close

Вход

Забыли?

вход по аккаунту

?

Действие цинка, кадмия и свинца на продуктивность различных сортов пшеницы в зависимости от уровня азотного питания при применении регулятора роста

код для вставкиСкачать
ФИО соискателя: Чурсина Евгения Владимировна Шифр научной специальности: 06.01.04 - агрохимия Шифр диссертационного совета: Д 006.029.01 Название организации: Всероссийский научно-исследовательский институт агрохимии им.Д.Н.Прянишникова РАСХН Адрес
На правах рукописи
ЧУРСИНА
Евгения Владимировна
ДЕЙСТВИЕ ЦИНКА, КАДМИЯ И СВИНЦА НА ПРОДУКТИВНОСТЬ РАЗЛИЧНЫХ СОРТОВ ЯРОВОЙ ПШЕНИЦЫ В ЗАВИСИМОСТИ ОТ УРОВНЯ АЗОТНОГО ПИТАНИЯ ПРИ ПРИМЕНЕНИИ РЕГУЛЯТОРА РОСТА
Специальность 06.01.04 - агрохимия
Автореферат
диссертации на соискание ученой степени кандидата биологических наук
Москва 2012
Работа выполнена в ГНУ Всероссийский научно-исследовательский институт агрохимии имени Д.Н. Прянишникова.
Научный руководитель:доктор биологических наук, профессор, Заслуженный деятель науки РФ
Ниловская Нина Тихоновна
Официальные оппоненты:Черных Наталья Анатольевна доктор биологических наук, профессор, Российский университет дружбы народов, декан экологического факультета
Шаповал Ольга Александровна доктор сельскохозяйственных наук, зав. лаб. испытаний элементов агротехнологий, агрохимикатов и регуляторов роста
Ведущее предприятие:ФГУ ВПО Московский Государственный Университет имени М. В. Ломоносова
Защита диссертации состоится "31" мая 2012 г. в 14 часов
на заседании диссертационного совета Д 006.029.01 при ГНУ Всероссийский научно-исследовательский институт агрохимии имени Д.Н. Прянишникова
Адрес:127550,г. Москва, ул. Прянишникова д. 31а, ГНУ ВНИИА им. Д.Н. Прянишникова.
С диссертацией можно ознакомиться в научной библиотеке ГНУ ВНИИА имени Д.Н. Прянишникова.
Автореферат разослан " 27" апреля 2012 г. Ученый секретарь диссертационного совета:Никитина Л.В.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность проблемы. В настоящее время все возрастающее воздействие человека на биосферу носит глобальный характер, в связи с чем весьма актуальными стали вопросы загрязнения окружающей среды многими токсичными веществами, в том числе тяжелыми металлами. Основными источниками антропогенного поступления тяжелых металлов являются: сбрасывание сточных вод, сжигание жидкого и твердого топлива, промышленное производство, деятельность плавильных заводов, внесение в почву средств химизации и т.д. Загрязнение почв солями тяжелых металлов приводит к увеличению абсолютных показателей их общего содержания, что негативно влияет на развитие растений, продуктивность и качество растениеводческой продукции [Минкина с соавт., 2007; Черных, 1995, 2002; Евдокимова с соавт., 2001; Титов с соавт., 2002; Зубкова, 2004; Ильин, 2004, 2006; Челтыгмашева с соавт., 2004, 2006; Гармаш, 2006; Peciulyte, 2006; Шагитова, 2007; Водяницкий, 2008; Минеев, 2008, 2009; Borowski, 2009; Long-GuoJin, 2010]. В связи с этим является актуальным решение вопросов снижения токсического действия тяжелых металлов на растения. Одним из путей решения этой проблемы является оценка возможности использования регуляторов роста. Изучение регуляторов роста, как инструмента защиты и снижения токсического действия на растения малоизучено. Среди большого разнообразия препаратов применяемых в сельском хозяйстве, смесь оксикоричных кислот имеет определенное значение как средство, применяемое в чрезвычайно малых дозах (0,1-4 мг д.в./га). Характерными функциями этой категории веществ является стимуляция роста и корнеобразования, регуляция жизненных процессов в клетках растений, адаптация к неблагоприятным условиям внешней среды и защита от болезней путем повышения иммунитета растений [Малеванная, 2001; Ульяненко в соавт., 2002; Прусакова с соавт., 2005; Будыкина с соавт., 2007; Burbulis, 2009; De Csampos, 2009; Ниловская 2010; Серегина, 2010]. Представляется возможным и снижение ингибирующего действия тяжелых металлов путем оптимизации минерального питания в частности азотного. Исследования, проведенные с зерновыми культурами, показали эффективность использования азотного питания в стрессовых условиях. [Ниловская, 2009; Осипова, 2009; Серегина, 2010]. Недостаточная изученность действия тяжелых металлов на продуктивность и основные физиологические процессы в растениях и пути снижения их токсического действия требует всестороннего изучения. Важно так же учитывать и сортовую специфику реакции растений в частности пшеницы на действие тяжелых металлов и приемов снижения их угнетающего действия. Этот круг вопросов относиться к малоизученным и определяется актуальностью проведенных исследований.
Цель и задачи исследований. Целью исследований явилось изучение действия цинка, кадмия и свинца на продуктивность растений различных сортов яровой пшеницы в зависимости от уровня азотного питания при применении регулятора роста.
В диссертации были поставлены следующие задачи:
1. Изучить влияние повышенных концентраций цинка на рост, развитие, продуктивность, химический состав различных сортов яровой пшеницы, в зависимости от доз азотных удобрений и применения регулятора роста
2. Определить действие кадмия и свинца на продуктивность растений яровой пшеницы при применении регулятора роста.
