close

Вход

Забыли?

вход по аккаунту

?

Kursova TMO

код для вставкиСкачать
Міністерство освіти і науки, молоді та спорту України
Національний університет водного господарства та природокористування
Кафедра теплоенергетики та машинознавства
Пояснювальна записка до
курсової роботи
з дисципліни:
"Тепломасообмін"
ГЕ 31 19 00 14
Оцінка:
за 100 бальною шкалою _______
за стандартом ECTS _______
за стандартом МОНУ _______
____________ ___________
(Дата) (Підпис)
До захисту
____________ ___________
(Дата) (Підпис)
Виконав:
Студент 3-го курсу
ФГТБ та ГЕ, групи ГЕ-31
Романик Роман Романович
Перевірив:
ст.викладач Середа В.В.
Рівне 2012
ЗМІСТ
Вступ.................................................................................................3
1. Розрахунок теплообмінного апарату...........................................................4
1.1. Вибір швидкості гарячого теплоносія в трубах....................................4
1.2. Розрахунок витрат гарячого теплоносія.............................................4
1.3. Розрахунок площі поперечного перерізу трубки для гарячого теплоносія.5
1.4. Розрахунок кількості трубок в теплообмінному апараті........................6
1.5. Розрахунок фактичної швидкості руху гарячого теплоносія........................6
1.6. Розрахунок площі поперечного перерізу між трубного простору ТА........6
1.7. Розрахунок масової витрати холодного теплоносія...............................7
1.8. Розрахунок процесу теплообміну в теплообмінному апараті (перше наближення).................. ........................................................................................8
1.9. Розрахунок процесу теплообміну в теплообмінному апараті (друге наближення).....................................................................................12
1.10. Розрахунок довжини теплообмінного апарату....................................14
2. Розрахунок теплотраси..........................................................................16
2.1. Розрахунок гарячої гілки теплотраси............................................................16
2.2. Розрахунок холодної гілки теплотраси.............................................23
3. Розрахунок котла............................................................................29
3.1. Розрахунок втрат тепла з поверхні котла...........................................30
3.2. Визначення товщини ізоляції котла...............................................32
3.3. Внутрішній баланс котла.............................................................32
3.4. Розрахунок фактичних розмірів котла.............................................36
3.5. Розрахунок котла ( друге наближення)............................................37
Література.......................................................................................41
Н
Вступ
Теплообмін - це енергетичний обмін між об'єктами, які взаємодіють між собою в системі, що розглядаються, необхідною і достатньою умовою якої є різниця температур даних областей. Місцевим результатом теплообміну є вирівнювання різниці температур.
Теорія теплообміну визначає швидкість перенесення теплоти, а також температуру елементів системи для заданого проміжку часу. Розрізняють три способи передачі теплоти: теплопровідність, конвекція, випромінювання.
Теплообмінний апарат - це пристрій, в якому відбувається передача теплоти від гарячого теплоносія до холодного. За принципом дії всі теплообмінні апарати поділяються на: рекуперативні, регенеративні та змішуючи.
Подібно до процесів теплообміну масо обмін може відбуватись молекулярною та конвективною дифузією, які є складовими частинами теплообміну. Молекулярна дифузія - це процес переносу маси, який обумовлений тепловим рухом мікрочастинок.
Всі наведені вище процеси теплообміну повинні бути розглянуті в курсовій роботі з тепломасообміну для розрахунку геометричних розмірів та втрат тепла елементів теплової мережі, яка буде складатися з котла, теплотраси та теплообмінного апарату.
1.Розрахунок теплообмінного апарату (ТА)
Рис.1.1.Кожухотрубний, рекуперативний, одноходовий теплообмінний апарат безперервної дії:
1-корпус або кожух; 2-труби; 3-трубні решітки; 4-днища або кришки розподільчої камери; 5-фланці. 1-1- рух гарячого теплоносія; 1-2 рух холодного теплоносія.
1.1. Вибір швидкості гарячого теплоносія в трубах
Приймаємо швидкість руху гарячого теплоносія рівною ω_гт=2 м/с.
1.2. Розрахунок масової витрати гарячого теплоносія
Запишемо складову рівняння теплового балансу ТА з боку гарячого теплоносія:
Q=G_1∙C_P1∙(t_11-t_12 ), (1)
де G_1- масова витрата гарячого теплоносія, кг/с;
C_P1 - середня ізобарна теплоємність гарячого теплоносія, кДж/(кг∙К);
t_11- температура гарячого теплоносія на вході в ТА, ℃;
t_12- температура гарячого теплоносія на виході в ТА, ℃;
Визначаємо середньоарифметичне значення температури дітолілметану, ℃ 〖 t〗_p1=(t_11+t_12)/2; (2)
t_p1=(222+156)/2=189 ℃ . При цій температурі визначаємо фізичні властивості гарячого теплоносія (Тетракрезілоксилан)[1,табл.1, ст.26]:
"C" _"p1" │^189=3,36395 кДж/(кг∙К);
ρ_p1 │^189=995,358 кг/м^3 ;
〖 λ〗_P1 │^189=0,10699 Bт/(м∙К);
v_P1 │^189=1,5861∙〖10〗^(-6) м^2/с;
Pr_P1 │^189=47,417.
З рівняння (1) знаходимо масову витрату гарячого теплоносія:
G_1=29000/(3,36395∙(222-156) )=130,62 кг/с.
1.3 Розрахунок площі поперечного перерізу трубки для гарячого теплоносія
Масова витрата теплоносія з іншого боку буде записана через рівняння нерозривності потоку:
G_1=ω_гт∙f_1∙ρ_p1, (3)
де ω_гт- швидкість руху гарячого теплоносія, м/c;
f_1- площа поперечного перерізу трубки, м2;
ρ_p1-густина гарячого теплоносія, кг/м3;
З формули (3) знаходимо f_1:
f_1=130,62/(995,358 ∙2)=0,0656 м^2.
Для того, щоб визначити поперечний переріз однієї трубки теплообмінного апарату приймаємо діаметри, згідно [1,2.15.ст.110]:
внутрішній dвн=20 мм;
зовнішній dзов=24 мм;
товщина стінки трубки δ_ст=2 мм.
Визначаємо значення площі поперечного перерізу трубки для гарячого теплоносія:
f_тр=(π∙d_вн^2)/4 (4)
f_тр=(π∙〖0,02〗^2)/4=0,000314м^2.
1.4 Розрахунок кількості трубок в теплообмінному апараті
Теоретична кількість трубок в ТА рівна:
N_теор=f_1/f_тр , (5)
N_теор=0,0656/0,000314=209 шт.
Згідно[1,табл.2.13,ст..107] приймаємо стандартну кількість трубок в ТА рівною:
N_ст=232 шт.
Визначаємо крок між трубками в решітці:
S=(1,3÷1,6)∙d_зов, (6)
S=3,12∙38,4=35 мм .
Знаходимо внутрішній діаметр кожуха ТА:
D_вн=1,1∙S∙√(N_ст ), (7)
D_вн=1,1∙35∙√232=575 мм.
Округлюємо отримане значення до стандартного значення згідно ГОСТ 9617-79, [1,ст..108]. Приймаємо D_вн=0,6 м.
1.5 Розрахунок фактичної швидкості руху гарячого теплоносія
Фактична швидкість гарячого теплоносія буде рівною: ω_гт^ф=ω_гт∙N_теор/N_ст , (8)
ω_гт^ф=2∙209/232=1,874 м/с.
1.6 Розрахунок площі поперечного перерізу між трубного простору ТА
f_2=π/4∙(D_вн^2-N_ст∙d_зов^2 ), (9)
f_2=π/4∙(〖0,6〗^2-232∙〖0,024〗^2 )=0,182 м^2.
1.7. Розрахунок масової витрати холодного теплоносія
Знаходимо середньоарифметичну температуру холодного теплоносія (дітолілметан):
t_p2=(t_21+t_22)/2, (10)
t_p2=(45+92)/2=68,5 ℃.
При цій температурі визначаємо фізичні властивості дітолілметану, [1,табл.1, ст.26]:
"C" _"p2" │^(68,5 )=1,717 кДж/(кг∙К);
ρ_p2 │^(68,5 )=946,995 кг/м^3 ;
λ_P2 │^(68,5 )=0,12167 Вт/(м∙К);
v_P2 │^(68,5 )=1,97392∙〖10〗^(-6) м^2/с;
Pr_P2 │^(68,5 )=25,266.
