close

Вход

Забыли?

вход по аккаунту

?

Lukianova Lyudmila kursovaya rabota-prov

код для вставкиСкачать
 МИНОРБНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
"Чувашский государственный университет имени И.Н.Ульянова"
Химико-фармацевтический факультет
Кафедра химической технологии и защиты окружающей среды
Курсовая работа
по дисциплине "Основы технологии производства органических веществ"
на тему: "Технология получения винилхлорида из этилена сбалансированным по хлору способом"
Выполнил студент группы Х-21-08 Лукиянова Л.Л.
Проверил, доцент, к.х.н. Константинова Т.Г.
Работа защищена с оценкой
Чебоксары-2012
Оглавление
Введение...............................................................................3
1 Винилхлорид: применение, свойства, методы получения, используемое сырьё и отходы производства винилхлорида.....................................4
1.1 Применение........................................................................4
1.2 Свойства...........................................................................5
1.3 Получение.........................................................................7
1.3.1 Получение винилхлорида из ацетилена.................................10
1.3.2 Комбинированный процесс получения
винилхлорида из ацетилена и этилена.........................................12
1.3.2. Метод окислительного хлорирования этана..........................14
2 Производство винилхлорида из этилена сбалансированным по хлору способом......................................................................................16
2.1 Теоретические основы процесса............................................16
2.2Технологическое оформление процесса получения винилхлорида сбалансированным по хлору методом..................................................19
2.3 Принципы в технологии получения винилхлорида
сбалансированным по хлору методом..........................................22
2.4Технология производства винилхлорида Vinnolit VCM Process......27
3 Альтернативные методы производства винилхлорида....................29
Заключение..........................................................................30
Список использованной литературы..........................................32
ВВЕДЕНИЕ
Целью курсовой работы является подробное изучения процесса производства винилхлорида из этилена сбалансированным по хлору способом.
При написании курсовой работы были поставлены следующие задачи:
- изучение и анализ наиболее эффективных методов получения винилхлорида;
- сбор и систематизация информации, достоинства и недостатки при разных методах получения хлористого винила;
- изучение влияния данного вещества на окружающую среду;
- обобщение и систематизация результатов исследования проблемы, содержащихся в научной литературе;
- наиболее полное изучение производства винилхлорида из этилена сбалансированным по хлору способом, рассмотрение теоретических основ процесса, технологическое оформление, принципы в технологии получения;
Потребность винилхлорида, как вещества, обуславливается созданием процессов которые учитывают как экономические, так и экологические аспекты. Выбор метода производства этого вещества является важной задачей. 1. Винилхлорид: применение, свойства, методы получения, используемое сырьё и отходы производства винилхлорида
1.1. Применение
Промышленное производство винилхлорида входит в первую десятку производства крупнейших многотонажных продуктов основного органического синтеза; при этом почти весь производимый объём используется для дальнейшего синтеза полихлорвинила (ПВХ), мономером которого и является винилхлорид. Из поливинилхлорида готовят листовые материалы и трубы (винипласт), пленки, заменители кожи, "перхлорвиниловую" смолу и т.д. Из сополимеров хлористого винила с винилиденхлоридом СН2=ССl2 и акрилонитрилом СН2=СНСN вырабатывают синтетические волокна (саран, виньон). Он служит также промежуточным продуктом для синтеза 1,1,2-трихлорэтана, винилиденхлорида, метилхлороформа[1]
Винилхлорид является одним из крупнейших по объему органических полупродуктов мирового химического производства, уступая лишь этилену (113 млн. тонн в 2008 году), пропилену (73 млн. тонн в 2008 году), этанолу (52 млн. тонн в 2008 году), бензолу (41 млн. тонн в 2008 году), метанолу (40 млн. тонн в 2008 году), терефталевой кислоте (39 млн. тонн в 2008 году). Производство винилхлорида является третьим после полиэтилена и окиси этилена по значимости направлением использования этилена как важнейшего химического сырья и составляет 11,9 % его мирового потребления (по данным на 2008 год). Мировое производство винилхлорида в 2008 году составило около 36,7 млн. тонн (99 % по отношению к 2007 году), что составляет 85 % всех мировых производственных мощностей (в 2007 году - 90 %). По прогнозным данным компании SRI Consulting, текущее сокращение потребления прекратится и в ближайшие пять лет (до 2013 года) будет наблюдаться рост потребления в размере 3,4 % в год и 2,5 % в последующие пять лет (с 2013 по 2018 гг.)
Крупнейшим потребителем винилхлорида в мире является Китай: около 30% всего мирового производства; на втором месте США и Канада, приблизительно с 20 % (по состоянию на 2008 год) Крупнейшим производителем винилхлорида в мире (по объёму производственных мощностей) являются США: 8,24 млн тонн по данным на 2003 год (для сравнения - в 1967 году мощности составляли 1,26 млн тонн, а в 1960 году всего 0,67 млн. тонн) Вклад России в мировое производство винилхлорида довольно скромный: около 1,5 % от годового глобального выпуска и место во второй двадцатке стран-производителей (по состоянию на 2008 год). При этом технологическое оснащение серьёзно отстаёт от мирового: почти 30 % мощностей используют устаревшую ацетиленовую технологию.
Производство винилхлорида в России практически полностью (более 99 % всего объёма) ориентировано на выпуск поливинилхлорида, являясь при этом одним из крупнейших направлений потребления хлора в российской химической промышленности (18 % по данным на 2004 год).