3. Оценить влияние поликомпонентного (цинк, кадмий, свинец) загрязнения почвы на рост, продуктивность, и содержание металлов в растениях яровой пшеницы в зависимости от дозы внесения азота и применения регулятора роста.
4. Действие цинка, кадмия и свинца на основные физиологические показатели растений пшеницы в зависимости от уровня азотного питания и применения регулятора роста.
Научная новизна работы. Впервые детально изучено действие однофакторного и поликомпонентного содержания тяжелых металлов в почве на продуктивность и основные физиологические показатели пшеницы. Показано, что степень негативного влияния повышенных концентраций цинка в почве на продуктивность пшеницы зависит от обеспеченности растений азотным питанием. Получены новые экспериментальные данные по физиологическому обоснованию действия регулятора роста на снижение токсического действия тяжелых металлов. Определена сортовая специфика и влияние уровня азотного питания на действие тяжелых металлов. Практическая значимость работы. Обоснован прием снижения токсического действия высоких концентраций цинка, кадмия и свинца в почве на продуктивность, фотосинтетическую деятельность пшеницы и накопление элементов растениями при использовании повышенных доз азотных удобрений и регулятора роста, что может быть использовано для усовершенствования технологии возделывания культуры в условиях техногенной нагрузки на почву.
Апробация работы. Основные положения диссертационной работы были представлены на конференциях молодых ученых во ВНИИА имени Д.Н. Прянишникова (Москва 2006-2011 гг); на научных конференциях - РГАУ - МСХА имени К.А. Тимирязева (Москва, 2006 г); на конференции "Современная физиология растений: от молекул до экосистем" (Сыктывкар, 2007 г); на конференции "Современные проблемы в экологии" (Минск, 2008 г); Публикации. По теме диссертации опубликовано 6 печатных работ, в том числе 2 статьи в журналах, включенных в перечень, рекомендуемый ВАК РФ.
Структура и объем диссертации. Диссертация состоит из введения, обзора литературы, описания схемы и методики проведения опытов, экспериментальной части, выводов и списка литературы. Работа изложена на 109 страницах машинописного текста, включает 39 таблиц, 12 диаграмм. Список литературы представлен 289 наименованиями, из них 74 на иностранных языках.
УСЛОВИЯ И МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ
Для решения поставленных задач в период с 2006 по 2010 гг было проведено 8 вегетационных опытов, где растения яровой пшеницы выращивались до полной спелости и 1 лабораторный эксперимент длительностью 21 день (опыт 1). Объектом исследований являлась яровая пшеница (Triticum aestivum L.) сортов Лада и МИС. Опыты проводились в вегетационном домике кафедры агрономической и биологической химии РГАУ-МСХА имени К.А. Тимирязева и в фитотронной установке лаборатории "Потенциальной продуктивности и физиологии минерального питания" ВНИИА им. Д.Н. Прянишникова.
Вегетационные опыты проводились в почвенной культуре в сосудах Вагнера емкостью 5 кг сухой почвы [Журбицкий, 1968]. Почва опытов дерново-подзолистая среднесуглинистая. Содержание гумуса составляло - 1,8%; рНKCL 6,1; Нг - 0,5 мг-экв/100 г почвы; S - 17,05 мг-экв/100 г почвы; V 88,3%; общий азот - 0,12 %. Почва обеспечена подвижными формами фосфора и калия на уровне VI класса (по Кирсанову). Содержание подвижных форм цинка - 0,5, кадмия- 0,18 и свинца - 0,13 мг/кг почвы. Элементы минерального питания вносили при закладке опытов, используя соли NH4NO3, КН2РО4 и КСl. Во всех вариантах в почву вносили фосфор и калий из расчета 150 мг/кг почвы каждого элемента. Уровень азотного питания различался по вариантам и составлял от 150 до 300 мг/кг почвы. Влажность почвы поддерживали на уровне 70% ПВ (полевая влагоемкость) путем ежедневного полива сосудов с растениями по массе. Повторность опыта 4-х кратная.
Для изучения действия повышенных концентраций тяжелых металлов на рост, развитие, продуктивность, содержание металлов, химический состав, интенсивность фотосинтеза и дыхание растений в зависимости от условий азотного питания при применении регулятора роста были проведены длительные вегетационные опыты (№ 2-8). В опытах моделировали разные уровни содержания цинка, кадмия и свинца в почве, путем внесения раствора сернокислой соли цинка ZnSO4 * 7H20 (22 % д.в.) из расчета 100, 250 и 500 мг цинка на 1 кг почвы (опыты 2-4). Кадмий вносили в виде водных растворов соли Cd(N03)2* 5H20 из расчета: 5, 10 и 25 мг/кг почвы (опыты 5,6). В опыте 7 свинец Pb(NO3)2 вносили из расчета 100 мг/кг почвы.
Для оценки действия поликомпонентного содержания тяжелых металлов в почве (цинк, кадмий и свинец) на продуктивность и основные физиологические процессы пшеницы в зависимости от уровня азотного питания при применении регулятора роста были проведены опыты 8, 9, в которых моделировали различные комбинации тяжелых металлов путем внесения в почву солей цинка (ZnS04-7H20), кадмия (Cd(N03)2*H20) и свинца (Pb(NO3)2) из расчета 250, 10 и 100 мг/кг почву соответственно.
В экспериментах изучали два способа применения регулятора роста циркон. Первый - предпосевная обработка семян (ПОС) проводилась путем замачивания в растворе препарата из расчета 0,1 мл препарата на 1 литр воды в течение 10 часов. Второй способ обработки - опрыскивание вегетирующих растений пшеницы (ОВР) на V и в начале VI этапа органогенеза растворами той же концентрации, что и при предпосевном замачивании семян.