Знаходимо масову витрату холодного теплоносія:
G_2=Q/(C_p2∙(t_22-t_21 ) ), (11)
G_2=29000/(1,717∙(92-45) )=359,36 кг/с.
Де "C" _"p2" - середня ізобарна теплоємність холодного теплоносія при середній температурі, кДж/(кг∙К) .
З рівняння нерозривності потоку знаходимо швидкість руху холодного теплоносія:
G_2=ω_XT∙ρ_p2∙f_2 , (12)
Де ρ_p2 - густина холодного теплоносія при середній температурі, кг/м^3 .
ω_XT=G_2/(ρ_p2∙f_2 )=359,36/(946,955∙0,182)=2,085 м/с.
1.8. Розрахунок процесу теплообміну в теплообмінному апараті (перше наближення).
1.8.1. Розрахунок теплообміну всередині трубок
Для цього використаємо формулу для примусового руху рідини всередині круглих,гладких труб. Для визначення режиму руху гарячого теплоносія знаходимо число Рейнольдса 〖Re〗_1=(ω_ГТ^Ф∙d_вн)/v_p1 , (13)
де v_p1 - коефіцієнт кінематичної в'язкості гарячого теплоносія при середній температурі, м^2/с.
〖Re〗_1=(1,874∙0,02)/(1,5861∙〖10〗^(-6) )=23630,3 ,
Оскільки Re>〖10〗^4, то режим руху турбулентний, тому критерій Нусельта визначається:
〖Nu〗_1=0,021∙〖Re〗^0,8∙〖Pr〗_p1^0,43∙(〖Pr〗_p1/〖Pr〗_ст1 )^0,25∙ε_l, (14)
де 〖Pr〗_p1 - число Прандля для гарячого теплоносія при середній температурі;
〖Pr〗_ст1 - число Прандля для гарячого теплоносія при температурі стінки, [1, табл.2, ст.26];
ε_l - коефіцієнт, що враховує зміну середнього коефіцієнта тепловіддачі по довжині труби, ε_l=1.
Приймаємо температуру зовнішньої поверхні стінки труби, для першого наближення: t_ст1^((I) )=(t_р1 ) ̅-5=189-5=184℃.
При температурі поверхні стінки визначаємо число Прандля гарячого теплоносія:
Pr_ст │^184=49,652.
Для першого наближення:
〖Nu〗_1^((I))=0,021∙〖23630,3〗^0,8∙〖47,417〗^0,43∙(47,417/49,652)^0,25∙1=344,1
Коефіцієнт тепловіддачі від гарячого до внутрішньої поверхні труби рівний:
■(α_1=&Nu)_1∙λ_p1/d_вн , (15)
α_1=344,1∙0,10699/0,02=1840,8 Вт/(м^2∙К) ,
де λp1 - коефіцієнт теплопровідності гарячого теплоносія при середній температурі, Вт/(м∙К) .
1.8.2. Розрахунок теплообміну ззовні трубок
Для розрахунку процесу теплообміну від зовнішньої поверхні стінки труби до холодного теплоносія визначаємо режим руху теплоносія:
〖Re〗_2=(ω_XT∙d_екв)/v_p2 , (16)
Re_2=(2,085 ∙0,039)/(1,97392∙〖10〗^(-6) )=41194,7.
де v_p2- коефіцієнт кінематичної в'язкості холодного теплоносія при середній температурі, м^2/с;
dекв - еквівалентний діаметр,м.
d_екв=(4∙f_2)/P, (17)
d_екв=(4∙0,182)/18,69=0,039м,
де Р - змочений периметр,м.
Р=π∙D_вн+π∙N_ст∙d_зов (18)
Р=π∙0,6+π∙223∙0,024=18,69 м
Так, як Re>2300, то режим руху холодного теплоносія турбулентний, тому число Нусельта визначається за формулою:
Nu_2=0.023∙Re^0.8∙Pr_p2^0.43∙(Pr_p2/Pr_ст2 )^0,25∙(1-exp(-А)), (19)
де Prp2 - число Прандля холодного теплоносія при середній температурі;
Prст2 - число Прандля холодного теплоносія при температурі стінки,[1, табл.2.2,ст.97];
Приймаємо температуру зовнішньої поверхні стінки труби, для першого наближення:t_cт2^((I) )=t_cт1^((I) )=184℃.
При температурі поверхні стінки визначаємо число Прандля холодного теплоносія: Pr_ст2 ⎢^184=5,5132.
А=4/π∙(S/d_зов )^2-1, (20)
де S - крок між трубної решітки,м.
А=4/π∙(0,035/0,024)^2-1=1,71м^2.
Тоді,
〖Nu〗_2^((I) )=0,023∙〖41194,7〗^0.8∙〖25,266〗^0,43∙(26,266/5,5132)^0,25∙(1-exp(-1,71))=543,7
Коефіцієнт тепловіддачі від зовнішньої поверхні трубки до холодного теплоносія буде рівним:
α_2=Nu_2∙λ_p2/d_екв , (21)
де λр2 - коефіцієнт теплопровідності холодного теплоносія при середній температурі, Вт/(м∙К).
α_2=543,7∙0,12167/0,039=1696,2 Вт/(м^2∙К).
1.8.3.Розрахунок коефіцієнта теплопередачі
Для першого наближення будемо мати:
k=1/(1/(α_1∙d_вн )+1/(2∙λ_mp )∙ln⁡〖d_зов/d_вн +1/(α_2∙d_зов )〗 ), (22)
де λmp - коефіцієнт теплопровідності матеріалу трубки при температурі стінки труби, Вт/(м∙К).
Приймаємо в якості матеріалу трубки - вуглецева сталь
Для даного сплаву λ_mp ⎪^184=46,672 Вт/(м∙К).
Тоді отримаємо:
k^((I) )=1/(1/(1840,8∙0,02)+1/(2∙46,672)∙ln⁡〖0.024/0.02+1/(1696,2∙0.024)〗 )=18,63 Вт/(м∙К).
1.8.4. Розрахунок температури стінок трубок
Температура внутрішньої поверхні стінки трубки буде рівна :
t_ст1=t_P1-(t_р1-t_р2 )∙R_l1/R_∑▒l . (23)
Де 〖R_l1〗^((I))- термічний опір внутрішньої поверхні стінки трубки, (м∙К)/Bт;
〖R_∑▒l〗^((I))- загальний термічний опір теплопередачі , (м∙К)/Bm .
R_l1=1/(α_1∙d_вн ), (24)
R_l1=1/(1840,8∙0,02)=0,027 (м∙К)/Bт,
R_∑▒l=1/k, (25)
R_∑▒l=1/18,63=0,054 (м∙К)/Bт,
Тоді,
t_ст1=189-(189-68,5)∙(0,027 )/0,054=128,8 ℃.
Температура зовнішньої поверхні стінки труби буде рівна :
t_ст2=t_P2+(t_P1-t_р2 )∙R_l2/R_∑▒l , (26)
де 〖R_l2〗^((II)) - теомічний опір зовнішньої поверхні стінки трубки , (м∙К)/Bm.
〖 R〗_l2=1/(α_2∙d_зов ), (27)
R_l2=1/(1696,2∙0,024)=0,025 (м∙К)/Bт.
Тоді,
t_ст2=68,5+(189-68,5)∙0,025/0,054 = 124,3 ℃,
Порівняємо отримані значення температур стінок з прийнятими :
|(t_ст1^((II) )-t_ст1)/(t_ст1^((II) ) )|∙100%<1%;
|(184-128,8)/128,8|∙100%=42,86%;
|(t_ст2^((II) )-t_ст2)/(t_ст2^((II) ) )|∙100%<1%;
|(184-124,3)/124,3|∙100%=48,03%.
Оскільки перше наближення температури стінки трубки відрізняється більш ніж на 1 %, то необхідно перезадати температури внутрішньої та зовнішньої поверхонь стінки трубки і провести розрахунок з п. 1.8
1.9. Розрахунок процесу теплообміну в теплообмінному апараті( друге наближення )
Для другого наближення приймаємо:
t_ст1^((2) )=128,8℃ ;
t_ст2^((2) )=124,3℃ .
