close

Вход

Забыли?

вход по аккаунту

?

Локальные сети

код для вставкиСкачать
КОМПЬЮТЕРНЫЕ СЕТИ. ГЛОБАЛЬНАЯ КОМПЬЮТЕРНАЯ СЕТЬ ИНТЕРНЕТ.
1. Компьютерные сети
1.1 Понятие компьютерных сетей
Компьютерной сетью называется совокупность компьютеров, взаимосвязанных через каналы передачи данных, обеспечивающих пользователей средствами обмена информации и коллективного использования ресурсов сети. Назначение всех видов компьютерных сетей определяется двумя функциями: * обеспечение совместного использования аппаратных и программных ресурсов сети;
* обеспечение совместного доступа к ресурсам данных. Компьютерные сети включают в себя три составляющих: * Техническое обеспечение - это ЭВМ различных типов, средства связи, оборудование абонентских пунктов. Основные требования, которые предъявляются к техническому обеспечению сети, это универсальность, и модульность, обеспечивающая возможность наращивания и изменения конфигурации сети.
* Информационное обеспечение сети представляет собой единый информационный фонд, ориентированный на решаемые в сети задачи. В состав информационного обеспечения входят база знаний, банки данных и т.д.
* Программное обеспечение сети предназначено для организации коллективного доступа к ее ресурсам, динамического распределения и перераспределения ресурсов сети с целью максимальной загрузки технических средств. Основным компонентом программного обеспечения сети являются сетевые операционные системы, которые представляют собой комплекс управляющих и обслуживающих программ.
1.2 Основные характеристики компьютерных сетей Для оценки качества компьютерной сети можно использовать следующие характеристики.
* Скорость передачи данных по каналу связи - измеряется количеством битов информации, передаваемых за единицу времени. Единица измерения скорости передачи данных - Мегабит в секунду (Мбит/с). Скорость передачи данных зависит от типа и качества канала связи, типа используемых модемов.
* Пропускная способность канала связи - оценивается количеством знаков, передаваемых по каналу за единицу времени. Теоретическая пропускная способность определяется скоростью передачи данных. Единица измерения пропускной способности канала связи - количество знаков в секунду.
* Достоверность передачи информации - оценивают как отношение количества ошибочно переданных знаков к общему числу переданных знаков. Единица измерения достоверности - количество ошибок на знак. * Надежность коммуникационной сети определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы. Единица измерения надежности - среднее время безотказной работы в час. * Время реакции сети - это время, затрачиваемое программным обеспечением и устройствами сети на подготовку к передаче информации по данному каналу. Время реакции сети измеряется миллисекундах. 1.3 Классификация компьютерных сетей
Современные сети можно классифицировать по различным признакам:
По удаленности компьютеров:
* Локальные LAN (Local Area Network) - сеть в пределах предприятия, учреждения, одной организации. Компьютеры расположены на расстоянии до нескольких километров и обычно соединены при помощи скоростных линий связи. * Региональные MAN (Metropolitan Area Network) - объединяют пользователей области, города, небольших стран. В качестве каналов связи используются телефонные линии. Расстояние между узлами сети составляет от 10 до 1000 км.
* Глобальные WAN (Wide Area Network) - включают другие глобальные сети, локальные сети, а также отдельно подключаемые к ней компьютеры.
По назначению и перечню предоставляемых услуг: * Общее использование файлов и принтеров - с помощью специальной ЭВМ (файл-сервер, принтер-сервер) организуется доступ пользователей к файлам и принтерам.
* Общее использование баз данных - с помощью специальной ЭВМ (сервер баз данных) организуется доступ пользователей к базе данных.
* Применение технологий Интернет - электронная почта, Всемирная паутина, телеконференции, видеоконференции, передача файлов через Интернет.
По способу организации взаимодействия:
* Одноранговые сети - все компьютеры одноранговой сети равноправны, при этом любой пользователь сети может получить доступ к данным, хранящимся на любом компьютере. Главное достоинство одноранговых сетей - это простота установки и эксплуатации. Главный недостаток состоит в том, что в условиях одноранговых сетей затруднено решение вопросов защиты информации. Поэтому такой способ организации сети используется для сетей с небольшим количеством компьютеров и там, где вопрос защиты данных не является принципиальным. * Сети с выделенным сервером (иерархические сети) - при установке сети заранее выделяются один или несколько серверов - компьютеров, управляющих обменом данных по сети и распределением ресурсов. Любой компьютер, имеющий доступ к услугам сервера называют клиентом сети или рабочей станцией. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Иерархическая модель сети является наиболее предпочтительной, так как позволяет создать наиболее устойчивую структуру сети и более рационально распределить ресурсы. Также достоинством иерархической сети является более высокий уровень защиты данных. К недостаткам иерархической сети, по сравнению с одноранговыми сетями, относятся: * Необходимость дополнительной ОС для сервера. * Более высокая сложность установки и модернизации сети. * Необходимость выделения отдельного компьютера в качестве сервера По технологии использования сервера:
* Сети с архитектурой файл-сервер - используется файловый сервер, на котором хранится большинство программ и данных. По требованию пользователя ему пересылаются необходимая программа и данные. Обработка информации выполняется на рабочей станции.
* Сети с архитектурой клиент-сервер - между приложением-клиентом и приложением-сервером осуществляется обмен данными. Хранение данных и их обработка производится на мощном сервере, который выполняет также контроль за доступом к ресурсам и данным. Рабочая станция получает только результаты запроса. По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные: * Низкоскоростные сети - до 10 Мбит/с; * Среднескоростные сети- до 100 Мбит/с; * Высокоскоростные сети - свыше 100 Мбит/с. По типу среды передачи сети разделяются на
* Проводные (на коаксиальном кабеле, на витой паре, оптоволоконные); * Беспроводные с передачей информации по радиоканалам или в инфракрасном диапазоне. По топологии (как соединены компьютеры между собой):
* Общая шина * Звезда * Кольцо 1.4 Топология сетей Топологией сети называется физическую или электрическую конфигурацию кабельной системы и соединений сети. В топологии сетей применяют несколько специализированных терминов: * узел сети - компьютер, либо коммутирующее устройство сети; * ветвь сети - путь, соединяющий два смежных узла; * оконечный узел - узел, расположенный в конце только одной ветви; * промежуточный узел - узел, расположенный на концах более чем одной ветви; * смежные узлы - узлы, соединенные, по крайней мере, одним путём, не содержащим никаких других узлов. Любую компьютерную сеть можно рассматривать как совокупность узлов. Конфигурация физических связей определяется электрическими соединениями компьютеров между собой и может отличаться от конфигурации логических связей между узлами сети. Логические связи представляют собой маршруты передачи данных между узлами сети, образуются путем соответствующей настройки оборудования. Существует три основных типа физической топологии локальных вычислительных сетей: Кольцевая топология предусматривает соединение узлов сети замкнутой кривой, т.е. кабелем передающей среды. В такой сети к каждому узлу присоединены две и только две ветви. Информация по кольцу передаётся от узла к узлу, как правило, в одном направлении. Каждый промежуточный узел между передатчиком и приемником ретранслирует посланное сообщение. Принимающий узел распознаёт и получает только адресованные ему сообщения. В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями. Преимущество данной топологии - простота управления, недостаток - возможность отказа всей сети при сбое в канале между двумя узлами.
Шинная топология одна из наиболее простых, реализуется с помощью кабеля, к которому подключаются все компьютеры. Все сигналы, передаваемые любым компьютером в сеть, идут по шине в обоих направлениях ко всем остальным компьютерам.
Топология звезда использует отдельный кабель для каждого компьютера, проложенный от центрального устройства, называемого хабом (hub) или концентратором. Концентратор транслирует сигналы, поступающие на любой из его портов, на все остальные порты, в результате чего сигналы, посылаемые одним узлом, достигают остальных компьютеров. В такой сети имеется только один промежуточный узел. Сеть на основе "звезды" более устойчива к повреждениям по сравнению сетью на базе шинной архитектуры, так как повреждение кабеля затрагивает непосредственно только тот компьютер, к которому он соединен, а не всю сеть.
В то время как небольшие сети, как правило, имеют типовую топологию - звезда, кольцо или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно подсети, имеющие типовую топологию, поэтому их называют сетями со смешанной топологией: Выбор той или иной топологии определяется областью применения сети, географическим расположением ее узлов и размерностью сети в целом.
1.5. Модель взаимосвязи открытых систем
Основной задачей, решаемой при создании компьютерных сетей, является обеспечение совместимости оборудования по электрическим и механическим характеристикам и обеспечение совместимости информационного обеспечения (программ и данных) по системе кодирования и формату данных. Решение этой задачи относится к области стандартизации. Одним из примеров решения данной задачи является так называемая модель взаимосвязи открытых систем OSI (Model of Open System Interconnections). Согласно модели OSI архитектуру компьютерных сетей следует рассматривать на разных уровнях (общее число уровней - до семи). Самый верхний уровень - прикладной. На этом уровне пользователь взаимодействует с вычислительной системой. Caмый нижний уровень - физический. Он обеспечивает обмен сигналами между устройствами. Обмен данными в системах связи происходит путем их перемещения с верхнего уровня на нижний, затем транспортировки и, наконец, обратным воспроизведением на компьютере клиента в результате перемещения с нижнего уровня на верхний. Уровни модели OSI (в направлении снизу вверх) и их общие функции можно рассмотреть следующим образом:
Рассмотрим, как в модели SI происходит обмен данными между пользователями, находящимися на разных континентах.
1. На прикладном уровне с помощью специальных приложений пользователь создает документ (сообщение, рисунок и т. п.).
2. На уровне представления операционная система его компьютера фиксирует, где находятся созданные данные (в оперативной памяти, в файле на жестком диске и т. п.), и обеспечивает взаимодействие со следующим уровнем.
3. На сеансовом уровне компьютер пользователя взаимодействует с локальной или глобальной сетью. Протоколы этого уровня проверяют права пользователя на "выход в эфир" и передают документ к протоколам транспортного уровня.
4. На транспортном уровне документ преобразуется в ту форму, в которой положено передавать данные в используемой сети. Например, он может нарезаться на небольшие пакеты стандартного размера.
5. Сетевой уровень определяет маршрут движения данных в сети. Так, например если на транспортном уровне данные были "нарезаны" на пакеты, то на сетевом уровне каждый пакет должен получить адрес, по которому он должен быть доставлен независимо от прочих пакетов.
6. Уровень соединения (Канальный уровень) необходим для того, чтобы промодулировать сигналы, циркулирующие на физическом уровне, в соответствии с данными, полученным с сетевого уровня. Например в компьютере эти функции выполняет сетевая карта или модем.
7. Реальная передача данных происходит на физическом уровне. Здесь нет ни документов, ни пакетов, ни даже байтов - только биты, то есть, элементарные единицы представления данных. Восстановление документа из них произойдет постепенно, при переходе с нижнего на верхний уровень на компьютер клиента.
Средства физического уровня лежат за пределами компьютера. В локальных сетях это оборудование самой сети. При удаленной связи с использованием телефонных модемов это линии телефонной связи, коммутационное оборудование телефонных станций и т. п.
На компьютере получателя информации происходит обратный процесс преобразования данных от битовых сигналов до документа.
Разные уровни протоколов сервера и клиента не взаимодействуют друг с другом напрямую, но они взаимодействуют через физический уровень. Постепенно переходя с верхнего уровня на нижний, данные непрерывно преобразуются, "обрастают" дополнительными данными, которые анализируются протоколами соответствующих уровней на сопредельной стороне. Это создает эффект виртуального взаимодействия уровней между собой. Для иллюстрации сказанного рассмотрим простой пример взаимодействия двух корреспондентов с помощью обычной почты. Если они регулярно отправляют друг другу письма и, соответственно, получают их, то они могут полагать, что между ними существует соединение на пользовательском (прикладном уровне). Однако это не совсем так. Такое соединение можно назвать виртуальным. Оно было бы физическим, если бы каждый из корреспондентов лично относил другому письмо и вручал в собственные руки. В реальной жизни он бросает его в почтовый ящик и ждет ответа.
Сбором писем из общественных почтовых ящиков и доставкой корреспонденции в личные почтовые ящики занимаются местные почтовые службы. Это другой уровень модели связи, лежащий ниже. Для того чтобы наше письмо достигло адресата в другом городе, должна существовать связь между нашей местной почтовой службой и его местной почтовой службой. Однако никакой физической связью эти службы не обладают - поступившую почтовую корреспонденцию они только сортируют и передают на уровень федеральной почтовой службы.
Федеральная почтовая служба в своей работе опирается на службы очередного уровня, например на почтово-багажную службу железнодорожного ведомства. И только рассмотрев работу этой службы, мы найдем, наконец, признаки физического соединения, например железнодорожный путь, связывающий два города.
Важно обратить внимание на то, что в нашем примере образовалось несколько виртуальных соединений между аналогичными службами, находящимися в пунктах отправки и приема. Не вступая в прямой контакт, эти службы взаимодействуют между собой. На каком-то уровне письма укладываются в мешки, мешки пломбируют, к ним прикладывают сопроводительные документы, которые где-то в другом городе изучаются и проверяются на аналогичном уровне.
Ниже в таблице приводится аналогия между уровнями модели OSI и операциями служб пересылки обычной почты.
