close

Вход

Забыли?

вход по аккаунту

?

Early universe cosmology and its observational effects on the cosmic microwave background

код для вставкиСкачать
INFORMATION TO USERS
This reproduction was made from a copy o f a docum ent sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this docum ent, the quality o f the reproduction is heavily dependent upon the
quality o f the material subm itted.
The follow ing explanation o f techniques is provided to help clarify markings or
notations which may appear on this reproduction.
1. The sign or “target” for pages apparently lacking from the document
photographed is “ Missing Page(s)” . If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure com plete continuity.
2. When an image on the film is obliterated with a round black mark, it is an
indication o f either blurred copy because o f m ovem ent during exposure,
duplicate cop y, or copyrighted materials that should not have been filmed. For
blurred pages, a good image o f the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.
3. When a map, drawing or chart, etc., is part o f the material being photographed,
a definite m ethod o f “sectioning” the material has been follow ed. It is
customary to begin film ing at the upper left hand com er o f a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until com plete.
4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.
5. Some pages in any docum ent may have indistinct print. In all cases the best
available copy has been film ed.
University'
Micrcxilms
International
300 N. Zeeb Road
Ann Arbor, Ml 48106
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
R e p ro d u c e d with perm ission of the copyright owner. Further reproduction prohibited without permission.
8509464
B ru ce , M ark Lee
THE MICROWAVE INDUCED PLASMA AS A MULTICHANNEL GAS
CHROMATOGRAPHIC DETECTOR
Ph.D. 1984
University of Cincinnati
University
Microfilms
International
300 N. Zeeb Road, Ann Arbor, Ml 48106
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
R e p ro d u c e d with perm ission of the copyright owner. Further reproduction prohibited without permission.
PLEASE NOTE:
In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this docum ent have been identified here with a check mark V
.
1.
Glossy photographs or pages______
2.
Colored illustrations, paper or print.
y
3.
Photographs with dark background
^
4.
Illustrations are poor cop y______
5.
Pages with black marks, not original copy______
6.
Print shows through as there is text on both sides of page______
7.
Indistinct, broken or small print on several pages
8.
Print exceeds margin requirem ents______
9.
Tightly bound copy with print lost in spine______
10.
Computer printout pages with indistinct print______
11.
P ag e(s)____________ lacking when material received, and not available from school or
author.
12.
P ag e(s)____________ seem to be missing in numbering only as text follows.
13.
Two pages n um bered____________ . Text follows.
14.
Curling and wrinkled p ages______
15.
Other___________________________________________________________________________
University
Microfilms
International
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
R e p ro d u c e d with perm ission of the copyright owner. Further reproduction prohibited without permission.
THE MICROWAVE INDUCED PLASMA AS A
MULTICHANNEL GAS CHROMATOGRAPHIC DETECTOR
A d issertatio n
subm itted
to
the
D iv is io n o f G rad u ate S tu d ie s and R esearch
of the U n iv e rsity of C in c in n a ti
in p a r t i a l f u lf illm e n t of the
req u irem en ts fo r th e degree of
DOCTOR OF PHILOSOPHY
in th e D epartm ent o f C h em istry
o f th e C o lle g e of A r ts and S c ie n c e s
1 98 4
by
Mark L.
B .S .,
Bruce
Mount U n io n C o l l e g e ,
198 0
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
UNIVERSITY OF CINCINNATI
O c to b e r 31
J Q 84
I hereby recommend that the thesis prepared under my
...
Mark Lee Bruce
supervision by----------------------------------------------?n tifl? d
T^ie ^ crowave I n d e e d Plasma a s a
M u l t i c h a n n e l Gas Chronatocrraphic D e t e c t o r ___________
be accepted asfidfiffing das part of the requirementsfor die
fo g w nf
D o c t b r o f P h i lo s p h y _______________________
Approved by:
'TV sfjJLJT
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ABSTRACT
The
use
of
m u ltielem en t
c o lle cte d
th ro u g h
from th e
tube
p g /sec
for
carbon,
flu o rin e .
T orch
com parable
to
Codding
th e
c o n tro lle d
background
ch ro m ato g rap h ic
d eterm in e
the
and d io x in s .
was
b e tte r
and
p artial
The t y p i c a l
d ev elo p ed .
than
th e
lim its
hydrogen,
life tim e
a
f o r m u l a s w e r e a b o u t 3%.
to rch
D etectio n
as
D ata w ere
to
em p irical
slig h tly
torch.
used
plasm a
ev alu ated .
The
of p y reth ro id s
flow
in d u ced
been
co m p u ter
w ere
tru e
lam in ar
se n sitiv ity
quartz
d ata
form ulas
A new
a
has
p o ly ch ro m ato r.
sp ectro sco p ic
errors
m icro w av e
d e te c to r
c o rre c tin g
e m p irical
th e
p lasm a
flo w
to rch
show ed
mm c a p i l l a r y
w ere betw een
b rom ine,
and
tan g e n tia l
0.5
It
8 and
60
ch lo rin e
and
s ta b ility
are
dev elo p ed
by
(12).
i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ACKNOWLEDGEMENTS
The
c o m p letio n
d isse rta tio n
a n aly tical
has
of
not
my
been
ch em ist,
but
d o c to ra l
th e
w ork
rath er
rese a rc h
of
th e
a
w ork
"lo n e
of
and
ranger"
a
grad u ate
s t u d e n t who h a s b e e n t a u g h t , e n c o u r a g e d a n d b e f r i e n d e d b y
m any s u p p o r t i v e
Josep h C aruso,
p eo p le.
F irst,
my r e s e a r c h a d v i s o r ,
p a tie n c e and w illin g n e s s
aid ed
to
ro o k ie
stu d en ts
g rad u ate
M cC arthy,
Tom
stu d en ts
P eter
They
B rueggem eyer,
Mona
as
C arnahan,
M u llig an ,
several
and
su p p o rt has been p ro v id ed
Jon
me i n
a
Jim
M an tay
D a ve H a a s , Tu N i s a m a n e e p o n g
A lso,
Ibrahim
D r.
Many f o r m e r
in b re a k in g
are
h a v e m ade c o n t r i b u t i o n s
Brow n,
stu d en t.
K evin
M ike E c k h o f f ,
E n riq u ez.
thank
le a d by exam ple have g r e a t l y
had a p a r t
stu d en t.
Z e r e z g h i , K i n Ng ,
Ju liu s
each
to
whose e n c o u ra g e m e n t,
i n my d e v e l o p m e n t a s a g r a d u a t e
g rad u ate
and
I w ould l i k e
present
as w ell:
Ahmad
grad u ate
J o h n W orkm an,
M ohamad.
F in acial
NIEHS g r a n t # E S - 0 0 7 3 9 a n d t h e
U n iv e rs ity R esearch C o u n cil.
I
w ould
m o th er,
sin ce
to
express
fath e r-in -law
c o n tin u o u s
special
lik e
support
thank
he
was
in secticid e
you
larg ely
sam ples
my b r o t h e r K i r k ,
To m B e r g
is
have
my a p p r e c i a t i o n
and
m o th er-in -law
th ro u g h o u t
due
to
w ere
m uch
for
used
sister-in -law
p ro v id ed
th is
e n tire
th is
th e ir
endeavor.
A
Gordon B erg,
obtain in g
in
my f a t h e r ,
for
my f a t h e r - i n - l a w ,
resp o n sib le
th at
to
many o f t h e
research.
A lso
Mary B erg a n d b r o t h e r - i n - l a w
support
over
the
past
four
ii
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
years.
M any
frien d s
co n trib u tio n s
from
through
"flesh in g
out"
p ro v id in g
ch ild care.
and C h ery l
Jones,
th eir
th eir
have
P roverbs
a ll
friendship,
m ade
Jim
fig u res,
and K aren H u n ter,
G a b rie lle
My w i f e
th e
w ords,
but
support
and
ty p in g
and
is
d u e M ark
Ed a n d R o b i n
L ieberg,
deserves g reat
rig h t
v a lu a b le
prayer
H e a rtfe lt ap p reciatio n
Tom a n d B a r b W i s e ,
d o n 't
also
lo v e by d raw in g
M cC onnell,
an d K a te W ozniak.