При температурі поверхні стінки визначаємо число Прандля гарячого теплоносія:
Pr_ст1 │^█(128,8@)=74,33.
Для другого наближення число Нусельта за формулою (14):
〖Nu〗_1^((ІІ))=0,021∙〖23630,3〗^0,8∙〖47,417〗^0,43∙(47,417/74,33)^0,25∙1=311,1
Коефіцієнт тепловіддачі від гарячого до внутрішньої поверхні труби (15):
α_1=311,1∙0,10699/0,02=1664,2 Вт/(м^2∙К) ,
При температурі поверхні стінки визначаємо число Прандля холодного теплоносія:
Pr_ст2 ⎢^124,3=10,685.
Тоді, за формулою (19):
〖Nu〗_2^((I) )=0,023∙〖41194,7〗^0.8∙〖25,266〗^0,43∙(26,266/10,685)^0,25∙(1-exp(-1,71))=460,8
Коефіцієнт тепловіддачі від зовнішньої поверхні трубки до холодного теплоносія за формулою (21) буде рівним:
α_2=460,8∙0,12167/0,039=1437,6 Вт/(м^2∙К).
Приймаємо в якості матеріалу трубки - вуглецева сталь.
(t_ст ) ̅=(t_ст1+t_ст2)/2 ,
(t_ст ) ̅=(128,8+124,3)/2=126,55 ℃.
Для даного сплаву λ_mp ⎪^126,55=49,0849 Вт/(м∙К).
Тоді за формулою (22) отримаємо:
k^((II) )=1/(1/(1664,2∙0,02)+1/(2∙49,0849)∙ln⁡〖0,024/0,02+1/(1437,6∙0,024)〗 )=14,42 Вт/(м∙К).
Температура внутрішньої поверхні стінки трубки за формулою (23) буде рівна :
t_ст1=189-(189-68,5)∙0,03/0,061=129,7 ℃.
Температура зовнішньої поверхні стінки труби буде за формулою (26) рівна :
t_ст2=68,5+(189-68,5)∙0,029/0,061 = 125,8 ℃,
Порівняємо отримані значення температур стінок з прийнятими :
|(t_ст1^((II) )-t_ст1)/(t_ст1^((II) ) )|∙100%<1%;
|(128,8-129,7)/129,7|∙100%=0,7%;
Умова підтверджується. |(t_ст2^((II) )-t_ст2)/(t_ст2^((II) ) )|∙100%<1%;
|(124,3-125,8)/125,8|∙100%=1,21%.
Умова не підтверджується. 1.10. Розрахунок процесу теплообміну в теплообмінному апараті( третє наближення )
Для третього наближення приймаємо:
t_ст1^((2) )=129,7℃ ;
t_ст2^((2) )=125,8℃ .
При температурі поверхні стінки визначаємо число Прандля гарячого теплоносія:
Pr_ст1 │^█(129,7@)=73,9241.
Для третього наближення число Нусельта за формулою (14):
〖Nu〗_1^((ІІІ))=0,021∙〖23630,3〗^0,8∙〖47,417〗^0,43∙(47,417/73,9241)^0,25∙1=311,5
Коефіцієнт тепловіддачі від гарячого до внутрішньої поверхні труби (15):
α_1=311,5∙0,10699/0,02=1666,4 Вт/(м^2∙К) ,
При температурі поверхні стінки визначаємо число Прандля холодного теплоносія:
Pr_ст2 ⎢^125,8=10,49244
Тоді, за формулою (19):
〖Nu〗_2^((ІІІ) )=0,023∙〖41194,7〗^0.8∙〖25,266〗^0,43∙(26,266/10,49244)^0,25∙(1-exp(-1,71))=462,9
Коефіцієнт тепловіддачі від зовнішньої поверхні трубки до холодного теплоносія за формулою (21) буде рівним:
α_2=462,9∙0,12167/0,039=1444,1 Вт/(м^2∙К).
Приймаємо в якості матеріалу трубки - вуглецева сталь.
(t_ст ) ̅=(t_ст1+t_ст2)/2 ,
(t_ст ) ̅=(129,7+125,8)/2=127,75 ℃.
Для даного сплаву λ_mp ⎪^127,75=49,0345 Вт/(м∙К).
Тоді за формулою (22) отримаємо:
k^((IІI) )=1/(1/(1666,4∙0,02)+1/(2∙49,0345)∙ln⁡〖0,024/0,02+1/(1444,1∙0,024)〗 )=16,46 Вт/(м∙К).
Температура внутрішньої поверхні стінки трубки за формулою (23) буде рівна :
t_ст1=189-(189-68,5)∙0,03/0,061=129,7 ℃.
Температура зовнішньої поверхні стінки труби буде за формулою (26) рівна :
t_ст2=68,5+(189-68,5)∙0,029/0,061 = 125,8 ℃,
Порівняємо отримані значення температур стінок з прийнятими :
|(t_ст1^((II) )-t_ст1)/(t_ст1^((II) ) )|∙100%<1%;
|(129,7-129,7)/129,7|∙100%=0%;
Умова підтверджується. |(t_ст2^((II) )-t_ст2)/(t_ст2^((II) ) )|∙100%<1%;
|(125,8-125,8)/125,8|∙100%=0%.
Умова підтверджується. 1.11. Розрахунок довжини теплообмінного апарату Загальна довжина теплообмінного апарату знаходиться за формулою:
L=Q/(π∙k∙∆t), (28)
де k -коефіцієнт теплопередачі, Bm/(м∙К) ;
∆t - середній логарифмічний температурний напір для заданої схеми руху теплоносіїв, ℃.
При протитоці:
∆t=(∆t_б-∆t_м)/ln⁡〖(∆t_в)/(∆t_м )〗 , (29)
де ∆t_б ,∆t_м - більше і менше значення температурного напору , ℃.
∆t_б= 130℃ ;
∆t_м= 111℃.
∆t=(130-111)/ln⁡〖130/111〗 =120,3℃.
L=(29∙〖10〗^6)/(π∙16,46∙120,3)=4668,034 м.
Рис 1.2. Схема до визначення середнього логарифмічного температурного напору
Довжина однієї трубки теплообмінного апарату:
l=L/N_ст , (30)
l=4668,034/223=20,933 м.
Площа поверхні теплообміну визначається за формулою :
F=π∙N_ст∙l∙d_сер , (31)
де d_сер- середній діаметр трубки, м.
d_сер= (d_зов+d_вн)/2=0,022 м, (32)
F=π∙223∙20,933∙0,022=322,47 м^2.
2. Розрахунок теплотраси
Гаряча та холодна гілка теплотраси виконана в наземному виконанні.
Рис 2.1. Поперечний переріз теплотраси.
1-шар ізоляції; 2- труба; d_зов - зовнішній діаметр труби; d_вн - внутрішній діаметр труби; d_із - діаметр шару ізоляції. 2.1. Розрахунок гарячої гілки теплотраси
2.1.1. Розрахунок діаметру трубопроводу
З рівняння нерозривності потоку внутрішній діаметр трубопроводу рівний:
d_вн=√((4∙G_1)/(ω_1∙π∙ρ_1 ),) (33)
де G_1- масова витрата гарячого теплоносія, кг/с, ρ_1- густина гарячого теплоносія при температурі на вході в теплообмінний апарат, кг /м^3, [1, табл.2, ст.26];
ω_1- швидкість руху гарячого теплоносія, м/с.
Приймаємо швидкість руху гарячого теплоносія в трубі рівною ω_1=0,75 м/с.
ρ_1 │^222=967,82 кг/м^3,
d_вн=√((4∙130,62)/(0,75∙π∙967,82))=0,479 м.
Округлюємо отримані значення діаметру до стандартного значення, згідно ГОСТ 9617-79.
Приймаємо d_вн= 0,468 м; d_зов= 0,480 м; δ= 0,006 м.
Знаходимо діаметр шару ізоляції труби:
dіз =dзов+2δіз, (34)
де δ - товщина шару ізоляції теплотраси, м.
dіз =0,480+2∙0,19 = 0,86м.
Фактична швидкість руху гарячого теплоносія всередині труби:
ω1ф = 4G/(πρ_1 d_вн^2 ), (35)
ω1ф = (4∙130,62)/(π∙967,82∙〖0,468〗^2 )=0,78 м/с.