Уровень модели OSIАналогияПрикладной уровеньПисьмо написано на бумаге. Определено его содержаниеУровень представленияПисьмо запечатано в конверт. Конверт заполнен. Наклеена марка. Клиентом соблюдены необходимые требования протокола доставкиСеансовый уровеньПисьмо опущено в почтовый ящик. Выбрана служба доставки.Транспортный уровеньПисьмо доставлено на почтамт. Оно отделено от писем, с доставкой которых местная почтовая служба справилась бы самостоятельноСетевой уровеньПосле сортировки письмо уложено в мешок. Появилась новая единица доставки - мешокУровень соединенияМешки писем уложены в вагон. Появилась новая единица доставки - вагонФизический уровеньВагон прицеплен к локомотиву. Появилась новая единица доставки - состав. За доставку взялось другое ведомство, действующее по другим протоколам
Чтобы различные компьютеры сети могли установить связь друг с другом, они должны "разговаривать" на одном языке, то есть использовать один и тот же протокол. Протокол - это "язык", используемый для обмена данными при работе в сети. Существует множество протоколов, каждый из них выполняет различные задачи. На разных уровнях модели OSI используются различные протоколы. Ethernet - это протокол Уровня соединения, используемый большинством современных локальных сетей. Протокол Ethernet обеспечивает унифицированный интерфейс к сетевой среде передачи, который позволяет операционной системе использовать для приема и передачи данных несколько протоколов Сетевого уровня одновременно. Token Ring - это альтернатива "классическому" протоколу Ethernet на Уровне соединения. Для возможности передачи информации по сетевым каналам связи необходимо установить протокол обмена сообщениями (пакетами). Существует несколько таких протоколов. Наиболее широко используются следующие: NetBEUI, IPX/SPX, TCP/IP. Протоколы NETBEUI и IPX/SPX - используется в локальных сетях. Протоколы TCP/IP являются базовыми протоколами глобальной сети Интернет.
1.6. Сетевое оборудование
Основными компонентами сети являются рабочие станции, серверы, передающие среды (кабели) и сетевое оборудование. Рабочими станциями называются компьютеры сети, на которых пользователями сети реализуются прикладные задачи. Серверы сети - это аппаратно-программные системы, выполняющие функции управления распределением сетевых ресурсов общего доступа. Сервером может быть это любой подключенный к сети компьютер, на котором находятся ресурсы, используемые другими устройствами сети. В качестве аппаратной части сервера используется достаточно мощные компьютеры. Выделяют следующие виды сетевого оборудования: Сетевые кабели (коаксиальные, состоящие из двух изолированных между собой концентрических проводников, из которых внешний имеет вид трубки; кабели на витых парах, образованные двумя переплетёнными друг с другом проводами; оптоволоконные и др.). Сетевые карты (Сетевые интерфейсные адаптеры) - это контроллеры, подключаемые к материнской плате компьютера, предназначенные для передачи сигналов в сеть и приема сигналов из сети. К разъёмам адаптеров подключается сетевой кабель.
Вид сетевой карты.
Концентраторы (Hub) - это центральные устройства кабельной системы или сети физической топологии "звезда", которые при получении пакета на один из своих портов пересылает его на все остальные. Хаб с набором разнотипных портов позволяет объединять сегменты сетей с различными кабельными системами. К порту хаба можно подключать как отдельный узел сети, так и другой хаб или сегмент кабеля. Для соединения локальных сетей друг с другом используются следующие устройства: Мосты (Bridge) - устройства сети, которые соединяют два отдельных сегмента, ограниченных своей физической длиной. Мосты также усиливают и конвертируют сигналы для кабеля другого типа. Это позволяет расширить максимальный размер сети.
Мосты передают данные между сетями в пакетном виде, не производя в них никаких изменений. Ниже на рисунке показаны три локальные сети, соединённые двумя мостами. Кроме этого, мосты могут фильтровать пакеты, охраняя всю сеть от локальных потоков данных и пропуская наружу только те данные, которые предназначены для других сегментов сети.
Шлюзы (Gateway) - программно-аппаратные комплексы, соединяющие разнородные сети или сетевые устройства. Шлюзы позволяет решать проблемы различия протоколов или систем адресации. Шлюз, в отличие от моста, применяется в случаях, когда соединяемые сети имеют различные сетевые протоколы. Поступившее в шлюз сообщение от одной сети преобразуется в другое сообщение, соответствующее требованиям следующей сети. Маршрутизаторы (Router) - стандартные устройства сети, работающие на сетевом уровне и позволяющее переадресовывать и маршрутизировать пакеты из одной сети в другую. Он позволяет, например, расщеплять большие сообщения на более мелкие порции, обеспечивая тем самым взаимодействие локальных сетей с разным размером пакета. Маршрутизатор может пересылать пакеты на конкретный адрес (мосты могут только отфильтровывают ненужные пакеты), выбирать лучший путь для прохождения пакета. Межсетевые экраны (firewall, брандмауэры) - это программный и/или аппаратный барьер между двумя сетями, позволяющий устанавливать только авторизованные межсетевые соединения, реализующий контроль за поступающей в локальную сеть и выходящей из нее информацией, и обеспечивающие защиту локальной сети посредством фильтрации информации. Большинство межсетевых экранов построено на классических моделях разграничения доступа, согласно которым субъекту (пользователю, программе, процессу или сетевому пакету) разрешается или запрещается доступ к какому-либо объекту (файлу или узлу сети) при предъявлении некоторого уникального, присущего только этому субъекту, элемента. В большинстве случаев этим элементом является пароль. Для сетевого пакета таким элементом являются адреса или флаги, находящиеся в заголовке пакета, а также некоторые другие параметры. КОМПЬЮТЕРНЫЕ СЕТИ
Введение в компьютерные сети
Наряду с автономной работой значительное повышение эффективности использования компьютеров может быть достигнуто объединением их в компьютерные сети (network).
Под компьютерной сетью в широком смысле слова понимают любое количество компьютеров, связанных между собой каналами связи для передачи данных.
Существует ряд веских причин для объединения компьютеров в сети. Во-первых, совместное использование ресурсов позволяет нескольким ЭВМ или другим устройствам осуществлять совместный доступ к отдельному диску (файл-серверу), дисководу CD-ROM, стримеру, принтерам, плоттерам, к сканерам и другому оборудованию, что снижает затраты на каждого отдельного пользователя.
Во-вторых, кроме совместного использования дорогостоящих периферийных устройств, имеется возможность аналогично использовать сетевые версии прикладного программного обеспечения. В-третьих, компьютерные сети обеспечивают новые формы взаимодействия пользователей в одном коллективе, например, при работе над общим проектом.
В-четвертых, появляется возможность использовать общие средства связи между различными прикладными системами (коммуникационные услуги, передача данных и видеоданных, речи и т. д.). Особое значение имеет организация распределенной обработки данных. В случае централизованного хранения информации значительно упрощаются процессы обеспечения ее целостности, а также резервного копирования.
В компьютерной сети существует 7 уровней взаимодействия между компьютерами: физический, логический, сетевой, транспортный, уровень сеансов связи, представительский и прикладной. Данную взаимосвязь между компьютерами описывает модель взаимодействия открытых систем (Open System Interconnection, OSI), которая определяет различные уровни взаимодействия систем в сетях с коммутацией пакетов, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.
Физический уровень (Physical Layer) определяет электрические, механические, процедурные и функциональные спецификации и обеспечивает для канального уровня установление, поддержание и разрыв физического соединения между двумя компьютерными системами, непосредственно связанными между собой с помощью передающей среды, например, аналогового телефонного канала, радиоканала или оптоволоконного канала.
Канальный уровень (Data Link Layer) управляет передачей данных по каналу связи. Основными функциями этого уровня являются разбиение передаваемых данных на порции, называемые кадрами, выделение данных из потока бит, передаваемых на физическом уровне, для обработки на сетевом уровне, обнаружение ошибок передачи и восстановление неправильно переданных данных.
Сетевой уровень (Network Layer) обеспечивает связь между двумя компьютерными системами сети, обменивающимися между собой информацией. Другой функцией сетевого уровня является маршрутизация данных (называемых на этом уровне пакетами) в сети и между сетями (межсетевой протокол).
Транспортный уровень (Transport Layer) обеспечивает надежную передачу (транспортировку) данных между компьютерными системами сети для вышележащих уровней. Для этого используются механизмы для установки, поддержки и разрыва виртуальных каналов (аналога выделенных телефонных каналов), определения и исправления ошибок при передаче, управления потоком данных (с целью предотвращения переполнения или потерь данных).
Сеансовый уровень (Session Layer) обеспечивает установление, поддержание и окончание сеанса связи для уровня представлений, а также возобновление аварийно прерванного сеанса. Уровень представления данных (Presentation Layer) обеспечивает преобразование данных из представления, используемого в прикладной программе одной компьютерной системы, в представление, используемое в другой компьютерной системе. В функции уровня представлений входит также преобразование кодов данных, их шифровка/расшифровка, а также сжатие передаваемых данных.
Прикладной уровень (Application Level) отличается от других уровней модели OSI тем, что он обеспечивает услуги для прикладных задач. Этот уровень определяет доступность прикладных задач и ресурсов для связи, синхронизирует взаимодействующие прикладные задачи, устанавливает соглашения по процедурам восстановления при ошибках и управления целостностью данных. Важными функциями прикладного уровня являются управление сетью, а также выполнение наиболее распространенных системных прикладных задач: электронной почты, обмена файлами и других
Рисунок 1. Семиуровневая модель взаимодействия между компьютерными системами
Каждый уровень для решения своей подзадачи должен обеспечить выполнение определенных моделью функций данного уровня, действий (услуг) для вышележащего уровня и взаимодействовать с аналогичным уровнем в другой компьютерной системе. Каждому уровню взаимодействия соответствует набор протоколов (т. е. правил взаимодействия).
Под протоколом понимается некая совокупность правил, регламентирующих формат и процедуры обмена информацией. В частности, он определяет, как выполняется соединение, преодолевается шум на линии и обеспечивается безошибочная передача данных между модемами.
Стандарт, в свою очередь, включает в себя общепринятый протокол или набор протоколов.
Функционирование сетевого оборудования невозможно без взаимоувязанных стандартов. Согласование стандартов достигается как за счет непротиворечивых технических решений, так и за счет группирования стандартов. Каждой конкретной сети присуща своя базовая совокупность протоколов.
Каналы передачи данных
Для того чтобы компьютеры могли связаться между собой в сеть, они должны быть соединены между собой с помощью некоторой физической передающей среды. Основными типами передающих сред, используемых в компьютерных сетях, являются:
* аналоговые телефонные каналы общего пользования;
* цифровые каналы;
* узкополосные и широкополосные кабельные каналы;
* радиоканалы и спутниковые каналы связи;
* оптоволоконные каналы связи.
Аналоговые каналы связи первыми начали применяться для передачи данных в компьютерных сетях и позволили использовать уже существовавшие тогда развитые телефонные сети общего пользования. Передача данных по аналоговым каналам может выполняться двумя способами. При первом способе телефонные каналы (одна или две пары проводов) через телефонные станции физически соединяют два устройства, реализующие коммуникационные функции с подключенными к ним компьютерами. Такие соединения называют выделенными линиями или непосредственными соединениями. Второй способ - это установление соединения с помощью набора телефонного номера (с использованием коммутируемых линий).
Качество передачи данных по выделенным каналам, как правило, выше, и соединение постоянное. Кроме того, для каждого выделенного канала необходимо свое коммуникационное устройство (хотя есть и многоканальные коммуникационные устройства), а при коммутируемой связи можно использовать для связи с другими узлами одно коммуникационное устройство.
Параллельно с использованием аналоговых телефонных сетей для межкомпьютерного взаимодействия начали развиваться и методы передачи данных в дискретной (цифровой) форме по ненагруженным телефонным каналам (к которым не подведено электрическое напряжение, используемое в телефонной сети) - цифровым каналам.
Следует отметить, что наряду с дискретными данными по цифровому каналу можно передавать и аналоговую информацию (голосовую, видео-, факсимильную и т. д.), преобразованную в цифровую форму.
Наиболее высокие скорости на небольших расстояниях могут быть получены при использовании особым образом скрученной пары проводов (для того, чтобы избежать взаимодействия между соседними проводами), так называемой витой паре (ТР - Twisted Pair).
Кабельные каналы, или коаксиальные пары, представляют собой два цилиндрических проводника на одной оси, разделенных диэлектрическим покрытием. Один тип коаксиального кабеля (с сопротивлением 50 Ом), используется главным образом для передачи узкополосных цифровых сигналов, другой тип кабеля (с сопротивлением 75 Ом) - для передачи широкополосных аналоговых и цифровых сигналов. Узкополосные и широкополосные кабели, непосредственно связывающие между собой коммуникационные оборудования, позволяют обмениваться данными на высоких скоростях (до нескольких мегабит/с) в аналоговой или цифровой форме. Следует отметить, что на небольших расстояниях (особенно в локальных сетях) кабельные каналы все больше вытесняются каналами на витых парах, а на больших расстояниях - оптоволоконными каналами связи.
Использование в компьютерных сетях в качестве передающей среды радиоволн различной частоты является экономически эффективным либо для связи на больших и сверхбольших расстояниях (с использованием спутников), либо для связи с труднодоступными, подвижными или временно используемыми объектами.
Обмен данными по радиоканалам может вестись с помощью как аналоговых, так и цифровых методов передачи. Цифровые методы получают в последнее время преимущественное развитие, т. к. позволяют объединить наземные участки цифровых сетей и спутниковых каналов или радиоканалов в единой сети. Новым импульсом в развитии радиосетей стало появление сотовой телефонной связи, позволяющей осуществлять голосовую связь и обмен данными с помощью радиотелефонов или специальных устройств обмена данными.
Помимо обмена данными в радиодиапазоне, последнее время для связи на небольшие расстояния (обычно в пределах комнаты) используется и инфракрасное излучение.
В оптоволоконных каналах связи используется известное из физики явление полного внутреннего отражения света, что позволяет передавать потоки света внутри оптоволоконного кабеля на большие расстояния практически без потерь. В качестве источников света в оптоволоконном кабеле используются светоиспускаюшие диоды (LED - light-emitting diode) или лазерные диоды, а в качестве приемников - фотоэлементы.
Оптоволоконные каналы связи, несмотря на их более высокую стоимость по сравнению с другими видами связи, получают все большее распространение, причем для связи не только на небольших расстояниях, но и на внутригородских и междугородных участках.
Технические средства коммуникаций составляют кабели, коннекторы и терминаторы, сетевые адаптеры, повторители, разветвители, мосты, маршрутизаторы, шлюзы, а также модемы, позволяющие использовать различные протоколы и топологии в единой неоднородной системе.
