close

Вход

Забыли?

вход по аккаунту

?

Патент BY9863

код для вставкиСкачать
BY (11) 9863
(13) C1
(46) 2007.10.30
(19)
(12)
(51)
(2006)
G 06F 7/38
N
(54)
(21)
(22) 2005.11.04
(43) 2006.04.30
(71)
:
: a 20051066
(73)
(BY)
(56) BY 5079 C1, 2003.
BY 5224 C1, 2003.
BY 5472 C1, 2003.
RU 2018928 C1, 1994.
SU 1783516 A1, 1992.
US 4229802, 1980.
JP 4128922 A, 1992.
(BY)
(72)
:
:
;
;
(BY)
(57)
(N ≥ 2)
N
,
D-
-
,
,
-
,
, j- ( j = 1, N )
,
i-
,
j-
;
i-
,
,
BY 9863 C1 2007.10.30
,
, (N + 3),
D(N + 4)-
(N + 1)-
,
.
.1
(i = 1, 2, 3) DD(N + 2)D-
,
-
,
.
(
N
),
N/2 (N = 6k, k = 1,2,3,...)
2i (i = l, 2...., N/2) [l].
,
, i-
N
n-
.
,
D-
[2].
N n-
.
-
N n,
.
.
N
(N≥2)
D( j = 1, N )
, j.
jD-
,
-
.
,
D-
.
i-
.
-
,
(N + 1)-
,
, (N + 3)D-
i-
.
(i = 1, 2, 3)
D(N + 2)-
D,
D-
(
.
(N + 4)-n
D-
.
. 1)
N
.
1,
D-
2, 3
61-6N,
4,
7,
5, N
8
9, 10
11.
.
n-1
Xi = 2
i,n
n-2
+2
i,n-1
+ ... + 2
i,2
+ xi,1,
i,j
N n∈ {0,1}, i = 1, N , j = 1, n ,
:
N
R =  ∑ X i  mod 5.
 i =1 
,
n = 4k, k = 1,2, 3,...
(1)
(1)
:
k
k
k
 N k

R =  ∑  ∑ 2 4l − 4 x i , 4l − 3 + ∑ 24l − 3 x i , 4l − 2 + ∑ 2 4l − 2 x i, 4l −1 + ∑ 24l −1 x i , 4l   mod 5 =

l =1
l =1
l =1
 i =1 l =1
 k  N

N

N

=  ∑   ∑ 24l − 4 x i , 4l − 3  mod 5 +  ∑ 2 4l − 3 x i , 4l − 2  mod 5 +  ∑ 24l − 2 x i , 4l −1  mod 5 +

 i =1

 i =1

 l =1  i =1
 k  N


 N

N

+  ∑ 24l −1 x i , 4l  mod 5   mod 5 =  ∑   ∑ x i, 4l −3  mod 5 +  2 ∑ x i , 4l − 2  mod 5 +

 i =1

 i −1


 l =1  i =1
(2)

 N

 N

+  4 ∑ x i , 4l −1  mod 5 +  3 ∑ x i , 4l  mod 5   mod 5.
 i =1

 i =1


(2)
20,
i,4, i,8, ...,
,
i,1,
i,2,
i,n
i,6, ...,
-
) j, 1 ≤ j ≤ n,
:
i,5,
...,
3, i = 1, N .
(2),
(
i,n-2
i,n-3
21,
i,3,
i,7,
...,
i,n-1
Sj ∈ {0, 1, 2, 3, 4}
)
j
N
S j =  ∑  Wt ∑ x i ,t  mod 5  mod 5,
 t =1  i=1 

Sn = R.
(3)
-
(
Xi
-
(3)
t mod 4 = 1;
t mod 4 = 2;
t mod 4 = 3;
t mod 4 = 0.
1,
2,
Wt =
4,
3,
,
22,
-
:
N