2.1.2. Розрахунок втрат тепла з поверхні трубопроводу
Задаємось температурою поверхні ізоляції:
tіз(1)=(3...15) +tпов , (36)
де tпов - температура повітря, °С.
Приймаємо tіз(1) = 8+10=18 °С.
Загальні втрати тепла з поверхні ізоляції:
Qіз=Qпр+Qк, (37)
де Qпр - втрати тепла променевим теплообміном, Вт; Qк - втрати тепла конвективним теплообміном, Вт. Втрати тепла променевим теплообміном рівні:
Qпр=ε∙С0∙F1м[〖(Т_із/100)〗^4-〖(Т_пов/100)〗^4 ], (38)
де ε - степінь чорноти поверхні ізоляції, ε = 0,3, [2, табл. 24, ст. 273];
С0 - коефіцієнт випромінювання абсолютного чорного тіла, С0 = 5,67Вт/(м^2*К^4 ) .
F1м - площа одного погонного метра труби, покритого ізоляцією, м;
〖 Т〗_із - температура поверхні ізоляції, К;
〖 Т〗_пов- температура повітря, К.
F1м = πdl=πdіз , (39)
F1м = π∙0,86=2,700 м^2,
Qпр =0,3∙5,67∙2,700∙[(291,15/100)^4-(283,15/100)^4 ]=34,75 Вт.
Втрати тепла конвективним теплообміном рівні:
Qk=αk∙F1м∙ (tіз-tпов), (40)
де αк - коефіцієнт тепловіддачі від поверхні ізоляції до повітря,Вт/(м^2*К) .
αк=Nu∙λ_пов/d_із , (41)
де: Nu - критерій Нусельта;
λ_пов- коефіцієнт теплопровідності повітря при температурі tпов=10°С,Вт/(м*К), [2, табл. 9, ст. 263].
λпов|10=2,51∙〖10〗^(-2 ) Вт/м∙К.
Визначаємо режим руху повітря, що набігає на теплотрасу.
Число Рейнольдса буде рівним:
Re=(w_пов∙d_із)/v_пов , (42)
де w_пов - швидкість вітру що набігає на теплотрасу, м/с;
v_пов- коефіцієнт кінематичної в'язкості повітря при температурі tпов=10°С, м2/с, [2, табл. 9, ст. 263].
vпов|10=14,16∙〖10〗^(-6) м^2/с .
Re=(1,8∙0,86)/(14,16∙〖10〗^(-6) )=109322 .
Так як Re>〖10〗^4 то режим руху перехідний і критерій Нусельта визначається за формулою:
Nu=0,26∙Re^0,6∙Pr^0,37∙ε_l∙ε_φ∙(Pr/Prст)^0,25,(43)
де Pr- число Прандля для повітря при температурі tпов =10°С [2, табл. 9, ст. 263];
Pr - число Прандля для повітря при температурі поверхні ізоляції, [2, табл. 9, ст. 263];
ε_l - поправочний коефіцієнт, що враховує відстань між трубами, приймаємо ε_l=1;
ε_φ - поправочний коефіцієнт, що враховує кут набігання повітря на теплотрасу, [2, ст. 138].
Prпов|10=0,705;
Prпов|18=0,7034.
При φ=〖56〗^0, ε_φ= 0,906
Nu=0,26∙〖109322〗^0,6∙〖0,705〗^0,37∙0,906∙(0,705/0,7034)^0,25=218,48
α_к=218,48∙(2,51∙〖10〗^(-2))/0,86=6,38 Вт/(м^2∙К)
Q_k=6,38∙2,700∙(18-10)=137,8 Вт.
Тоді:
Q_із^((I))=34,75 +137,8=172,55 Вт.
Визначаємо середню температуру ізоляції:
(t_із ) ̅=(t_11+t_із)/2, (44)
(t_із ) ̅=(222+18)/2=120 ℃.
Для ньювельної ізоляції коефіцієнт теплопровідності визначається за формулою :
λ_із=0,87+0,000064∙(t_із ) ̅, (45)
λ_із=0,87+0,000064∙120=0,8777 Вт/(м∙К).
Знаходимо термічний опір ізоляції:
R_із=1/(2∙π∙λ_із )∙ln⁡〖d_із/d_зов 〗, (46)
R_із=1/(2∙π∙0,8777)∙ln⁡〖0,86/0,48〗=0,1058 (м∙К)/Вт.
Визначаємо критичне значення термічного опору ізоляції за формулою:
R_кр=(t_із-t_пов)/Q_із , (47)
R_кр=(18-10)/172,55=0,0464 (м∙К)/Вт.
Перевіряємо правильність прийняття температури поверхні ізоляції, для чого записуємо рівняння теплового балансу:
(t_11-t_пов)/(R_із+R_кр )=(t_11-t_із)/R_із ,
t_із=t_11-(R_із∙(t_11-t_пов))/(R_із+R_кр ), (48)
t_із=222-(0,1058∙(222-10))/(0,1058+0,0464 )=74,6 ℃.
Порівнюємо отримане значення з прийнятим:
|t_із^((I))-t_із |/(t_із^((I)) )∙100%<0,5% , (49)
|18-74,6|/74,6∙100%=75,87%.
Оскільки перше наближення температури поверхні ізоляції відрізняється більше ніж 0,5% то необхідно перездати температуру поверхні ізоляції і провести розрахунок спочатку.
Приймаємо друге наближення поверхні ізоляції t_із^((II))=74,6 ℃.
Згідно (38) втрати тепла променевим теплообміном будуть рівні:
Q_пр^((II)) =0,3∙5,67∙2,700∙[(347,75/100)^4-(283,15/100)^4 ]=375,89 Вт.
При прийнятій поверхні ізоляції число Прандля рівне:
Pr_пов |^74,6=0,69308.
Критерій Нусельта визначаємо за формулою (43):
Nu=0,26∙〖109322〗^0,6∙〖0,705〗^0,37∙0,906∙(0,705/0,69308)^0,25=219,28
Коефіцієнт тепловіддачі визначаємо за формулою (41):
α_к=219,28∙(2,51∙〖10〗^(-2))/0,86=6,4 Вт/(м^2∙К)
Втрати тепла конвективним теплообміном визначаємо за формулою (40):
Q_к^((II))=6,4∙2,700∙(74,6-10)=1116,3 Вт.
Загальні втрати тепла з поверхні ізоляції визначаються за формулою (37):
Q_із^((II) )=375,89 +1116,3=1492,19 Вт.
Визначаємо середню температуру ізоляції за формулою (44):
(t_із ) ̅=(222+74,6)/2=148,3 ℃.
Для азбозуритної ізоляції коефіцієнт теплопровідності визначається за формулою (45) :
λ_із=0,87+0,000064∙148,3=0,8795 Вт/(м∙К).
Знаходимо термічний опір ізоляції за формулою (46):
R_із=1/(2∙π∙0,8795)∙ln⁡〖0,86/0,48〗=0,1056 (м∙К)/Вт.
Критичне значення термічного опору ізоляції визначається за формулою (47):
R_кр=(74,6-10)/1492,19=0,0433 (м∙К)/Вт.
Перевіряємо правильність прийняття температури поверхні ізоляції за формулою (48):
t_із=222-(0,1056 ∙(222-10))/(0,1056 +0,0433)=71,6 ℃,
|t_із^((II))-t_із |/(t_із^((II)) )∙100%<0,5% ,
|74,6-71,6|/71,6∙100%=4,19%.
Оскільки друге наближення температури поверхні ізоляції відрізняється більше ніж 0,5% то необхідно перездати температуру поверхні ізоляції і провести розрахунок спочатку.
Приймаємо третє наближення поверхні ізоляції t_із^((IIІ))=71,6 ℃.
Згідно (38) втрати тепла променевим теплообміном будуть рівні:
Q_пр^((IІI))=0,3∙5,67∙2,700∙[(344,75/100)^4-(283,15/100)^4 ]=353,05 Вт.
При прийнятій поверхні ізоляції число Прандля рівне:
Pr_пов |^71,6=0,69368.