Классификации компьютерных сетей
Объединение компьютеров и устройств в сеть может производиться различными способами и средствами. По составу своих компонентов, способам их соединения, сфере использования и другим признакам сети можно разбить на классы таким образом, чтобы принадлежность описываемой сети к тому или иному классу достаточно полно могла характеризовать свойства и качественные параметры сети.
Однако такого рода классификация сетей является довольно условной. Наибольшее распространение на сегодня получило разделение компьютерных сетей по признаку территориального размещения. По этому признаку сети делятся на три основных класса:
LAN (Local Area Networks) - локальные сети;
MAN (Metropolitan Area Networks) - региональные (городские или корпоративные) сети;
WAN (Wide Area Networks) - глобальные сети.
Локальная сеть (ЛС) - это коммуникационная система, поддерживающая в пределах здания или некоторой другой ограниченной территории один или несколько высокоскоростных каналов передачи цифровой информации, предоставляемых подключенным устройствам для кратковременного монопольного использования. Территории, охватываемые ЛС, могут существенно различаться.
Длина линий связи для некоторых сетей может быть не более 1000 м, другие же ЛС в состоянии обслужить целый город. Обслуживаемыми территориями могут быть как заводы, суда, самолеты, так и учреждения, университеты, колледжи. В качестве передающей среды, как правило, используются коаксиальные кабели, хотя все большее распространение получают сети на витой паре и оптоволокне, а в последнее время также стремительно развивается технология беспроводных локальных сетей, в которых используется один из трех видов излучений: широкополосные радиосигналы, маломощное излучение сверхвысоких частот (СВЧ излучение) и инфракрасные лучи.
Небольшие расстояния между узлами сети, используемая передающая среда и связанная с этим малая вероятность по явления ошибок в передаваемых данных позволяют поддерживать высокие скорости обмена - от 1 Мбит/с до 100 Мбит/с (в настоящее время уже есть промышленные образцы ЛС со скоростями порядка 1 Гбит/с).
Региональные сети, как правило, охватывают группу зданий и реализуются на оптоволоконных или широкополосных кабелях. По своим характеристикам они являются промежуточными между локальными и глобальными сетями.
Глобальные сети, в отличие от локальных, как правило, охватывают значительно большие территории и даже большинство регионов земного шара (примером может служить сеть Internet). В настоящее время в качестве передающей среды в глобальных сетях используются аналоговые или цифровые проводные каналы, а также спутниковые каналы связи (обычно для связи между континентами). Ограничения по скорости передачи и относительно низкая надежность аналоговых каналов, требующая использования на нижних уровнях протоколов средств обнаружения и исправления ошибок, существенно снижают скорость обмена данными в глобальных сетях по сравнению с локальными.
Существуют и другие классификационные признаки компьютерных сетей. Так, например:
- по сфере функционирования сети могут быть разделены на банковские, научных учреждений, университетские;
- по форме функционирования можно выделить коммерческие и бесплатные сети, корпоративные и общего пользования;
- по характеру реализуемых функций сети подразделяются на вычислительные (предназначенные для решения задач управления на основе вычислительной обработки исходной информации), информационные (предназначенные для получения справочных данных по запросу пользователей), смешанные (в них реализуются вычислительные и информационные функции);
- по способу управления вычислительные сети делятся на сети с децентрализованным, централизованным и смешанным управлением. В первом случае каждая ЭВМ, входящая в состав сети, включает полный набор программных средств для координации выполняемых сетевых операций. Сети такого типа сложны и достаточно дороги, так как операционные системы отдельных ЭВМ разрабатываются с ориентацией на коллективный доступ к общему полю памяти сети. В условиях смешанных сетей под централизованным управлением ведется решение задач, обладающих высшим приоритетом и, как правило, связанных с обработкой больших объемов информации.
Локальные сети
Локальная сеть создается, как правило, для совместного использования ресурсов ЭВМ или данных (обычно в одной организации). С технической точки зрения локальная сеть - совокупность компьютеров и каналов связи, объединяющих компьютеры в структуру с определенной конфигурацией, а также сетевого программного обеспечения, управляющего работой сети. Способ соединения компьютеров в локальную сеть называется топологией.
Топология во многом определяет многие важные свойства сети, например такие, как надежность (живучесть), производительность и др. Существуют разные подходы к классификации топологий сетей. По производительности они делятся на два основных класса: широковещательные и последовательные.
В широковещательных конфигурациях каждый компьютер передает сигналы, которые могут быть восприняты остальными компьютерами. К таким конфигурациям относятся топологии "общая шина", "дерево", "звезда с пассивным центром". Сеть типа "звезда с пассивным центром" можно рассматривать как разновидность "дерева", имеющего корень с ответвлением к каждому подключенному устройству.
В последовательных конфигурациях каждый физический подуровень передает информацию только одному ПК. Примерами последовательных конфигураций являются: произвольная (произвольное соединение компьютеров), иерархическая, "кольцо", "цепочка", "звезда с интеллектуальным центром", "снежинка" и другие.
Рисунок 2. Шинная топология локальной сети
При таком соединении обмен может производиться между любыми компьютерами сети, независимо от остальных. При повреждении связи одного компьютера с общей шиной, этот компьютер отключается от сети, но вся сеть работает. В этом смысле сеть достаточно устойчива, но если повреждается шина, то вся сеть выходит из строя.
Рисунок 3. Кольцевая топология локальной сети
При этом соединении данные также передаются последовательно от компьютера к компьютеру, но по сравнению с простым последовательным соединением данные могут передаваться в двух направлениях, что повышает устойчивость к неполадкам сети. Один разрыв не выводит сеть из строя, но два разрыва делают сеть нерабочей. Кольцевая сеть достаточно широко применяется, в основном из-за высокой скорости передачи данных. Кольцевые сети - самые скоростные.
Рисунок 4. Звездообразная топология локальной сети
При соединении звездой сеть очень устойчива к повреждениям. При повреждении одного из соединений от сети отключается только один компьютер. Кроме того, эта схема соединения позволяет создавать сложные разветвленные сети. Устройства, которые позволяют организовывать сложные структуры сетей, называются концентраторами и коммутаторами.
Организация управления локальными сетями
Все указанные схемы могут, в свою очередь, быть организованы двумя способами: на основе одноранговой технологии и технологии "клиент-сервер" (сеть с выделенным сервером).
Сеть с выделенным сервером имеет центральный компьютер - сервер, с которого происходит управление работой сети. Остальные компьютеры называются рабочими станциями.
Под сервером понимается комбинация аппаратных и программных средств, которая служит для управления сетевыми ресурсами общего доступа. Сервер - это компьютер, предоставляющий услуги другим компьютерам сети. При помощи сервера происходит распределение доступа различных пользователей к компьютерам сети и распределение других ресурсов сети. Сеть с выделенным сервером может быть ранжирована, т. е. могут быть выделены компьютеры в сети, к которым будет ограничен доступ с других компьютеров. Кроме того, имеется возможность организовать доступ к общим сетевым принтерам, модемам и другим устройствам с любого компьютера. На сервере могут быть записаны программы, которыми пользуются все компьютеры сети. Рисунок 5. Сеть с выделенным сервером
В сетях с выделенным сервером в основном используются именно ресурсы сервера, чаще всего дисковая память, они доступны всем пользователям. Серверы, разделяемым ресурсом которых является дисковая память, называются файл-серверами.
Каждый компьютер сети имеет уникальное сетевое имя, позволяющее однозначно его идентифицировать. Каждому пользователю серверной сети необходимо иметь свое сетевое имя и сетевой пароль. Имена компьютеров, сетевые имена и пароли пользователей прописываются на сервере.
Для удобства управления компьютерной сетью, несколько компьютеров, имеющих равные права доступа, объединяют в рабочие группы. Рабочая группа - группа компьютеров в локальной сети.
Совокупность приемов разделения и ограничения прав доступа участников компьютерной сети к ресурсам называется политикой сети. Обеспечением работоспособности сети и ее администрированием занимается системный администратор - человек, управляющий организацией работы компьютерной сети.
Рабочая станция - это индивидуальное рабочее место пользователя. На рабочих станциях устанавливается обычная операционная система. Кроме того, на рабочих станциях устанавливается клиентская часть сетевой операционной системы. Полноправным владельцем всех ресурсов рабочей станции является пользователь, тогда как ресурсы файл-сервера разделяются всеми пользователями. В качестве рабочей станции может использоваться компьютер практически любой конфигурации. Но, в конечном счете, все зависит от тех приложений, которые этот компьютер выполняет.
В одноранговых сетях все компьютеры, как правило, имеют доступ к ресурсам других компьютеров, т. е. все компьютеры сети являются равноправными. Одноранговая ЛВС предоставляет возможность такой организации работы компьютерной сети, при которой каждая рабочая станция одновременно может быть и сервером. Преимущество одноранговых сетей заключается в том, что разделяемыми ресурсами могут являться ресурсы всех компьютеров в сети и нет необходимости копировать все используемые сразу несколькими пользователями файлы на сервер. В принципе любой пользователь сети имеет возможность использовать все данные, хранящиеся на других компьютерах сети, и устройства, подключенные к ним. Затраты на организацию одноранговых вычислительных сетей относительно небольшие. Однако при увеличении числа рабочих станций эффективность их использования резко уменьшается. Основной недостаток работы одноранговой сети заключается в значительном увеличении времени решения прикладных задач. Это связано с тем, что каждый компьютер сети отрабатывает все запросы, идущие к нему со стороны других пользователей. Следовательно, в одноранговых сетях каждый компьютер работает значительно интенсивнее, чем в автономном режиме. Существует еще несколько важных проблем, возникающих в процессе работы одноранговых сетей: возможность потери сетевых данных при перезагрузке рабочей станции и сложность организации резервного копирования.
Рисунок 6. Одноранговая сеть
Поэтому одноранговые ЛВС используются только для небольших рабочих групп, а все сетевые архитектуры для крупномасштабных сетей поддерживают технологию "клиент-сервер".
Сетевые операционные системы
Кроме сетевого оборудования, для работы сети требуется сетевая операционная система. По сравнению с обычной операционной системой, в сетевой имеются возможности работы в сети. К сетевым операционным системам относятся Windows 95, Windows 98, Windows NT, NetWare, UNIX и др. Системы Windows 95 и Windows 98 позволяют организовать только одноранговую сеть. Windows NT, Windows 2000, 2003, NetWare, UNIX, Linux, FreeBSD - сеть с выделенным сервером.
1. Локальные компьютерные сети можно объединять друг с другом, даже если между ними большие расстояния. Правда, при этом используют не только специальные соединения, но и другие каналы связи. Разница между ними только в надежности (в уровне помех), в скорости передачи данных (пропускная способность линии) и в стоимости использования канала связи. Как правило, чем лучше линия, тем дороже стоит ее аренда, но тем больше данных можно пропустить по ней в единицу времени. При соединении двух или более сетей между со бой возникает межсетевое соединение и образуется глобальная компьютерная сеть.
Компьютерные сети
Введение
Первые вычислительные сети появились в 60-х годах. Была предпринята попытка объединить технологию сбора, хранения, передачи и обработки информации на ЭВМ с техникой связи.
Одной из первых сетей, оказавших влияние на дальнейшее их развитие, явилась сеть ARPA, созданная 50-ю университетами и фирмами США. Эта сеть доказала техническую возможность и экономическую целесообразность разработки больших сетей для более эффективного использования компьютеров и программного обеспечения.
В 60-х годах в Европе сначала были разработаны и введены международные сети - Евронет, а затем появились национальные сети. В 1972г. в Вене была внедрена сеть Мипса ,а в 1979г. к ней присоединились 17 стран Европы, СССР, США, Канада, Япония. Она была предназначена для проведения фундаментальных работ по проблемам энергетики, здравоохранения ,с/х и т.д.
В 80-х годах была сдана в эксплуатацию система телеобработки статистической информации(СТОСИ), обслуживающая главный вычислительный центр центрального статистического управления СССР в Москве. В настоящее время в мире зарегистрировано более 200 глобальных сетей, их которых более 50 создано в США и около 20 в Японии.
1. Понятие компьютерных сетей
Компьютерной сетью называется совокупность взаимосвязанных через каналы передачи данных компьютеров,обеспечивающих пользователей средствами обмена информации и коллективного использования ресурсов сети.Объединение компьютеров в сеть позволяет совместно использовать дорогостоящее оборудование: диски большой емкости, принтеры, основную память, иметь общие программные средства и данные.
Сеть (network) - это группа компьютеров, соединённых между собой кабелем или какой- то другой средой передачи. Если компьютеры имеют возможность обмениваться информацией, то они могут работать сообща. Характер работы может быть различным:предоставление ресурсов для совместного использования ;распределение нагрузки при выполнении определённой задачи или обмен сообщениями.
Отправной точкой для осуществления возможности совместных вычислений послужило распространение больших ЭВМ, подключаемых несколькими терминалами, каждый из которых обслуживал отдельного пользователя. Но время шло, и технологии развивались. Инженеры стали соединять ЭВМ уже друг с другом, так что они могли взаимодействовать и между собой. В то же время вычислительная техника становилась всё меньше по размерам и дешевела. Первые компьютерные сети использовали одиночные линии связи, такие как телефонные провода, для соединения только 2 отдельных компьютеров. Компьютеры, связанные сетью, могли использовать всего один принтер, что, по экономическим соображениям, гораздо предпочтительней оснащения каждого компьютера отдельным принтером. Когда же возникла необходимость передачи файла от одного пользователя к другому, сеть позволяла обходиться без привычных дискет. Проблема, тем не менее, оставалась. И заключалась она в том, что соединить дюжину офисных компьютеров одиночным двухточечными каналами связями было практически невозможно. Окончательным решением этой проблемы стала появление локальных вычислительных сетей (LAN, local area network). Основным назначением сети является обеспечение простого и удобного доступа пользователя к распределенным общесетевым ресурсам и организация их коллективного использования при надежной защите от несанкционированного доступа, а также обеспечения средств передачи данных между пользователями сети. В локальных сетях создается общая база данных для работы пользователей. В глобальных сетях осуществляется формирование единого научного, экономического, социального и культурного информационного пространства.