В 2010-2013 годах компанией ООО "РусВинил" планируется ввод в эксплуатацию комплекса по производству ПВХ (включая и производство винилхлорида) в Кстовском районе Нижегородской области мощностью 330 тыс. тонн в год. Учредителями совместного предприятия являются компания "Сибур" и бельгийская компания SolVin - совместная дочерняя компания международной химико-фармацевтической группы Solvay и немецкого концерна BASF. 1.2. Свойства
Винилхлорид (хлористый винил, хлорэтен, монохлорэтилен) при нормальных условиях представляет собой бесцветный газ со слабым сладковатым запахом, напоминающим запах хлороформа. Порог ощущения запаха в воздухе составляет приблизительно 3000 частей на миллион. Малорастворим в воде (около 0,95% масс. при 15-85 °С), легко растворим в спирте, хлороформе и дихлорэтане, растворим в диэтиловом эфире. Винилхлорид обладает крайне высокой канцерогенной активностью.[2]
Некоторые физические константы винилхлорида: температура кипения: −13,8 °C;
температура плавления: −153,8 °C;
относительная плотность при −20 °C: 0,983;
относительная плотность при 20 °C: 0,911 плотность по воздуху: 2,17;
критическая температура: 158,4 °C;
критическое давление: 5,34 МПа;
критическая плотность: 0,370 г/см³;
вязкость жидкости при − 40 °C: 0,334 мПа·с;
вязкость газа при 20 °C: 10,71 мкПа·с; По двойной связи винилхлорид вступает в реакции, типичные для олефинов; НС1 присоединяется к винилхлориду по правилу Марковникова, причем легче, чем к этилену, но с меньшей скоростью, чем к винилиденхлориду; реакция может протекать в жидкой фазе в присутствии А1С13 или FeCl3. В последнем случае возрастает селективность, но требуются повышенные температура (50-70°С) и давление. Продукт взаимодействия НС1О с винилхлоридом - хлорацетальдегид. Большое практическое значение имеет полимеризация винилхлорида и сополимеризация его с другими мономерами. Ингибиторы полимеризации - фенол или гидрохинон. Винилхлорид значительно менее активен при замещении атома хлора, чем этилхлорид. Однако хлор может быть замещен, например, при нагревании винилхлорида в спиртовом растворе алкоголята натрия под давлением, а также при взаимодействии винилхлорида с солями карбоновых кислот с образованием винилалкиловых эфиров, при конденсации с ароматическими или жирноароматическими соединениями Гриньяра в присутствии галогенидовметаллов типа СоС12 или СгС13. Окисляется винилхлорид до хлорацетальдегида или формальдегида, НС1 и СО, алкилируется, дегидрохлорируется в газовой фазе до ацетилена[3]
В окружающей среде винилхлорид появляется исключительно вследствие его выбросов во время производства и переработки. По оценке специалистов, более 99 % выброса винилхлорида остаётся в воздухе, где происходит его фотохимическая деградация под воздействием гидроксил- радикалов; при этом период его полураспада составляет 18 часов.
С поверхности почвы винилхлорид быстро испаряется, однако может мигрировать в её глубь через грунтовые воды. В растениях и животных не накапливается.
В почве и воде винилхлорид подвергается аэробной биодеградации (преимущественно до CO2) под воздействием микроорганизмов, например, рода Микобактерии биораспад в грунтовых водах может носить и анаэробный характер, причём его продуктами являются метан, этилен, углекислый газ и вода. Исследования показывают, что в почве и воде под действием микроорганизмов винилхлорид разлагается на 30 % в течение 40 дней и на 99% в течение 108 дней
1.3. Получение
Первое время хлористый винил получали щелочным дегидрохлорированием 1,2-дихлорэтана в среде метилового или этилового спирта:
СlCH2-CH2Cl+ NaOH→CH2=CHCl+NaCl+H2O (1.3.1.)
Большой расход щелочи и хлора при этом синтезе ускорил разработку и внедрение в промышленность в 40-50-х годах гидрохлорирования ацетилена
CH≡CH+HCl→CH2-CHCl (1.3.2.)
Который связан с применением токсичных ртутных солей как катализаторов и сравнительно дорогостоящего ацетилена.
Осуществление термического дегидрохлорирования дихлорэтана позволило избежать расхода щелочи и использовать образующийся хлористый водород для гидрохлорирования ацетилена. Так появились комбинированные способы синтеза хлористого винила из ацетилена и этилена, сбалансированные по хлору.
На 2010 год существуют три основных способа получения винилхлорида, реализованные в промышленных масштабах. Винилхлорид можно получить различными способами:[4]
1. гидрохлорированием ацетилена в газовой или жидкой фазах в присутствии катализатора:
(1.3.3.) 2. дегидрохлорированием 1,2-дихлорэтана (в жидкой фазе) гидроксидом натрия в водной или спиртовой среде:
СН2С1 - СН2С1 + NaOH͢→ СН2 = CHCl + NaCl + Н20 (1.3.4.)
3. термическим дегидрохлорированием 1,2-дихлорэтана в паровой фазе в присутствии катализаторов, инициаторов или без них:
СН2C1 = CH2С1 → CH2=CHCl+HCl (1.3.5.)
4. хлорированием этилена в газовой фазе в объеме, либо в присутствии катализатора, например оксида алюминия:
CH2=CH2+Cl2→CH2=CHCl+HCl (1.3.6.)