Критерій Нусельта визначаємо за формулою (43):
Nu=0,26∙〖109322〗^0,6∙〖0,705〗^0,37∙0,906∙(0,705/0,69368)^0,25=219,24
Коефіцієнт тепловіддачі визначаємо за формулою (41):
α_к=219,24∙(2,51∙〖10〗^(-2))/0,86=6,4 Вт/(м^2∙К)
Втрати тепла конвективним теплообміном визначаємо за формулою (40):
Q_к^((IІI))=6,4∙2,700∙(71,6-10)=1064,4 Вт.
Загальні втрати тепла з поверхні ізоляції визначаються за формулою (37):
Q_із^((IІI) )=353,05 +1064,4=1417,45 Вт.
Визначаємо середню температуру ізоляції за формулою (44):
(t_із ) ̅=(186+71,6)/2=146,8 ℃.
Для азбозуритної ізоляції коефіцієнт теплопровідності визначається за формулою (45) :
λ_із=0,87+0,000064∙146,8=0,8794 Вт/(м∙К).
Знаходимо термічний опір ізоляції за формулою (46):
R_із=1/(2∙π∙0,8794)∙ln⁡〖0,86/0,48〗=0,1056 (м∙К)/Вт.
Критичне значення термічного опору ізоляції визначається за формулою (47):
R_кр=(71,6-10)/1417,45=0,0435 (м∙К)/Вт.
Перевіряємо правильність прийняття температури поверхні ізоляції за формулою (48):
t_із=222-(0,1056 ∙(222-10))/(0,1056 +0,0435)=71,9 ℃,
|t_із^((II))-t_із |/(t_із^((II)) )∙100%<0,5% ,
|71,6-71,9|/71,9∙100%=0,42%.
Умова виконується.
2.1.3. Втрати тепла з гарячої гілки теплотраси
Визначаємо втрати тепла з гарячої гілки теплотраси за формулою:
Q_ГГ=(t_11-t_із)/R_із ∙L, (50)
де L- довжина теплотраси, м.
Q_ГГ=(222-71,9)/0,1056∙980=1392973,5 Вт.
2.1.4. Критичний діаметр ізоляції
Критичний діаметр ізоляції гарячої гілки теплотраси визначаємо по формулі:
d_із^кр=(2∙λ_із)/α_к , (51)
d_із^кр=(2∙0,8794)/6,4=0,275 м.
2.2. Розрахунок холодної гілки теплотраси 2.2.1. Розрахунок діаметру трубопроводу
З рівняння нерозривності потоку внутрішній діаметр трубопроводу рівний:
d_вн=√((4∙G_I)/(ω_2∙π∙ρ_2 )), (52)
де ρ_2 - густина гарячого теплоносія при температурі на виході з теплообмінного апарату, кг/м^3, [1, табл2, ст. 26];
ω_2 - швидкість руху гарячого теплоносія, м/с.
Приймаємо швидкість руху гарячого теплоносія в трубі рівною ω_2=0,75м/с.
〖ρ_2 |〗^156=1021,032 кг/м^3 ;
d_вн=√((4∙130,62)/(0,75∙π∙1021,032))=0,466 м.
Округляємо отримані значення діаметру до стандартного значення, згідно ГОСТ 9617-79.
Приймаємо d_вн= 0,468 м; d_зов= 0,480 м; δ= 0,006 м.
Знаходимо діаметр шару ізоляції труби згідно (34):
dіз =0,480+2∙0,19 = 0,86 м.
Фактична швидкість руху гарячого теплоносія всередині труби:
ω_2^ф=(4∙G_1)/(π∙ρ_2∙〖d_вн〗^2 ) (53)
ω_2^ф=(4∙130,62)/(π∙1021,032∙〖0,468〗^2 )=0,74 м/с.
2.2.2. Розрахунок втрат тепла з поверхні трубопроводу
Задаємось температурою поверхні ізоляції: 〖 t〗_із=(3...15)+t_пов (54) де t_із- температура повітря, °С.
Приймаємо: t_із=71,9℃
Втрати тепла з холодної гілки трубопроводу будуть складатися з втрат тепла променевим теплообміном та втрат тепла конвективним теплообміном.
Площа одного погонного метра труби для холодної гілки теплотраси, що покрита ізоляцією згідно (39) буде рівна:
F_1м=π∙86=2,700 м^2.
Втрати тепла променевим теплообміном згідно (38) рівні:
Q_пр^((I))= 0,3∙5,67∙2,700∙[(345,05/100)^4-(283,15/100)^4 ]=355,3 Вт.
При прийнятій температурі поверхні ізоляції число Прандля рівне:
Pr_пов |^71,9=0,7054.
Згідно (42) Число Рейнольдса буде рівним:
Re=(1,8∙0,86)/(14,16∙〖10〗^(-6) )=109322 .
Критерій Нусельта визначаємо за формулою (43):
Nu=0,26∙〖109322〗^0,6∙〖0,705〗^0,37∙0,906∙(0,705/0,69368)^0,25=219,24
Коефіцієнт тепловіддачі визначаємо за формулою (41):
α_к=219,24∙(2,51∙〖10〗^(-2))/0,86=6,4 Вт/(м^2∙К)
Втрати тепла конвективним теплообміном визначаємо за формулою (40):
Q_k=6,4∙2,700∙(71,9-10)=1069,6 Вт.
Тоді:
Q_із^((I))=355,3 +1069,6=1424,9 Вт.
Визначаємо середню температуру ізоляції за формулою (44):
(t_із ) ̅=(156+71,9)/2=113,95 ℃.
Для нювельної ізоляції коефіцієнт теплопровідності визначається за формулою λ_із=0,87+0,000064∙113,95=0,8773 Вт/(м∙К). (45)
Знаходимо термічний опір ізоляції за формулою (46):
R_із=1/(2∙π∙0,8873)∙ln⁡〖0,86/0,48〗=0,1058 (м∙К)/Вт.
Визначаємо критичне значення термічного опору ізоляції за формулою (47):
R_кр=(71,9-10)/1424,9=0,0434 (м∙К)/Вт.
Перевіряємо правильність прийняття температури поверхні ізоляції за формулою (48):
t_із=156-(0,1058 ∙(156-10))/(0,1058+0,0434)=52,5 ℃.
Порівнюємо отримане значення з прийнятим:
|t_із^((I))-t_із |/(t_із^((I)) )∙100%<0,5% , (49)
|71,9-52,5|/52,5∙100%=36,95%.
Умова не виконується. Задаємось другим наближенням. t_із=52,5 ℃
Втрати тепла променевим теплообміном згідно (38) рівні: Q_пр^((IІ))= 0,3∙5,67∙2,700∙[(325,65/100)^4-(283,15/100)^4 ]=220,96 Вт.
Втрати тепла конвективним теплообміном визначаємо за формулою (40):
Q_k=6,4∙2,700∙(52,5-10)=734,4 Вт.
Тоді:
Q_із^((I))=220,96+734,4=955,36 Вт.
Визначаємо середню температуру ізоляції за формулою (44):
(t_із ) ̅=(156+52,5)/2=104,25 ℃.
Для ньювельної ізоляції коефіцієнт теплопровідності визначається за формулою :
λ_із=0,87+0,000064∙104,6=0,8767 Вт/(м∙К). (45)
Знаходимо термічний опір ізоляції за формулою (46):
R_із=1/(2∙π∙0,8767)∙ln⁡〖0,86/0,48〗=0,1059 (м∙К)/Вт.
Визначаємо критичне значення термічного опору ізоляції за формулою (47):
R_кр=(52,5-10)/(971,91 )=0,0445 (м∙К)/Вт.
Перевіряємо правильність прийняття температури поверхні ізоляції за формулою (48):
t_із=156-(0,1059 ∙(156-10))/(0,1059+0,0445)=53,2℃.
Порівнюємо отримане значення з прийнятим:
|t_із^((I))-t_із |/(t_із^((I)) )∙100%<0,5% , (49)
|52,5-53,2|/53,2∙100%=1,32%.
Так як розходження більше 0,5% умова не виконуєть. Задаємось третім наближенням. t_із=53,2 ℃
Втрати тепла променевим теплообміном згідно (38) рівні: Q_пр^((IІІ))= 0,3∙5,67∙2,700∙[(325,45/100)^4-(283,15/100)^4 ]=225,41 Вт.
Втрати тепла конвективним теплообміном визначаємо за формулою (40):
Q_k=6,4∙2,700∙(52,3-10)=746,5 Вт.