2.Общие принципы организации и функционирования компьютерных сетей
Компьютерные сети включают в себя 3 составляющих: 1) Техническое обеспечение - это:
ЭВМ различных типов, средства связи, оборудование абонентских пунктов. Основные требования, которые предъявляются к сети, это универсальность, т.е. возможность выполнения практически неограниченного круга задач пользователей, и модульность, обеспечивающая возможность наращивания и изменения конфигурации сети.
2)Информационное обеспечение.
Информационное обеспечение сети представляет собой единый информационный фонд, ориентированный на решаемые в сети задачи. В состав информационного обеспечения входят база знаний, банки данных и т.д.
3)Программное обеспечение
Программное обеспечение сети предназначено для организации коллективного доступа к ее ресурсам, динамического распределения и перераспределения ресурсов сети с целью максимальной загрузки технических средств.
Основным компонентом программного обеспечения сети являются сетевые операционные системы, которые представляют собой комплекс управляющих и обслуживающих программ.
3. Основные характеристики компьютерных сетей Для оценки качества компьютерной сети можно использовать следующие характеристики.
* Скорость передачи данных по каналу связи - измеряется количеством битов информации, передаваемых за единицу времени- секунду. Единица измерения скорости передачи данных - Мегабит в секунду (Мбит/с). Скорость передачи данных зависит от типа и качества канала связи, типа используемых модемов.
* Пропускная способность канала связи - оценивается количеством знаков, передаваемых по каналу за единицу времени. Теоретическая пропускная способность определяется скоростью передачи данных. Единица измерения пропускной способности канала связи - количество знаков в секунду.
* Достоверность передачи информации - оценивают как отношение количества ошибочно переданных знаков к общему числу переданных знаков. Единица измерения достоверности - количество ошибок на знак. * Надежность коммуникационной сети определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы. Единица измерения надежности - среднее время безотказной работы в час. * Время реакции сети - это время, затрачиваемое программным обеспечением и устройствами сети на подготовку к передаче информации по данному каналу. Время реакции сети измеряется миллисекундах. 4. Классификация компьютерных сетей
Современные сети можно классифицировать по различным признакам:
По удаленности компьютеров:
* Локальные LAN (Local Area Network) - сеть в пределах предприятия, учреждения, одной организации. Компьютеры расположены на расстоянии до нескольких километров и обычно соединены при помощи скоростных линий связи. * Региональные MAN (Metropolitan Area Network) - объединяют пользователей области, города, небольших стран. В качестве каналов связи используются телефонные линии. Расстояние между узлами сети составляет от 10 до 1000 км.
* Глобальные WAN (Wide Area Network) - включают другие глобальные сети, локальные сети, а также отдельно подключаемые к ней компьютеры.
По назначению и перечню предоставляемых услуг: * Общее использование файлов и принтеров - с помощью специальной ЭВМ (файл-сервер, принтер-сервер) организуется доступ пользователей к файлам и принтерам.
* Общее использование баз данных - с помощью специальной ЭВМ (сервер баз данных) организуется доступ пользователей к базе данных.
* Применение технологий Интернет - электронная почта, Всемирная паутина, телеконференции, видеоконференции, передача файлов через Интернет.
По способу организации взаимодействия:
* Одноранговые сети - все компьютеры одноранговой сети равноправны, при этом любой пользователь сети может получить доступ к данным, хранящимся на любом компьютере. Главное достоинство одноранговых сетей - это простота установки и эксплуатации. Главный недостаток состоит в том, что в условиях одноранговых сетей затруднено решение вопросов защиты информации. Поэтому такой способ организации сети используется для сетей с небольшим количеством компьютеров и там, где вопрос защиты данных не является принципиальным. * Сети с выделенным сервером (иерархические сети) - при установке сети заранее выделяются один или несколько серверов - компьютеров, управляющих обменом данных по сети и распределением ресурсов. Любой компьютер, имеющий доступ к услугам сервера называют клиентом сети или рабочей станцией. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Иерархическая модель сети является наиболее предпочтительной, так как позволяет создать наиболее устойчивую структуру сети и более рационально распределить ресурсы. Также достоинством иерархической сети является более высокий уровень защиты данных. К недостаткам иерархической сети, по сравнению с одноранговыми сетями, относятся: * Необходимость дополнительной ОС для сервера. * Более высокая сложность установки и модернизации сети. * Необходимость выделения отдельного компьютера в качестве сервера По технологии использования сервера:
* Сети с архитектурой файл-сервер - используется файловый сервер, на котором хранится большинство программ и данных. По требованию пользователя ему пересылаются необходимая программа и данные. Обработка информации выполняется на рабочей станции.
* Сети с архитектурой клиент-сервер - между приложением-клиентом и приложением-сервером осуществляется обмен данными. Хранение данных и их обработка производится на мощном сервере, который выполняет также контроль за доступом к ресурсам и данным. Рабочая станция получает только результаты запроса. По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные: * Низкоскоростные сети - до 10 Мбит/с; * Среднескоростные сети- до 100 Мбит/с; * Высокоскоростные сети - свыше 100 Мбит/с. По типу среды передачи сети разделяются на
* Проводные (на коаксиальном кабеле, на витой паре, оптоволоконные); * Беспроводные с передачей информации по радиоканалам или в инфракрасном диапазоне. По топологии (как соединены компьютеры между собой):
* Общая шина * Звезда * Кольцо 5. Телекоммуникационные системы в сетях
Любую компьютерную сеть можно рассматривать как совокупность абонентских систем и коммуникационной сети.
Абоненты сети - объекты, генерирующие и потребляющие информацию в сети. Абонентами сети могут быть отдельные компьютеры, комплексы ЭВМ, промышленные роботы, станки с программным управлением и т.д. Любой абонент подключается к станции.
Станция - это аппаратура, которая выполняет функции связанные с передачей, приемом информации. Совокупность абонента и станции называется абонентской системой. Для организации взаимодействия абонента необходима физическая передающая среда - каналы связи.
Каналы связи - это физическая среда: материал или пространство, обеспечивающие распространение сигналов, и аппаратные средства, передающие информацию от одного узла связи к другому. На базе физической передающей среды строится физическая коммуникационная сеть, которая обеспечивает передачу информации между абонентскими системами
Любая коммуникационная сеть должна включать следующие основные компоненты: передатчик, сообщение, средство передачи и приемник.
Передатчик - устройство, являющееся источником данных.
Приемник - устройство, принимающее данные. Приемником может быть компьютер, терминал или какое-либо цифровое устройство.
Сообщение - это цифровые данные определенного формата, предназначенные для передачи.
Средство передачи - физическая передающая среда и специальная аппаратура, обеспечивающая передачу сообщений. Для передачи сообщений в компьютерных сетях используют различные типы каналов связи. Наиболее распространены выделенные телефонные каналы. Особняком в этом отношении стоят локальные сети, использующие в качестве передающей среды витую пару проводов и специальные кабели.
Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адаптерами или сетевыми адаптерами. Один адаптер обеспечивает сопряжение с ЭВМ одного канала связи.
6. Локальная вычислительная сеть (ЛВС)
Локальная вычислительная сеть, или, сокращенно ЛВС - это группа компьютеров объединённых совместно используемой средой передачи данных, как правило, кабелем. Используя единый кабель, каждый компьютер требует только одной точки подключения к сети, при этом он может полноценно взаимодействовать с любым другим компьютером в группе.
Геометрически ЛВС всегда ограничена по размерам небольшой площадью в силу электрических свойств кабеля, используемого для построения сети, и относительно небольшим количеством компьютеров, которые могут разделять одну сетевую среду передачи данных. ЛВС обычно располагается в пределах одного здания или, самое большее, нескольких близко расположенных зданий. Некоторые технологии, такие как волоконная оптика, позволяют увеличить длину линий ЛВС до одного или двух километров, но применение ЛВС для соединение компьютеров, находящихся, например, в удалённых городах невозможно. Такое ограничение снимается применением глобальных (территориально распределённых) сетей (WAN, wide area network). В большинстве случаев ЛВС - это компьютерная сеть с узкополосной передачей и коммутацией пакетов.
Узкополосной локальной сетью называется такая сеть, в которой сетевой кабель (или другая сетевая среда) может передавать только один сигнал в любой момент времени. Широкополосная сеть способна передавать несколько сигналов одновременно, используя для каждого из них свою частоту передачи. В качестве распространённого примера широкополосной сети можно привести кабельное телевидение. Несмотря на то, что к телевизору подключен только один кабель, для просмотра можно выбирать любой из множества транслируемых каналов.
Узкополосная сеть использует импульсы, передаваемые непосредственно с сетевую среду, для создания простого сигнала, в котором в закодированной форме представлены двоичные (бинарные) данные. В сравнении с широкополосными сетями узкополосные могут быть протянуты на меньшие расстояния ввиду потерь мощности сигнала, связанных с электрическими помехами и другими факторами.
Изначально локальные сети предназначались для объединения сравнительно небольшого количества компьютеров в систему, названную позже рабочей группой. Владельцы сетей пришли к выводу о более существенной выгоде приобретения нескольких компьютеров и соединения их между собой для выполнения большинства необходимых вычислительных операций.Вместе с ростом возможностей персональных компьютеров и исполняемых приложений совершенствовались и вычислительные сети, построенные на их основе, а также методы проектирования таких сетей.
Локальные сети персональных компьютеров (лвс) получили широкое распространение, т.к. 80-90% информации циркулирует вблизи мест ее появления и только 10-20% связано с внешними взаимодействиями. Локальные сети связывают компьютеры ,размещенные на небольшом расстоянии друг от друга.
Главная отличительная особенность локальных сетей это единый, высокоскоростной канал передачи данных и малая вероятность возникновения ошибок в коммуникационном оборудовании. В качестве канала передачи данных используются витая пара, оптоволоконный кабель. Расстояния между ЭВМ в локальной сети небольшие до 10 км. Каналы в локальных сетях являются собственностью организаций и это упрощает их эксплуатацию.Основное назначение любой компьютерной сети-предоставление информационных и вычислительных ресурсов подключенным к ней пользователям. С этой точки зрения ЛВС можно рассматривать как совокупность серверов и рабочих станций. Сервер- компьютер, подключенный к сети и обеспечивающий ее пользователей определенными услугами. Серверы могут осуществлять хранение данных, управления базами данных, удаленную обработку заданий, печать заданий и ряд других функции, потребность в которых может возникнуть у пользователей сети. Сервер-источник ресурсов сети. Особое внимание следует уделить одному из типов серверов - файловому серверу, или сокращенно файл-сервер.
Файл-сервер- хранит данные пользователей сети и обеспечивает им доступ к этим данным. Это компьютер с большой емкостью оперативной памяти, жесткими дисками большой емкости и дополнительными накопителями на магнитной ленте. Он работает под управлением специальной операционной системы, которая обеспечивает одновременный доступ пользователей сети к расположенным на нем данным. Файл-сервер выполняет следующие функции: хранение данных, архивирование данных, синхронизацию изменения данных различными пользователями, передачу данных. Для многих задач использования одного файл-сервера оказывается недостаточным. Тогда в сеть могут включаться несколько серверов.
Рабочая станция - персональный компьютер, подключенный к сети, через который пользователь получает доступ к ее ресурсам. Рабочая станция сети функционирует, как в сетевом, так и в локальном режиме. Она оснащена собственной операционной системой и обеспечивает пользователя всеми необходимыми инструментами для решения прикладных задач.
7. Цели создания и преимущества использования локальных компьютерных систем.
Основной целью создания локальных компьютерных сетей является совместное использование ресурсов и осуществление интерактивной связи как внутри одной фирмы ,так и за ее пределами. Ресурсы - это данные и приложения (программа), хранящиеся на дисках сети, и периферийные устройства, дисковод, принтер, модем и т.д. Понятие интерактивной связи компьютера подразумевает обмен сообщениями в реальном режиме времени.
Основные преимущества работы в локальной сети : * .Возможность хранения данных персонального и общего использования на дисках файлового сервера. Благодаря этому обеспечивается одновременная работа нескольких пользователей с данными общего применения, многоаспектная защита данных на уровне каталогах файлов, создание и обновление общих данных. * Возможность постоянного хранения программных средств, необходимых многим пользователям, в единственном экземпляре на дисках файлового сервера. К программным средством, необходимым многим пользователем, относится прежде всего прикладные программы общего назначения. Благодаря указанной возможности обеспечивается рациональное использование внешней памяти за счет освобождения локальных дисков, рабочих станций и надежность хранения программных продуктов за счет применения средств защиты сетевой операционной системы. * Обмен информацией между всеми компьютерными сетями. При этом обеспечивается диалог между пользователями сети, а так же возможности организации работы электронной почты.
* Одновременная печать всеми пользователями сети на общесетевых принтерах. При этом обеспечивается доступность сетевого принтера любому пользователю.
* Обеспечение доступа пользователя с любого компьютера к локальной сети к ресурсам глобальной сетей при наличии единственного коммуникационного узла глобальной сети.
8.Особенности организации локальных сетей.
Компьютерные сети реализуют распределенную обработку данных. Обработка данных в этом случае распределена между двумя объектами: клиентами и сервером. Клиент - это рабочая станция или пользователь компьютерной сети. В процессе обработки данных клиент может сформировать запрос на сервер для выполнения сложных процедур, чтение файлов, поиск информации в базе данных. Сервер выполняет запрос, поступивший от клиента. Результаты выполнения запросов передаются клиентам. Сервер обеспечивает хранение данных общего пользования, организует доступ к этим данным и передает клиенту. Архитектура клиент-сервер может использоваться как в одноранговых локальных сетях, так и в сети с выделенным сервером. Компьютерные сети основаны на принципе клиент-сервер, в соответствии, с которым действия по обработке информации, необходимые для выполнения конкретной задачи, разделены между компьютерами, выполняющие функции клиентов и серверов. Это прямая противоположность модели большой ЭВМ, в которой центральный компьютер выполняет всю обработку информации и просто пересылает результаты пользователю на удаленный терминал. Сервер - это компьютер, обеспечивающий доступ к информации другим компьютерам в тот момент, когда им требуется. Клиент- компьютер, запрашивающий информацию у сервера. Оба термина могут быть применены как к физическим устройствам, так и к программному обеспечению.