Рассмотрим несколько наиболее распространенных промышленных способов производства винилхлорида из ацетилена и этилена.
Сырьем для получения винилхлорида являются этилен и хлор
Этиле́н (по ИЮПАК: этен) - органическое химическое соединение, описываемое формулой С2H4. Является простейшим алкеном (олефином). При нормальных условиях - бесцветный горючий газ со слабым запахом. Частично растворим в воде (25,6 мл в 100 мл воды при 0°C), этаноле (359 мл в тех же условиях). Хорошо растворяется в диэтиловом эфире и углеводородах. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности, а также является фитогормоном. Этилен - самое производимое органическое соединение в мире; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2-3 % в год. Этилен обладает наркотическим действием. Хлор- желто-зеленый газ с резким удушающим запахом; tпл. -100,98°С, tкип. -33,97 °С. Один из наиболее химически активных элементов, он непосредственно взаимодействует со всеми металлами и большинством неметаллов (образуя хлориды), лишь реакция хлора с О2, N2 требует специальных методов активации - УФ облучения или электроразряда, в остальных случаях достаточно простого нагревания. Практически весь производимый в мире хлор получают электрохимическим методом -электролизом водного раствора NaCl или, гораздо реже, КСl. Другие продукты электролиза - щелочь (1,13 т NaOH на 1 т С12) и Н2.
1.3.1. Получение винилхлорида из ацетилена
Метод каталитического гидрохлорирования ацетилена, в котором ацетилен получался реакцией карбида кальция с водой, был первым коммерческим процессом получения винилхлорида.
Химия процесса выглядит следующим образом:
Получение ацетилена: (2.1.)
Гидрохлорирование ацетилена: (2.2.)
Краткое описание технологии производства:
Произведенный, очищенный и осушенный ацетилен (содержание влаги не более 1,5 г/м3) смешивают с очищенным и высушенным хлороводородом в соотношении примерно 1,0:1,1. Эта смесь газов подаётся в верхнюю часть трубчатого реактора, трубы которого заполнены катализатором, представляющим собой активированный уголь, пропитанный двухлористой ртутью HgCl2 (10-15 %). Реактор изготавливается из углеродистой стали; высота труб составляет 3-6 метров, диаметр: 50-80 м. Температура в области реакции: 150-180 °C. После реактора реакционные газы подаются в специальную колонну, орошаемую соляной кислотой для извлечения двухлористой ртути. После первой абсорбционной колонны реакционные газы подаются в следующую, где орошаются водой и раствором щелочи для отделения хлороводорода, ацетальдегида и углекислого газа. После этого газы охлаждаются в конденсаторе для удаления воды и подаются на ректификацию для удаления высококипящих примесей. Полученный винилхлорид на последней стадии пропускается через колонну, заполненную твердым едким натром для полного обезвоживания и нейтрализации.
Ниже представлено схематичное изображение процесса:
По состоянию на 1967 год, доля метода каталитического газофазного гидрохлорирования ацетилена в производственных мощностях по выпуску винилхлорида в США составляла 32,3 % (405,6 тыс. тонн). В 2001 году американская химическая корпорация Borden остановила своё последнее производство на основе ацетилена в Луизиане, США. Помимо экономических соображений, метод каталитического гидрохлорирования ацетилена является экологически небезопасным, так как используемая в производстве ртуть, несмотря на рециркуляцию, неизбежно с газообразными отходами и сточными водами попадает в окружающую среду. В 2002 году в России такие выбросы составили около 31 кг. Метод каталитического гидрохлорирования ацетилена в настоящий момент достаточно широко распространён только в Китае из-за богатых запасов угля, наличия дешёвой гидроэлектроэнергии, а также дефицита природного газа, являющегося главным сырьём для производства этилена. C 2003 по 2008 год метод вновь вызвал к себе интерес из-за значительного роста мировых цен на нефть и газ, однако экономический кризис 2008 года вновь сделал метод прямого окислительного хлорирования этилена наиболее привлекательным с экономической точки зрения.
1.3.2 Комбинированный процесс получения
винилхлорида из ацетилена и этилена
Экономические показатели процесса можно улучшить и за счет комбинирования двух других способов производства винилхлорида: из этилена и ацетилена, когда НС1, выделяющийся при пиролизе 1,2-дихлорэтана, используется для гидрохлорирования ацетилена.
В этом процессе 50 % ацетилена заменяется на этилен, а хлорид водорода квалифицированно применяется в этом же процессе, а следовательно, полностью используется хлор. Комбинированный процесс позволяет снизить себестоимость винилхлорида на 6-7 % по сравнению с ацетиленовым процессом.
Как известно, ацетилен и этилен получаются одновременно, например в процессе Мектрокрекинга. Вместе с тем, винилхлорид может быть получен как из этилена, так и из ацетилена. В связи с этим была предложена технология получения винилхлорида в комбинированном процессе. При этом предусматривается, что на первом этапе получается 1,2-дихлорэтан прямым хлорированием этилена и гидрохлорированием ацетилена с использованием НС1, выделяющегося при хлорировании этилена. На втором этапе осуществляется дегидрохлорирование 1,2-дихлорэтана с получением винилхлорида. Получение 1,2-дихлорэтана хлорированием этилена; процесс гидрохлорирования ацетилена с получением винилхлорида и процесс дегидрохлорирования 1,2-дихлорэтана были рассмотрены ранее. Следовательно, нет необходимости рассматривать полную технологическую схему, так как она состоит из трех указанных подсистем, стадий очистки и ректификации.[5]
Комбинированный метод на основе этилена и ацетилена заключается в совмещении реакции хлорирования этилена и последующей деструкции дихлорэтана с реакцией гидрохлорирования ацетилена и использованием для последней хлороводорода со стадии термического разложения.