Тоді:
Q_із^((IІІ))=225,41+746,5=971,91 Вт.
Визначаємо середню температуру ізоляції за формулою (44):
(t_із ) ̅=(156+53,2)/2=104,6 ℃.
Для азбозуритної ізоляції коефіцієнт теплопровідності визначається за формулою :
λ_із=0,87+0,000064∙104,6=0,8767 Вт/(м∙К). (45)
Знаходимо термічний опір ізоляції за формулою (46):
R_із=1/(2∙π∙0,8767)∙ln⁡〖0,86/0,48〗=0,1059 (м∙К)/Вт.
Визначаємо критичне значення термічного опору ізоляції за формулою (47):
R_кр=(52,3-10)/(971,91 )=0,0444 (м∙К)/Вт.
Перевіряємо правильність прийняття температури поверхні ізоляції за формулою (48):
t_із=156-(0,1059 ∙(156-10))/(0,1059+0,0444)=53,1℃.
Порівнюємо отримане значення з прийнятим:
|t_із^((I))-t_із |/(t_із^((I)) )∙100%<0,5% , (49)
|53,2-53,1|/53,1∙100%=0,19%.
Умова виконується.
2.2.3. Втрати тепла з холодної гілки теплотраси
Визначаємо втрати тепла з холодної гілки теплотраси за формулою:
Q_хг=(t_12-t_із)/(R_із^ )∙L, (58)
де L - довжина теплотраси, м.
Q_хг=(156-53,1)/0,1059∙980=952238 Вт.
2.2.4. Критичний діаметр ізоляції.
Критичний діаметр ізоляції холодної гілки теплотраси визначаємо по (51):
d_із^кр=(2∙0,8767 )/6,4=0,274 м.
3. Розрахунок котла
Умовно приймаємо котел прямокутної форми зі стороною котла а, висота котла 2·а. Втратами тепла зверху та знизу котла нехтуємо, а тому площі верхньої та нижньої стінок котла при розрахункуплощі котла враховувати не будемо.
Рис. 3.1 Схема розрахунку котла.
Приймаємо: сторона котла а=5 м, висота〖 b〗^((I))=2∙5=10 м. Тоді площа поверхні котла та його об'єм будуть рівні:
F_к=8∙а^2, (59)
V_к=2∙а^3, (60)
F_к=8∙5^2=200 м^2,
V_к=2∙5^3=250 м^3.
Середньоарифметична температура стінки котла:
(t_ст ) ̅=(t_(11+) t_12)/2; (61)
де t_(11+) t_12 - температура гарячого теплоносія на вході та виході з теплообмінного апарату.
(t_ст ) ̅=(222+156)/2=189 ℃.
3.1. Розрахувати сумарні втрати тепла з поверхні котла.
Сумарні втрати тепла з поверхні котла складаються з втрат променевим та конвекційним теплообміном:
Q_із=Q_пр+Q_кон , (62)
де Q_пр, Q_кон - втрати тепла променевим та конвекційним теплообміном, Вт.
Втрати тепла променевим теплообміном рівні:
Q_пр=ε∙C_0∙F_к∙[(T_пк/100)^4-(T_кон/100)^4 ], (63)
де - степіньчорнотистінки котла (=0,8);
- коефіцієнтвипромінювання абсолютного чорноготіла (=5,67 );
T_пк- абсолютна температура зовнішньоїповерхні котла,;
T_кон- абсолютна температура повітря в котельні, .
Q_пр=0,8∙5,67∙200∙[(312,15/100)^4-(302,15/100)^4 ]=10517,9 Вт.
Втрата тепла конвективнимтеплообміномбудутьрівні:
Q_кон=α_k∙F_k∙(t_пк-t_кот ), (64)
де - коефіцієнттепловіддачі котла до повітря, ,
α_k=Nu∙λ_кот/b, (65)
де - критерійНусельта;
- коефіцієнт теплопровідності повітря при температури в котельні, ,2, табл.9, ст.263;
- висота котла, м.
λ_кот │^29=2,662∙〖10〗^(-2) Вт/(м∙К).
Для знаходження критерію Нусельта використовуємо рівняння теплопровідності при природній конвекції біля горизонтальних, плоских поверхонь розміром a × b Якщо a<b
Визначаємо число Грасгофа:
Gr=(g∙b^3∙∆t∙β)/(v_кот^2 ), (66)
де - прискорення вільного падіння (9,81 );
- температурний напір між стінкою котла та повітрям, ;
- коефіцієнт температурного розширення, ;
- коефіцієнт кінематичної в'язкості повітря при температурі в котельні, ,2, табл.9, ст.263;
v_кот │^28=15,906∙〖10〗^(-6) м^2/с.
Δt=|t_пк-t_кот | (67)
β=1/T_кот (68)
∆t=|39-29|=10 ℃,
β=1/302=0,0033 1/К,
Gr=(9,81∙〖10〗^3∙10∙0,0033)/(15,906∙〖10〗^(-6) )^2 =1,27956∙〖10〗^12.
Визначаємо число Прандля при температурі повітря в котельні:
Pr_кот │^29=0,7012.
Gr∙Рг, то число Нусельта визначається за формулою:
Nu=0,15·〖(Gr·Pr)〗^(1/3), (69) Nu=0,15∙〖(1,27956∙〖10〗^12∙0,7012)〗^(1/3)=1446,746
α_k=1446,746∙(2,662∙〖10〗^(-2))/10=3,8512 Вт/(м∙К),
Q_кон=3,8512∙200∙(39-29)=7702,4 Вт,
Q_із=10517,9+7702,4 =18220,3 Вт.
3.2. Визначення товщини ізоляції котла
Q_із=λ_із/δ_із ·F_k·((t_ст ) ̅-t_пк). (70)
де - коефіцієнт теплопровідності поверхні ізоляції, Вт/(м·К);
- товщинаізоляції, м.
Для поверхні ізоляції (азбослюда) коефіцієнт теплопровідності визначається за формулою:
λ_із=0,12+0,000148∙t_із, (71)
де - середньоарифметична температура поверхні ізоляції котла, °С. t ̅_із=(t_пк+(t_ст ) ̅)/2 (72)
t ̅_із=(39+189)/2=114 ℃,
λ_із=0,12+0,000148∙114=0,13687 Вт/(м∙К).
Із (70) товщина ізоляції рівна:
δ_із=(λ_із·F_k)/Q_із ·((t_ст ) ̅-t_пк). (73) δ_із=(0,13687∙200)/(18220,3 )∙(189-39)=0,225 м.
3.3. Внутрішній баланс котла
Внутрішній баланс котла рівний:
Q_нф=Q_кф+Q_пф (74)
де - тепло, що утворилося при згорянні палива, МВт; - тепло, що втрачається за рахунок конвективного теплообміну, - тепло, що втрачається за рахунок променевого теплообміну, МВт.
3.3.1. Знаходження конвективної складової балансу Q_із=α_кф·F_k·(t_ф-(t_ст ) ̅). (75)
де - середньоінтегральне значення коефіцієнта тепловіддачі від димових газів до стінок котла,Вт/(м∙К) ;
- температура факелу, °С.
Визначаємо фізичні властивості димових газів при температурі t_ф=1180℃, [2, табл. 16, ст. 270-271].
λ_г │^905=0,10045 Вт/(м∙К);
v_г │^905=153,59∙〖10〗^(-6) м^2/с;
Pr_г │^905=0,5895.
λ_ГАЗ=λ_Г∙M_λ, (76)
ν_ГАЗ=υ_Г∙M_υ, (77)
Pr_ГАЗ=Pr_Г∙M_Pr, (78)
де М_λ, М_ν,М_Pr, - поправочні коефіцієнти, що враховують відхилення об'ємного складу продуктів згоряння від середнього, вибирається з графіків залежності від температури факелу та об'ємної долі водяної пари (r_(H_2 O)), з [4]. M_λ=1,02091; М_ν=1,009431; М_Pr=1,01668.
λ_ГАЗ=0,10045∙1,02091=0,10255 Вт/(м∙К),
v_ГАЗ=153,59∙〖10〗^(-6)∙1,009431=155∙〖10〗^(-6) м^2/с, Pr_ГАЗ=0,5895·1,01668=0,5993.
Визначаємо режим руху димових газів в середині котла.