S j =  W j ∑ x i , j + S j−1  mod 5 ,
 i =1

(4)
S0 ≡ 0.
Sj
(s , s , s )
j
1
j
2
-
j
3
:
S j = (w1j ⋅ s1j + w 2j ⋅ s 2j + w 3j ⋅ s3j )mod 5,
(5)
s1j , s 2j , s 3j ∈ {0,1};
w1j , w 2j , w 3j -
(4),
Sj.
:
j=1
N
N
S1 =  ∑ x i,1 + S0  mod 5 =  ∑ x i,1  mod 5 = 4s11 + 2s12 + s13 ;
 i =1

 i =1 
j=2
(6)
N
N
S2 =  2 ∑ x i , 2 + S1  mod 5 =  2 ∑ x i , 2 + 4s11 + 2s12 + s13  mod 5 =
 i =1

 i =1

N
=  2 ∑ x i , 2 + 2s11 + 2s11 + 2s12 + 2s13 + 2s13 + 2s13  mod 5 =
 i =1

(7)


=  2 ∑ x i , 2 + s11 + s11 + s12 + s13 + s13 + s13  mod 5  mod 5 =

  i =1

2
2
2
2
2
= (2(4s1 + 2s 2 + s 3 ) mod 5) mod 5 = (8s1 + 4s 2 + 2s 32 ) mod 5 = 3s12 + 4s 22 + 2s 32 ;
N
j=3
 N

 N

S3 =  4 ∑ x i, 3 + S2  mod 5 =  4 ∑ x i, 3 + 3s12 + 4s 22 + 2s 32  mod 5 =
 i =1

 i =1

 N

=  4 ∑ x i ,3 + 4s12 + 4s12 + 4s 22 + 4s 32 + 4s 32 + 4s 32  mod 5 =
 i =1

(8)
 N


=  4 ∑ x i ,3 + s12 + s12 + s 22 + s 32 + s 32 + s 32  mod 5  mod 5 =

  i =1

3
3
3
3
3
= (4(4s1 + 2s 2 + s 3 ) mod 5) mod 5 = (16s1 + 8s 2 + 4s33 ) mod 5 = s13 + 3s 32 + 4s 33 ;
j=4
 N

 N

S4 =  3 ∑ x i , 4 + S3  mod 5 =  3 ∑ x i, 4 + s13 + 3s 32 + 4s 33  mod 5 =
 i =1

 i =1

 N

=  3 ∑ x i, 4 + 3s13 + 3s13 + 3s 32 + 3s33 + 3s 33 + 3s 33  mod 5 =
 i =1

(9)
 N


=  3 ∑ x i , 4 + s13 + s13 + s 32 + s 33 + s33 + s 33  mod 5  mod 5 =

  i =1

4
4
4
4
4
= (3(4s1 + 2s 2 + s 3 ) mod 5) mod 5 = (12s1 + 6s 2 + 3s 34 ) mod 5 = 2s14 + s 42 + 3s 34 ;
j=5
N
N
S5 =  ∑ x i , 5 + S4  mod 5 =  ∑ x i ,5 + 2s14 + s 42 + 3s 34  mod 5 =
 i =1

 i =1

N
=  ∑ x i , 5 + s14 + s14 + s 42 + s34 + s34 + s 43  mod 5 = 4s15 + 2s52 + s 53.
 i =1

(10)
.
(6)-(10)
,
Sj,
R,
N+6
- N
1,
2,
s1j−1
..., XN,
s1j−1 ,
s 2j−1
s 3j−1
Sj-1.
,
x1,j, x2,j, …, xN,j
,
j,
0
2:
 N x + s j−1 + s j−1 + s j−1 + s j−1 + s j−1 + s j−1  mod 5 = 4s j + 2s j + s j .
 ∑ i, j 1
1
2
3
3
3 
1
2
3
 i =1

(s , s , s )
j
1
j
2
j
3
Sj
:
s 3j−1 , s 3j−1
(11)
(5)
4,
3,
W1j =
1,
2,
j mod 4 = 1;
j mod 4 = 2;
j mod 4 = 3;
j mod 4 = 0;
(12)
2,
4,
W2j =
3,
1,
j mod 4 = 1;
j mod 4 = 2;
j mod 4 = 3;
j mod 4 = 0;
(13)
1,
2,
W3j =
4,
3,
j mod 4 = 1;
j mod 4 = 2;
j mod 4 = 3;
j mod 4 = 0.
(14)
(s , s , s )
j
1
(
. 2).
,
s1j ⋅ s 2j ≡ 0
j
2
j
3
s1j ⋅ s 3j ≡ 0 .
Sj,
(12)-(14),
(11)
:
 N x + (s j−1 ∨ s j−1 ) + (s j−1 ∨ s j−1 ) + s j−1 + s j−1  mod 5 = 4s j + 2s j + s j .
 ∑ i, j
1
3
1
3
2
3 
1
2
3
 i=1

