close

Вход

Забыли?

вход по аккаунту

?

06. Определение сетевой технологии. Сетевая технология Ethernet

код для вставкиСкачать
6. Определение сетевой технологии. Сетевая технология Ethernet. Метод CSMA/CD. Понятие и структура кадра. Манчестерское кодирование.
Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения локальной вычислительной сети. Сетевая технология определяет топологию и метод доступа к среде передачи данных, кабельную систему или среду передачи данных, формат сетевых кадров, тип кодирования сигналов, скорость передачи в локальной сети. В современных локальных вычислительных сетях широкое распространение получили такие технологии, как: Ethernet, Token-Ring, ArcNet, FDDI.
Сетевые технологии локальных сетей IEEE802.3/Ethernet
В настоящее время эта сетевая технология наиболее популярна в мире. Популярность обеспечивается простыми, надежными и недорогими технологиями. В классической локальной сети Ethernet применяется стандартный коаксиальный кабель двух видов (толстый и тонкий).
Однако все большее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары, так как монтаж и обслуживание их гораздо проще. В локальных сетях Ethernet применяются топологии типа "шина" и типа "пассивная звезда", а метод доступа CSMA/CD.
Стандарт IEEE802.3 в зависимости от типа среды передачи данных имеет модификации:
* 10BASE5 (толстый коаксиальный кабель) - обеспечивает скорость передачи данных 10 Мбит/с и длину сегмента до 500м;
* 10BASE2 (тонкий коаксиальный кабель) - обеспечивает скорость передачи данных 10 Мбит/с и длину сегмента до 200м;
* 10BASE-T (неэкранированная витая пара) - позволяет создавать сеть по звездной топологии. Расстояние от концентратора до конечного узла до 100м. Общее количество узлов не должно превышать 1024;
* 10BASE-F (оптоволоконный кабель) - позволяет создавать сеть по звездной топологии. Расстояние от концентратора до конечного узла до 2000м.
В развитие сетевой технологии Ethernet созданы высокоскоростные варианты: IEEE802.3u/Fast Ethernet и IEEE802.3z/Gigabit Ethernet. Основная топология, которая используется в локальных сетях Fast Ethernet и Gigabit Ethernet, пассивная звезда.
Сетевая технология Fast Ethernet обеспечивает скорость передачи 100 Мбит/с и имеет три модификации:
* 100BASE-T4 - используется неэкранированная витая пара (счетверенная витая пара). Расстояние от концентратора до конечного узла до 100м;
* 100BASE-TX - используются две витые пары (неэкранированная и экранированная). Расстояние от концентратора до конечного узла до 100м; * 100BASE-FX - используется оптоволоконный кабель (два волокна в кабеле). Расстояние от концентратора до конечного узла до 2000м.
Сетевая технология локальных сетей Gigabit Ethernet - обеспечивает скорость передачи 1000 Мбит/с. Существуют следующие модификации стандарта:
* 1000BASE-SX - применяется оптоволоконный кабель с длиной волны светового сигнала 850 нм.
* 1000BASE-LX - используется оптоволоконный кабель с длиной волны светового сигнала 1300 нм.
* 1000BASE-CX - используется экранированная витая пара.
* 1000BASE-T - применяется счетверенная неэкранированная витая пара.
Локальные сети Fast Ethernet и Gigabit Ethernet совместимы с локальными сетями, выполненными по технологии (стандарту) Ethernet, поэтому легко и просто соединять сегменты Ethernet, Fast Ethernet и Gigabit Ethernet в единую вычислительную сеть.
CSMA/CD (Carrier Sense Multiple Access/Collision Detect) - множественный доступ с прослушиванием несущей и обнаружением коллизий. Узел, готовый послать кадр, прослушивает линию. При отсутствии несущей он начинает передачу кадра, одновременно контролируя состояние линии. При обнаружении коллизии передача прекращается, и повторная попытка откладывается на случайное время. Коллизии - нормальное, хотя и не очень частое явление для CSMA/CD. Их частота связана с количеством и активностью подключенных узлов. Метод требует сложных и дорогих схем цепей доступа. Применяется во многих сетевых архитектурах: Ethernet, EtherTalk (реализация Ethernet фирмы Apple), G-Net, IBM PC Network, AT&T Star LAN.
Приведем основные правила алгоритма CSMA/CD для предающей станции.
Передача кадра:
1. Станция, собравшаяся передавать, прослушивает среду. И передает, если среда свободна. В противном случае (т.е. если среда занята) переходит к шагу 2. При передаче нескольких кадров подряд станция выдерживает определенную паузу между посылками кадров - межкадровый интервал, причем после каждой такой паузы перед отправкой следующего кадра станция вновь прослушивает среду (возвращение на начало шага 1);
2. Если среда занята, станция продолжает прослушивать среду до тех пор, пока среда не станет свободной, и затем сразу же начинает передачу;
3. Каждая станция, ведущая передачу прослушивает среду, и в случае обнаружения коллизии, не прекращает сразу же передачу, а сначала передает короткий специальный сигнал коллизии - jam-сигнал, информируя другие станции о коллизии, и прекращает передачу;
4. После передачи jam-сигнала станция замолкает и ждет некоторое произвольное время в соответствии с правилом бинарной экспоненциальной задержки и затем возвращаясь к шагу 1.
Межкадровый интервал IFG (interframe gap) составляет в 9,6 мксек (12 байт). С одной стороны он необходим для того, чтобы принимающая станция могла корректно завершить прием кадра. Кроме этого, если бы станция передавала кадры непрерывно, она бы полностью захватила канал и тем самым лишила другие станции возможности передачи.