Число Рейнольдсарівне:
Re=(W_газ∙b)/ν_газ , (79)
де w - швидкість руху димових газів, що омивають внутрішню поверхню котла.
Приймаємо w_ГАЗ= 20 м/с .
Re=(20∙10)/(155∙〖10〗^(-6) )=1290323.
Так як Re^((I))>5∙〖10〗^5, то режим руху димових газів турбулентний.
Для турбулентного режиму руху критерій Нусельта визначається по формулі:
Nu=0,037∙Re^0,8∙Pr_ГАЗ^0,43∙(Pr_ГАЗ/Pr_(сm(ГАЗ)) )^0,25, (80)
де Pr_(сm(ГАЗ)) число Прандля димових газів при температурі tст=189℃, [2, табл. 16, ст. 270-271].
Pr_ст │^189=0,6722;
Pr_(сm(ГАЗ))=0,6722∙1,01668.=0,68341,
Nu=0,037∙〖1290323〗^0,8∙〖0,5993〗^0,43∙(0,5993/0,68341)^0,25=2222,7.
Коефіцієнт тепловіддачі визначаємо за формулою:
α=Nu∙λ_ГАЗ/b, (81)
α=2222,7∙0,10255/10=22,794 Вт/(м∙К) .
Середнє інтегральне значення коефіцієнта тепловіддачі рівне:
α_кф=1,25∙α, (82)
α_кф=1,25∙22,794=28,493 Вт/(м∙К),
Q_кф=28,493∙200∙(950-189)=4,0802 МВт.
3.3.2. Розрахунок степеня чорноти димових газів
Визначаємо ефективну довжину факелу всередині топки котла:
l_ф=3,6∙V_k/F_k , (83)
l_ф=3,6∙250/200=4,5 м.
Розраховуємо парціальні тиски двоокисувуглецю і водяної пари:
P_(co_2 )=P_k∙r_(co_2 ), (84)
P_(H_2 O)=P_k∙r_(H_2 O), (85)
де P_k - тиск димових газів в котлі, МПа;
r_(co_2 ),r_(H_2 O) - відповідно об'ємна доля двоокису вуглецю та водяної пари в факелі.
P_(co_2 )=0,107∙0,18=0,01926 МПа,
P_(H_2 O)=0,107∙0,14=0,01498 МПа.
Визначаємо добуток парціального тиску на ефективну довжину факелу відповідно для двоокисувуглецю та водяної пари: P_(co_2 )∙l_ф^((I))=0,01926∙450=8,667 МПа∙см=88,38 ат∙см;
P_(H_2 O)∙l_ф^((I))=0,01498∙450=3,741 МПа∙см=68,74 ат∙см .
Визначаємо ступінь чорноти двоокису вуглецю та водяної пари при заданій температурі факелу tф=1180℃, [3, ст. 388-389]:
ε_(co_2)^((I))=0,203274; ε_(H_2 O)^((I))=0,28236.
Знаходимо граничне значення степенів чорноти двоокису вуглецю та водяної пари при температурі факелу tф=1180℃, [3, ст. 390]:
ε_(co_2)^∞=0,31475; ε_(H_2 O)^∞=0,64865.
Визначаємо ступінь чорноти газу:
〖 ε〗_Г=ε_(co_2 )+ε_(H_2 O)-ε_(co_2 )∙ε_(H_2 O), (86)
ε_Г=0,203274+0,28236-0,203274∙0,28236=0,4282.
Гранична степінь чорноти газу рівна:
ε_Г^∞=ε_(co_2)^∞+ε_(H_2 O)^∞-ε_(co_2)^∞∙ε_(H_2 O)^∞, (87)
ε_Г^∞=0,31475+0,64865-0,31475∙0,64865=0,7592.
Визначаємо приведену степінь чорноти газу:
ε_пр=((ε_Г^∞)/ε_Г +1/ε_0 -1)^(-1), (88)
де ε_0 - степінь чорноти внутрішньої поверхні стінки котла. Приймаємо ε_0=0,85.
ε_пр=(0,7592/0,4282+1/0,85-1)^(-1)=0,513.
3.3.3 Розрахунок променевої складової балансу.
Кількість теплоти, втрачена за рахунок випромінювання:
Q_пф=C_0∙F_k∙ε_пр∙[(T_ф/100)^4-(T_ст/100)^4 ], (89)
T_ф 〖;T〗_ст - відповідно абсолютні температури факелу та стінки котла.
Q_пф=5,67∙200∙0,513∙[(1223/100)^4-(462/100)^4 ]=10,94274 МВт,
Q_нф=4,0802+10,94274=15,02294 МВт. 3.4 Розрахунок фактичних розмірів котла
Необхідна потужність факелу:
Q_ф=Q_с+Q_гг+Q_хг+Q_із, (90)
де Q_с - загальна потужність системи, МВт;
Q_гг - втрати тепла з гарячої гілки теплотраси, МВт;
Q_хг - втрати тепла з холодної гілки теплотраси, МВт;
Q_із - втрати тепла з поверхні ізоляції котла, МВт.
Q_ф=29+1,39297+0,952238+0,0182203=31,3634318 МВт.
Фактична площа котла рівна:
F_k^ф=F_k∙Q_ф/Q_нф , (91)
F_k^ф=200∙31,3634318/15,02294=417,541 м^2.
Фактична довжина котла:
a_ф=√((F_k^ф)/8), (92)
a_ф=√(417,541/8)=7,224 м.
Порівнюємо отриману довжину котла з прийнятою. Повинна виконуватись умова:
|a^((I))-a_ф |/a^((I)) ∙100% <1 %.
|5-7,224|/5∙100%=44,48 %.
Умова не виконується, тому необхідно зробити друге наближення.
3.5. Розрахунок котла (друге наближення)
Приймаємо: сторона котла a^((2))=7,224 м, висота, b^((2))=14,448 м. Тоді по формулам (59) та (60) площа поверхні котла та його об'єм відповідно будуть рівні:
F_к=8∙〖7,224〗^2=417,4894 м^2,
V_к=2∙〖7,224〗^3=753,9859 м^3.
3.5.1.Розрахунок втрат тепла з поверхні котла
Втрати тепла променевим теплообміном визначаємо за формулою (63):
Q_пр=0,8∙5,67∙417,4894∙[(312,15/100)^4-(302,15/100)^4 ]=21955,6 Вт.,
Визначаємо число Грасгофа за формулою (66):
Gr=(9,81∙〖14,448〗^3∙10∙0,0033)/(15,906∙〖10〗^(-6) )^2 =3,85908∙〖10〗^12.
Число Нусельтавизначається за формулою (69):
Nu=0,15∙〖(3,85908∙〖10〗^12∙0,7012)〗^(1/3)=2090,258
Коефіцієнт тепловіддачі котла до повітря визначаємо за формулою (65):
α_k=2090,258∙(2,662∙〖10〗^(-2))/(14,448 )=3,8512 Вт/(м∙К),
Втрата тепла конвективним теплообміном визначаємо за формулою (64):
Q_кон=3,8512∙417,4894 ∙(39-29)=16078,352 Вт,
Сумарні втрати тепла з поверхні котла визначаємо за формулою (62):
Q_із=21955,6 +16078,352 =38034 Вт.
Товщину ізоляції визначаємо за формулою (73):
δ_із=(0,13687∙417,4894 )/38034∙(189-39)=0,225 м.
3.5.2. Внутрішній баланс котла
Число Рейнольдса визначаємо за формулою (79):
Re=(20∙14,448 )/(21,23∙〖10〗^(-6) )=1864258.
Так як Re^((2))>5∙〖10〗^5, то режим руху димових газів турбулентний.
Для турбулентного режиму руху критерій Нусельта визначається по формулі:
Nu=0,037∙Re^0,8∙Pr_ГАЗ^0,43∙(Pr_ГАЗ/Pr_(сm(ГАЗ)) )^0,25, (93)
Nu=0,037∙〖1864258〗^0,8∙〖0,5993〗^0,43∙(0,5993/0,68341)^0,25=2983,6.
Коефіцієнт тепловіддачі визначаємо за формулою (81):
α=2983,6∙0,10255/14,448=21,177 Вт/(м∙К) .
Середньоінтегральне значення коефіцієнта тепловіддачі визначаємо за формулою (82):
α_кф=1,25∙21,177=26,471 Вт/(м∙К).