I
church
L ois
thanks.
it
is
D vorak
In
best
fact,
put
in
31:10-12:
A g o o d w i f e who c a n f i n d ?
She i s f a r m ore p r e c i o u s t h a n j e w e l s .
The h e a r t o f h e r husband t r u s t s in h e r,
an d he w i l l have no l a c k o f g a i n .
She d o e s him g o o d , and n o t h arm ",
a l l the days of her l i f e .
L ast,
but
m ost
im p o rtan tly ,
Lord f o r c r e a t i n g
such an
to
carry in g
not
stu d y
feel
and
for
lik e
b ein g
I w ould l i k e
in terestin g
me t h r o u g h
c h a llen g e d .
s t e a d f a s t and H is m e rc ie s
are
to
thank
and c h a lle n g in g
the
days
Indeed
the
w orld
when I d id
H is
lo v e
is
new e v e r y m o r n i n g .
iii
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE OF CONTENTS
Page
i
ABSTRACT OF DISSERTATION
I .
II.
III.
IV.
ACKNOWLEDGEMENTS
ii
L I S T OF FIGURES
vi
L I S T OF TABLES
xi
INTRODUCTION
1
SIMPLE QUARTZ TUBETORCH AND APPLICATIONS
OF THE G . C . POLYCHROMATOR
15
A.
In tro d u ctio n
15
B.
E xperim ental
16
1.
S o lv en ts
2.
Equipm ent and I n s t r u m e n t a t io n
C.
D iscussion
D.
E xp erim en tal
E.
Summary
and S ta n d a rd s
16
17
17
R esu lts
19
39
CODDING TYPE TANGENTIAL FLOW TORCH
41
A.
In tro d u ctio n
41
B.
E xperim ental
44
1.
S o lv en ts
and S t a n d a r d s
2.
Equipm ent and I n s t r u m e n t a t i o n
44
44
C.
D esign M o d if ic a tio n s
47
D.
R esu lts
47
E.
Summary
and D is c u ss io n
59
LAMINAR FLOW TORCH
61
A.
In tro d u ctio n
and D esig n
61
B.
E xp erim en tal
f o r T o rch D evelopm ent
71
iv
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
G ases and S ta n d a rd s
2.
E quipm ent and I n s t r u m e n t a t i o n
C.
R esu lts
D.
E xperim ental
A p p licatio n
E.
Page
71
1.
and D isc u ssio n
71
of T orch D evelopm ent
f o r Gas C h ro m a to g ra p h ic
93
138
1.
G ases and S ta n d ard s
138
2.
Equipm ent and I n s t r u m e n t a t io n
139
R e s u lts and D is c u s s io n
phic A p p lic a tio n s
f o r Gas C h ro m a to g ra -
147
1.
P y reth ro id s
147
2.
D ioxins
179
3.
C a l i b r a t i o n w i t h Gas M ix t u r e
205
F.
C onclusion
G.
S u g g estio n s
205
fo r F u tu re R esearch
211
»
V.
REFERENCES
213
V I. A ppendices
A.
REGRES -
least
B.
M IX1.4FR -
gas m ix tu re a n a ly s is
C.
E m per3.0
an aly sis
program
-
squares,
sta tistic a l
program
program
of ch rom atographic d a ta
217
231
2 37
v
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
L I S T OF FIGURES
Page
1.
D i a g r a m o f t h e GC/MIP a n d p o l y c h r o m a t o r / m i c r o com puter sy stem .
R e f e re n c e (21)
10
2.
D iagram o f g a s c h ro m a to g ra p h m o d i f i c a t i o n s .
R e f e re n c e (21)
12
3.
S i m p l i f i e d d i a g r a m o f t h e PMT c i r c u i t r y a n d
8080-m icrocom puter i n t e r f a c e .
R e f e r e n c e (21)
14
4.
M olecular s t r u c t u r e s
th r in , D eltam ethrin,
fo r the P y re th ro id s :C y flu ­
P e rm e th rin and F e n v a le r a te .
21
5.
Chrom atogram o f f o u r P y r e t h r o i d s ; P e r m e t h r i n ,
C y f l u th r in , F e n v a le r a te (double peak) and D e lta m e t h r in on t h r e e c h a n n e l s .
23
.
Chrom atogram o f f o u r P y r e t h r o i d s ; P e r m e t h r i n ,
C y f l u th r in , F e n v a le r a te (double peak) and D e lta m e t h r i n on t h r e e d i f f e r e n t c h a n n e l s .
C oncentra­
t i o n 6 . 3 ppm.
25
7.
L e a s t s q u a r e s p l o t o f ADC*sec a s m e a s u r e d o n t h e
c h lo r in e o r brom ine ch an n el f o r P e rm e th rin ,
C y f l u t h r i n , F e n v a l e r a t e , D e l t a m e t h r i n v e r s u s ppm
of each p y re th ro id .
27
8.
L e a s t s q u a r e s p l o t o f AD C * s e c v e r s u s n m o l e o f
c h lo r in e o r brom ine f o r P e rm e th rin , C y f l u th r in ,
F e n v a le ra te , D eltam eth rin .
32
9.
M o d ified Codding t a n g e n t i a l
flow t o r c h .
43
10.
M odified gas chrom atograph
g e n t i a l flow t o r c h .
fo r use w ith
tan­
46
11.
L e a s t s q u a r e s c a l i b r a t i o n p l o t s f o r A D C *s e c o n
c a r b o n o r c h l o r i n e c h a n n e l s v e r s u s ppm o f e a c h
p y re th ro id (P erm eth rin , C y flu th rin , F e n v a le ra te ,
D eltam eth rin ).
51
12.
L e a s t s q u a r e s c a l i b r a t i o n p l o t s f o r ADC*sec on
c a r b o n o r c h l o r i n e c h a n n e l s v e r s u s ng o f e a c h
e le m e n t from P e r m e t h r i n , C y f l u t h r i n , F e n v a l e r a t e
D eltam eth rin .
56
13.
u - v elo city
facing s te p ,
63
14.
D e ta ile d flow b e h a v io r n e a r
edge.
R e fe re n c e (40)
6
p r o f i l e s dow nstream o f th e
Reh = 1 2 6 .
R e f e re n c e (40)
the
sharp
the
rearw ard
trailin g
65
vi
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
dow nstream from a r e a r w a r d
Page
68
15.
Flow p a t t e r n
b lu ff body.
16.
V a ria tio n of reattach m en t len g th
R ey n o ld s num ber.
R e f e r e n c e (40)
17.
u - v elo city p ro file for a
Reft = 1 6 0 .
R e f e r e n c e (40)
18.
Gas c o n t r o l
m ents.
19.
O rig in a l d esig n
20.
L a m in a r Flow T o r c h c e n t e r i n g
(cen terserts)
21.
The R a d i a l a li g n m e n t s y s te m
la m in a r flow t o r c h .
22.
L a y o u t o f L a m in a r Flow T o r c h a n d B e e n a k k e r
cav ity .
87
23.
Low D e a d V o l u m e A n n u l a r F l o w T o r c h .
90
24.
C l o s e u p o f Low D e a d V o l u m e A n n u l a r F l o w T o r c h .
92
25.
L a m in a r Flow T o r c h s t u d y o f v a r i o u s
g u ratio n s.
R e su lts fo r carbon.
98
26.
L am in ar F low T orch s tu d y o f v a r io u s f lo w c o n f ig u ratio n s.
R e s u lts fo r brom ine.
100
27.
S tep h e ig h t
and a n n u la r flow
carbon s e n s i t i v i t y stu d y .
stu d y .
R esu lts
of
104
28.
Step h e ig h t
and a n n u la r flow s tu d y .
carbon d e te c tio n lim it s stu d y .
R esu lts
of
106
29.
S tep h e ig h t
and a n n u la r flow
brom ine s e n s i t i v i t y s tu d y .
study.
R esu lts
of
108
30.
Step h e ig h t
and a n n u la r flow s tu d y .
brom ine d e te c ti o n l i m i t s s tu d y .
R esu lts
of
110
31.
D e te c tio n l im it s of v a rio u s elem ents v ersu s
c e n te rs e rt step h e ig h t.
112
32.
I r r e g u l a r flo w m ix in g volum e p r o b le m s w i t h
o r i g i n a l la m in a r flow t o r c h .