Jam-сигнал (jamming - дословно глушение). Передача jam-сигнала гарантирует, что не один кадр не будет потерян, так как все узлы, которые передавали кадры до возникновения коллизии, приняв jam-сигнал, прервут свои передачи и замолкнут в преддверии новой попытки передать кадры. Jam-сигнал должен быть достаточной длины, чтобы он дошел до самых удаленных станций коллизионного домена, с учетом дополнительной задержки SF (safety margin) на возможных повторителях. Содержание jam-сигнала не принципиально за исключением того, что оно не должно соответствовать значению поля CRC частично переданного кадра (802.3), и первые 62 бита должны представлять чередование '1' и '0' со стартовым битом '1'.
Сеть Ethernet разработана в 1976 году Меткальфом и Боггсом (фирма Ксерокс). Ethernet совместно со своей скоростной версией Fast Ethernet, GigaEthernet (1Гбит/с) и 10GE (10Гигабит/с) занимает в настоящее время абсолютно лидирующую позицию. В настоящее время на основе этого стандарта строятся уже не только локальные но и общегородские сети, а также межгородские каналы. Единственным недостатком данной сети является отсутствие гарантии времени доступа к среде (и механизмов, обеспечивающих приоритетное обслуживание), что делает сеть малоперспективной для решения технологических проблем реального времени. Определенные проблемы иногда создает ограничение на максимальное поле данных, равное ~1500 байт.
Формат кадра сетей Ethernet (цифры в верхней части рисунка показывают размер поля в байтах)
Поле преамбула содержит 7 байт 0хАА и служит для стабилизации и синхронизации среды (чередующиеся сигналы CD1 и CD0 при завершающем CD0), далее следует поле SFD (start frame delimiter = 0xab), которое предназначено для выявления начала кадра. Поле EFD (end frame delimiter) задает конец кадра. Поле контрольной суммы (CRC - cyclic redundancy check), также как и преамбула, SFD и EFD, формируются и контролируются на аппаратном уровне. В некоторых модификациях протокола поле efd не используется. Пользователю доступны поля, начиная с адреса получателя и кончая полем информация, включительно. После crc следует межпакетная пауза (IPG - interpacket gap - межпакетный интервал) длиной 9,6 мксек или более. Максимальный размер кадра равен 1518 байт (сюда не включены поля преамбулы, SFD и EFD). Интерфейс просматривает все пакеты, следующие по кабельному сегменту, к которому он подключен, ведь определить, корректен ли принятый пакет и кому он адресован, можно лишь приняв его целиком. Корректность пакета по CRC, по длине и кратности целому числу байт производится после проверки адреса места назначения. Вероятность ошибки передачи при наличии crc контроля составляет ~2-32. Манчестерский код объединяет в бит-сигнале данные и синхронизацию. Каждый бит-символ делится на 2 части, причем вторая часть всегда является инверсной по отношению первой. В первой половине кодируемый сигнал представлен в логически дополнительном виде, а во второй - в обычном. Таким образом, сигнал логического 0 - CD0 характеризуется в первой половине уровнем HI, а во второй LO. Соответственно сигнал CD1 характеризуется в первой половине бит-символа уровнем LO, а во второй - HI. Примеры форм сигналов при манчестерском кодировании представлены на рисунке:
Минимальная длина пакета должна быть больше удвоенного значения максимальной задержки в сети Ethernet (выбрано 64 байта = 512 тактов). Если размер пакета меньше 64 байт, добавляются байты-заполнители, чтобы кадр в любом случае имел соответствующий размер. При приеме контролируется длина пакета и, если она превышает 1518 байт, пакет считается избыточным и обрабатываться не будет. Аналогичная судьба ждет кадры короче 64 байт. Любой пакет должен иметь длину, кратную 8 бит (целое число байт). Если в поле адресата содержатся все единицы, адрес считается широковещательным, то есть обращенным ко всем рабочим станциям локальной сети. Пакет ethernet может нести от 46 до 1500 байт данных. Формат адреса получателя или отправителя (MAC) показан на рисунке 4.1.1.1.4. Для передачи данных на физическом уровне используется манчестерский код.
Рис. 4.1.1.1.4. Формат mac-адреса
В верхней части рисунка указана длина полей адреса, в нижней - нумерация разрядов. Субполе I/G представляет собой флаг индивидуального или группового адреса. I/G=0 - указывает на то, что адрес является индивидуальным адресом сетевого объекта. I/G=1 характеризует адрес как мультикастинговый, в этом случае дальнейшее разбиение адреса на субполя теряет смысл. Субполе UL является флагом универсального или местного управления (определяет механизм присвоения адреса сетевому интерфейсу). U/L=1 указывает на локальную адресацию (адрес задан не производителем и ответственность за уникальность лежит на администраторе LAN). U/L=I/G=0 характерно для стандартных уникальных адресов, присваиваемых интерфейсу его изготовителем. Субполе OUI (organizationally unique identifier) позволяет определить производителя сетевого интерфейса. Каждому производителю присваивается один или несколько OUI. Размер субполя позволяет идентифицировать около 4 миллионов различных производителей. За корректность присвоения уникального адреса интерфейса (OUA - organizationally unique address) несет ответственность производитель. Двух интерфейсов одного и того же производителя с идентичными номерами не должно существовать. Размер поля позволяет произвести примерно 16 миллионов интерфейсов. Комбинация oui и oua составляют UAA (universally administrated address = IEEE-адрес).
Если в поле кадра протокол/тип записан код менее 1500, то это поле характеризует длину кадра. В противном случае - это код протокола, пакет которого инкапсулирован в кадр Ethernet.
Документ
Категория
Разное
Просмотров
1 280
Размер файла
145 Кб
Теги
сетевая, технология, сетевой, определение, ethernet
1/--страниц
Пожаловаться на содержимое документа