В зависимости от задач опыта в длительных экспериментах проводили отбор проб 3-4 раза за вегетацию. Характер формирования продуктивности растений пшеницы оценивали по ее структуре на отдельных этапах органогенеза и при уборке урожая. При этом определяли нарастание биомассы, оценивали вегетативное и генеративное развитие растений.
Для характеристики фотосинтетической деятельности растений пшеницы проводили определение показателей: содержание фотосинтетических пигментов в листьях и в целом растении, соотношение хлорофилла а к хлорофиллу в [Андрианова с соавт., 2000]. Проводили морфофизиологический контроль по этапам органогенеза, измеряли площадь ассимиляционной поверхности листьев, стеблей, колосьев и надземной части растений, дм2. Рассчитывали фотосинтетический потенциал (дм2/сутки) [Ничипорович в соавт., 1961; Кумаков, 1980; Ниловская с соавт, 1999]. Измеряли интенсивность фотосинтеза и дыхания в герметичной камере фитотрона по методике, описанной в ряде работ [Ниловская с соавт., 1989, 1999; Аканов, 2004], рассчитывали величину нетто-ассимиляции СО2 (мг СО2/сутки на 1 растение) определяемую как количество углекислоты, поглощенной за световой период минус количество выделенной за темновой период [Ниловская с соавт., 1989].
Химический анализ зерна и соломы растений пшеницы проводили по общепринятым методикам. Содержание кадмия, цинка, свинца, кальция и магния в зерне и соломе пшеницы определяли методом атомно-адсорбционной спектрометрии. Растительные образцы предварительно озоляли в муфельной печи при температуре 450 оС.
Математическую обработку результатов опытов проводили на персональном компьютере, используя методы вариационной статистики [Доспехов, 1985].
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ
Действие цинка на продуктивность, структуру урожая и сортовую специфику растений яровой пшеницы
Анализируя полученные данные опыта можно сделать вывод, что содержание цинка в 100 мг/кг в почве не оказывает достоверного влияния на продуктивность пшеницы. В результате исследований установлена токсическая концентрация цинка в почве 500 мг/кг снижающая продуктивность растения яровой пшеницы на 35 % (табл. 1). Таблица 1 Продуктивность и структура урожая растений яровой пшеницы сорта Лада в зависимости от токсического загрязнения цинком (опыт 2)
Zn, мг/кгМасса, г/сосудЧисло в колосе, шт./растениеМасса 1000 зерен, гЗерноСолома Зерно +соломазеренколосков06,015,021,020,318,321,91005,414,119,517,416,921,05003,912,616,514,816,416,4НСР0,050,80,90,92,41,22,0 Из полученных данных следует, что резкое уменьшение продуктивности растений явилось результатом токсического действия высокой концентрации цинка на формирование репродуктивных органов. Увеличение содержания цинка в почве способствовало резкому падению числа зерен - с 20,3 до 14,8 шт., достоверному уменьшению общего числа колосков и массы 1000 зерен с 21,9 до 16,4 г (25%). Полученные данные подтверждаются исследованиями ряда авторов, которые отмечали, что в условиях возрастающей концентрации цинка в почве ухудшалась продуктивность и структура растений, так при дозе цинка в почве более 200 мг/кг снижалась масса зерна от 7 до 50 %, а масса целого растения - до 72 % у ячменя и пшеницы различных сортов [Черных, 1988; Беляева с соавт., 1997; Минеев с соавт., 2000; Дыбин, 2003, 2004; Ростовская с соавт., 2003; Peciulyte et. all., 2006; Ратников с соавт., 2007; Шагитова, 2007; Kurteva, 2009; Chowdhury et. all., 2010]. Для оценки начальной концентрации, которая оказывает токсическое действие, был проведен опыт с другими уровнями цинка, где было показано, что при содержании цинка 250 мг/кг почвы наблюдается ингибирующее действие: масса зерна снизилась с 5,9 до 4,8 г/сосуд, масса целого растения - с 16,2 до 13,5 г/сосуд (табл. 2).
Таблица 2 Действие цинка на продуктивность и сортовую специфику яровой пшеницы (опыт 3, 4)
Вариант опытаZn, мг/кгсорт Ладасорт МИСЗерно, гСолома, гЗерно +солома, гЗерно, гСолома, гЗерно +солома, г05,910,416,24,58,913,42504,88,713,54,79,314,05003,311,414,73,59,012,5НСР0,050,20,30,50,20,30,6 Определено, что сорт МИС был более устойчив к концентрации цинка 250 мг/кг почвы, чем сорт Лада. При увеличении концентрации цинка до 500 мг/кг почвы снижение продуктивности наблюдалось на всех сортах, но на сорте МИС показатели снижались в меньшей степени (22%) по сравнению с сортом Лада (44%).
Таким образом, в проведенных исследованиях установлено, что концентрации цинка в 250 и 500 мг/кг в почве являются токсическими. Ингибирующее действие цинка при концентрации 500 мг/кг почвы на продуктивность пшеницы проявилось в большей степени и составило 44 %, что в 2 раза выше, чем при содержании цинка 250 мг/кг почвы. Выявлена, сортовая специфика реакции растений на содержание токсических концентраций цинка в почве.
Токсические концентрации способствуют снижению продуктивности растений, уменьшению показателей структурных элементов растений таких как, число зерен, числа колосков и массы 1000 зерен.
Продуктивность, структура урожая и сортовая специфика растений яровой пшеницы в зависимости от уровня азотного питания и применения регулятора роста В проведенных исследованиях установлено, что увеличение уровня азотного питания приводило к снижению ингибирующего действия цинка. При опрыскивании растений регулятором роста отмечено достоверное увеличение продуктивности пшеницы при всех условиях загрязнения почвы цинком. Выявлена сортовая специфика, которая зависит от содержания цинка в почве, от уровня азотного питания и от применения регулятора роста. При концентрации цинка 250 мг/кг почвы на обоих сортах продуктивность возрастала с увеличением дозы азотных удобрений и обработкой препаратом, а при дозе цинка 500 мг/кг почвы - только у сорта МИС наблюдалось возрастание продуктивности во всех вариантах опыта (табл. 3).