114
system
facing
w ith s te p - h e ig h t
fo rw ard -facin g
step ,
f o r L a m in a r Flow T o rc h E x p e r i -
o f L a m in a r Flow T o r c h
75
78
81
in serts
for
73
83
the o rig in a l
85
flow c o n f i -
v ii
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Page
116
33.
Low d e a d v o l u m e a n n u l a r f l o w t o r c h f l o w s t u d y .
S e n s i t i v i t i e s f o r c a rb o n , c h lo r i n e , and f lu o r in e .
34.
Low d e a d v o l u m e a n n u l a r f l o w t o r c h f l o w s t u d y .
D e te c tio n l i m i t s f o r c a rb o n , c h l o r i n e , and
flu o rin e.
118
35.
B ackground c o r r e c te d p l o t
d ata a c q u is itio n run.
120
36.
O n -lin e O ff-lin e
a c q u isito n run.
37.
D is ta n c e from c e n t e r s e r t t o plasm a s tu d y .
t i v i t y and d e te c ti o n l i m i t s fo r c a rb o n .
S ensi­
125
38.
D is ta n c e from c e n t e r s e r t to
t i v i t y and d e te c ti o n l i m i t s
plasm a s tu d y .
fo r hydrogen.
S ensi­
127
39.
D is ta n c e from c e n t e r s e r t t o
t i v i t y and d e te c ti o n l i m i t s
plasm a s tu d y .
for ch lo rin e.
S ensi­
129
40.
Power s tu d y ,
carbon.
sen sitiv ity
and s ig n a l
to
noise
for
131
41.
Power s tu d y ,
c h lo rin e.
sen sitiv ity
and s ig n a l
to
noise
for
133
42.
P r e c i s i o n o f low d e a d volum e a n n u l a r f lo w t o r c h
f o r c a rb o n , hyd ro g en , b ro m in e, c h lo r i n e and
flu o rin e;
95% c o n f i d e n c e i n t e r v a l s s h o w n .
135
43.
O v e r a l l G .C . M .I .P .
141
44.
P olychrom ator d e t a i l .
45.
Gas ch ro m a to g ra p h m o d i f i c a t i o n s
volum e a n n u l a r flo w t o r c h .
46.
S tru ctu res
n ate.
fo r P erm ethrin,
47.
S tru ctu res
m eth rin .
fo r F en v alerate,
48.
M u ltich an n el o n -lin e
the p y re th ro id s .
49.
B ackground c o r r e c t e d chrom atogram o f th e p y r e ­
th ro id s.
C arbon and Hydrogen c h a n n e ls .
of a gas m ixture
122
p lo t of a gas m ix tu re d ata
P o ly c h r o m a to r C om puter s e t u p .
143
low d e a d
145
F lu cy th ri-
150
fo r the
C y flu th rin ,
F lu v alin ate,
o ff-lin e
D elta­
chrom atogram o f
152
154
156
v iii
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Page
158
50.
B ackground c o r r e c t e d chrom atogram o f th e p y r e th ro id s.
C h lo rin e and F lu o rin e c h a n n e ls .
51.
L e a s t s q u a r e s c a l i b r a t i o n p l o t o f AD C *s e c v e r s u s
ppm o f p y r e t h r o i d o n c a r b o n c h a n n e l f o r p e r m e ­
t h r i n < P > , c y f l u t h r i n < C > , f l u c y t h r i n a t e <Y>,
f e n v a l e r a t e < F > , f l u v a l i n a t e <V>, d e l t a m e t h r i n
<D>.
< > d e n o t e s p l o t symbol
160
52.
L e a s t s q u a r e s c a l i b r a t i o n p l o t o f AD C *s e c v e r s u s
ppm o f p y r e t h r o i d o n h y d r o g e n c h a n n e l f o r p e r m e ­
t h r i n < P > , c y f l u t h r i n <C> , f l u c y t h r i n a t e <Y>,
f e n v a l e r a t e < F > , f l u v a l i n a t e <V>, d e l t a m e t h r i n
<D>.
< > d e n o te s p l o t symbol
163
53.
L e a s t s q u a r e s c a l i b r a t i o n p l o t o f AD C* se c v e r s u s
ppm o f p y r e t h r o i d o n c h l o r i n e c h a n n e l f o r p e r m e ­
t h r i n < P > , c y f l u t h r i n <C>, f e n v a l e r a t e < F> ,
f l u v a l i n a t e < V> .
< > d e n o t e s p l o t symbol
166
54.
L e a s t s q u a r e s c a l i b r a t i o n p l o t o f A D C *s e c v e r s u s
169
ppm o f p y r e t h r o i d o n f l u o r i n e c h a n n e l f o r
c y f l u t h r i n < C > , f l u c y t h r i n a t e <Y>, f l u v a l i n a t e <V>
< > d e n o te s p l o t sym bol.
55.
Log-Log l e a s t s q u a r e s p l o t o f h y d r o g e n , c a r b o n ,
c h l o r i n e and f l u o r i n e from p y r e t h r o i d s w ith o u t
re g a rd to m o le c u la r environm ent.
(N ote - c h l o ­
r in e and f l u o r i n e l i n e s c o in c id e a lm o st e x a c t l y .)
176
56.
M o le c u lar s t r u c t u r e s of 2 ,7 1 ,2 ,4
and
1 ,2 ,3 ,4
1 ,2 ,4 ,6 ,7 ,9
1 , 2 , 3 , 4 , 6 , 7 , 9 an d 1 , 2 ,3 ,4 ,6 ,7 , 8 , 9
D ioxins.
182
57.
M ultichannel
the d io x in s.
184
58.
Background c o r r e c t e d chrom atogram of
Carbon and Hydrogen c h a n n e ls .
the d io x in s .
186
59.
Background c o r r e c t e d
C hlorine c h an n el.
the d io x in s .
188
60.
L e a s t s q u a r e s c a l i b r a t i o n p l o t o f ADC*s ec v e r s u s
ppm o f d i o x i n o n c a r b o n c h a n n e l f o r 2 ,7 - C D D
1 . 2 .4 -C D D 1 , 2 , 3 , 4-CDD
190
61.
L e a s t s q u a r e s c a l i b r a t i o n p l o t o f ADC*sec v e r s u s
ppm o f d i o x i n o n h y d r o g e n c h a n n e l f o r 2 ,7 - C D D
1 . 2 . 4-CDD 1 , 2 , 3 , 4-CDD
193
o n -lin e
o ff-lin e
chrom atogram o f
chrom atogram o f
ix
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
62.
L east squares c a lib ra tio n
ppm o f d i o x i n o n c h l o r i n e
1 , 2 , 4-CDD 1 , 2 , 3 , 4-CDD
p l o t o f AD C* se c v e r s u s
c h a n n e l f o r 2,7-CDD
63.
Log-Log l e a s t s q u a r e s p l o t o f h y d ro g e n , c a rb o n
an d c h l o r i n e from d i o x i n s w i t h o u t r e g a r d t o
m o le c u la r environm ent.
Page
196
202
x
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
L I S T OF TABLES
1.
C h ro m ato g rap h ic and Plasm a C o n d itio n s
0 . 5 mm Q u a r t z T u b e E x p e r i m e n t s
fo r the
2.
S t a t i s t i c s f o r R e s p o n s e v e r s u s ppm o f
on C h l o r i n e an d B rom ine C h a n n e ls
P y reth ro id
f o r C h l o r i n e R e s p o n s e p e r nm ole
Page
18
30
3.
S tatistics
4.
D e te ctio n L im its
5.
D e t e c t i o n L i m i t s m g / L o f Co m p o u n d
35
6.
T able
37
7.
P recisio n
8.
C h ro m ato g rap h ic and Plasm a C o n d itio n s
T a n g e n t i a l Flow T o r c h E x p e r im e n t s
9.
L e a s t S q u a re s S t a t i s t i c s f o r Carbon and H alogen
R e s p o n s e s v e r s u s ppm o f P y r e t h r o i d
52
10.
C om parison D e t e c t io n L im its
53
11.
D e t e c t i o n L i m i t s m g/L o f com pound f o r t h e T a n g e n t i a l Flow T o r c h
54
12.