Химияпроцесса:
(3.1.)
(3.2.)
(3.3.)
Метод позволил заменить половину ацетилена на более дешёвый этилен, а также утилизировать хлороводород, тем самым довести почти до 100 % полезное использование хлора.
1.3.3 Метод окислительного хлорирования этана
Идея использовать этан для синтеза винилхлорида была реализована в 1965-1967 годах на опытном производстве компаний The Lummus Co. и Armstrong Cork Co.. Технология прямого оксихлорирования в присутствии хлорида меди (I) получила название Transcat Process.
Химияпроцесса:
(4.1.)
(4.2.)
4.3.)
(4.4.)
(4.5.)
(4.6.)
Процесс проходил при 450-550 °C и давлении 1 МПа; степень конверсии этана достигала 65-70 %. Метод впоследствии был оптимизирован компанией ICI, которая снизила температурный диапазон проведения синтеза и предложила другой катализатор.В мае 1998 года компания EVC International NV (Нидерланды) запустила опытный проект мощностью 1000 тонн в год на заводе в Вильгельмсхафене (Германия) с целью опробирования и последующего продвижения на рынке запатентованного процесса окислительного хлорирования этана, или Ethane-to-VCM-Process. Предполагалось, что этот проект будет технологическим прорывом и станет началом работы над полномасштабным заводом, который, как ожидалось, будет запущен в 2003 году.
По данным производителя, температура процесса составляет менее 500 °C, степень конверсии сырья - 100 % по хлору, 99 % по кислороду и более чем 90 % по этану; выход винилхлорида превышает 90 %.
В сентябре 1999 года EVC подписала с компанией Bechtel Group, Inc. (США) соглашение о постройке полноценного производства в Вильгельмсхафене, однако из-за финансовых проблем проект не был осуществлён.
После поглощения в 2001 году корпорацией INEOS компании EVC дальнейшая судьба проекта Ethane-to-VCM-Process не известна
ВЫВОДЫ !!!
2. Производство винилхлорида из этилена сбалансированным по хлору способом
Процесс получения винилхлорида сбалансированным методом из этилена состоит из шести стадий:
1. синтез 1,2-дихлорэтана прямым жидкофазным хлорированием этилена,
2. синтез 1,2-дихлорэтана окислительным каталитическим хлорированием этилена,
3. промывка, осушка, ректификация 1,2-дихлорэтана,
4. термическое обьемное дегидрохлорирование 1,2-дихлорэтана,
5. разделение продуктов дегидрохлорирования 1,2-дихлорэтана,
6. ректификация винилхлорида.
2.1. Теоретические основы процесса
Сбалансированный по хлору способ получения винилхлорида из этилена базируется на трех основных реакциях:
Следовательно, он является комбинацией трех процессов: прямого аддитивного хлорирования этилена в 1,2 -дихлорэтан, термического дегидрохлорирования 1,2- дихлорэтана в винилхлорид и окислительного хлорирования этилена в 1,2 -дихлорэтан с помощью хлороводорода, образовавшегося при дегидрохлориировании.[6]
Оксихлорирование протекает с выделением значительного количества тепла, тогда как пиролиз протекает с поглощением значительного количества тепла, а HCl, получаемый при пиролизе, используется в процессе оксихлорирования. Следовательно, необходимо подобрать условия для проведения этих реакций в одном аппарате, что позволит приблизить процесс к адиабатическому и обеспечит протекание процесса пиролиза, т.е. реализовать совмещенно- комбинированный процесс получения 1,2-дихлорэтана и винилхлорида. Этот процесс требует больших затрат энергии. К тому же он имеет низкую селективность. Зависимость изменения энергии Гиббса этой реакции дегидрохлорирования представлена на рис.1 как видно из рис. 1, изменение знака энергии происходит для этой реакции при =500 К, а выше этой температуры преимущественно протекает отщепление НС1. Реакция 2 протекает медленно по молекулярному механизму.
Рис. 1. Зависимость изменения энергии Гиббса от температуры для реакции дегидрохлорирования 1,1 -дихлорэтана
Интерес к термическому дегидрохлорированию был вызван возможностью замены прежнего метода отщепления НС1 под действием щелочи. Этот способ используется также для получения винилиденхлорида и других продуктов. Но в этом процессе образуется много сточных вод (щелочных), а также отходов соли (он требует большого расхода щелочи).
Термическое дегидрохлорирование позволило устранить эти недостатки: реакция протекает при температуре 500°С только под воздействием температуры или в присутствии небольшого количества хлора (в качестве инициатора) и гетерогенных контактов. Поскольку процесс эндотермический, его, как правило, осуществляют в трубчатых реакторах, обогреваемых топочными газами. Такой способ производства винилхлорида оказался более экономичным (на 30 %) по сравнению с щелочным дегидрохлорированием 1,2-дихлорэтана и на 14 % - по сравнению с гидрохлорированием ацетилена.
В этом совмещенном процессе из этилена, хлора и кислорода получается винилхлорид в отсутствие НС1. При этом и себестоимость получаемого мономера снижается на 25-30 % по сравнению с методом, основанным на гидрохлорировании ацетилена.