Из данных полученных в проведенных исследований, можно сделать вывод, что эффективность применения регулятора роста зависит: от сортовой специфики, дозы азотных удобрений и от концентрации тяжелых металлов в почве. Установлено, что регулятор роста активизировал процессы закладки репродуктивных органов, что привело к увеличению продуктивности пшеницы. По-видимому, это связано с влиянием амидов оксикоричных кислот на процессы формирования цветков, деления клеток и цитоморфогенеза [Facchi et. all., 2002].
Таблица 3 Действие цинка на продуктивность растений в зависимости от уровня азотного питания и применения регулятора роста, г/сосуд (опыт 3, 4)
N,
мг/кг
Zn,
мг/кгВарианты опытаКонтрольРегулятор роста150300150300масса зерна, гчисло в колосе, шт.масса зерна, гчисло в колосе, шт.масса зерна, гчисло в колосе, шт.масса зерна, гчисло в колосе, шт.колосковзеренколосковзеренколосковзеренколосковзеренЛада05,915,621,06,310,214,05,413,520,37,113,816,82504,812,816,05,710,014,75,413,417,36,812,015,95003,310,811,24,210,513,24,110,814,34,210,112,6НСР0,05А/В0,1/0,30,6/0,41,4/1,10,1/0,40,6/0,30,5/0,70,2/0,40,2/0,50,9/1,20,2/0,50,3/0,60,5/0,7МИС04,59,513,96,011,116,85,610,714,57,411,218,02504,79,612,85,49,914,87,210,015,46,311,516,15003,58,910,74,111,114,64,59,312,15,010,514,5НСР0,05А/В, АВ0,1/0,40,4/0,11,6/1,50,1/0,30,4/0,50,4/0,60,2/0,10,4/0,60,5/0,90,1/0,40,2/0,50,3/0,5Примечание: фактор А - для цинка, фактор В - для регулятора роста и азота, АВ - взаимодействие факторов
В проведенных исследованиях установлено, что у изучаемых сортов пшеницы повышение доз азотных удобрений в контрольных вариантах активизировало нарастание ассимиляционной поверхности (табл. 4). Эти результаты согласуются с исследованиями ряда авторов [Остапенко, 1991; Большакова, 1993; Natr, 1997; Sivasankar et. all., 1998; Осипова, 2000, Сучкова, 2005]. Так у сорта Лада, на VII этапе величина площади листьев возросла с 4,70 до 6,87 дм2 (32 %), а на IX этапе - с 3,70 до 6,93 дм2 (46 %). Оценивая действие повышенных концентраций цинка на величину площади ассимиляционной поверхности в зависимости от уровня азотного питания, можно сделать вывод, что на фоне цинка 250 мг/кг почвы на всех сортах, увеличение дозы азота приводило к увеличению площади ассимиляционной поверхности целого растения.
Таблица 4 Влияние цинка на площадь ассимиляционной поверхности растений (дм2) и фотопотенциал (дм2/сутки) в зависимости от уровня азотного питания
Вариант опытаЭтап органогенезаVII (колошение)ФПIХ (цветение)ФПФП ∑VII- IХZn, мг/кгАзот мг/кг1раст.листстебель1раст.листстебельколосСорт Лада01509,824,705,1213,6111,103,705,821,5822,0235,6330012,016,875,1415,1214,136,935,202,0123,5438,662501507,954,923,0313,319,473,953,861,667,8821,193009,224,254,9814,0110,614,305,031,2812,3726,385001508,304,204,1111,2610,243,405,940,908,6519,913009,414,694,7113,6211,384,754,771,8611,6825,30НСР0,05 А/В0,10/0,142,07/2,110,97/1,002,10/2,120,68/0,722,57/2,621,63/1,650,58/0,634,50/4,526,40/6,44Сорт МИС015010,054,145,9114,5711,955,005,842,0116,7031,2730011,474,626,8516,1912,124,754,952,4117,8334,022501508,994,614,3811,6211,034,345,271,4313,1024,723009,795,014,7815,5111,614,065,542,0115,9131,435001508,103,804,3010,3710,774,194,961,619,5519,923009,064,794,2713,2112,174,965,381,829,7322,94НСР0,05 А/В, АВ1,33/1,360,20/0,221,13/1,142,09/2,140,35/0,400,17/0,210,12/0,150,12/0,151,30/1,283,10/3,04 Примечание: фактор А - для цинка, фактор В - для азота, АВ - взаимодействие факторов
При концентрации цинка 500 мг/кг происходило достоверное снижение площади поверхности растений на всех этапах органогенеза по сравнению с контролем, вне зависимости от сорта. Увеличение доз азота до 300 мг/кг приводило к снижению ингибирующего действия цинка, и способствовало увеличению показателей ассимиляционной поверхности растений.
Проведенные исследования позволили сделать вывод, что суммарная величина фотосинтетического потенциала, характеризующая величину и продолжительность работы ассимиляционного аппарата уменьшилась при повышении дозы цинка до 250 мг/кг почвы у сорта Лада с 35,63 до 21,19, у сорта МИС с 31,27 до 24,72 дм2/сут по сравнению с контролем. При концентрации цинка 500 мг/кг почвы снижение составило 44 % у сорта Лада и 36 % у сорта МИС. Повышение уровня азотного питания способствовала достоверному увеличению ФП во всех вариантах опыта.