S t a t i s t i c s f o r t h e Log-Log E l e m e n t a l P l o t
t h e T a n g e n t i a l Flow T o rc h
57
13.
S h o r t Term P r e c i s i o n a n d C o m p a ris o n o f R e p o n se
p e r nm ole o f C h l o r i n e
58
14.
P a r t i a l E m p ir ic a l Form ulas w ith
Flow T o rc h
60
15.
P o ssib le
16.
P r e c i s i o n o v e r 3 Days f o r
A n n u l a r Flow T o r c h
17.
Gas M ix tu r e D e t e c t i o n L i m i t s w ith
Flow T o r c h
18.
Gas C h ro m a to g ra p h ic and P lasm a C o n d i t i o n s
t h e L a m in a r Flow T o r c h E x p e r im e n t s
19.
S t a t i s t i c s f o r Response v e rs u s
on t h e C arb o n C h an n el
of P a rtia l
33
f o r 0 . 5 mm Q u a r t z T u b e
E m pirical
R equirem ents
34
Form ulas
f o r E m p iric a l Form ulas
for
the
for
the T an g en tial
L a m in a r Flow A r r a n g e m e n ts
38
49
94
t h e Low D e a d V o l u m e
th e L am inar
for
ppm o f p y r e t h r o i d
136
137
146
161
xi
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
20.
S t a t i s t i c s f o r Response v e rsu s
on th e H ydrogen C hannel
ppm o f P y r e t h r o i d
Page
164
21.
S t a t i s t i c s f o r Response v e rsu s
on th e C h l o r in e C hannel
ppm o f P y r e t h r o i d
167
22.
S t a t i s t i c s f o r R e s p o n s e v e r s u s ppm o f P y r e t h r o i d
on th e f l u o r i n e C hannel
170
23.
A verage E le m e n ta l D e te c tio n L im its
P y reth ro id s
1 72
for
the
24.
D etection
L i m i t s b y Co m p o u n d o n E a c h C h a n n e l
25.
A verage S e n s i t i v i t y
th ro id s
26.
S tatistics
27.
P a r tia l P y reth ro id
28.
S t a t i s t i c s f o r R e s p o n s e v e r s u s ppm o f D i o x i n
on th e C arbon C hannel
191
29.
S t a t i s t i c s f o r R e s p o n s e v e r s u s ppm o f D i o x i n
on t h e C h l o r i n e C hannel
194
30.
S t a t i s t i c s f o r Response v e rsu s
on th e Hydrogen C hannel
197
31.
A verage E le m e n ta l D e te c tio n L im its
D ioxins
32.
D etectio n
33.
A verage S e n s i t i v i t y
34.
S tatistics
35.
P a rtia l
36.
A v e r a g e R e s p o n s e p e r nm ole f o r V a r i o u s E l e m e n t s
2 06
37 =,
Torch C om parison
2 09
38.
Torch C om parison -
p e r Elem ent f o r
the P yre-
f o r Log-Log E le m e n ta l P l o t
E m pirical
178
ppm o f D i o x i n
the
L i m i t s b y Co m p o u n d o n E a c h C h a n n e l
p e r Elem ent f o r
th e D ioxins
f o r Lo g Lo g E l e m e n t a l P l o t
D io x in E m p iric a l Form ulas
D e te ctio n L im its
174
177
Form ulas
for
173
198
199
200
203
20 4
210
xii
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
1
I.
In tro d u ctio n
The u se o f th e p la s m a a s an a to m ic e m i s s io n s o u r c e has
lead
to
its
an aly sis.
In
ex citin g
tab le.
w id esp read
its
atom ic
ap p licatio n
v ario u s
form s,
em issio n
from
induced
p lasm as
d e te rm in a tio n s.
(DCP),
(M IP)
In
th e plasm a
any
elem ent
for
nonm etals.
T h is m akes
o rg an ic
its
compounds
have
found
a b ility
to
as
is c a p a b le of
in
Carnahan
the
periodic
(IC P), arg o n
in
m icrow ave
trace
heliu m
M IP
e ffic ie n tly
m etal
has
been
e x c ite
th e
to m o n ito r e m issio n
from
fire
retard an ts,
i n d u s t r i a l and en v iro n m en ta l
T h e h e l i u m MIP w a s m o s t r e c e n t l y
re v ie w e d by
(1).
The e x c i t a t i o n
c o m p le te ly
ex citatio n
m ech an ism s
u n d ersto o d ,
m echanism
P enning
in v o lv ed
is
not
io n izatio n
in
h alo g en
M icrow ave
of
ty p ically
ion
p ro p erties
an d /o r
of
gold
the c a v ity .
brass
(5)
therm al
(2 )
(3).
The
have been
ty p es.
The
not
th at
th e
and
th at
reco m b in atio n
i n two r e v i e w s
plasm as
MIP a r e
b e lie v ed
and
e m issio n
c a v ity
h eliu m
is
strictly
given
made o f c o p p e r ,
silv e r
it
m echanism
induced
d iffe re n t
in th e
but
e x c i t a t i o n m echanism s a r e
num ber
use
p estic id e s,
d io x in s and o t h e r compounds of
sig n ifican ce.
the
i t p o ssib le
such
e lem en tal
and arg o n and h e liu m
a d d itio n ,
acclaim ed
w ith
trace
The a rg o n i n d u c t iv e l y c o u p le d p lasm a
d i r e c t c u r r e n t plasm a
the
in
are
proposed
(4 ,5 ).
su stain ed
c a v itie s
in a
are
o r alum inum and th e n c o a te d
to
im prove
S everal c a v ity
the
sk in
d ep th
co n fig u ratio n s
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
2
th at
have
tap ered
been
used
rectan g u lar
wave c o a x i a l
(6 ,8 ).
A
reference
The
general
review
use
atm o sp h eric
about
tu rn in g
by
Haas
to
the
(1 1 ,1 2 ).
2 cm
m oveable
screw s
wave
is
3/4
-
radial
given
in
face
p late
have
stu d ied
B oth
expanded
g iv es
co u p lin g
th e
loop
reported
The
m icro w av e
e le c tro d e s
U n fo rtu n ately ,
a m o d ificatio n
of
allo w ed
ex p erim en ters
to
plasm as
on
th e
C arnahan
the
was
to
the
th e
su b seq u en tly
cav ity
sp ectral
w hich
aid s
in
of
th at
from
a
Two
cav ity
1 cm
to
th ick n ess
of
o u tp u t.
tuning
tw o
(10).
Beenakker
cav ity
concluded
a
m icrow ave
ad d itio n
v ario u s
the
rela tiv e
p ro v id ed
the
later
w ith
of
w ith
cav ity
ca v ity
best
the
A lso ,
a
Beenakker
(11).
A l o w p o w e r M IP s o u r c e
co ax ial
-
the
is
cav ity
in d ep en d en tly
c a v ity has been
(1 3 ,1 4 ).
1/4
types
(3,9)
argon
m atch in g
and
groups
3 cm a n d
about
cav ity
It
and
The B e e n a k k er
stu b s
d ep th s
of
are
fo resh o rten ed
foreshortened
ty p e.
h eliu m
im pedance
g en erato r.
research
th e
TMq ^ q c a v i t y
wave r a d i a l
V ario u s
tu n in g
(6),
sp ectro sco p y
(5).
1/4 -
m o d ified
(TEg-^)
and th e
Beenakker
means o f
e m issio n
(6,7),
th e
ease.
for
has been d e s c rib e d by Ja n se n
plasm a
and
not
is
g en erated
in sid e
the m o lecu lar e m issio n s
a
b etw een
d isch arg e
tw o
tube.
in th e plasm a a p p ear
q u i te h ig h and d e t e c t i o n l i m i t s a re n o t a s good a s has b een
rep o rted
B ut,
th is
for
various
plasm a
Beenakker
w ithout a
cav ity
discharge
arran g em en ts
tube
is
(3,15).
an a tte m p t
to
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
3
a d d re s s th e p ro b lem s a s s o c ia te d
in sid e
of a q u a rtz
M ost
(0.5
-
MIP
3 mm
The s m a l l e r
o r alum inum o x id e
sy stem s
i.d .,
i.d .
g en erated
in a
m ost
th at
few
few
not
determ ined
but
it
is
w ith
an
co n tain
plague
suspended
tu b e
the
cap illary
quartz
h eliu m
plasm a
may b e
ju st
the
u n stab le
spectra
cen tered
sp a tia l
v a rio u s flo w
or
instan ces
em issio n
w ere
problem s
to
q u artz
plasm as
A c e n tered
Thus,
a c a p illa ry
tu b e s have pro v id ed v ery s e n s i t i v e
a
mm o . d . )
tube.
plasm a.
to rch es.