Например, сетевые базы данных, как правило, целиком хранятся на сервере, находящимся в режиме ожидания запросов от клиентов. Пользователь рабочей станции запускает программу - клиент, с помощью которой формулирует запросы на выборку из базы данных и отправляет их серверу.
Сервер отвечает на запросы и посылает требуемую информацию рабочей станции, которая обрабатывает и предоставляет её пользователю. В этом случае рабочие станции должны обеспечить пользовательский интерфейс и перевод требования пользователя на язык запросов, "понятный" серверу, а также прием возвращенной сервером информации и предъявление её пользователю в понятной для него форме. Сервер может обслуживать десятки или сотни клиентов, то есть он должен быть мощным компьютером, однако, в результате перекладывания некоторых функций на рабочие станции, нагрузка на него по обработке информации даже близко не сравнима с таковой при использовании большой ЭВМ.
В серверных сетях осуществляется четкое разделение функций между компьютерами: одни их них постоянно являются клиентами, а другие - серверами. Учитывая многообразие услуг, предоставляемых компьютерными сетями, существует несколько типов серверов, а именно: сетевой сервер, файловый сервер, сервер печати, почтовый сервер и др. Сетевой сервер представляет собой специализированный компьютер, ориентированный на выполнение основного объема вычислительных работ и функций по управлению компьютерной сетью. Этот сервер содержит ядро сетевой операционной системы, под управлением которой осуществляется работа всей локальной сети. Сетевой сервер обладает достаточно высоким быстродействием и большим объемом памяти. При подобной сетевой организации функции рабочих станций сводятся к вводу-выводу информации и обмену ею с сетевым сервером.
Термин файловый сервер относится к компьютеру, основной функцией которого является хранение, управление и передача файлов данных. Он не обрабатывает и не изменяет сохраняемые и передаваемые им файлы. Сервер может "не знать", является ли файл текстовым документом, графическим изображением или электронной таблицей. В общем случае на файловом сервере может даже отсутствовать клавиатура и монитор. Все изменения в файлах данных осуществляются с клиентских рабочих станций. Для этого клиенты считывают файлы данных с файлового сервера, осуществляют необходимые изменения данных и возвращают их обратно на файловый сервер. Подобная организация наиболее эффективна при работе большого количества пользователей с общей базой данных. В рамках больших сетей может одновременно использоваться несколько файловых серверов.
Сервер печати (принт-сервер) представляет собой печатающее устройство, которое с помощью сетевого адаптера подключается к передающей среде. Подобное сетевое печатающее устройство является самостоятельным и работает независимо от других сетевых устройств. Сервер печати обслуживает заявки на печать от всех серверов и рабочих станций. В качестве серверов печати используются специальные высокопроизводительные принтеры.
При высокой интенсивности обмена данными с глобальными сетями в рамках локальных сетей выделяются почтовые серверы, с помощью которых обрабатываются сообщения электронной почты. Для эффективного взаимодействия с сетью Internet могут использоваться Web-серверы.
9.1 Одноранговая сеть
Характер взаимодействия компьютеров в локальной сети принято связывать с их функциональным назначением. Как и в случае прямого соединения, в рамках локальных сетей используется понятие клиент и сервер. Технология клиент-сервер - это особый способ взаимодействия компьютеров в локальной сети, при котором один из компьютеров (сервер) предоставляет свои ресурсы другому компьютеру (клиенту). В соответствии с этим различают одноранговые сети и серверные сети.
При одноранговой архитектуре в сети отсутствуют выделенные серверы, каждая рабочая станция может выполнять функции клиента и сервера. В этом случае рабочая станция выделяет часть своих ресурсов в общее пользование всем рабочим станциям сети. Как правило, одноранговые сети создаются на базе одинаковых по мощности компьютеров. Одноранговые сети являются достаточно простыми в наладке и эксплуатации. В том случае, когда сеть состоит из небольшого числа компьютеров и ее основной функцией является обмен информацией между рабочими станциями, одноранговая архитектура является наиболее приемлемым решением. Подобная сеть может быть достаточно быстро и просто реализована средствами такой популярной операционной системы как Windows .
Наличие распределенных данных и возможность изменения своих серверных ресурсов каждой рабочей станцией усложняет защиту информации от несанкционированного доступа, что является одним из недостатков одноранговых сетей. Понимая это, разработчики начинают уделять особое внимание вопросам защиты информации в одноранговых сетях.
Другим недостатком одноранговых сетей является их более низкая производительность. Это объясняется тем, что сетевые ресурсы сосредоточены на рабочих станциях, которым приходится одновременно выполнять функции клиентов и серверов.
В такой сети нет единого центра управления взаимодействием рабочих станций и нет единого устройства для хранения данных. В одноранговой сети все компьютеры равноправны, каждый компьютер функционирует и как клиент, и как сервер. Пользователи самостоятельно решают, какие данные на своем компьютере сделать общедоступными. Сетевая операционная система распределена по всем рабочим станциям. Каждая станция может обслуживать запросы от других рабочих станций и направлять свои запросы на обслуживание в сеть. Пользователю сети доступны все устройства, подключенные к другим станциям.
Одноранговая сеть характеризуется рядом стандартных решений: 1. Компьютеры расположены на рабочих столах пользователей;
2. Пользователи сами выступают в роли администраторов и обеспечивают защиту информации;
3. Для объединения компьютеров в сеть применяется простая кабельная система.
Целесообразность применения одноранговых сетей. Одноранговая сеть вполне подходит там, где:
1. Количество пользователей не превышает 10 человек;
2. Пользователи расположены компактно;
3. Вопросы защиты данных не актуальны;
4. В обозримом бедующем не ожидается расширения фирмы и, следовательно, сети.
Если эти условия выполняются, то выбор одноранговой сети будет более правильным, чем выбор сети на основе сервера. Достоинства одноранговых сетей: 1. Низкая стоимость и высокая надежность. Недостатки одноранговых сетей: 1. Зависимость эффективности работы сети от количества станций (компьютеров);
2. Сложность управления сетью;
3. Сложность обеспечения защиты информации;
4. трудности обновления и изменения программного обеспечения станций.
9.2. Сеть с выделенным сервером
В сети с выделенным сервером один из компьютеров выполняет функции хранения данных, предназначенных для использования всеми рабочими станциями, управление взаимодействием между рабочими станциями и ряд сервисных функций. Такой компьютер обычно называют сервером сети. На нем устанавливается сетевая операционная система, к нему подключается все разделяемые внешние устройства (Принтеры модемы и т.д.). Взаимодействие между рабочими станциями в сети осуществляется через сервер. Логическая организация такой сети может быть представлена топологией "звезда". Роль центрального устройства выполняет сервер. Сети на основе сервера способны поддерживать тысячи пользователей. Сетями такого размера, будь они одноранговые, было бы невозможно управлять. Основным аргументом при выборе сети на основе сервера является, как правило, защита данных. В таких сетях проблемами безопасности может заниматься один администратор, он формирует политику безопасности и применяет в отношении каждого пользователя сети. В сетях с централизованным управлениям существует возможность обмена информации между рабочими станциями, минуя файл - сервер.
ДОСТОИНСТВО СЕТИ С ВЫДЕЛЕННЫМ СЕРВЕРОМ:
1)Надежная система защиты информации;
2)Высокое быстродействие;
3) Отсутствие ограничений на число рабочих станций (компьютеров)
4) простота управления по сравнению с одно ранговыми сетями
Недостатки сети с выделенным сервером
1) Высокая стоимость из-за выделения одного компьютера под сервер;
2) Зависимость быстродействия и надежности сети от сервера;
3) Меньшая гибкость по сравнению с одноранговой сетью;
Сети с выделенными сервером являются наиболее распространенными у пользователя компьютерных сетей.
10. Топология сетей Топологией сети называется физическую или электрическую конфигурацию кабельной системы и соединений сети. В топологии сетей применяют несколько специализированных терминов: * узел сети - компьютер, либо коммутирующее устройство сети; * ветвь сети - путь, соединяющий два смежных узла; * оконечный узел - узел, расположенный в конце только одной ветви; * промежуточный узел - узел, расположенный на концах более чем одной ветви; * смежные узлы - узлы, соединенные, по крайней мере, одним путём, не содержащим никаких других узлов. Любую компьютерную сеть можно рассматривать как совокупность узлов. Конфигурация физических связей определяется электрическими соединениями компьютеров между собой и может отличаться от конфигурации логических связей между узлами сети. Логические связи представляют собой маршруты передачи данных между узлами сети, образуются путем соответствующей настройки оборудования. Существует три основных типа физической топологии локальных вычислительных сетей: Кольцевая топология предусматривает соединение узлов сети замкнутой кривой, т.е. кабелем передающей среды. В такой сети к каждому узлу присоединены две и только две ветви. Информация по кольцу передаётся от узла к узлу, как правило, в одном направлении. Каждый промежуточный узел между передатчиком и приемником ретранслирует посланное сообщение. Принимающий узел распознаёт и получает только адресованные ему сообщения. В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями. Преимущество данной топологии - простота управления, недостаток - возможность отказа всей сети при сбое в канале между двумя узлами.
Шинная топология одна из наиболее простых, реализуется с помощью кабеля, к которому подключаются все компьютеры. Все сигналы, передаваемые любым компьютером в сеть, идут по шине в обоих направлениях ко всем остальным компьютерам.
Топология звезда использует отдельный кабель для каждого компьютера, проложенный от центрального устройства, называемого хабом (hub) или концентратором. Концентратор транслирует сигналы, поступающие на любой из его портов, на все остальные порты, в результате чего сигналы, посылаемые одним узлом, достигают остальных компьютеров. В такой сети имеется только один промежуточный узел. Сеть на основе "звезды" более устойчива к повреждениям по сравнению сетью на базе шинной архитектуры, так как повреждение кабеля затрагивает непосредственно только тот компьютер, к которому он соединен, а не всю сеть.
В то время как небольшие сети, как правило, имеют типовую топологию - звезда, кольцо или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно подсети, имеющие типовую топологию, поэтому их называют сетями со смешанной топологией: Выбор той или иной топологии определяется областью применения сети, географическим расположением ее узлов и размерностью сети в целом.
В таблице 1 представлен сравнительный анализ различных топологий Таблица 1
ХарактеристикиТопологии вычислительных сетейЗвездаКольцоШинаСтоимость расширенияНезначительнаяСредняяСредняяПрисоединение абонентовПассивноеАктивноеПассивноеНезначительнаяНезначительнаяВысокаяРазмеры системыЛюбыеЛюбыеОграниченныЗащищенность от прослушиванияХорошаяХорошаяНезначительнаяСтоимость подключенияНезначительнаяНезначительнаяВысокаяПоведение системы при высоких нагрузкахХорошееУдовлетворительноеПлохоеВозможность работы в реальном режиме времениОчень хорошаяХорошаяПлохаяРазводка кабеляХорошаяУдовлетворительнаяХорошаяОбслуживаниеОчень хорошееСреднееСреднее 11. Архитектура открытых систем Модели сети .Эталонная модель OSI
Общая модель вычислительной сети определяет характеристики сети в целом и характеристики и функции, входящих в неё основных компонентов . Архитектура вычислительной сети - это описание её общей модели. Многообразие производителей вычислительных сетей и сетевых программных продуктов поставило проблему объединения сетей различных архитектур. В начале 1980 гг. Международная Организация по Стандартизации (ISO) признала необходимость в создания модели сети, которая могла бы помочь поставщикам создавать реализации взаимодействующих сетей. Эту потребность удовлетворяет выпущенная в 1984 г. Эталонная модель OSI быстро стала основной архитектурной моделью для передачи межкомпьютерных сообщений. Часто ее называют моделью архитектуры открытых систем Открытая система - это система, взаимодействующая с другими системами в соответствии с принятыми стандартами. Модель взаимодействия открытых систем служит базой для производителей при разработке совместимого сетевого оборудования.
Перемещение информации между компьютерами различных схем является чрезвычайно сложной задачей.
Эта модель устанавливает способы передачи данных по сети, определяет стандартные протоколы, используемые сетевым и программным обеспечением. Модель представляет собой самые общие рекомендации для построения совместимых программных продуктов. Эти рекомендации должны быть реализованы как в аппаратуре, так и в программных средствах вычислительных сетей. Модель взаимодействия открытых систем определяет процедуры передачи данных между системами ,которые открыты друг другу, благодаря совместному использованию ими соответствующих стандартов, хотя сами системы могут быть созданы на различных технических средствах. В настоящее время модель взаимодействия открытых систем является наиболее популярной сетевой архитектурной моделью. Она рассматривает общие функции, а не специальные решения, поэтому не все реальные сети абсолютно точно ей следуют. Модель взаимодействия открытых систем состоит из семи уровней. На каждом уровне выполняются определённые сетевые функции. Нижние уровни (1 и 2) определяют физическую среду передачи данных и сопутствующей задачи (такие, как передачи битов данных через плату сетевого адаптера и кабель). Самые верхние уровни определяют, каким способом осуществляется доступ приложений к услугам связи. Чем выше уровень, тем более сложную задачу он решает. Перед подачей в сеть данные разбиваются на пакеты. Пакет- это единица информации, передаваемая между устройствами сети как единое целое. На передающей стороне пакет проходит последовательно через все уровни системы сверху вниз. Затем он передаётся по сетевому кабелю на компьютер - получатель и опять проходит все уровни в обратном порядке.