В результате проведенных исследований можно сделать вывод, что внесение в почву повышенных доз азота (300 мг/кг) снижало ингибирующее действие цинка и приводило к увеличению продуктивности растений пшеницы. Необходимо отметить, что сорт МИС был более отзывчивым на внесение повышенного уровня азотного питания и устойчивым к повышенным концентрациям цинка, что наблюдалось в тенденции роста площади листьев и фотосинтетического потенциала в этих вариантах.
В результате проведенных исследований установлено негативное влияние высоких концентраций цинка на содержание отдельных элементов в растении. Установлено, что поступление кальция в растение снижалось. Применение регулятора роста при опрыскивании вегетирующих растений значительно увеличивало содержание кальция в зерне и соломе. Согласно полученным данным на поступление магния оказывают способы применения препарата. Предпосевная обработка семян регулятором роста увеличила поступление магния в растение на обоих уровнях загрязнения почвы цинком, а опрыскивание вегетирующих растений регулятором роста не оказало положительного действия ни на одном уровне содержания цинка в почве.
Загрязнение почвы цинком без применения регулятора роста приводило к снижению выноса азота, фосфора, калия, что особенно заметно при концентрации 100 мг на 1 кг цинка в почве. При использовании регулятора роста на обоих уровнях содержания цинка в почве, отмечено увеличение выноса элементов минерального питания по сравнению с вариантами без его применения, что вероятно связано с восстановлением процессов поглощения и использования растениями макроэлементов [Овцинов, 2005]. Из литературных источников известно, что поглощение цинка растением зависит от разных факторов таких как, содержание его в почве, от видовой специфики растений их физиологического состояния, фазы вегетации [Лукин, с соавт., 1999, 2001; Панин с соавт., 2005; Суслина с соавт., 2006; Радионов с соавт., 2007]. При содержании высоких доз цинка в почве увеличивается подвижность его, в большей степени за счет водорастворимой и обменной форм элемента, что способствует лучшему поглощению его растениями [Шагитова, 2005; Панин с соавт., 2007].
В проведенных опытах установлено, что увеличение содержания цинка в почве также приводило к повышению его содержания в растениях. Применение регулятора роста снизило содержание цинка в растениях по сравнению с контролем. Наибольший эффект оказало опрыскивание вегетирующих растений (табл. 5). Так, на фоне 500 мг/кг почвы наблюдалось снижение содержание цинка с 79,08 до 65,20 мг/кг в зерне и с 161,50 до 63,03 мг/кг в соломе.
Таблица 5 Содержание цинка в растениях в зависимости от условий загрязнения почвы, мг/кг сухой массы (опыт 2)
Zn, мг/кгВарианты
обработкиСодержание цинка, мг/кгЗерноСолома0Н2О38,9092,18100Н2О61,7087,70500Н2О79,08161,500ПОС43,0038,40100ПОС59,1895,48500ПОС76,85130,570ОВР25,2515,03100ОВР64,5551,50500ОВР65,2063,03НСР 0,052,11,3 Таким образом, в результате проведенных экспериментов установлено, что внесение повышенных доз азотных удобрений при загрязнении почвы цинком, благоприятно сказывалось на динамике роста и развития растений, что приводило к увеличению показателей продуктивности пшеницы. Сравнительная оценка действия повышенных доз азота и применения регулятора роста в зависимости от концентрации цинка в почве показала, что доза азота в 300 мг/кг и опрыскивание растений регулятором роста способствует значительному росту продуктивности пшеницы. Установлено, что наибольший эффект при применении регулятора роста отмечен при концентрации цинка 250 мг/кг в почве. Прибавка урожая зерна на фоне цинка 250 мг/кг в почве составила 35 %, а на дозе 500 мг/кг - 22 % по сравнению с необработанными растениями. Установлена сортовая специфика при загрязнении почвы цинком на растения пшеницы в зависимости от доз азота. Исследования, проведенные с яровой пшеницей, выращенной при высоких концентрациях цинка в почве, показали, что на фоне 100 мг/кг цинка в почве происходит снижение выноса элементов питания азота, фосфора и калия. Регулятор роста способствовал увеличению выноса элементов минерального питания. Проведенные исследования показали, что цинк накапливался больше в вегетативной части, чем в зерне.
Оценка действия повышенных концентраций кадмия в почве на продуктивность, формирование элементов продуктивности и некоторые физиологические показатели растений пшеницы
Необходимо отметить, что имеющиеся в литературе сведения относительно действия кадмия на рост растений неоднозначны. Наряду с указаниями на ингибирующее действие, имеются данные и о стимуляции процессов роста растений под действием невысоких концентраций этого металла. Считается, что этот элемент на начальных этапах органогенеза способен ускорять деление клеток перицикла и стимулировать образование корней, а на более поздних этапах онтогенеза кадмий оказывает негативное влияние, что может быть связано с накоплением кадмия тканями и усилением токсичного эффекта [Мельничук, 1990; Ильин, 1991; Гуральчук, 1994; Литицкая, Сафонов, 1997; Барсукова, 1997; Минеев, 1990, 2001; Евдокимова, с соавт., 2001; Титов с соавт., 2002; Черных с соавт., 2002, 2004; Челтыгмашева, с соавт., 2004; Гармаш, 2006; Иванов с соавт., 2008].
В наших исследованиях установлено, что кадмий оказывал негативное влияние на продуктивность, структуру и формирование элементов продуктивности растений (табл. 6).