В этом совмещенном процессе из этилена, хлора и кислорода получается винилхлорид в присутствии HCl. При этом и себестоимость получаемого мономера снижается на 25-30% по сравнению с методом, основанным на гидрохлорировании ацетилена.
2.2.Технологическое оформление процесса получения винилхлорида сбалансированным по хлору методом
Технологическое оформление процесса получения винилхлорида по комбинированному методу представлена на рис.
Первой стадией этого комбинированного процесса является прямое хлорирование этилена до 1,2-дихлорэтана, которая осуществляется в колонном аппарате 1. Хлор и этилен подаются в нижнюю часть хлоратора через соответствующие барботеры.
Хлоратор до определенного уровня заполняют катализаторным раствором(FeCl3 в 1,2-дихлорэтане). Теплота реакции в нем отводится за счет испарения 1,2-дихлорэтана. Пары 1,2-дихлорэтана конденсируются в холодильнике-конденсаторе 2 и конденсат собирается в сборнике 3. Далее часть конденсата в виде рецикла возвращается в хлоратор 1 для отвода тепла и поддержания определенного уровня. В данном случае наблюдается типичный жидкофазный процесс, в котором теплота реакции отводится за счет испарения продукта. Но это тепло не используется. Более того, образуется большое количество нагретой воды. Следовательно, необходимо вводить систему использования теплоты реакции. Остальная часть конденсата направляется на ректификацию в колонну 16. Кроме того, в сборнике 3 отделяются растворенные газы, которые во избежание потерь 1,2-дихлорэтана дополнительно охлаждают рассолом в холодильнике 2, а затем очищают и выводят из системы.
Процесс оксихлорирования осуществляется в реакторе 5 под давлением 0,5 МПа и при температуре 200-280°С. Катализатор в нем находится в псевдоожиженном слое. Чистый этилен, рециркулирующий газ, воздух и хлорид водорода смешиваются предварительно в смесителе 4. Способ смешения и соотношение компонентов должны быть таковыми, чтобы не образовывались взрывоопасные смеси.
В реакторе 5 тепло отводится за счет встроенного змеевика, в котором испаряется водный конденсат. В результате образуется технический пар, который используется в этом же производстве, например при ректификации.
Полученная реакционная парогазовая смесь, содержащая непрореагировавшие этилен, кислород, хлорид водорода, 1,2-дихлорэтан и инертные газы, поступает в нижнюю часть холодильника- смешения 7. Последний орошается водной смесью 1,2-дихлорэтана, циркулирующей через теплообменник 8 насосом 9. Часть раствора хлороводородной кислоты непрерывно отводится из системы. Естественно, эта кислота загрязнена 1,2-дихлорэтаном и поэтому может быть использована при его производстве или должна быть очищена от него для последующего использования.
Охлажденную парогазовую смесь направляют в скруббер 10 для нейтрализации оставшегося НС1. Скруббер орошается раствором NaOH, который подается насосом 9. Часть щелочного раствора непрерывно выводится из системы (этот раствор содержит щелочь, соль и растворенный 1,2-дихлорэтан). Поэтому необходимо разработать способы очистки и утилизации всех продуктов из этого раствора.
В скруббере 10 парогазовая смесь очищается от НС1 и С02 и окончательно охлаждается в холодильнике-конденсаторе 2. Конденсат отделяется от газов в сепараторе 11 поступает во флорентийский сосуд 12, в котором более тяжелый 1,2-дихлорэтан отделяется от воды. Эта вода используется для разбавления щелочи.
Циркулирующий газ (смесь этилена, кислорода и инертных веществ) компрессором 13 возвращается в смеситель 4. Чтобы избежать накопления инертов в системе, часть газа выводится из системы для очистки от унесенного 1,2-дихлорэтана. Так как 1,2-дихлорэтан, выходящий из флорентийского сосуда 12, содержит воду(по растворимости), то он направляется в колонну 14 для гетеро- азеотропной осушки. Верхний водный слой флорентийского сосуда также может быть использован для приготовления щелочи или должен быть очищен от 1,2-дихлорэтана гетероазеотропной ректификацией. При этом 1,2-дихлорэтан будет отделен от воды в виде гетероазеотропа.
Таким образом, в ректификационную колонну 16 направляют 1,2-дихлорэтан, полученный как хлорированием, так и оксихлорированием этилена. В этой колонне 1,2-дихлорэтан отделяется от высших хлоридов, которые могут применяться в качестве растворителя. Очищенный же 1,2-дихлорэтан может использоваться в качестве полупродукта при производстве винилхлорида. В этом случае он собирается в емкости 17, а из нее компрессором 13 направляется в печь 18, в которой при давлении 1,5-2,0 МПа и температуре 500 °С он пиролизуется до винилхлорида и НС1.[7]
После пиролиза реакционная парогазовая смесь проходит холодильник-смешения 19. Этот холодильник орошается захоложенным в холодильнике 8 1,2-дихлорэтаном. Парогазовая смесь далее охлаждается в холодильнике-конденсаторе 2 и направляется в ректификационную колонну 20. Эта колонна, работающая под давлением, предназначена для отделения НС1. При этом давлении НС1 конденсируется и может возвращаться в виде флегмы, а несконденсированные газы после сепаратора (главным образом НС1) воз вращаются в смеситель 4 для проведения оксихлорирования. Кубовый продукт колонны 20 (главным образом винилхлорид и 1,2-дихлорэтан) направляется в ректификационную колонну 21 через дроссельный вентиль 6. В этой колонне в качестве дистиллята выделяется мономерный винилхлорид (99,9 %-ной чистоты). Кубовый продукт, главным образом 1,2-дихлорэтан, возвращается в колонну 16.