(12)
used
a plasm a
the
B ut,
power
have
6 - 7
(3 ,15,16).
and
w ith g e n e ra tin g
resid ed
p ro files
flow
situ a tio n
have been
and
rig h t
observed
on t h e
at
in
w all.
i n a 3 mm i . d . q u a r t z
r a t e s and pow ers.
In a l l
cases
b e st.
plasm as
Tanabe
tube
in d icatin g
th e p lasm a was r e s i d i n g
Even in
i.d .
tube
(1 6 ,1 8 )
and
the w a ll
a 0.5
(17).
mm i . d .
tube
w ith
the p r o f ile s
w ere o f f c e n te r and v e ry o f te n u n sy m m etric,
on
rate
(15)
the
that
a 1 mm
plasm as
were n o t c e n t e r e d .
The p r o b l e m s a s s o c i a t e d
m any.
F irst,
discharge
some
tube
cases.
o p tic a l
m elts
sin ce
cen ter,
T his
sy stem s
the
the
in sid e
has
(19).
w ith a n o n -c e n te re d plasm a a re
plasm a
it
req u ired
h eliu m
gas
stream
the
the q u artz
o rg an ic
(such
re stric te d
use
In a d d itio n ,
w all of
When
not
may w a n d e r a r o u n d
plasm a e n v iro n m en t and th u s
ch aracter.
is
tube.
th e plasm a
a
of
the
some
tube
the
in
com plex
th e plasm a e tc h e s and
compounds
as
in
to
G.C.
T his changes
itse lf
are
changes
present
ap p licatio n )
in
the
in
the
carbon
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
4
d ep o sits
b u ild
effe c ts
(1 2 ,1 4 ),
u n stab le
to
ad d itio n
on
in
rep o rted
(13)
for
A p p aren tly
discharge
even
life
th e
w ere
the
d esig n
co n sisted
first
tu b e.
a
was
ro u ted
through
w hich
lead
in to
th e
the
in
w ere m in im iz ed .
th e
gas
o r N2 t o
the
h a lo g e n s,
the
problem
Thus,
has
retain ed
(16).
in
discharge
and Codding
(TFT)
in sid e
p a tte rn .
c en ter
of
the
of
w ith
(12).
plasm a
it
It
o f a 4 mm i . d .
passed
through
th e
tube
The a n a l y t e g a s w as
of
the
th read ed
plasm a.
discharge
because
the
(16).
MIP q u a r t z
gas
been
com pounds
the w all
was
region of the d isch arg e
cen ter
p roblem s,
suspended plasm a.
have
the
tailin g
to rch
in sert
support
or sw irlin g
reduced
a
the
flo w
th e plasm a
hole
of
peak
an
tube by
W hen
w ith
w ith
tan g e n tia l
a
asso ciated
& 2'
p a rtially
in te rac tio n s
The p la s m a
in a ta n g e n tia l
w ellas
discharge
co n ta in in g
asso ciated
t h r e a d s and e n t e r e d
of
G.C.
of a thread ed q u a rtz
ev alu atio n
the
a d d re s s e d by B ollo-K am ara
of
as
m em ory
Many r e s e a r c h e r s
s u c h a s O2 ,
m ore.
flu o rin e
tu b e due t o
tube
of
(14),
to
w ere p r e s e n t tube d e g ra d a tio n
flu o rin e
The p r o b l e m s
part
cases.
lead s
(3 ,1 5 ,1 6 ,2 0 ,2 1 ,2 2 ).
flu o rin e ,
accelerated
its
the
T his
responses
of a scavenger gas
p articu larly
g reatly
w all.
severe
prolong
h eliu m
q u artz
th e
n o n lin ear
plasm a
attem p ted
b u lk
up
T his
tube
in sert
d esig n
etch in g
and
produced a c e n te re d
in teractio n s
w ith
the
w all
G oode, C ham bers and B uddin p u b l is h e d
tan g en tial
flo w
c h ro m ato g rap h ic
to rc h 's
MIP
u sefu ln ess
d e te c to r
or
an
as
(23).
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
5
U n fo rtu n ately ,
to
keep
the
resid en ce
p lasm a
tim e
sen sitiv ity
the
v e ry h ig h flo w
cen tered .
one
to
quartz
tw o
stu d ied
by
orders
of
the
the
resu lted
s till
TFT w a s
the
tu b es
used
reported
w ith
a
It
rates
The
(MI P)
as
Tong
and
as
d etectio n
as
ad d itio n ,
d id
produced
a
ch rom atographic
of
in terfaced
(28)
the
not
se le c tiv ity
A
d etecto r.
They
ratio s
p articu lar,
in
of
than
gas
1965.
a
a
gas
few
H ieftje
th read ed
in sert
but
induced plasm a
was
by
McCormack,
th at
researchers
E stes,
th e
tim e
and d e te c tio n
lim its
have
M IP
to
for
for
the
a
gas
(15)
have
atm ospheric
c a lib ra tio n
lim its
d etecto r
as
an
m any
used
Uden a n d B a r n e s
ch rom atograph
ag ain
acco rd in g ly .
chrom atographic
of
quartz
fo r use
suffered
S in ce
even
to rch
plasm a,
d etecto r
in th e
but
and
flow
(TFT)
(2 4 ,2 5 ).
cap illary
D eutsch
use
e sta b lish e d
d etectio n
torch
group
a m icrow ave
c a p a b ilitie s
a cap illary
M IP.
use
MIP a s
rep o rted .
ch rom atographic
w orse
lim its,
the
cen tered
a
been
pressure
th at
pub lish ed
Cook
to rc h 's
flow
research
sen sitiv e
first
gas
flo w
(25) m ade i m p r o v e m e n ts
im proved
In
MIP
a lso
m u ltie lem e n t
In
not
tan g en tial
were h ig h and s e n s i t i v i t y
ap p licatio n s
have
in
e a rlie r.
n itro g en
an aly te
m agnitude
th e developm ent of a t a n g e n t ia l
(2 6 ,2 7 ).
flow
of
C aruso
B o th C a rn a h a n (24) an d H aas
TFT w h i c h
tan g e n tia l
the
tubes.
O ther m o d if ic a tio n s
have been
( > 1 L) w e r e r e q u i r e d
C o n seq u en tly ,
was s h o r t and th e
was
cap illary
rates
curves,
29 e l e m e n t s .
carbon,
hydrogen,
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
6
b rom ine,
pg/sec.
ch lo rin e
of
th e
m ajo r
cap ab ilities
of
T his
g reatly
aid s
and
B uddin
squares
w ere
a ll
response
MIP
in
Two
from
a ll
various
an a ly sis
th e
3
to
30
fit,
i.e.
due
by
the
some
its
C aruso re p o rte d
to
th e
In
p lo ts
w ere
used
Cham bers
for
carbon,
least
in d ic a te d
effects
in
no
on th e
en vironm ent
c a lcu latin g
I and Br (30).
occurs
when
d ata
1983,
ratio s.
A lin e a r
m o lecu lar
m u ltiw av elen g th
run.
Goode,
no s i g n i f i c a n t
sp ectro sco p ic
ch ro m ato g rap h ic
elem ental
v arian ce
o f C to S, P, C l,
advantage
m u ltie lem e n t
compounds.
of
m onochrom ators
g reatest
co llected
d eterm in e
c a lib ra tio n
of
ele m en ta l r a tio s
The
to
th e
rep o rted
of an elem en t
(2 3 ,2 9 ).
is
of
id en tificatio n .
and
lack
stre n g th s
in peak
su lfu r
f it
sig n ifican t
th e
(23)
brom ine and
allo w s
flu o rin e
range.
One
are
and
the
em issio n
sp ectro m eter.
to be c o lle c te d
M u llig an ,
use of a ra p id
data
This
i n one
Z erezhgi
scan n in g
and
sp ectro m eter
(31).