Таблица 6 Влияние кадмия на продуктивность пшеницы (опыт 5)
Доза Cd, мг/кгЗерно, г/сосудСолома, г/сосуд Число колосков в колосе, шт.Число зерен в колосе, шт.Масса 1000 зерен, г013,529,412,119,147,0512,132,811,818,642,4253,721,112,116,020,0НСР0,051,43,60,12,82,1 Под действием высоких концентраций кадмия наблюдалось уменьшение массы зерна с 13,5 до 12,1 г/сосуд при низком содержании кадмия (5 мг на 1 кг почвы) и с 13,5 до 3,7 - при высоком (25 мг Cd на 1 кг почвы). Эти данные согласуется с результатами, полученными Е.М. Селезневой с соавт. [2005], В.В Говориной с соавт. [2007] и А.Н. Ратниковым с соавт. [2007]. Авторы обнаружили небольшое снижение урожая зерна яровых ячменя и пшеницы на невысоких концентрациях кадмия (4-10 мг/кг почвы) и резкое снижение - при более высоких (12-50 мг/кг почвы). Имеются данные, что у зерновых культур при содержании 50 мг кадмия на 1 кг почвы зерно вообще отсутствовало [Черных, с соавт., 2004]. Загрязнение почвы кадмием приводило к снижению массы зерна за счет уменьшения числа зерен и массы 1000 зерен. Обработка растений регулятором роста в контрольных вариантах улучшила условия закладки, формирования элементов продуктивности и структуры урожая растений (табл. 7). Таблица 7 Действие кадмия на продуктивность растений при обработке растений регулятором роста (опыт 6)
Cd, мг/кгВарианты
обработки растенийМасса, г/сосудЧисло колосков в колосе, шт.Число зерен в колосе, шт.Масса 1000 зерен, гЗерноСоломаЗерно +солома0Н2О13,532,546,112,019,047,4Регулятор роста16,136,652,613,023,046,510Н2О4,911,816,712,015,021,7Регулятор роста6,414,320,611,915,727,0НСР0,052,91,63,20,21,31,7 При высоком содержании кадмия в почве регулятор роста снижал его токсическое действие на массу зерна и соломы, число колосков и зерен в колосе. Эти данные согласуются с мнением Л.Н. Ульяненко [2005] о положительном действии регулятора роста на почвах загрязненных кадмием.
В проведенных экспериментах было установлено, что кадмий способствовал снижению площади ассимиляционной поверхности целого растения с 15,55 до 13,95 дм2, из-за достоверного снижения площади листьев и колоса.
Обработка растений регулятором роста при загрязнении кадмием оказывала положительное действие на ассимиляционную поверхность целого растения. На IX этапе органогенеза происходило увеличение этого показателя с 13,95 до 18,81 дм2. Препарат способствовал существенному увеличению площади листьев в фазу колошения и в фазу цветения (табл. 8). Таблица 8 Действие кадмия на площадь ассимиляционной поверхности растений в зависимости от обработки растений регулятором роста, дм2
Cd, мг/кгВарианты
обработки растенийЭтап органогенезаVII (колошение)IХ (цветение)1раст.листстебель1раст.листстебельколос0Н2О3,772,521,2515,553,958,243,36Регулятор роста4,473,071,4015,073,487,903,6910Н2О4,822,951,8813,953,907,392,66Регулятор роста5,974,301,6718,816,428,743,66НСР0,051,50,540,390,231,030,810,33 В проведенных исследованиях установлено, что кадмий влиял на процессы фотосинтеза и дыхания, в основном, за счет торможения фиксации СО2 растениями (табл. 9). Как следует из таблицы, регулятор роста во всех вариантах стимулировал фотосинтетическую и дыхательную деятельность растений. В контрольном варианте при обработки растений регулятором роста увеличилась интенсивность фотосинтеза и дыхания с 6,41 до 7,62 мг/СО2час и с 3,28 до 4,12 мг/СО2 час, что привело к росту нетто-ассимиляции СО2 растениями за сутки.
Таблица 9 Влияние кадмия на интенсивность фотосинтеза и дыхания растений пшеницы в зависимости от обработки растений регулятором роста, мг СО2/час на 1 растение
Cd, мг/кгВарианты
обработки растенийФотосинтезДыханиеНетто-ассимиляция, мг СО2/сутки0Н2О6,413,2896,38Регулятор роста7,624,12112,4410Н2О4,032,9255,02Регулятор роста5,003,0571,70 При применении регулятора роста в вариантах с повышенным содержанием кадмия в почве было отмечено значительное увеличение интенсивности фотосинтеза с 4,03 до 5,00 мг/СО2час и в меньшей степени - интенсивность дыхания, что определило увеличение нетто-ассимиляции СО2.
Таким образом, в проведенных исследованиях установлено, что обработка растений регулятором роста обеспечивала рост зерновой продуктивности пшеницы при повышенном содержании кадмия в почве за счет стимуляции ростовой активности и интенсивности фотосинтетических процессов. Токсическое действие повышенных концентраций свинца в почве на растения пшеницы
В результате проведенных исследований установлено, что свинец оказывал негативное влияние на продуктивность пшеницы (табл.10). Определено, что масса зерна снизилась с 6,0 до 3,5 г/сосуд (42 %). Под действием свинца происходило достоверное снижение числа зерен с 18,5 до 12,2 шт. и массы 1000 зерен на 12%.
Таблица 10 Влияние свинца на продуктивность и структуру урожая растений при обработке растений регулятором роста (опыт 7)
Pb, мг/кгВарианты
обработки растенийЗерно
г/сосудСолома
г/сосудЗерно +солома
г/сосудЧисло колосков в колосе, шт.Число зерен в колосе, шт.Масса 1000 зерен, г0Н2О6,014,420,311,018,521,4Регулятор роста9,013,322,312,320,429,3100Н2О3,513,617,112,712,218,9Регулятор роста8,613,021,612,120,627,9НСР0,050,840,264,00,411,101,82 Применение регулятора роста достоверно повышало зерновую продуктивность пшеницы - с 3,5 до 8,6 г/сосуд. Обработка растений регулятором роста в варианте с высоким содержанием свинца в почве способствовала достоверному увеличению числа зерен в колосе с 12,2 до 20,6 штук и массы 1000 зерен - с 18,9 до 27,9 г (32 %).