2.3. Принципы в технологии получения винилхлорида
сбалансированным по хлору методом
Технология получения винилхлорида сбалансированным по хлору методом (комбинация хлорирования и оксихлорирования этилена с термическим дегидрохлорированием 1,2-дихлорэтана) выступает одним из наиболее интересных примеров реализации принципов создания технологий 00 и НХС. Технология является непрерывной. По химической составляющей ее, несмотря на наличие трех отдельных реакторных подсистем, можно отнести к двух- стадийной. Это вызвано тем, что каждая из цепей химических превращений, ведущих к винилхлориду, состоит из двух стадий: оксихлорирование + термический пиролиз и хлорирование + термический пиролиз.
Эти два параллельных процесса связаны, во-первых, рециркуляционным потоком по хлороводороду, что позволяет почти полностью его утилизировать, а во-вторых, общей стадией термического пиролиза, использующей как дихлорэтан оксихлорирования, так и дихлорэтан хлорирования этилена. Суммарные потери хлора составляют всего 11-12 кг, а этилена 23-36 кг на тонну товарного винилхлорида. Большая доля потерь этилена связана с процессом его полного окисления на стадии оксихлорирования (около 19 кг на тонну винилхлорида), а хлора на стадии очистки сточных вод и оксихлорирования (4-6 и 3,4-3,7 кг на тонну винилхлорида соответственно). Таким образом, комбинирование двух процессов в одной технологии позволяет с использованием рециркуляции по образующемуся хлороводороду свести потери сырья к минимуму и одновременно обеспечить эффективную защиту окружающей среды от хлора и хлороводорода. В данном случае реализуется принцип организации рециркуляционных потоков по компонентам. Другой иллюстрацией данного принципа служит рецикл по 1,2-дихлорэтану, охватывающий аппараты 16-21 технологической схемы. Этот поток обеспечивает полную конверсию 1,2-дихлорэтана на стадии термического пиролиза и используется из-за того, что конверсия за один проход на этой стадии не превышает 48-50 %.
Технология базируется на использовании дешевого и доступного этилена и хлора. Обладает высокой эффективностью в целом, хотя отдельные ее составляющие различаются по этому показателю. Например, хлорирование этилена обладает более высокой селективностью по сравнению с оксихлорированием и тем более с термическим пиролизом. Стадии оксихлорирования и хлорирования имеют высокие конверсии за один проход. Рециркуляция части реакционных газов на стадии оксихлорирования связана в основном с необходимостью обеспечения газодинамического и концентрационного режимов аппарата с кипящим слоем. Более того, в настоящее время доказано, что введение в исходные реагенты продуктов полного окисления дает возможность повысить селективность оксихлорирования.
Эффективное использование тепла (принципы разработки процессов с низким энергопотреблением полноты использования энергии системы) в данной технологии достигается не только за счет ее утилизации в подсистеме ректификационного разделения, но и за счет обеспечения теплообмена между экзотермичными (хлорирование, оксих- - лорирование) и эндотермичными (пиролиз) стадиями процесса.
Принцип полноты выделения продуктов из реакционной смеси используется достаточно полно, поскольку как целевой продукт, так и 1,2-дихлорэтан, направляемый на пиролиз, должны иметь высокую чистоту.
В рассматриваемой технологии используется принцип минимального расходования воды, так как в ней практически отсутствуют промывные скрубберы, а хлороводород выделяют в ректификационной колонне при повышенном давлении. Использование для хлорирования этилена совмещенного процесса позволяет по сравнению с традиционными реакторами наиболее интенсивно применять низкопотенциальное тепло хлорирования для предварительного фракционирования продуктов реакции (снижение энергозатрат на выделение 1,2-дихлорэтана на 50-70 %). Кроме того, снижается почти в три раза выход высококипящих полихлоридов.
Важной составляющей технологии является реализация принципа полноты использования газовых потоков и очистки газовых выбросов. Это связано с высокой токсичностью хлора и его соединений. В первую очередь технология обеспечивает утилизацию хлороводорода за счет реакции оксихлорирования этилена. Реакционные аппараты снабжены не только водяными, но и рассольными конденсаторами, которые дают возможность снизить выбросы хлорорганических продуктов в атмосферу за счет более высокой степени их конденсации при пониженных температурах. Выделение хлороводорода из реакционной массы пиролиза проводится ректификацией, что дает возможность непосредственно организовать его рецикл на стадию оксихлорирования, избежать процессов абсорбции его водой и, соответственно, кислотных и солевых стоков. Наконец, технология позволяет создавать линии большой единичной мощности. Реакционные подсистемы оксихлорирования и пиролиза и используемые в них реакционные аппараты дают возможность их проектирования на любую требуемую производительность. Реализация этого принципа для стадии хлорирования может быть осуществлена за счет применения параллельно работающих жидкофазных хлораторов, так чтобы вся технологическая цепочка представляла собой линию большой единичной мощности.[8]
Теоретический расход основного сырья, кг на 1т готового продукта:
Этилен...............................................................................448
Хлор.................................................................................568
Побочные продукты и методы их утилизации
Кубовые остатки после ректификации 1,2-дихлорэтана и винилхлорида представляют собой в основном смесь полихлоридов этана и этилена и смолистые вещества. На 1т винилхлорида в процессе гидрохлорирования ацетилена получается 20 кг побочных продуктов, в комбинированном процессе из ацетилена и этилена- 80кг, в сбалансированном процессе 50-110кг.