,
(15)
N n-
Xi
(1 ≤ j ≤ n)
x1,j, x2,j, ..., xN,j
s 2j−1
(15)
nN
,
(s
j −1
1
j-
∨ s 3j−1 ) , (s1j−1 ∨ s 3j−1 ) ,
s 3j−1 .
N+4
1,
j
1
s , s
j
2
s
j
3
Sj
.
2, 3
2
(
2)
2,
,
4,
s1j ,
2
s 3j
1
21 ) 20 ) -
(
(
3,
4.
s 2j ,
3-
Sj.
3 4
5
4
2
1.
4
-
1.
,
m
s1 , s 2 , s 3 ∈ {0,1} ,
(
S = 4s1 + 2s2 + s3 = (y1 +
.
2
+ ... + ym)mod5,
,
20):
: Q1j−1 , Q 2j−1
Q3j−1 -
4
2,
3
-
Q10 ≡ 0 , Q02 ≡ 0 , Q03 ≡ 0 , 1 ≤ j ≤ n.
j(15)
:
N
j −1
j −1
j −1
j −1
j −1
j −1 
j
j
j 
∑
 x i , j + (Q1 ∨ Q3 ) + (Q1 ∨ Q 3 ) + Q 2 + Q3  mod 5 == 4s1 + 2s 2 + s3 ;
 i =1


j
j
j
j
j
j

Q1 = s1; Q 2 = s 2 ; Q3 = s 3 .