Эффективность работы фотосинтетического аппарата зависит от условий выращивания растений. В проведенном опыте было установлено, что под действием регулятора роста в варианте с загрязнением почвы свинцом интенсивность фотосинтеза возрастала с 3,98 до 4,74 мг СО2/час (табл. 11). Таблица 11 Действие свинца на интенсивность фотосинтеза и дыхания растений пшеницы в зависимости от обработки растений регулятором роста, мг СО2/час, на 1 растение
Pb, мг/кгВарианты
обработки растенийФП
∑VII- IХ, дм2ФотосинтезДыханиеНетто - ассимиляция, мг СО2/сутки на растение0Н2О21,375,833,1586,04Регулятор роста29,446,604,3892,52100Н2О26,633,982,8054,84Регулятор роста28,634,743,7263,00 Стимулирующий эффект препарата наблюдался и в контрольных вариантах опыта. Так, при использовании регулятора роста интенсивность фотосинтеза увеличилась с 5,83 до 6,60, дыхания - с 3,15 до 4,38 мг СО2/час, что способствовало значительному увеличению показателя нетто-ассимиляции и, в дальнейшем, продуктивности пшеницы.
Наибольшее проявление положительного действия регулятора роста на эффективность работы листового аппарата отмечено на контрольном варианте опыта- с 21,37 до 29,44 дм2, наименьшее при повышенном содержании свинца в почве с - 26,63 до 28,63 дм2. Таким образом, в результате проведенных исследований выявлено, что при повышенном содержании свинца в почве, происходило снижение продуктивности пшеницы. Применение регулятора роста снижало токсическое действие свинца на формирование и реализацию элементов продуктивности и продуктивность. Влияние регулятора роста на яровую пшеницу в условии полиэлементного загрязнения почвы
Как показывают результаты исследований, все варианты загрязнения тяжелыми металлами почвы оказывали негативное действие на продуктивность и структуру биомассы пшеницы (таблица 12). Наибольшее снижение продуктивности по сравнению с контролем отмечено при комплексном действии кадмия и свинца. Масса зерна в этом варианте уменьшилась до 2,9 г/сосуд против 4,8 в контроле, масса соломы - до 9,9 против 12,2 г/сосуд.
Таблица 12 Влияние регулятора роста на продуктивность и структуру биомассы растений пшеницы в зависимости от загрязнения почвы (опыт 9)
Концентрация, мг/кгВариант опытаконтрольРегулятор ростакадмия цинка свинца зерносоломазерно +
соломазерносоломазерно +
соломаг/сосуд.доля в структуре растения, % % снижения к контролюг/сосуддоля в структуре растения, % % снижения к контролюг/сосуд% снижения к контролюг/сосуддоля в структуре растения, % % снижения к контролюг/сосуддоля в структуре растения, % % снижения к контролюг/сосуд% снижения к контролю0004,828-12,272-17,0-6,233-12,667-18,6-1025003,9271910,7731214,4154,8292211,771716,511102501003,3223111,978315,2114,231319,3692613,5271001002,922419,9781912,8244,5292711,1711215,81502501004,730311,170915,875,4311212,369317,75НСР0,05 А/В, АВ0,7/0,90,8/1,11,7/2,00,6/0,90,6/0,81,8/2,3 Примечание: фактор А - для концентраций тяжелых металлов, фактор В - для регулятора роста, АВ - взаимодействие факторов
При этом, также ухудшилась структура растений из-за снижения доли зерна и увеличения доли соломы. При моделировании загрязнения почвы цинком и свинцом наблюдался наименьший фитотоксичный эффект. Снижение массы надземной части растений составило всего лишь 7 %, что было связано, в основном, с уменьшением массы соломы. Как показывают результаты опытов, при всех изучаемых соотношениях токсических элементов потери урожая зерна были обусловлены в первую очередь нарушением процессов формирования репродуктивных органов.
Установлено, что загрязнение почвы токсическими элементами значительно повышало их содержание, как в зерне, так и соломе. Максимальные абсолютные величины накопления кадмия и свинца зерном и соломой наблюдались в варианте с искусственным загрязнением этими элементами, следствием чего явилось ухудшение условий закладки и налива зерновок, определившее и, наибольшее снижение продуктивности пшеницы (табл. 13). Самое большое поступление цинка в растения пшеницы также отмечено при наличии свинца в почве. Наибольшее содержание свинца в зерне и соломе яровой пшеницы отмечалось в вариантах с внесением свинца и кадмия.
Применение регулятора роста при повышенном содержании элементов в почве снижало содержание тяжелых металлов в растениях пшеницы во всех вариантах опыта с 1,4 до 1,7 раз по сравнению с контролем без использования препарата. Уменьшение поступления высоких концентраций изучаемых элементов способствовало улучшению условий формирования и реализации элементов продуктивности, что, вероятно, определило сохранение жизнеспособности цветков главного побега и озерненность колоса. Возможно, это обусловлено биологической активностью препарата, выполняющего в растениях защитные функции как стимулятор роста, иммуномодулятор и антистрессовый адаптоген с защитными свойствами действующего вещества препарата - оксикоричных кислот, проявляющих антиоксидантные функции, а также активирующих ряд ферментов [Малеванная с соавт. 2001; Ларионов, 2001; Sakurai с соавт., 1990; Прусакова с соавт., 2005].
Установлено, что фитотоксичное загрязнение снижало общее содержание хлорофилла на 12-20 %, что свидетельствует о нарушении процессов синтеза пигментов. Обработка растений регулятором роста влияла на изменение содержания хлорофилла в листьях растений. Под действием препарата тяжелые металлы не оказывали значительного влияния на хлорофилл а и в во всех вариантах опыта. Возможно, это связано с защитными свойствами оксикоричных кислот благодаря их антиоксидантной функции, активизирующей ферменты.