12. Уровни модели OSI . Иерархическая связь. Эталонная модель OSI делит проблему перемещения информации между компьютерами через среду сети на семь менее крупных, и следовательно, более легко разрешимых проблем. Каждая из этих семи проблем выбрана потому, что она относительно автономна, и следовательно, ее легче решить без чрезмерной опоры на внешнюю информацию. Каждая из семи областей проблемы решалась с помощью одного из уровней модели. Большинство устройств сети реализует все семь уровней. Однако в режиме потока информации некоторые реализации сети пропускают один или более уровней. Два самых низших уровня OSI реализуются аппаратным и программным обеспечением; остальные пять высших уровней, как правило, реализуются программным обеспечением. Справочная модель OSI описывает, каким образом информация проделывает путь через среду сети (например, провода) от одной прикладной программы (например, программы обработки крупноформатных таблиц) до другой прикладной программы, находящейся в другом компьютере. Т.к. информация, которая должна быть отослана, проходит вниз через уровни системы, по мере этого продвижения она становится все меньше похожей на человеческий язык и все больше похожей на ту информацию, которую понимают компьютеры, а именно "единицы" и "нули". Уровни модели OSI (в направлении снизу вверх) и их общие функции можно рассмотреть следующим образом:
Рассмотрим, как в модели SI происходит обмен данными между пользователями, находящимися на разных континентах.
1.На прикладном уровне с помощью специальных приложений пользователь создает документ (сообщение, рисунок и т. п.). Прикладной уровень - это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI; однако он обеспечивает ими прикладные процессы, лежащие за пределами масштаба модели OSI. Примерами таких прикладных процессов могут служить программы обработки крупномасштабных таблиц, программы обработки слов, программы банковских терминалов и т.д. Прикладной уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные программы, а также устанавливает соглашение по процедурам устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи.
2.На уровне представления операционная система его компьютера фиксирует, где находятся созданные данные (в оперативной памяти, в файле на жестком диске и т. п.), и обеспечивает взаимодействие со следующим уровнем.
Представительный уровень отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации. Представительный уровень занят не только форматом и представлением фактических данных пользователя, но также структурами данных, которые используют программы. Поэтому кроме трансформации формата фактических данных (если она необходима), представительный уровень согласует синтаксис передачи данных для прикладного уровня. 3.На сеансовом уровне компьютер пользователя взаимодействует с локальной или глобальной сетью. Протоколы этого уровня проверяют права пользователя на "выход в эфир" и передают документ к протоколам транспортного уровня.
Как указывает его название, сеансовый уровень устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления (как вы помните, сеансовый уровень обеспечивает своими услугами представительный уровень). Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними. В дополнение к основной регуляции диалогов (сеансов) сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней. Сеансовый уровень - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" - это по сути независимый сетевой кабель (иногда называемый сегментом). Т.к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов. 4. .На транспортном уровне документ преобразуется в ту форму, в которой положено передавать данные в используемой сети. Например, он может нарезаться на небольшие пакеты стандартного размера. Транспортный уровень Граница между сеансовым и транспортным уровнями может быть представлена как граница между протоколами прикладного уровня и протоколами низших уровней. В то время как прикладной, представительный и сеансовый уровни заняты прикладными вопросами, четыре низших уровня решают проблемы транспортировки данных. Транспортный уровень пытается обеспечить услуги по транспортировке данных, которые избавляют высшие слои от необходимости вникать в ее детали. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы). 5. Сетевой уровень определяет маршрут движения данных в сети. Так, например если на транспортном уровне данные были "нарезаны" на пакеты, то на сетевом уровне каждый пакет должен получить адрес, по которому он должен быть доставлен независимо от прочих пакетов. Сетевой уровень - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" - это по сути независимый сетевой кабель (иногда называемый сегментом). Т.к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов. 6. Канальный уровень. Уровень соединения необходим для того, чтобы промодулировать сигналы, циркулирующие на физическом уровне, в соответствии с данными, полученным с сетевого уровня. Например в компьютере эти функции выполняет сетевая карта или модем. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации. 7. Физический уровень. Реальная передача данных происходит на физическом уровне. Здесь нет ни документов, ни пакетов, ни даже байтов - только биты, то есть, элементарные единицы представления данных. Восстановление документа из них произойдет постепенно, при переходе с нижнего на верхний уровень на компьютер клиента.
Средства физического уровня лежат за пределами компьютера. В локальных сетях это оборудование самой сети. При удаленной связи с использованием телефонных модемов это линии телефонной связи, коммутационное оборудование телефонных станций и т. п. Физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики. На компьютере получателя информации происходит обратный процесс преобразования данных от битовых сигналов до документа.
Разные уровни протоколов сервера и клиента не взаимодействуют друг с другом напрямую, но они взаимодействуют через физический уровень. Постепенно переходя с верхнего уровня на нижний, данные непрерывно преобразуются, "обрастают" дополнительными данными, которые анализируются протоколами соответствующих уровней на сопредельной стороне. Это создает эффект виртуального взаимодействия уровней между собой. Для иллюстрации сказанного рассмотрим простой пример взаимодействия двух корреспондентов с помощью обычной почты. Если они регулярно отправляют друг другу письма и, соответственно, получают их, то они могут полагать, что между ними существует соединение на пользовательском (прикладном уровне). Однако это не совсем так. Такое соединение можно назвать виртуальным. Оно было бы физическим, если бы каждый из корреспондентов лично относил другому письмо и вручал в собственные руки. В реальной жизни он бросает его в почтовый ящик и ждет ответа.
Сбором писем из общественных почтовых ящиков и доставкой корреспонденции в личные почтовые ящики занимаются местные почтовые службы. Это другой уровень модели связи, лежащий ниже. Для того чтобы наше письмо достигло адресата в другом городе, должна существовать связь между нашей местной почтовой службой и его местной почтовой службой. Однако никакой физической связью эти службы не обладают - поступившую почтовую корреспонденцию они только сортируют и передают на уровень федеральной почтовой службы.
Федеральная почтовая служба в своей работе опирается на службы очередного уровня, например на почтово-багажную службу железнодорожного ведомства. И только рассмотрев работу этой службы, мы найдем, наконец, признаки физического соединения, например железнодорожный путь, связывающий два города.
Важно обратить внимание на то, что в нашем примере образовалось несколько виртуальных соединений между аналогичными службами, находящимися в пунктах отправки и приема. Не вступая в прямой контакт, эти службы взаимодействуют между собой. На каком-то уровне письма укладываются в мешки, мешки пломбируют, к ним прикладывают сопроводительные документы, которые где-то в другом городе изучаются и проверяются на аналогичном уровне.
Ниже в таблице приводится аналогия между уровнями модели OSI и операциями служб пересылки обычной почты.
Уровень модели OSIАналогияПрикладной уровеньПисьмо написано на бумаге. Определено его содержаниеУровень представленияПисьмо запечатано в конверт. Конверт заполнен. Наклеена марка. Клиентом соблюдены необходимые требования протокола доставкиСеансовый уровеньПисьмо опущено в почтовый ящик. Выбрана служба доставки.Транспортный уровеньПисьмо доставлено на почтамт. Оно отделено от писем, с доставкой которых местная почтовая служба справилась бы самостоятельноСетевой уровеньПосле сортировки письмо уложено в мешок. Появилась новая единица доставки - мешокУровень соединенияМешки писем уложены в вагон. Появилась новая единица доставки - вагонФизический уровеньВагон прицеплен к локомотиву. Появилась новая единица доставки - состав. За доставку взялось другое ведомство, действующее по другим протоколам
Чтобы различные компьютеры сети могли установить связь друг с другом, они должны "разговаривать" на одном языке, то есть использовать один и тот же протокол. Протокол - это "язык", используемый для обмена данными при работе в сети. Существует множество протоколов, каждый из них выполняет различные задачи. На разных уровнях модели OSI используются различные протоколы. Ethernet - это протокол Уровня соединения, используемый большинством современных локальных сетей. Протокол Ethernet обеспечивает унифицированный интерфейс к сетевой среде передачи, который позволяет операционной системе использовать для приема и передачи данных несколько протоколов Сетевого уровня одновременно. Token Ring - это альтернатива "классическому" протоколу Ethernet на Уровне соединения. Для возможности передачи информации по сетевым каналам связи необходимо установить протокол обмена сообщениями (пакетами). Существует несколько таких протоколов. Наиболее широко используются следующие: NetBEUI, IPX/SPX, TCP/IP. Протоколы NETBEUI и IPX/SPX - используется в локальных сетях. Протоколы TCP/IP являются базовыми протоколами глобальной сети Интернет.
Протокол TCP/IP
Со времени своего создания в 1970-х, стек протоколов TCP/IP был развит в промышленный стандарт для протоколов передачи данных на Сетевом и Транспортном уровнях модели OSI. В дополнение, стек включает множество протоколов, работающих на самых разных уровнях OSI, от Канального уровня внизу, до Прикладного уровня наверху.
Создатели операционных систем стремятся упростить стек сетевых протоколов, чтобы сделать более понятным среднему пользователю. Например, на рабочей станции Windows установка протоколов TCP/IP выполняется с помощью выбора одного единственного условного протокола, хотя на самом деле при этом осуществляется поддержка всего семейства протоколов, из которых TCP (протокол управления передачей) и IP (Интернет-протокол) - всего лишь два представителя. Понимание принципов работы каждого из протоколов семейства TCP/IP, а также механизмов их взаимодействия между собой для обеспечения соответствующих коммуникационных сервисов, представляется крайне важным для процессов обслуживания и устранения неисправностей TCP/IP- сетей.
Можно указать несколько причин тому, что TCP/IP стал набором протоколов, используемым большинством сетей, не последняя из которых - то, что эти протоколы применяются в Интернете. Протоколы TCP/IP были разработаны для поддержки зарождавшейся сети Интернет (в то время носившей название ARPANET), еще до появления персональных компьютеров, когда почти ничего не было слышно о возможности взаимодействия между компьютерными продуктами разных производителей. Интернет был тогда и остаётся сейчас сетью, состоящей из компьютеров различных типов, и, соответственно, требовался именно тот набор протоколов, который был бы общим для всех них. Главным элементом, отличающим TCP/IP от остальных стеков протоколов, обеспечивающих серверы Сетевого и Транспортного уровней, является собственная уникальная система адресаций. Каждому устройству сети TCP/IP присваивается IP-адрес (иногда больше, чем один), однозначно идентифицирующий это устройство для других систем..
IP-адресация
IP-адреса, используемые для идентификации компьютеров в сети TCP/IP, представляет собой единственную характеристику стека протоколов TCP/IP, которая определяет наиболее строго. IP-адрес является абсолютным идентификатором как компьютера, так и той сети, к которой он относиться. Каждый пакет, передаваемый по сети TCP/IP, в своем заголовке содержит IP-адрес системы отправителя и получателя. 15. Сетевое оборудование
Основными компонентами сети являются рабочие станции, серверы, передающие среды (кабели) и сетевое оборудование. Рабочими станциями называются компьютеры сети, на которых пользователями сети реализуются прикладные задачи. Серверы сети - это аппаратно-программные системы, выполняющие функции управления распределением сетевых ресурсов общего доступа. Сервером может быть это любой подключенный к сети компьютер, на котором находятся ресурсы, используемые другими устройствами сети. В качестве аппаратной части сервера используется достаточно мощные компьютеры. Выделяют следующие виды сетевого оборудования: Сетевые кабели (коаксиальные, состоящие из двух изолированных между собой концентрических проводников, из которых внешний имеет вид трубки; кабели на витых парах, образованные двумя переплетёнными друг с другом проводами; оптоволоконные и др.). Сетевые карты (Сетевые интерфейсные адаптеры) - это контроллеры, подключаемые к материнской плате компьютера, предназначенные для передачи сигналов в сеть и приема сигналов из сети. К разъёмам адаптеров подключается сетевой кабель.
Вид сетевой карты.
15.1Концентраторы
Концентраторы (Hub) - это центральные устройства кабельной системы или сети физической топологии "звезда", которые при получении пакета на один из своих портов пересылает его на все остальные. Хаб с набором разнотипных портов позволяет объединять сегменты сетей с различными кабельными системами. К порту хаба можно подключать как отдельный узел сети, так и другой хаб или сегмент кабеля. Концентратор (hub) - это устройство, которое выполняет функции связующего звена для кабеля в сети с топологией "звезда". Каждый компьютер отдельным кабелем подключен к центральному концентратору. Концентратор отвечает за распространение трафика, пришедшего на любой из портов, через все остальные порты. В зависимости от сетевой среды в устройстве концентратора могут быть применены электрические схемы, оптические компоненты или другие технологии для распределения входящего сигнала между всеми выходными портами. Концентратор для оптоволокна, например, использует зеркала для того, чтобы расщепить световые импульсы. Внешне концентратор представляет собой коробку, либо стоящую отдельно, либо смонтированную в стойке, с пронумерованными портами, к которым подключается кабель. Для соединения локальных сетей друг с другом используются следующие устройства: 15.2. Мосты
Мосты (Bridge) - устройства сети, которые соединяют два отдельных сегмента, ограниченных своей физической длиной. Мосты также усиливают и конвертируют сигналы для кабеля другого типа. Это позволяет расширить максимальный размер сети.
Мосты передают данные между сетями в пакетном виде, не производя в них никаких изменений. Ниже на рисунке показаны три локальные сети, соединённые двумя мостами. Кроме этого, мосты могут фильтровать пакеты, охраняя всю сеть от локальных потоков данных и пропуская наружу только те данные, которые предназначены для других сегментов сети.
Выполняет функцию усиления сигнала, как и повторитель, но вместе с тем имеет способность избирательно отфильтровывать пакеты по их адресам. Пакеты, приходящие на вход моста, пропускаются на выход только в том случае, если они адресованы компьютеру, находящемуся по другую сторону моста. Поскольку мосты не препятствуют прохождению широковещательных сообщений, они также не делят ЛВС на сегменты и не создают интерсети.
Мост (bridge) - это устройство, также используемое для объединения сегментов кабеля ЛВС, но в отличие от концентраторов мосты функционируют на Канальном уровне модели OSI и осуществляют отбор передаваемых через них пакетов. Повторители и концентраторы же разработаны для передачи всего получаемого ими трафика во все присоединенные сегменты кабеля.
Мост имеет два или более портов, подключенных к различным сегментам кабеля, и работает в беспорядочном режиме (promiscuous mode), принимая все пакеты, передаваемые по присоединенным сегментам. Для каждого полученного мостом пакета устройство считывает адрес получателя из заголовка протокола Канального уровня, и, если пакет предназначен для системы, расположенной в другом сегменте, передает пакет в этот сегмент. Если пакет послан системе в локальном сегменте, мост отбрасывает его, поскольку данные уже достигли своего места назначения.