(16)
N
(16)
8
61, 62,..., 6N
.
,
2, 3
4.
x1,j,
x2,j, ..., xN,j
x1,1, x2,1, ..., xN,1),
7.
1,
2,...,
XN (
n
,
(n- )
2, 3
s1n ,
s n2
4
-
Sn,
-
s 3n
:
N
R =  ∑ X i  mod 5 = Sn = (w1n ⋅ s1n + w n2 ⋅ s n2 + w 3n ⋅ s n3 ) mod 5.
 i =1 
2, 3
10
4
11
4
9,
.
= 11110010,
(
5 = 10111101,
. 3)
s1j
1 = 01010110,
2 = 11101011,
= 01101110, 7 = 11110101.
(
)
1
6
(
3)
-
s (
(
4)
w 1j , w 2j
1
Sj
= 01110101,
j
2
2),
s 3j
3
-
w 3j
.
(
. 3)
,
(
-
( s18 = 0 ),
2
( s82 = 1 ),
3( s83 = 1 ).
4(
,
)
( s18 , s 82 , s 83 ) = (0, 1, 1)
. 3),
-
4:
7
R =  ∑ X i  mod 5 = S8 = (w18 ⋅ s18 + w 82 ⋅ s82 + w 83 ⋅ s 83 ) mod 5 = 4.
 i =1 
:
= 86, 2 = 235, 3 = 117, 4 = 242,
7
R =  ∑ X i  mod 5 = 1224 mod 5 = 4 .
 i =1 
1
5
= 189,
6
= 110,
7
= 245.
,
-
,
n,
.
-
-
,
,
(
. 3).
1) n = 7:
1 = 1010110,
X7 = 1110101.
.3
2
= 1101011,
3
= 1110101,
(s
7 7 7
1 ,s2 ,s3
,
4
= 1110010,
5
= 0111101, X6 = 1101110,
) = (0, 1, 1)
,
2:
7
R =  ∑ X i  mod 5 = S7 = (w 17 ⋅ s17 + w 72 ⋅ s 72 + w 73 ⋅ s 37 ) mod 5 = 2.
 i =1 
:
1
= 86,
2
= 107,
3
= 117,
4
= 114, X5 = 61, X6 = 110, X7 = 117.
7
R =  ∑ X i  mod 5 = 712 mod 5 = 2 .
 i =1 
2) n = 6:
X3 = 110101,
1 = 010110,
2 = 101011,
4 = 110010,
7 = 110101.
.3
,
(s16 , s62 , s63 ) = (1, 0, 0)
5
= 111101.
6
= 101110,
,
3:
7
R =  ∑ X i  mod 5 = S6 = (w16 ⋅ s16 + w 62 ⋅ s 62 + w 63 ⋅ s 36 ) mod 5 = 3.
 i =1 
:
1
= 22,
2
= 43,
3
= 53,
4
= 50,
5
= 61,
6
= 46,
7
= 53.
7
R =  ∑ X i  mod 5 = 328 mod 5 = 3 .
 i =1 
3) n = 5:
X1 = 10110, X2 = 01011,
.3
3
= 10101,
(s , s
5
1
,
5 5
2 ,s3
4
= 10010,
) = (0, 0, 1)
5
= 11101,
6
= 01110,
7
= 10101.
,
1:
7
R =  ∑ X i  mod 5 = S5 = (w15 ⋅ s15 + w 52 ⋅ s 52 + w 53 ⋅ s53 ) mod 5 = 1.
 i =1 
:
3 = 5,
1
= 6,
2
= 11,
4 = 2,
5 = 13,
6 = 14,
7 = 5.
7
R =  ∑ X i  mod 5 = 56 mod 5 = 1 .
 i =1 
N
,
.
-
:
1.
2.
5352,
5079,
G 06F 7/49, 7/50, 2003.
G 06F 7/50, 2003 (
(s , s , s )
j
1
(
s1j , s 2j , s 3j
)
j
3
(
)
S j = w 1j ⋅ s1j + w 2j ⋅ s 2j + w 3j ⋅ s 3j mod 5
(
Jmod 4 = 1
w 1j , w 2j , w 3j
(0, 0, 0)
(0, 0, 1)
(0, 1, 0)
(0, 1, 1)
(1, 0, 0)
j
2
).
0
l
2
3
4
) = (4,2,1) (
jmod4 = 2
w 1j , w 2j , w 3j
) = (3,4,2) (
jmod4 = 3
w 1j , w 2j , w 3j
0
2
4
1
3
0
4
3
2
1
.2
) = (1,3,4) (
jmod4 = 0
w 1j , w 2j , w 3j
0
3
1
4
2
) = (2,1,3)
220034, .
1
,
j
x 3, j
x 4, j
x 5, j
x 6, j
x 7, j
61
62
63
64
65
66
67
1
0
1
1
0
1
0
2
1
1
0
1
0
3
1
0
1
0
4
0
1
0
5
1
0
6
0
7
8
, 20
.
Q1j−1 ∨ Q3j−1
Q1j−1 ∨ Q3j−1
Q 2j−1
Q 3j−1
1
0
0
0
0
1
0
1
1
0
0
1
1
1
1
1
0
1
0
1
1
0
1
1
1
1
1
1
1
0
1
0
0
1
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
0
1
1
1
1
0
0
0
1
0
1
1
0
1
1
1
1
1
.3
2
3
4
s11 = 1
w 11 = 4
s12 = 0
w12 = 3
s13 = 0
w13 = 1
s14 = 0
w14 = 2
s15 = 0
w15 = 4
s16 = 1
w16 = 3
s17 = 0
w17 = 1
s18 = 0
w18 = 2
s12 = 0
w12 = 2
s13 = 0
w13 = 1
s 22 = 0
w 22 = 4
s 32 = 1
w 32 = 3
s42 = 1
w 42 = 1
s 52 = 0
w 52 = 2
s 62 = 0
w 62 = 4
s 72 = 1
w 72 = 3
s82 = 1
w 82 = 1
s32 = 1
w 32 = 2
s 33 = 1
w 33 = 4
s 34 = 0
w 34 = 3
s53 = 1
w 53 = 1
s 36 = 0
w 63 = 2
s 73 = 1
w 73 = 4
s 83 = 1
w 83 = 3
BY 9863 C1 2007.10.30
x 2, j
.
x1, j
Документ
Категория
Без категории
Просмотров
0
Размер файла
106 Кб
Теги
патент, by9863
1/--страниц
Пожаловаться на содержимое документа