Таблица 13 Содержание цинка, кадмия и свинца в растениях пшеницы сорта МИС в зависимости от загрязнения почвы, мг/кг сухой массы
Концентрация, мг/кгВариант опытаКонтрольРегулятор ростакадмия цинка свинца цинккадмийсвинеццинккадмийсвинецзерносоломазерносоломазерносоломазерносоломазерносоломазерносолома00034,789,50,180,950,542,6021,518,00,040,210,412,1710250068,297,01,443,750,542,8250,760,00,942,400,401,991025010057,188,72,713,842,339,0455,290,91,583,713,585,7410010031,184,33,124,214,219,2025,313,22,323,823,476,13025010071,2100,90,180,863,738,4364,894,30,080,263,125,39НСР0,05 А/В, АВ4,5/4,72,1/2,30,07/0,10,1/0,30,05/0,080,18/0,211,1/1,49,1/9,40,04/0,070,05/0,060,06/0,090,11/0,17Примечание: фактор А - для концентраций тяжелых металлов , фактор В - для регулятора роста, АВ - взаимодействие факторов
ВЫВОДЫ
1. Проведенные исследования позволили установить, что при повышенном содержании цинка в почве (250 и 500 мг на 1 кг почвы) наблюдается достоверное снижение продуктивности пшеницы. Отмечено уменьшение ассимиляционной поверхности и фотосинтетического потенциала растений, а также озерненности колоса, обусловленных сортовой реакцией растений на загрязнение почв цинком.
2. Показано, что токсическое действие цинка снижается при повышении уровня обеспеченности растений азотным питанием и при использовании регулятора роста, что способствует сохранению заложившихся элементов продуктивности, стимулированию фотосинтетической деятельности и повышению продуктивности растений в зависимости от их сортовой специфики.
3. В вариантах с загрязнением кадмием при концентрациях 10 и 25 мг/кг почвы наблюдалось снижение продуктивности пшеницы на 60 и 70 % соответственно, в связи с угнетающим действием тяжелого металла на структурные элементы продуктивности, фотосинтетическую деятельность, формирование ассимиляционной поверхности и газообмена, аналогичная деятельность, но в меньшей степени наблюдалась и при повышенном содержании в почве свинца.
4. Установлено, что обработка растений биопрепаратом в вариантах с повышенным содержанием тяжелых металлов в почве стимулировала интенсивность фотосинтеза, активность дыхательного газообмена и увеличивала величину суммарного поглощения углекислоты растениями. Возрастали величины ассимиляционной поверхности растений и фотопотенциал. Применение регулятора роста способствовало уменьшению негативного влияния на закладку элементов продуктивности, и как следствие саму продуктивность растений.
5. Поликомпонентное загрязнение почвы цинком, кадмием и свинцом приводило к различной степени негативного действия на продуктивность и морфофизиологические показатели растений. Установлено, что наиболее ингибирующее действие наблюдалось при комплексном содержании кадмия и свинца в почве. Присутствие цинка в различных комбинациях с кадмием и свинцом приводило к частичной нейтрализации их токсического действия.
6. Использование регулятора роста позволило снизить в 1,4 - 1,7 раза накопление тяжелых металлов (цинка, кадмия и свинца) в растениях. Применение биопрепарата способствовало увеличению содержания хлорофилла а и в в растениях. Совместное применение регулятора роста и повышенного уровня азотного питания уменьшало угнетающее действие тяжелых металлов на формирование элементов продуктивности и продуктивность на всех уровнях загрязнения почвы. Установлено, что эффективность препарата зависела от сочетания токсических элементов в почве.
Список опубликованных работ по теме диссертации
1. Серегина И.И., Чурсина Е.В. Влияние циркона на формирование продуктивности яровой пшеницы в зависимости от содержания цинка в почве // Агрохимические приемы повышения плодородия почв и продуктивности сельскохозяйственных культур в адаптивно-ландшафтных системах земледелия: Матер. Международной научной конференции (ВНИИА). - М.: ВНИИА, 2006. - С. 274-277.
2. Серегина И.И., Чурсина Е.В. Использование циркона для снижения токсического действия цинка на растения пшеницы //Сб. науч. ст. доклады ТСХА. М.: ФГОУ-ВПО РГАУ-МСХА им. К.А. Тимирязева, 2006б - вып. 278. - С. 561-565.
3. Чурсина Е.В Действие регулятора роста циркон на продуктивность яровой пшеницы в зависимости от концентрации тяжелых металлов в почве.//Агрохимические технологии, приемы и способы увеличения объемов производства высококачественной сельскохозяйственной продукции: Матер. Международной научной конференции (ВНИИА). - М.: ВНИИА, 2008. - С. 170-172.
4. Серегина И.И., Ниловская Н.Т., Чурсина Е.В. Рост и развитие растений пшеницы в зависимости от уровня загрязнения почвы тяжелыми металлами при применении регулятора роста циркон // Проблемы агрохимии и экологии. - 2010 - № 2. - С. 27-33.
5. Серегина И.И., Чурсина Е.В. Влияние препарата циркон на продуктивность яровой пшеницы и содержание тяжелых металлов в продукции при загрязнении почвы цинком, кадмием, свинцом // Агрохимия. - 2010. - № 9. - С. 66-71.
6. Ниловская Н.Т., Чурсина Е.В. Действие повышенных концентраций цинка на продуктивность яровой пшеницы в зависимости от уровня азотного питания в почве и сортовой специфики растений//Матер. Международной научной конференции (ВНИИА). - М.: ВНИИА, 2011. - С.
1
26
Документ
Категория
Биологические науки
Просмотров
154
Размер файла
358 Кб
Теги
кандидатская
1/--страниц
Пожаловаться на содержимое документа