The m o st p o p u l a r m u lt i c h a n n e l
th e
p o ly ch ro m ato r.
The c o m m e rc ia l
C hrom atography System s h a s b e e n
ratio s
of
G.C.
d eterm in ed
by
efflu en ts
The
sam e
is
(3 2 ,3 3 ).
B onnekessel
m o lecu lar e f f e c ts
tru e
on th e
of
used
and
MPD 8 5 0
to
The
K lier
from A p p lied
d eterm in eelem en tal
elem en tal
show
no
in d iv id u a l e le m en ta l
e m p irical
W in d so r and D enton (34).
s p e c tro m e te r has been
Hagen,
fo rm u las
ratio s
sig n s
of
responses.
d eterm in ed
by
M arhevka and Haddad a ls o
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
7
u s e d t h e MPD 8 5 0 s y s t e m
in d e te rm in in g
F /C l
ratio s
d ev iatio n s
w ere
ty p ic a lly
G .C .
(35).
M IP
The
1 to
d e term in e
o x y g en /carb o n
(37).
calc u la te d
in d icated
elem ental
al.
known r a t i o s
to
ra tio s
et
the
K e-W ei
h y d ro g en /carb o n
the
from
C /F an d
6%.
se tu p
th at
C/H , C /C l,
The
used
a
c a p illa ry
and
ra tio s
re s p o n s e s w ere n o t a f f e c t e d by
th e
m o lecu lar en v iro n m en t.
T y p i c a l O / C R S Ds w e r e 1 - 6 %
and
RSDs
The
w ere
2 - 7 %
(37).
a l s o m e a s u r e d t h e H/C r a t i o s
found
no s i g n i f i c a n t
d etectin g
com puter c o n tr o lle d
E ckhoff,
research
p o lychrom ator
described
b rie f
22 d i f f e r e n t
Ridgw ay
in
sum m ary
used
sy stem
d etail
group
in
w ill
th e
(21).
compounds and
be
(21)
p rev io u sly
references
g iv en
(38).
A
and used
for
peaks.
m en tio n ed
The E c k h o f f
other
had
p o ly c h r o m a t o r was
and C aruso
nonm etal gas c h ro m ato g rap h ic
T his
research
m o le c u la r environm ent e f f e c t s
background c o rr e c tin g
developed by
for
sam e
sy stem
(21,
here.
has
39),
The
G .C .
been
so only a
tem p eratu re
pro g ram m ab le pack ed colum n g a s c h ro m a to g ra p h was i n t e r f a c e d
through a sw itc h in g
v alv e
and h e a te d
tr a n s f e r b lock
l o w p o w e r M IP .
T h e B e e n a k k e r TMq i q c a v i t y
a
tu n er
th ree
stu b
g en erato r.
refracto r
provide
off
based
pow ered
The p o ly c h r o m a to r
co n tro lle d
for
and
lin e
m icro co m p u ter
p late
p ro g ram m ab le g a in a m p l i f i e r ,
a
K iva
co n tain ed
b e h in d
background
sy stem
by
the
was
en tran ce
the
a
w ith
m icro w av e
a ste p p e r
co rrectio n .
co n tro ls
tuned
to
m o to r
s lit
An I n t e l
ste p p e r
to
8080
m o to r,
ch an n el s e le c to r and s to r e s
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
s
the
spectroscopic
o rig in a l
nm,
setu p
had p r o v is io n
phosphorus
479.5
nm.
flu o rin e
d a ta g e n e ra te d by th e polychrom ator.
253.6
L ater,
685.6
fo r m o n ito rin g
nmf b r o m in e
ex it
s lits
470.5
for
nm w e r e a d d e d .
and la m in a r
be d e ta ile d
sim p lifie d
assem b ly
flow
later
sch em atics
lan g u ag e
d ata
ch lo rin e
656.3
nm a n d
when t h e t a n g e n t i a l
w ere u sed .
The c h a n g e s w i l l
w ork. See f i g u r e s
of
and
The i n t e r n a l p lu m b i n g o f t h e
torches
in t h i s
c a r b o n 247.9
hydrogen
g a s c h ro m a to g r a p h was m o d if ie d s l i g h t l y
flow
nm,
The
th is
1, 2 and 3 f o r
polychrom ator
c o llectio n
sy stem .
su b ro u tin es
w ere
The
left
u n c h a n g e d , b u t t h e B A SI C d a t a m a n i p u l a t i o n p r o g r a m s w e r e
ex ten siv ely
The
eith er
m o d ified .
p ro b lem s
sev erely
o r com prom ised
They a r e
asso ciated
lim ited
its
ratio s
needed
in v estig ate
lam in a r
M IP
d etectio n
lim its
c e n tered
plasm a
A lso,
the
the
M IP 's
th e ap p en d ices.
th e
term
MIP
to rch
stab ility
o f t h e MIP
The p r e l i m i n a r y
work w i t h
b u t much m o re work
usefulness
p resen ts
to rch
w h ich
com parable
(sim ilar
m u ltich an n el
and
accuracy
to
to
d ev elo p m en t
has
the
is
in
th e
a
new
s e n s itiv itie s
and
cap illary
tan g e n tia l
cap ab ility
of
the
of
torches
flo w
MIP
ch ro m ato g rap h ic d e te c to r fo r d ete rm in in g e m p iric a l
has been given
have
fo rm u las.
d isse rta tio n
flo w
long
has been pro m isin g ,
d eterm in in g e m p iric a l
T his
w ith
sen sitiv ity .
elem en tal
to
the
shown i n
w ith
to rch ).
as
a
gas
form ulas
f u r t h e r s t u d y a s was n e e d e d .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
9
F igure
1
D i a g r a m o f t h e GC/MIP a n d p o l y c h r o m a t o r / m i c r o com puter system .
R e f e r e n c e (21)
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
10
MI CROWAVE
GAS
C H R O MA T OG R A P H
PMT OATA
PREPROCESSOR
8080
M I C R O C O MP U T E R
S T E P P E R MOTOR
CONTROLLER
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
11
F igure
2
D iagram o f g a s c h ro m a to g ra p h m o d i f i c a t i o n s .
R e f e r e n c e (21)
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
12
P ORT
High
Temp. V alve
CB
H eated
Transfer
Block
AUXI LARY Ho
VE NT
N2
SCAVENGER
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
13
Figure
3
S i m p l i f i e d d i a g r a m o f t h e PMT c i r c u i t r y a n d
8080-m icrocom puter i n t e r f a c e .
R e f e re n c e (21)
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
14
V ID E O
DISPLAY
KEY80ARD
PLOTTER
8080
MICROCOMPUTER
TO
STEPPER
DIGITAL OUTPUT
. MOTOR .
S T E P P E R MOTOR
DMA A / D
CONTROLLER
CONVERTOR
PMT C i r c u i t s
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
15
II.
Simple Quartz Tube MIP Torch and Applications of the
G.C. Polychromator
A.
Introduction
H isto rica lly ,
MIP
in
the
been
a qu artz
5 mm.
th e
"to rch "
B e e n a k k e r TMoiO
resonator cav ity
tube,
in sid e
ranging
W ith th e l a r g e r
p lasm a
th en
resid es
The e x p e r i m e n t e r
sp a tia l
in
in sid e
on one
then
p a rt of the q u a rtz
th is
th u s
w here
was
sid e
of
th e
th e
W ith
a ffe c te d
care,
to
the
the
plasm a
fills
th e o p tic a l co u p lin g sin c e
place.