Побочные продукты после осветления можно использовать частично для переработки в три- и перхлорэтилен, частично в четыреххлористый углерод. Вторичные кубовые остатки(10-20 %) сжигаются, при этом получается хлористый водород, который можно использовать для оксихлорирования этилена или гидрохлорирования ацетилена.
Примеси в техническом продукте
Ацетилен, ацетальдегид, 1,1-дихлорэтан,1,2- дихлорэтан, бутадиен-1,3.
Методы анализа технического продукта
В качестве основного метода анализа используется газожидкостная хромотография. Анализ ведется с использованием двух колонок, вторая колонка служит для определения 1,2- дихлорэтана и хлоропрена.
Транспортирование и хранение Винилхлорид транспортируют и хранят в сжиженном состоянии под давлением собственных паров. Для длительного транспортирования и хранения винилхлорид стабилизируют добавкой фенола или гидрохинона.
Заливают винилхлорид в специально оборудованные стальные железнодорожные цистерны, специальные стальные контейнеры емкостью 400 и 800л и стальные автоцистерны. Железнодорожные цистерны, автоцистерны и контейнеры должны быть рассчитаны на рабочее давление не менее 0,91 МПа.[6]
Винилхлорид хранят в специальных стальных емкостях, а специальные контейнеры с винилхлоридом в крытых складских неотапливаемых помещениях. Условия хранения винилхлорида должны отвечать требованиям по хранению сжиженных горючих газов.
2.4 Технология производства винилхлорида Vinnolit VCM Process
Одной из самых распространённых технологий производства винилхлорида в мире является Vinnolit VCM Process, лицензируемый немецкой компанией Vinnolit GmbH & Co.: начиная с 1964 года в мире установлено приблизительно 5,5 млн тонн мощностей по выпуску винилхлорида по этому процессу.
Ниже представлено схематичное изображение процесса:
Краткое описание стадий процесса:
1.Прямое хлорирование этилена:
Реакция хлорирования этилена протекает в жидкой фазе в среде дихлорэтана при температуре 50-125 °С в присутствии специального усовершенствованного (по сравнению с FeCl3) комплексного катализатора, препятствующего образованию побочных продуктов, не расходующегося в процессе синтеза и остающегося в реакторном объёме. Благодаря этому образующийся дихлорэтан не требует очистки (чистота достигает 99,9 % и более) и напрямую поступает на стадию пиролиза. [http://spdepartment.ru/polymer_wiki/%D0%92%D0%B8%D0%BD%D0%B8%D0%BB%D1%85%D0%BB%D0%BE%D1%80%D0%B8%D0%B4/]
2.Процесс оксихлорирования этилена:
Процесс оксихлорирования - экзотермическая реакция, сопровождающаяся выделением большого количества тепла (ΔH = −238 кДж/моль) и проходящая в присутствии кислорода (преимущественно) или воздуха. Реакционная газовая смесь разогревается до температуры свыше 210 °C, а выделяемое тепло реакции используется для образования пара. Степень конверсии этилена достигает 99 %, а чистота получаемого дихлорэтана 99,5 %.
3. Процесс дистилляции дихлорэтана:
Дистилляция требуется для дихлорэтана, образующегося в процессе оксихлорирования, а также непрореагировавшего (возвратного) дихлорэтана со стадии пиролиза. Вода и низкокипящие компоненты удаляются в осушающей колонне. Кубовый остаток в дальнейшем поступает на стадию регенерации.
4.Пиролиз дихлорэтана:
Пиролиз дихлорэтана производится в специальных печах (операционный период - до 2 лет) при температуре 480 °C; при этом теплота процесса используется для испарения и нагрева.
5.Дистилляция винилхлорида:
Продукты пиролиза, состоящие, в основном, из дихлорэтана, винилхлорида и хлороводорода, направляются в узел дистилляции. Хлороводород возвращается в отделение оксихлорирования, винилхлорид удаляется через верхнюю часть колонны, а кубовый остаток, состоящий из непрореагировавшего дихлорэтана, возвращается в процесс дистилляции после удаления побочных продуктов.
6. Регенерация побочных продуктов: Жидкие и газообразные побочные продукты полностью сжигаются при температуре 1100-1200 ° С, образуя хлороводород, который после очистки возвращается в процесс оксихлорирования; попутно за счёт высокой температуры продуцируется также пар среднего давления.
3. Альтернативные методы производства винилхлорида
Компанией "Monsanto" в 1977 году был предложен одностадийный метод получения винилхлорида с выходом до 85 % из этана под действием смеси хлороводорода и кислорода при температуре 400-650 °С в присутствии катализатора (галогенид меди и фосфат калия):
(6.1.)
В 1980 году советскими учёными был запатентован альтернативный метод получения винилхлорида газофазным хлорированием смеси, содержащей этан и этилен, при температуре 350-500 °С и отвечающий следующей химической модели:
(6.2.)
(6.3.)
(6.4.)
(6.5.)
Побочными продуктами реакции являются хлорэтан, 1,1-дихлорэтан, винилиденхлорид и др. галогенпроизводные.
Одним из самых последних разработанных методов производства (2005 год) является способ получения винихлорида взаимодействием метилхлорида и метиленхлорида в газовой фазе при температуре 300-500 °С, давлении от 0,1 до 1 МПа, в присутствии катализаторов (активный оксид или фосфат алюминия, алюмосиликаты, хлорид цинка с оксидом алюминия):
(6.6.)