Описанный процесс называется фильтрацией пакетов (packet filtering).
Так же, как концентратор или повторитель, мост не вносит изменений в пакет, каким бы ни было содержание кадра Канального уровня. В результате можно не учитывать протоколы, работающие на Сетевом и вышележащих уровнях, при использовании или установке моста.
Работая таким образом, мост уменьшает количество избыточного трафика в сети, так как не пропускает ненужные пакеты. Широковещательные сообщения, пропускаемые во все присоединенные сегменты, делают возможным применение протоколов, которые опираются на широковещание, подобных NetBEUI, без ручной настройки системы. Однако в отличие от повторителей мост не пересылает данные в присоединенные сегменты до тех пор, пока пакет не будет получен целиком. Поэтому две системы в разделенных мостом сегментах могут передавать данные одновременно, не опасаясь возникновения коллизии. Таким образом, сегменты, соединенные мостом, остаются в единой области широковещания, но в разных областях коллизий.
Например, если производительность сети резко упала из-за большого трафика, сеть можно разделить на два сегмента, установив посередине мост. Это позволит удерживать локальный трафик внутри сегментов и пропускать широковещательный и прочий трафик, предназначенный для других сегментов. Мосты так же, как концентраторы, выполняют ретранслирующие функции, давая тем самым возможность увеличить длину кабеля.
Существуют три основных типа мостов.
* Локальные. Локальный мост обеспечивает фильтрацию пакетов и ретранслирующие услуги для сетевых сегментов одинакового типа. Такой тип устройств также называется мостом МАС - уровня. Это простейший тип моста. Так как он не нуждается в наличии перекодировки пакетов и буферизации. Устройство просто передает пакеты через соответствующие посты или отбрасывает их.
* Преобразующие. Преобразующий мост обеспечивает те же функции, что и локальный мост, за исключением того, что он может соединять сегменты с разными скоростями работы или различными протоколами. Например, можно использовать преобразующий мост, чтобы присоединить Ethernet к Token Ring, 10 Base T к 100 Base T или 100 Base TХ к 100 Base T4. Для мостов данного типа входящие пакеты поднимаются по стеку протоколов до подуровня МАС, где они лишаются своих заголовков протокола Канального уровня и передаются подуровню LLC. Затем данные инкапсулируются соответствующим протоколом для каждого порта, через который мост будет передавать выходящие пакеты. Указанное преобразование усложняет сам мост (и увеличивает его стоимость) и вносит задержку в передачу данных через весь сетевой комплекс, но остается эффективным решением для объединения отдельных сетей в единую область широковещания.
* Удаленные. Удаленный мост соединяет сетевые сегменты, расположенные на значительном расстоянии друг от друга, используя соединение глобальной сети, такое как модем или арендованная (выделенная) линия. Соединения глобальной сети обычно медленнее и дороже, чем соединения ЛВС. Мост сохраняет пропускную способность, минимизируя передаваемый через соединение трафик, и в то же время предоставляя обоим сегментам полный доступ к сети. Из-за разницы в скорости работы локальной и глобальной линий связи удаленный мост обычно имеет внутренний буфер для хранения полученных из ЛВС данных до тех пор, пока они не будут отправлены удаленному узлу сети.
15.3. Шлюзы
Шлюзы (Gateway) - программно-аппаратные комплексы, соединяющие разнородные сети или сетевые устройства. Шлюзы позволяет решать проблемы различия протоколов или систем адресации. Шлюз, в отличие от моста, применяется в случаях, когда соединяемые сети имеют различные сетевые протоколы. Поступившее в шлюз сообщение от одной сети преобразуется в другое сообщение, соответствующее требованиям следующей сети. 15.4. Маршрутизаторы
Маршрутизаторы (Router) - стандартные устройства сети, работающие на сетевом уровне и позволяющее переадресовывать и маршрутизировать пакеты из одной сети в другую. Он позволяет, например, расщеплять большие сообщения на более мелкие порции, обеспечивая тем самым взаимодействие локальных сетей с разным размером пакета. Маршрутизатор может пересылать пакеты на конкретный адрес (мосты могут только отфильтровывают ненужные пакеты), выбирать лучший путь для прохождения пакета. По определению - это устройство, соединяющее различные ЛВС и формирующее интерсеть. Также как и мост, маршрутизатор пропускает только информацию, предназначенную для сегмента, с которым он соединен. Однако, в отличие от повторителей и мостов, маршрутизаторы препятствуют прохождению широковещательных сообщений. Они могут объединять и сети различных типов (например, Ethernet и Token Ring), в то время как мосты и повторители могут интегрировать только однотипные сети или сетевые сегменты. Большинство людей представляет себе маршрутизаторы как дорогие, специализированные устройства для крупных корпоративных сетей. Во многих случаях это, конечно, совершенно верно, но маршрутизатор может также действовать и в значительно меньших масштабах. Если, например, домашний компьютер используется для связи по телефонной линии с системой, расположенной в офисе и доступа к ресурсам корпоративной сети, то офисная система функционирует как маршрутизатор. Маршрутизаторы зависят от протокола. Они должны поддерживать протокол Сетевого уровня, используемый каждым пакетом. Безусловно, наиболее широко применяемым сегодня протоколом Сетевого уровня является Internet Protocol (IP, межсетевой протокол), который лежит в основе Интернета и большинства частных сетей. Основная функция маршрутизатора - обработать каждый пакет, полученный от одной из сетей, к которым он подключен, и передать пакет дальше в пункт его назначения через другую сеть. Перед маршрутизатором стоит задача выбрать сеть, которая обеспечит лучший маршрут к месту его назначения для каждого пакета. Каждый маршрутизатор на пути пакета отмечается как транзит (hop), и конечная его цель состоит в том, чтобы доставить пакет с наименьшим количеством транзитов. 15.5. Брандмауэры
Межсетевые экраны (firewall, брандмауэры) - это программный и/или аппаратный барьер между двумя сетями, позволяющий устанавливать только авторизованные межсетевые соединения, реализующий контроль за поступающей в локальную сеть и выходящей из нее информацией, и обеспечивающие защиту локальной сети посредством фильтрации информации. Большинство межсетевых экранов построено на классических моделях разграничения доступа, согласно которым субъекту (пользователю, программе, процессу или сетевому пакету) разрешается или запрещается доступ к какому-либо объекту (файлу или узлу сети) при предъявлении некоторого уникального, присущего только этому субъекту, элемента. В большинстве случаев этим элементом является пароль. Для сетевого пакета таким элементом являются адреса или флаги, находящиеся в заголовке пакета, а также некоторые другие параметры. 15.6. Повторитель Представляет собой полностью электрическое устройство, которое увеличивает максимальную протяженность кабеля ЛВС путем усиления сигнала, проходящего через такое устройство. Концентраторы, используемые в сетях, основанных на топологии "звезда", иногда называют многопортовыми повторителями, поскольку сами по себе имеют способность к усилению сигнала. Автономные повторители могут применяться в сетях, созданных с использованием коаксиального кабеля, для увеличения протяженности этих сетей. Употребление повторителя с целью расширения сегмента сети не разделяет последний физически на две ЛВС и не образует сетевого комплекса. При передаче сигнала по кабелю он постепенно слабеет, пока не станет не различим. Чем длиннее кабель, тем слабее сигнал. Это ослабевание сигнала называется "затухание" и в той или иной степени является для всех типов кабеля. Эффект затухания зависит от типа кабеля. Медный кабель, например, значительно больше подвержен затуханию, чем оптоволоконный. Это одна из причин, по которой сегмент оптоволоконного кабеля может быть намного длиннее, чем сегмент медного. Стандарты, согласно которым создаются компьютерные сети, задают минимальную и максимальную длину кабеля, соединяющего компьютеры. Если необходимо проложить кабель на более длинную дистанцию, то для этого применяется приспособление, называемое повторителем (repeater),которое усиливает сигнал. Благодаря усилению сигнал преодолевает большее расстояние без затухания до той границы, где он становится не читаемым системой - получателем. Из-за своих чисто электрических функций повторитель функционирует только на Физическом уровне. Повторитель не может прочитать содержимое передаваемых по сети пакетов, даже если он знает, что это пакеты. Устройство просто усиливает входящие электрические сигналы и передает их дальше. Повторители также не могут выполнять какую - либо фильтрацию пересылаемых по сети данных. Как следствие, два сегмента, соединенных повторителем, формирует единую область коллизий. ( Областью коллизий или доменом коллизий называется часть сети, в которой рабочие станции и промежуточные узлы используют общую среду передачи). В современной сети очень редко можно увидеть отдельно стоящий повторитель. В большинстве случаев его функции встроены в другое устройство, такое как концентратор или коммутатор. В сети, проложенной коаксиальным кабелем, такой как тонкий или толстый Ethernet, отдельно стоящие повторители могут увеличить длину сегмента до 185 метров и выше (для тонкого Ethernet) или 500 метров (для толстого Ethernet). Этот тип повторителя представляет собой отдельное устройство, состоящее из корпуса с двумя разъёмами для коаксиального кабеля и штепселя для источника питания. Установка такого повторителя заключается в присоединении к нему двух сегментов кабеля. Существуют другие факторы, ограничивающие дистанцию прохождения сигнала. В сетях Ethernet, например, пакет, отправленный одним из компьютеров, должен достигнуть других компьютеров в локальной сети, прежде чем будет отправлен его последний бит. Таким образом, нельзя неограниченно удлинять сеть за счет увеличения количества повторителей. Путь в сети 10 Мбит/с Ethernet может иметь до пяти сегментов, соединенных четырьмя повторителями. Сети Fast Ethernet в этом смысле более ограничены, в них допускается применять не более двух повторителей. 15.7. Коммутатор
Коммутаторы - это революционные устройства, которые во многих случаях абсолютно устраняют необходимость наличия среды передачи данных. Коммутатор является многопортовым повторителем, как и концентратор, однако, вместо работы на чисто электрическом уровне он считывает адрес назначения каждого входящего пакета и передаёт его только через тот порт, с которым соединён компьютер - адресат. Коммутаторы могут функционировать на разных уровнях, объединяя сети с другими сетями или сетевыми комплексами.
Традиционная конфигурация интерсети включает несколько ЛВС, соединенных маршрутизаторами, для формирования сети, большей по размерам, чем это позволяет отдельная ЛВС. Это необходимо из-за того, что каждая ЛВС строится на основе сетевой среды передачи, которая используется совместно множеством компьютеров. Необходимо ограничить количество систем, которые могут разделять среду передачи, прежде чем сеть будет "забита" трафиком. Маршрутизаторы изолируют трафик в отдельных ЛВС, передавая только пакеты, адресованные системам в других ЛВС.
Маршрутизаторы применялись десятилетиями, но новый тип устройств, называемый коммутатор ЛВС (LAN switch), произвел революцию в проектировании сетей и сделал возможным создание ЛВС почти неограниченного размера. Коммутатор (или коммутирующий концентратор) по существу представляет собой многопортовое устройство-мост, у которого каждый порт связан с отдельным фрагментом сети. Внешне похожий на концентратор, коммутатор принимает входящий трафик через свои порты, но в отличие от концентратора, который передает исходящий трафик через все множество портов, коммутатор направляет трафик только через один порт, необходимый для достижения места назначения. Например, если имеется небольшая сеть рабочей группы, внутри которой каждый компьютер подключен к порту одного коммутирующего концентратора, то каждая система имеет соединение, равнозначное выделенному, с любой другой системой. В этом случае не существует совместно используемой сетевой среды передачи, и, соответственно, нет коллизий или перегруженности трафика. В качестве дополнительного бонуса, обеспечивается повышенная безопасность, поскольку отсутствие разделяемой среды передачи не позволяет неавторизованным рабочим станциям просматривать и захватывать трафик, не предназначенный им.
Коммутаторы функционируют на уровне эталонной модели OSI - Канальном уровне, соответственно, они используются для создания одной большой сети вместо нескольких небольших сетей, соединенных маршрутизаторами. Сказанное также означает, что коммутаторы могут поддерживать любой протокол Сетевого уровня. Подобно прозрачным мостам, коммутаторы могут изучать топологию сети и выполнять функции, идентичные пересылке и фильтрации пакетов. Некоторые коммутаторы также поддерживают полнодуплексные соединения и автоматическую регулировку скорости.
В традиционной схеме большого сетевого комплекса несколько ЛВС присоединяются к магистральной сети посредством маршрутизаторов. Магистральная сеть представляет собой ЛВС с разделяемой средой передачи, точно такую же, как и все остальные ЛВС. Тем не менее, она должна переносить весь трафик интерсети, вырабатываемый горизонтальными сетями.
Поэтому магистральная сеть, что естественно, использует более быстрый протокол. В сетях с коммутацией рабочие станции присоединяются к отдельным коммутаторам рабочих групп, которые, в свою очередь, соединяются с одним высокопроизводительным коммутатором. Таким образом, для любой системы в сети становится возможным установить выделенное соединение с любой другой системой. Эта схема может быть расширена дальше, так, чтобы так же включить промежуточный уровень коммутаторов подразделений. Серверы, к которым должны иметь доступ все пользователи, для лучшей производительности следует присоединять прямо к коммутатору подразделения или коммутатору верхнего уровня.
Замена концентраторов коммутаторами - это превосходный способ увеличить производительность сети без изменения протоколов или модификации отдельных рабочих станций. Даже "классическая" сеть Ethernet демонстрирует поразительное улучшение, когда каждая рабочая станция получает полную пропускную способность в 10 Мбит/сек. Несмотря на то, что большинство предлагаемых на рынке коммутаторов ЛВС разработаны для сетей Ethernet (или Fast Ethernet), также доступны коммутаторы для Token Ring и FDDI.