A lso,
d ram atically
th e
w ith
tw o o r d e r s o f m a g n itu d e .
several
facto rs.
for
a
given
th e plasm a
has
a
higher
a plasm a w ith b e t t e r
th e
plasm a
p lasm a
gas
appears
f ills
m ust p ass
th e
on t h i s
tu b e
co u ld
the
plasm a
the
d iam eter q u artz
tube,
is
plasm a
thus
alw ays
as
is
g en erato r
energy d e n s ity
a ll
of
and
useful.
m icrow ave
th e
to
of
tubes
sim p lify in g
in th e
th e
same
plasm a
high as
one o r
i m p r o v e m e n t may b e c a u s e d b y
th e
much m o re
through
0.5
(2-5m m ), th e
q u artz
g a in s b ein g
ex citatio n
tube,
from
sy stem
se n sitiv ity
T his
F irst,
T herefore,
th e
th e plasm a
a n a ly tic a l
in creases,
sim ply
th e plasm a r e t a in s
sta b ility
no l o n g e r a n a l y t i c a l l y
1 mm) ,
has
for a
i t was e tc h e d and m e lte d t o th e
I f one u se s th e s m a lle r in s id e
(0.5
tube
c o n ta in m e n t tu b e.
o p tical
tu b e and hopes t h a t
p o sitio n .
it
diam eter
d ia m e te r tubes
focuses
l a s t f o r a few w eek s b e f o r e
p o in t
or co n tain m en t
w hich
much
sm aller.
power
settin g ,
co u ld
ch aracteristics.
in ten se.
an aly te
plasm a,
S econdly,
in
to
V isu ally ,
sin ce
in th e h eliu m
w hereas
lead
the
the
c a rrie r
larg er
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
16
quartz
the
tubes
much
plasm a.
helium
of
flow
rates
accom panied by
etch in g
q u artz
a
tube
few
In
tube
eq u ally
can be
good
increase
d ram atic
around
m ain tain ed
at
in s e n s i t i v i t y
is
increase
in
the
q uartz
A t p o w e r s a b o v e 70 w a t t s ,
degrades
q u artz
sum m ary,
and
has a u s e fu l
at
tu b e,
50 w a t t s
several
se n sitiv ity
th e
many
flow
lifetim e,
(39).
life
w ith
days
How
s m a l l 0 . 5 mm i n s i d e
d esirab le
of
th e
the
only
0 . 5 mm
use
may
be
ever
th is
is
rates.
long
lim ita tio n
w hich th e plasm a
sen sitiv e,
U n fo rtu n ately ,
its
term
is
d iam e te r quartz
c h aracteristics
inexpensive,
thus
th is
B.
dram atic
When o p e r a t i n g
is sim p le,
w ith
plasm a
flow
case.
has
helium
the
quickly
an unusual
It
an
w ith
may a c t u a l l y
down t o 5 m L/m in.
d iam eter
p o ssib le
the
and m e ltin g .
hours.
in sid e
an aly te
A d d itio n ally ,
U n fo rtu n ately ,
tube
the
a
a
MIP t o r c h .
a n d w o r k s w e l l a t low
it
is
sta b ility
lim ited
as
low
lim ited
is
in
useful
not good.
Along
power
range
over
may b e o p e r a t e d .
Experimental
S o lv e n ts and S ta n d ard s
HPLC g r a d e
for
a ll
o btained
G.C.
stan d ard s.
from
show n:
hexane
th eir
from
The
various
P erm eth rin
93.0%
C y flu th rin
86.4%
from
99.4%
S h ell
C hem ical
from
F isher
was u se d a s
p y reth ro id
IC I
at
and
the
were
p u rities
A m ericas,
Mobay C h e m ic a l C o r p .,
Company,
solvent
in secticid es
m anufacturers
from
the
In c.,
F e n v alerate
D eltam eth rin
93.0%
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
17
from R o u sse l U c la f S c i e n t i f i c
Equipm ent and
The g a s
w ith
p o ly ch ro m ato r
p rev io u sly
v o ltag e
d ev elo p ed
sectio n
I).
and
N evada,
th e
of
c a r b o n PMT w a s
th e
h ig h
w ere
w ith
Discussion
The
p rev io u sly
a
0 .5
mm
q u artz
s e p a ra tio n
and
in secticid es,
the
In
1967
E llio tt
rela tiv e ly
used
low
when e x p o s e d
The
new
b e tte r
and
firs t
H am ilto n
used
for
50 w a t t s
down t o
are
from
a ll
and
to rch
970 v o l t s
(39).
The
shown i n T a b le I .
was
of
the
ap p lied
a
new
setu p
to
th e
c la s s
of
co-w orkers
in
p u b lic
th eir
s y n th e tic an alo g of th e p y r e th r in s
h o u seh o ld
in se c tic id e s.
m am m alian t o x i c i t y
to
made
are a very pow erful n a tu ra lin s e c tic id e s
lig h t,
sy n th etic
to x ic ity
p h o to stab ility
Two
MIP p o l y c h r o m a t o r
d e te rm in a tio n
P y reth rin s
com m o n ly
tu b e
G.C.
been
p y reth ro id s.
s y n th e s is of th e
(41).
d escribed
has
background
c h ro m a to g ra p h ic and plasm a c o n d itio n s
C.
al.
a CR 700-200
turned
carbon
p lasm a
c o rre c tin g
et
The p la s m a w as o p e r a t e d a t
for
because
E ckhoff
a CR 700-20
Reno,
in d u ced
background
by
(see
sy rin g es;
Com pany,
in je c tio n s.
m icro w av e
c o n tro lle d
d escrib ed
rate
H am ilto n
In stru m en tatio n
ch ro m ato g rap h and
co m p u ter
co n stan t
D iv isio n .
as
they
in secticid e
decom pose
needed
for
very
and
had
m uch
w idespread
have
u n stab le
in a few
(p y reth ro id )
c h a ra c te ris tic s
as
b u t are
They
hours.
equal
or
im proved
use
as
an
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
18
TABLE I
C h ro m ato g rap h ic and Plasm a C o n d itio n s
f o r t h e 0 . 5 mm q u a r t z t u b e e x p e r i m e n t s
Column
6 f t . 4 mm i . d . g l a s s
OV 10 1 2% o n c h r o m o s o r b WHP
Oven T e m p e r a t u r e
248°C I s o t h e r m a l
In jectio n Port
300*C
T r a n s f e r B lock
300 J C
Column F low R a t e
30 m L / m i n . H e l i u m
A u x i l i a r y Flow R a te
20 m L / m i n . H e l i u m
In jectio n
20 fjJ.,
S ize
V e n t Time
1.8 m in .
Torch
S i m p l e Q u a r t z T u b e 0.5mm i . d .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
19
ag ro ch em ical.
th e
is
activ e
P erm eth rin ,
in g red ien t
cu rren tly
The
in
for
brussel
draw back
ppb
and
15.6
ppb
The s t r u c t u r e s
and d e lta m e th rin
D.
p erm eth rin
in sects
such as
w hich
p o tato es,
c au liflo w er,
and
th e
o th er
to f is h ,
oth er
honey b e e s.
t r o u t and fa th e a d
The
m innow s a r e
(43).
fo r p erm eth rin ,
cy flu th rin ,
shown i n F i g u r e
se p ara tio n
p y reth ro id s
compounds
was
w ere
iso th erm al
F ig u res
is
fen v alerate
4.
Experimental Results
The
an
c o tto n ,
cabbage,
resp e c tiv e ly
are
in secticid e
is th e to x ic ity
9 6 - h r LC 5 0 v a l u e s f o r r a i n b o w
7.0
on
p y reth ro id s,
(42).
w ith
an im als and u s e fu l
Ambush
use
and dorm ant p e a rs
m ajo r
several
sp ro u ts,
p y r e th r o id s and p y r e th r in s
aq u atic
of
IC I's
reg iste red
c elery , b ro c c o li,
head le ttu c e
one
sep arated
run.
or
p y reth ro id ,
the
p rev io u sly
acco m p lish ed
5 and 6.
c h lo rin e
of
w ith
clean ly
T y p ical
m en tio n ed
relativ e
w ith in
ease.
The
four
seven m inutes
w ith
ch ro m ato g ram s
are
shown
The c a l i b r a t i o n p l o t o f peak a r e a
b ro m in e
(F ig u re
7)
channel
shows
versus
th at
four
ppm
on t h e
(m g/L )
the s e n s i t i v i t y
t o a n o t h e r ow ing t o th e d i f f e r e n c e
the
of
show
sim ilar
slig h tly
type
se n sitiv ity
d ifferen t
p y reth ro id s
on
because
w eig h ts. F e n v a le ra te
tw o
halogen.
the
of
P erm ethrin
ch lo rin e
th eir
of
v aries
from one p y r e t h r o i d
number and
in
in
and c y f l u t h r i n
channel,
d ifferen t
but
are
m o lecu lar
is h a lf as s e n s itiv e as th e p rev io u s
because
it
has
only
one
ch lo rin e
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
F igure
4.
