использовать кабельные линии в земле. Электроэнергия должна быть безопасной!
Энергетическая система (энергосистема) представляет собой совокупность электростанций, линий электропередачи, подстанций и тепловых сетей, связанных в одно целое общностью режима и непрерывностью процесса производства, преобразования и распределения электрической и тепловой энергии при общем управлении этим режимом. Частью энергетической системы является электрическая система, представляющая собой совокупность электроустановок электрических станций и электрических сетей энергосистемы.
Электрическая сеть - это совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.
Электроприемник - аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии. Потребитель электроэнергии - один или группа электроприемников, объединенных технологическим процессом и размещающихся на определенной территории.
Электроустановки, в которых производится, преобразуется, распределяется и потребляется электроэнергия, делятся в зависимости от рабочего напряжения на электроустановки напряжением до 1000 и выше 1000 В.
58.Диэлектрики (электроизоляционные материалы).
Электроизоляционные материалы или диэлектрики - это материалы, которые не проводят электрический ток. В настоящее время человечество использует в качестве диэлектриков различные жидкие, твердые и газообразные материалы (см. Билет.16), которые кардинально отличаются друг от друга и все же служат одной и той же цели.
Простейшим газообразным изолятором является воздух, который характеризуется нормальной температурой и атмосферным давлением.
Самыми распространенными твердыми диэлектриками являются: стекло, фарфор, различные пластики, резина, а также кварц.
Лине́йный изоля́тор - устройство для подвешивания и изоляции проводов и кабелей на опорах воздушной линии электропередачи (ВЛ).
По материалу применяемого диэлектрика изоляторы делятся на фарфоровые, стеклянные и полимерные.
Самыми распространенными изоляторами, в настоящее время, являются фарфоровые и стеклянные, причем изоляторов из закаленного стекла в настоящее время выпускают больше, чем фарфоровых. Это объясняется тем, что изоляторы из закаленного стекла имеют ряд преимуществ перед фарфоровыми: технологический процесс их изготовления может быть полностью автоматизирован и механизирован; прозрачность стекла позволяет легко обнаружить при внешнем осмотре мелкие трещины и различные внутренние дефекты; применение стеклянных изоляторов позволяет отказаться от проведения в процессе эксплуатации периодических профилактических испытаний гирлянд под напряжением, так как каждое повреждение закаленного стекла приводит к разрушению изолирующей тарелки, которое легко обнаружить при обходе линии электропередачи эксплуатационным персоналом.
НО: основными недостатками стеклянных изоляторов являются ненадежная транспортировка, недостаточная антивандальная устойчивость и низкая ударопрочность. Причем ударопрочность стеклянных изоляторов повысить практически невозможно.
Изолента используются для электрической изоляции проводов, деталей и соединений, находящихся под напряжением. Применяются, как в промышленности, так и в быту.
Изоляционные ленты изготавливаются из мягкого поливинилхлорида (ПВХ) с нанесённым на одну сторону клеевым слоем на каучуковой основе. Хорошая изоляция при высоких напряжениях (до 5кВ), высокая устойчивость к температурным изменениям (от -20 °С до +40 °С), высокая огнестойкость.
59.Измерение тока и напряжения.
Для измерения силы тока существует измерительный прибор - амперметр.
Условное обозначение амперметра на электрической схеме:
При включении амперметра в электрическую цепь необходимо знать :
1. Амперметр включается в электрическую цепь последовательно с тем элементом цепи, силу тока в котором необходимо измерить.
4. При подключении надо соблюдать полярность: "+" амперметра подключается к "+" источника тока,
а "минус" амперметра - к "минусу" источника тока. ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ
НА УЧАСТКЕ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Для измерения напряжения существуют специальный измерительный прибор - вольтметр.
Условное обозначение вольтметра на электрической схеме:
При включении вольтметра в электрическую цепь необходимо соблюдать два правила:
1. Вольтметр подключается параллельно участку цепи, на котором будет измеряться напряжение;
2.Соблюдаем полярность: "+" вольтметра подключается к "+" источника тока,
а "минус" вольтметра - к "минусу" источника тока.
___
Для измерения напряжения источника питания вольтметр присоединяют непосредственно к его зажимам.
Амперметр
Из свойств последовательного соединения:
3. Подсоединяется последовательно к измеряемому участку.
4. Чем меньше собственное сопротивление амперметра, тем меньшую погрешность он вносит.Расширение пределов измерения амперметра. Из свойств параллельного соединения: для изменения пределов измерения в n раз параллельно подсоединяют резистор (шунт).
I = nIa, где I - ток, который необходимо измерить, а Ia - максимальный ток, на который расчитан амперметр.Вольтметр.
Из свойств параллельного соединения:
5. Подсоединяется параллельно к измеряемому участку.
6. Чем больше собственное сопротивление вольтметра, тем меньшую погрешность он вносит.Из свойств последовательного соединения: для изменения пределов измерения в nраз последовательно подсоединяют резистор (дополнительное сопротивление).
U=nUv, где U - напряжение, которое необходимо измерить, Uv - максимальное напряжение, на которое рассчитан вольтметр.
ЖЕЛАЮ УСПЕХОВ НА ЭКЗАМЕНАХ!!!
Документ
Категория
Без категории
Просмотров
1 138
Размер файла
3 343 Кб
Теги
ответы, экзамен, курс
1/--страниц
Пожаловаться на содержимое документа