Тепло, що втрачається за рахунок конвективного теплообміну визначаємо за формулою (75):
Q_кф=26,471∙417,4894∙(950-189)=7,91278 МВт.
Визначаємо ефективну довжину факелу всередині топки котла за формулою (83):
l_ф=3,6∙753,9859/417,4894=6,502 м.
Визначаємо добуток парціального тиску на ефективну довжину факелу відповідно для двоокисувуглецю та водяної пари: P_(co_2 )∙l_ф^((2))=0,01926∙650,2=12,523 МПа∙см=127,7 ат∙см;
P_(H_2 O)∙l_ф^((2))=0,01498 ∙650,2=9,74 МПа∙см=99,32 ат∙см .
Визначаємо ступінь чорноти двоокисувуглецю та водяної пари при заданій температурі факелу tф=950℃, [3, ст. 388-389]:
ε_(co_2)^((2))=0,238859; ε_(H_2 O)^((2))=0,326156.
Визначаємо ступінь чорноти газу за формулою (86):
ε_Г=0,238859+0,326156-0,238859∙0,326156=0,4871.
Визначаємо приведену степінь чорноти газу за формулою (88):
Приймаємо ε_0=0,85.
ε_пр=(0,7592/0,4871+1/0,85-1)^(-1)=0,5763.
Кількість теплоти, втрачена за рахунок випромінювання визначаємо за формулою (89):
Q_пф=5,67∙417,4894 ∙0,5763∙[(1223/100)^4-(462/100)^4 ]=25,66096 МВт,
Тепло, що утворилося при згорянні палива визначаємо за формулою (74):
Q_нф=7,91278 +25,66096=33,57374 МВт. 3.5.3. Розрахунок фактичних розмірів котла
Необхідну потужність факелу визначаємо за формулою (90):
Q_ф=29+1,39297+0,952238+0,038034=31,3832455 МВт.
Фактичну площу котла визначаємо за формулою (91):
F_k^ф=417,4894 ∙31,3832455/33,57374=390,251 м^2.
Фактичну довжину котла визначаємо за формулою (92):
a_ф=√(390,251/8)=6,984 м.
Порівнюємо отриману довжину котла з прийнятою :
|7,224-6,984|/6,984∙100%=3,32 %.
Умова не виконується, тому необхідно зробити друге наближення.
3.5. Розрахунок котла (третє наближення)
Приймаємо: сторона котла a^((3))=6,984 м, висота, b^((3))=19,968 м. Тоді по формулам (59) та (60) площа поверхні котла та його об'єм відповідно будуть рівні:
F_к=8∙〖6,984〗^2=390,21 м^2,
V_к=2∙〖6,984〗^3=681,307 м^3.
3.5.1.Розрахунок втрат тепла з поверхні котла
Втрати тепла променевим теплообміном визначаємо за формулою (63):
Q_пр=0,8∙5,67∙390,21∙[(312,15/100)^4-(302,15/100)^4 ]=20521 Вт.,
Визначаємо число Грасгофа за формулою (66):
Gr=(9,81∙〖19,968〗^3∙10∙0,0033)/(15,906∙〖10〗^(-6) )^2 =3,48709∙〖10〗^12.
Число Нусельтавизначається за формулою (69):
Nu=0,15∙〖(3,48709∙〖10〗^12∙0,7012)〗^(1/3)=2020,915
Коефіцієнт тепловіддачі котла до повітря визначаємо за формулою (65):
α_k=2020,815∙(2,662∙〖10〗^(-2))/19,968=3,8512 Вт/(м∙К),
Втрата тепла конвективним теплообміном визначаємо за формулою (64):
Q_кон=3,8512∙390,21 ∙(39-29)=15027,768 Вт,
Сумарні втрати тепла з поверхні котла визначаємо за формулою (62):
Q_із=20521 +15027,768=35548,8 Вт.
Товщину ізоляції визначаємо за формулою (73):
δ_із=(0,13687∙390,21 )/35548,8∙(189-39)=0,225 м.
3.5.2. Внутрішній баланс котла
Число Рейнольдса визначаємо за формулою (79):
Re=(20∙19,968 )/(21,23∙〖10〗^(-6) )=1802323.
Так як Re^((2))>5∙〖10〗^5, то режим руху димових газів турбулентний.
Для турбулентного режиму руху критерій Нусельта визначається по формулі:
Nu=0,037∙Re^0,8∙Pr_ГАЗ^0,43∙(Pr_ГАЗ/Pr_(сm(ГАЗ)) )^0,25, (93)
Nu=0,037∙〖1802323〗^0,8∙〖0,5993〗^0,43∙(0,5993/0,68341)^0,25=2904.
Коефіцієнт тепловіддачі визначаємо за формулою (81):
α=2904∙0,10255/19,968=21,321 Вт/(м∙К) .
Середньоінтегральне значення коефіцієнта тепловіддачі визначаємо за формулою (82):
α_кф=1,25∙21,321=26,615 Вт/(м∙К).
Тепло, що втрачається за рахунок конвективного теплообміну визначаємо за формулою (75):
Q_кф=26,615∙390,21∙(950-189)=7,44603 МВт.
Визначаємо ефективну довжину факелу всередині топки котла за формулою (83):
l_ф=3,6∙681,307/390,21=6,286 м.
Визначаємо добуток парціального тиску на ефективну довжину факелу відповідно для двоокисувуглецю та водяної пари: P_(co_2 )∙l_ф^((2))=0,01926∙628,6=12,107 МПа∙см=123,45 ат∙см;
P_(H_2 O)∙l_ф^((2))=0,01498 ∙628,6=9,42 МПа∙см=96,02 ат∙см .
Визначаємо ступінь чорноти двоокисувуглецю та водяної пари при заданій температурі факелу tф=950℃, [3, ст. 388-389]:
ε_(co_2)^((2))=0,2360195; ε_(H_2 O)^((2))=0,320922.
Визначаємо ступінь чорноти газу за формулою (86):
ε_Г=0,2360195+0,320922-0,2360195∙0,320922=0,4812.
Визначаємо приведену степінь чорноти газу за формулою (88):
Приймаємо ε_0=0,85.
ε_пр=(0,7592/0,4812+1/0,85-1)^(-1)=0,5701.
Кількість теплоти, втрачена за рахунок випромінювання визначаємо за формулою (89):
Q_пф=5,67∙681,307 ∙0,5701∙[(1223/100)^4-(462/100)^4 ]=23,72621 МВт,
Тепло, що утворилося при згорянні палива визначаємо за формулою (74):
Q_нф=7,44603+23,72621=31,17224 МВт. 3.5.3. Розрахунок фактичних розмірів котла
Необхідну потужність факелу визначаємо за формулою (90):
Q_ф=29+1,39297+0,952238+0,0355488=31,3807603 МВт.
Фактичну площу котла визначаємо за формулою (91):
F_k^ф=417,4894 ∙31,3807603/31,17224=392,82 м^2.
Фактичну довжину котла визначаємо за формулою (92):
a_ф=√(392,82/8)=7,007 м.
Порівнюємо отриману довжину котла з прийнятою :
|7,007-6,984|/6,984∙100%=0,33 %.
Умова виконується.
Література
Промышленная теплоэнергетика и теплотехника: Справочник (под общ.Ред.В.А.Григорьева, В.М .Зорина). - М.:Энергоатомиздат, 1983. - 552с., ил.
Краснощоков Е. А., Сукомел А. С. Задачник по теплопередаче. Изд. 2 -е перераб. и доп. - М.: "Энергия", 1969. - 264с.
Исаченко В.П., Осипова В.А., Сукомел А. С. Теплопередача. Изд. 2 - е М., "Энергия", 1969. - 440с. с илл.
Сборник задач по технической термодинамике и теплопередаче ( Под общ. Ред. Б.Н.Юдаева, 2 - е изд. перераб. и доп.) - М.: Высшая школа, 1968. - 373с.
Анурьев В. И. Справочник конструктора - машиностроителя. В 3 - х т., т. 3 - 5 -е изд. перераб. и доп. - М.: Машиностроение, 1979. - 557 с.
Документ
Категория
Рефераты
Просмотров
55
Размер файла
276 Кб
Теги
tmo, kursova
1/--страниц
Пожаловаться на содержимое документа