Сеть, целиком основанная на коммутации, обеспечивает прекрасную производительность, с другой стороны, коммутаторы намного дороже стандартных ретранслирующих концентраторов, и большинство сетей комбинирует эти две технологии для достижения золотой середины. Можно, например, присоединить стандартные концентраторы к портам коммутатора и разделять пропускную способность коммутируемого соединения между группами машин, чем распределять ее между несколькими дюжинами машин.
Функции сетевого адаптера
Плата сетевого адаптера в сочетании с драйвером обеспечивает выполнение функций протоколов Каналового уровня, используемых компьютером, подключенным к сети, такой как Ethernet или Token Ring, а также части функций Физичекого уровня. Помимо этого сетевой адаптер устанавливает связь между протоколом Сетевого уровня, который целиком и полностью реализуется средствами операционной системы, и сетевой средой передачи данных, в большинстве случаев являющейся кабелем, подсоединенных к адаптеру.
Сетевой адаптер и его драйвер осуществляют основные функции, необходимые для доступа компьютера к сети. Процесс пересылки данных состоит из следующих шагов (которые, естественно, при получении пакета располагаются в обратном порядке):
1. Передача данных. Данные, размещенные в оперативной памяти компьютера, передаются сетевому адаптеру через системную шину; при этом применяется одна из следующих технологий: прямой доступ к памяти (DMA), общая память или программируемый ввод/вывод.
2. Размещение данных в буфере. Скорость, с которой компьютер обрабатывает информацию, отличается от скорости передачи данных сети. Как следствие, плата сетевого адаптера содержит буферы памяти, которые используются для накопления и хранения данных с той целью, чтобы эти данные можно было обрабатывать порциями фиксированного объема. Обычная плата адаптера Ethernet имеет буфер размером 4 Кбайта, поделенный на части для передачи и приема, по 2 Кбайта каждая. Платы Token Ring и адаптеры Ethernet высокого класса могут обладать буфером размером 64 Кбайта и более, который может быть разбит на области для приема и передачи произвольным образом.
3. Создание кадра. Сетевой адаптер получает данные, упакованные протоколом Сетевого уровня, и инкапсулирует их кадр, который включает собственно заголовок Канального уровня и постинформацию. В зависимости от размера пакета и используемого протокола Канального уровня, адаптеру, возможно, также требуется поделить данные на сегменты соответствующего размера для передачи их в сеть. Кадры Ethernet, например, переносят 1500 байт данных, в то время как кадры Token Ring могут содержать сегменты размером до 4500 байт. Для входящего трафика сетевой адаптер считывает информацию в кадры Канального уровня, проверяет их на наличие ошибок и определяет, должен ли пакет быть предан следующему уровню протокольного стека. Если да, то адаптер удаляет оболочку кадра Канального уровня и передает вложенные данные протоколу Сетевого уровня.
4. Управление доступа к среде. Сетевой адаптер также несет ответственность за арбитраж доступа системы к общей среде передачи данных, что обеспечивается соответствующим механизмом управления доступом к среде. Нам известно, что необходимо предотвращать передачу данных по сети несколькими системами одновременно, так как бесконтрольная передача может привести к потере данных в результате возникновения коллизии пакетов. 5. Параллельное/последовательное преобразование. Системная шина, соединяющая сетевой адаптер и массив основной памяти компьютера, осуществляет обмен данными в параллель - по 16 или 32 бита одновременно, в то время как адаптер передает и принимает данные из сети последовательно - по одному биту. Сетевой адаптер отвечает за размещение получаемых параллельно данных в своем буфере и преобразование этих данных в последовательный поток битов для последующей передачи через сетевую среду. Для данных, получаемых из сети, описанный процесс носит обратный характер.
6. Кодирование/декодирование данных. Компьютер работает с данными в двоичной форме, поэтому, прежде чем они смогут быть переданы по сети, их необходимо закодировать способом, подходящим для сетевой среды передачи данных, а входящие сигналы должны быть, соответственно, декодированы при приеме. Рассматриваемый и следующий шаг являются процессами Физического уровня, реализуемыми непосредственно сетевым адаптером. Для медного кабеля данные переводятся в электрические импульсы, для оптововолоконной линии - преобразуются в световые импульсы. Другие среды передачи могут использовать радиоволны, инфракрасное излучение или иные технологии. Схема кодирования определяется протоколом Канального уровня. Например, в Ethernet применяется манчестерская перекодировка, а в сетях Token Ring - разностное манчестерское кодирование.
7. Прием/передача данных. На этом шаге сетевой адаптер усиливает сигнал до подходящей амплитуды и посылает закодированные им данные через сетевую среду. Это - чисто физический процесс, целиком и полностью зависящий от природы сигнала, используемого сетевой средой.
Сетевые информационные технологии
Компьютерные сети создаются для того, чтобы дать возможность территориально разобщенным пользователям обмениваться информацией между собой, совместно использовать одинаковые программы, общие информационные и аппаратные ресурсы. Компьютерные сети позволяют создать вычислительные структуры, которые обладают высокой производительностью.
Необходимость внедрения электронной почты, стремление к коллективному использованию разнообразных баз данных и аппаратных средств, потребность в проведении дискуссий и оперативных совещаний без отрыва от рабочих мест, желание повысить оперативность получения "свежей" информации подталкивает пользователей к подключению своих ЭВМ к сетям.
Сети появились в результате творческого сотрудничества специалистов вычислительной техники и техники связи.
Вычислительные сети чаще всего подразделяются на два вида: локальные и глобальные. Существуют корпоративные сети, которым одновременно присущи свойства и локальных, и глобальных сетей. Корпоративные сети доступны лишь ограниченному кругу лиц.
Локальная сеть (Local Area Network - LAN) имеет небольшую протяженность (до 10...20 км), характеризуется высокой скоростью передачи информации и низким уровнем ошибок. Глобальная сеть (Wide Area Network - WAN) может охватывать значительные расстояния - десятки тысяч километров. Когда-нибудь к глобальным сетям будут подключены компьютеры, расположенные на космических станциях и на других планетах Солнечной системы.
При классификации сетей можно считать, что если организация (или предприятие) является собственником канала связи (при этом канал связи является высокоскоростным), то это локальная сеть. Если же организация арендует низкоскоростные каналы связи (например, спутниковую линию связи), то это глобальная сеть.
Скорость передачи информации измеряется в битах в секунду (килобитах в секунду и т. д.). Иногда используется внесистемная единица - бод. При скорости 1 бод в канал связи передается один импульс каждую секунду, т. е. один бит.
Наименьшей системной единицей измерения скорости передачи информации является 1 бит/с.
Для работы в глобальной сети по аналоговым каналам требуется модем. Асинхронная передача каждого символа (буквы или цифры) осуществляется с помощью 10 бит (8 бит требуется для передачи символа и 2 бита служебных - стартовый и стоповый). Таким образом, при скорости передачи данных 56 000 бит/с в линию передается 5600 символов в секунду. При такой скорости передачи данных для пересылки двух страниц текста, содержащих по 3000 символов, потребуется чуть больше одной секунды.
Локальные сети
Один только глаз и один зуб имели грайи на всех троих.
По очереди пользовались они ими.
Н.А. Кун. "Легенды и мифы Древней Греции"
Локальная вычислительная сеть (ЛВС) - это такая вычислительная сеть, в которой компьютеры с подключенными к ним периферийными устройствами расположены в географически ограниченном пространстве, чаще всего в пределах промышленного или коммерческого предприятия, банка, библиотеки, научной организации, учебного заведения и т. п.
Локальные сети позволяют организовать совместное использование дорогостоящей аппаратуры, а также распределенную обработку данных на нескольких компьютерах. Это дает значительную экономию материальных средств и ускорение процесса обмена информацией. Например, при наличии на предприятии десяти ЭВМ не обязательно покупать десять лазерных принтеров. Можно купить один принтер, а локальная сеть предоставит доступ к нему для любой ЭВМ.
В локальной сети можно организовать коллективный доступ к жесткому диску большого объема, который установлен на единственной ЭВМ. Этим можно сэкономить средства за счет покупки винчестеров небольших объемов для каждой ЭВМ. В ЛВС достаточно установить один накопитель на оптических дисках, один плоттер, модем, а все ЭВМ данной сети будут иметь поочередный доступ к этим устройствам.
На жестких дисках многих ЭВМ записаны одинаковые программы (текстовые и графические редакторы, базы данных, электронные таблицы и т. п.). При подключении ЭВМ к локальной сети копии используемых программ можно хранить на диске одной ЭВМ. При этом дисковая память остальных компьютеров освобождается для решения собственных задач пользователей. При использовании ЛВС в учебном процессе удобно хранить методические указания на одном компьютере, доступ к которому имеют все остальные компьютеры сети.
ЛВС позволяет группе пользователей выполнять совместные проекты. Например, если несколько сотрудников должны использовать одну базу данных или бухгалтерскую программу, то эффективно решать такие задачи помогает локальная вычислительная сеть. Для этого обычно используются особые сетевые версии прикладных программ, специально предназначенные для работы в локальной сети и снабженные лицензией, которая дает право группового использования программы.
Сети характеризуются структурой (топологией). Под структурой локальной сети понимают определенный способ соединения ЭВМ линиями связи, то есть конфигурацию сети. Известны следующие структуры шинная, кольцевая, звездная и древовидная.
Существуют также структуры, образованные путем комбинации перечисленных структур.
Шинная структура характеризуется общедоступной линией связи, в качестве которой обычно используются витая пара проводов, коаксиальный или оптоволоконный кабель. Для нее характерны низкая стоимость подключения новых ЭВМ, простота управления, высокая гибкость и возможность простого расширения сети.
В кольцевой структуре сети ЭВМ последовательно соединены друг с другом однонаправленной замкнутой линией связи. Информация передается по кольцу (данные передаются как бы по эстафете). Такая структура требует более сложного управления, а включение новой ЭВМ приводит к временному разрыву кольца и прекращению работы сети.
Звездная структура предполагает наличие центрального компьютера (сервера), с которым связываются остальные ЭВМ (рабочие станции, клиенты). Сервер управляет сетью, определяет маршрут передачи сообщений. По основным характеристикам звездная структура уступает шинной структуре. В частности, ее применение требует повышенных затрат на прокладку линий связи.
Древовидная структура выглядит в виде ели, которая расширяется внизу. Отказ одного компьютера приводит к отказу лишь одной ветви, поэтому эта структура более надежна, чем кольцевая.
ЛВС бывают одноранговыми и с выделенными серверами.
Любая рабочая станция в одноранговой сети может выступать по отношению к другой станции как клиент или как сервер. В сети с выделенным сервером все клиенты общаются с центральным сервером. Легче всего представить сеть с выделенным сервером на примере звездной структуры сети. Все клиенты взаимодействуют друг с другом через сервер, который находится в центре звезды.
Каждый компьютер в составе ЛВС должен иметь следующие компоненты: сетевой адаптер (карту) и сетевую операционную систему (сетевые программы). Компьютеры ЛВС чаще всего соединены между собой проводом или коаксиальным кабелем. Существуют беспроводные локальные сети с инфракрасными или радиоволновыми линиями связи.
Функцией сетевого адаптера (сетевой карты) является передача и прием сигналов, циркулирующих по кабелям связи.
В настоящее время наибольшее распространение получил кабель на неэкранированной витой паре (UTP). Максимальное расстояние, на котором могут быть расположены компьютеры, соединенные с помощью UTP, достигает 300 м. Скорость передачи информации по такому кабелю составляет от 10 до 155 Мбит/с.
Кабель на экранированных витых парах (STP) позволяет передавать информацию со скоростью 16 Мбит/с на расстояние до 90 м. Экранированные кабели дороже по сравнению с UTP, но они обеспечивают лучшую защищенность от электромагнитного излучения.
Коаксиальный кабель хорошо защищен от мешающего электромагнитного излучения. Он позволяет передавать информацию на расстояние до 2000 м со скоростью 2-44 Мбит/с.
Волоконно-оптические кабели передают данные без повторителей на расстояние до 10 км со скоростью до 10 Гбит/с.
В этих кабелях средой для передачи информации служит оптоволокно. Оно представляет собой тонкую нить из стекла (или пластика).
Волоконно-оптический кабель соединяет между собой электронные системы, поэтому приходится преобразовывать электрический сигнал в световой сигнал и наоборот.
Таким образом, для создания ЛВС необходимо сделать определенные материальные затраты (приобрести адаптеры, кабель, сетевую операционную систему, выполнить монтаж, настройку и т. д.). Однако стоимость этих затрат оказывается меньше по сравнению с экономией, которая образуется из-за уменьшения числа приобретаемых лазерных принтеров, накопителей на оптических дисках, дорогих винчестеров, а также за счет появления новых возможностей быстрой и надежной передачи информации на значительные расстояния.
№ ВАРИАНТА№ ВОПРОСА1111515822126169331371710441481811551591912661610201377171111488181221599191331610102014417
Вопросы 1. Что такое компьютерная сеть? 2. Каковы основные задачи, решаемые при создании компьютерных сетей? 3. Что такое протоколы? Для чего они предназначены? 4. По какому принципу компьютерные сети делятся на локальные и глобальные? 5. Какой компьютер называется файловым сервером? 6. Что такое шлюзы? Какими могут быть шлюзы? 7. Что такое рабочие станции, сервер? 8. Что такое топология сети? Какие вы знаете топологии сетей? 9. Что такое технология клиент-сервер? 10. Что такое концентратор, маршрутизатор? 11. Почему компьютеры и устройства объединены в сеть?
12. Какая модель описывает уровни взаимодействия систем в компьютерных сетях?
13. С помощью каких каналов передачи данных может осуществляться связь между компьютерами?
14. Как могут быть классифицированы компьютерные сети?
15. Дайте характеристику локальной компьютерной сети. Приведите примеры.
16. Какие варианты топологий могут быть использованы для организации локальной сети?
17. Какие технологии лежат в основе управления локальными сетями?
18. Каково назначение устройства мост, шлюз? 19. Что такое технология файл-сервер?
20. Для чего служит сетевая карта? 1
Документ
Категория
Рефераты
Просмотров
1 365
Размер файла
2 308 Кб
Теги
локальные, сети
1/--страниц
Пожаловаться на содержимое документа