Все перечисленные способы получения винилхлорида или не были реализованы в промышленности, или не вышли из стадии экспериментального производства.
ЗАКЛЮЧЕНИЕ
Изучив методы получения винилхлорида различными способами сделала вывод, что в случае получения винилхлорида из ацетилена помимо экономических соображений, метод каталитического гидрохлорирования ацетилена является экологически небезопасным, так как используемая в производстве ртуть, несмотря на рециркуляцию, неизбежно с газообразными отходами и сточными водами попадает в окружающую среду. Метод каталитического гидрохлорирования ацетилена в настоящий момент достаточно широко распространён только в Китае из-за богатых запасов угля, наличия дешёвой гидроэлектроэнергии, а также дефицита природного газа, являющегося главным сырьём для производства этилена.
Комбинированный процесс позволяет снизить себестоимость винилхлорида на 6-7 % по сравнению с ацетиленовым процессом. Метод позволил заменить половину ацетилена на более дешёвый этилен, а также утилизировать хлороводород, тем самым довести почти до 100 % полезное использование хлора.
В последнее время все описанные методы синтеза хлористого винила вытесняются другим комбинированным способом, сбалансированном по хлору, при котором полностью исключается применение ацетилена и добавляется стадия аддитивного оксихлорирования этилена.
Поскольку на сырье приходится основная часть себестоимости продукции, становятся очевидным экономические преимущества комбинированных методов, особенно исходящих из этилена. Такой способ производства винилхлорида оказался более экономичным (на 30 %) по сравнению с щелочным дегидрохлорированием 1,2-дихлорэтана и на 14 % - по сравнению с гидрохлорированием ацетилена.
В настоящее время ведущим (и самым экономичным) в производстве винилхлорида является сбалансированный процесс окислительного хлорирования этилена. В его основе лежат три основные реакции: прямое хлорирование этилена до дихлорэтана; термическое дегидрохлорирование дихлорэтана в винилхлорид и окислительное хлорирование этилена с помощью хлороводорода, образовавшегося при дегидрохлорировании.
Прямое хлорирование этилена до дихлорэтана осуществляется в среде дихлорэтана в присутствии катализатора - хлорного железа. Реакция сильно экзотермична. Обычно тепло реакции отводят водой; дихлорэтан очищают водно-щелочной промывкой и ректификацией. Как правило, самый большой расход энергии (до 90 %) приходится на стадию очистки дихлорэтана. Снижение издержек производства в сбалансированных процессах достигается, прежде всего, за счет рационального использования теплоты, выделяющейся при прямом хлорировании этилена, на испарение и очистку дихлорэтана, поступающего со стадий хлорирования, оксихлорирования и рециркулируемого со стадии дегидрохлорирования. Разработаны и реализованы в промышленности различные технологические схемы процесса, позволяющие эффективно использовать теплоту реакции прямого хлорирования.
С учетом роста потребности в поливинилхлориде в России чрезвычайно актуальным является создание производств винилхлорида большой мощности по сбалансированной схеме на основе относительно дешевого этан-этиленового сырья.
Список использованной литературы
1. Потехин В.М., Потехин В.В. Основы теории химических процессов технологии органических веществ и нефтепереработки. Учебник для вузов. 2-е издание, испр. и доп.- М. Химиздат, 2007.- 944 с
2. Органическая химия перевод с нем./Под ред. проф. В.М. Потапова.- М. Химия, 1989.-832с
3. А. П. Писаренко, З.Я. Хавин Курс органической химии: Учебник для нехимических спец. Вузов/ .-4-е изд., перераб. и доп.- М.: Высшая школа, 2005.- 527с
4. В.С. Тимофеев, Л.А. Серафимов Принципы технологии основного органического и нефтехимического синтеза: Учеб. пособие для вузов /. - 2-е изд., перераб. - М.: Высшая школа, 2003. - 536 с
5. Н.Н. Лебедев Химия и технология основного органического синтеза. - М.: Химия, 1988. - 582 с
6. А.М. Кутепов, Т.И. Бондарева, М.Г.Беренгартен Общая химическая технология - М.; ИКЦ "Академкнига" 2004. -357с.
7. Промышленные хлорорганические продукты / Под ред. Л.А. Ошина. - М.: Химия, 1978. - 656 с
8. Юкельсон И.И. Технология основного органического синтеза. -М.: Химия, 1968. - 648с
9. Л. Физер,М. Физер Органическая химия углубленный курс том.1 перевод с англ. /Под ред. д.х.н. Н. С. Вульфсона.- М.:Химия, 1999.- 688с
10. Т. П. Дьячкова, В.С. Орехов Химическая технология органических веществ : учеб. пособие / - Тамбов : Изд-во Тамб. гос. техн. ун-та, 2007. - 172 с
11. В.М. Потапов органическая химия: Учебник для техникумов/.-4-е изд., перераб. и доп.- М.: Химия, 2002.- 448с
11. Интернет ресурсы:
Химическая энциклопедия http://www.xumuk.
Основной органический синтез http://djht.ru; Википедия http://ru.wikipedia.org/wiki
2
Документ
Категория
Рефераты
Просмотров
281
Размер файла
423 Кб
Теги
kursovaya, rabota, lyudmila, prov, lukianova
1/--страниц
Пожаловаться на содержимое документа