M o le c u lar s t r u c t u r e s f o r th e P y re th ro id s C yflu­
t h r i n , D e lta m e th rin , P e rm e th rin and F e n v a le ra te .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
21
z
CC
I
U.
>
O
z
cc
1
H
LU
2
<
h-
LU
H
Z
CC
<
CC
LU
1
H
-I
<
LU
>
2
_J
LU
CC
LU
O
0.
z
LU
LL
O o
I I U
o
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
22
Figure
5
C hrom atogram o f f o u r p y r e t h r o i d s ; P e r m e t h r i n ,
C y f l u t h r i n , F e n v a le r a te (double peak) and
D e l t a m e t h r i n on t h r e e c h a n n e l s .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ADC
1000 T
0
"
MINUTES
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
24
F igure
6.
Chrom atogram o f f o u r P y r e t h r o i d s ; P e r m e t h r i n ,
C y f lu th r in , F e n v a le ra te (double peak) and D e lta m e t h r i n on t h r e e d i f f e r e n t c h a n n e l s .
C oncentra­
t i o n 6 . 3 ppm.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
25
1000
6 -3 n9 / ljL 0 F EACH p y r e t h r o i d
1500- CJ
9
2
4
MINUTES
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
26
F igure 7.
L e a s t s q u a r e s p l o t o f ADC*s ec a s m e a s u r e d o n t h e
c h l o r i n e o r b r o m in e c h a n n e l f o r P e r m e t h r i n <P>,
C y f l u t h r i n <C> , F e n v a l e r a t e < F > , D e l t a m e t h r i n <D>
v e r s u s m g/L o f e a c h p y r e t h r o i d .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
PYRETHROIDS
<MG/L>
27
03S*30V
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
28
in
its
stru c tu re
c y flu th rin .
w hich
a
is
ADC i s
a m easure
rela tiv e
d ata
in tercep ts
tw o
an alo g
of
each
to
of
peak
the
least
area
in d istin g u ish ab le
in tercep t
<
less
than
co n v erter
or
tab le
"t"
at
lin es
The
proved
to be
(t c a lc u la te d
S tudent
ap p ro p riate
d e g re e s of freedom and a t th e d e s ir e d
is
in T ab le I I .
all
from z e ro
th e
c o u n ts,
se n sitiv ity .
When t h e c a l c u l a t e d
the
and
T h u s AD C* se c
sum m arized
squares
sta tistic a lly
= 0
p e rm e th rin
in te n sity .
fo r F ig u re 7 a re
of
for
d ig ital
rela tiv e
m easure
sta tistic a l
The
versus
"t"
is
num ber
of
le v e l of co n fid en ce
t h e n t h e tw o v a l u e s w h ic h a r e b e in g c o m p a re d a r e s a i d t o be
sta tistic a lly
in d istig u ish a b le
fit
forced
for a lin e
L in earity
F igure
8
was
to
the
through th e
ty p ically
illu strate s
c h l o r i n e atom d o e s
next
sin ce
a
th at
the
the
tab le
One c a n
Student
"t"
m eans
The
s ta tistic a l
response
are
per
le a s t squares
(y = b x )
orders
response
of
was u se d .
m ag n itu d e.
one m easu res
said
d ata
n m o le
be
v alue
at
the
c h lo rin e
d i f f e r e n t b etw een p e rm e th rin ,
on
the
for
lin es
a
do
tw o means
resp ectiv e
"t" v a lu e
ap p ro p riate
is
less
num ber
of
of con fid en ce th en the
sta tistic a lly
III
squares
com pare
based
level
in T able
of
least
the c a lc u la te d
v alu e
to
the
sta tistic a lly
"t"
If
of
d e g re e s of freedom and d e s ir e d
tw o
o rig in
tw o
the
slo p es
m eans and v a r ia n c e s .
than
over
Hence,
n o t v a ry a p p r e c i a b l y from one p y r e t h r o i d
not vary g re a tly .
by c a lc u la tin g
(44).
in d istin g u ish ab le.
show
is
th at
not
cy flu th rin
and
the
average
sig n ific a n tly
fen v alerate.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
29
Thus
it
is
fo m u las
reaso n ab le
based
on
to
th e
c a lc u la te
average
p artial
response
em p iric a l
per
n m o le
of
ch lo rin e.
The e l e m e n t a l
tube
are
defined
d etectio n
sum m arized
as
to -n o ise
the
m ass-flow
ratio
follow ing
in
(S/N )
lim its
T able
rate
equal
u sing
IV.
3.
It
is
The d e t e c t i o n
w orse.
lim its
T h is
co n sisten tly
tube
to rch .
o p tical
differed
lim its
rep o rted
d etectio n
lim its
are
produce a s ig n a lcalc u la te d
by th e
form ula:
D .L . = ( a n a l y t e m ass * 3 * b l a n k
E ckhoff
0 . 5 mm q u a r t z
D etectio n
w hich w i l l
to
the
carbon
underscores
rep ro d u cib le
U nd o u b ted ly
co n d itio n s
(betw een
sig n ifican tly
d ev .)/p eak area
f o r c h lo r in e com pare w e ll w ith
e a rlie r
for
std .
from
(21),
but
and
brom ine
the
d iffic u lty
resu lts
th ese
are
w ith th e
of
the
sig n ifican tly
in
o b tain in g
0 . 5 mm q u a r t z
com p ro m ise
o p t i m u m C,
th o se
u n fo rtu n ately
what
plasm a
Br and Cl
and
response)
E c k h o ff's.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
30
TABLE I I
S t a t i s t i c s f o r R e s p o n s e v e r s u s ppm o f P y r e t h r o i d
on C h l o r i n e an d Brom ine C h a n n e ls
C om po un d
Slope
y= b x
ADC*sec
ppm
95%
C. I .
of
slope
t
in ter­
c e p ts
t
95%
co rrelatio n
c o efficien t
P erm ethrin
C hlorine
1590
+ /-
41
1 .065
3.182
0.9996
C y flu th rin
C h lorine
1540
+ /-
29
1.151
3.182
0.9999
670
+ /-
9
2.409
4.303
0.9999
3 7 .8
+ /-
4
0.633
12.706
0 .9976
F envalerate
C hlorine
D eltam eth rin
B rom ine
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
31
Figure
8 . L e a s t s q u a r e s p l o t o f AD C* se c v e r s u s n m o l e o f
c h l o r i n e o r b ro m in e f o r P e r m e t h r i n <P>, C y f lu t h r i n <C>f F e n v a l e r a t e <F>, D e l t a r a e t h r i n <D>.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
32
. o
CL OR BR
£ c:
NMOLES
* 10
T—
33S«3QV
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
33
TABLE I I I
S tatistics
Co m p o u n d
ADC*SEC/
n m o l e o f C l **
fo r C h lo rin e
Perm ethrin
15,400
R e s p o n s e p e r nm ole
C y flu th rin
16,700
compounds
com pared
t calc
t 95%
P erm ethrinC y flu th rin
1.860
2.776
P erm ethrinF en v alerate
1.018
2.776
C y flu th rin F en v alerate
2.014
2.776
•k* p e a k a r e a /
F en v alerate
14,200
nm ole o f c l
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
34
TABLE IV
D e te ctio n L im its
f o r 0 . 5 mm q u a r t z
(3 s . d . )
E lem ent
ng/sec.
th is
Carbon
tube
work
11
E ckhoff(39)
0.036
Brom ine
6 .5
0.130
C h lo rin e
0.132
0.110
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
35
TABLE V
D e te c tio n L im its
mg/L o f compound
(3 s . d . )
100 p j , i n j e c t i o n
Co m po un d
on Cl
P erm ethrin
0.18
C y flu th rin
0.26
F en v alerate
0.85
D eltam eth rin
on Br
7.1
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
36
S ince
the
m icrow ave
d etecto r,
it
d e term in e
com pound.
num ber
From
gas
T ab le
show
p o ly ch ro m ato r
versus
for
an o th er.
T y p ically ,
is
th a t
the r e l a ti v e
15%.
The
high
in
MIP
torch.
ch lo rin e
At
th e
and b ro m in e
p olychrom ator,
calcu lated .
so
A sm ig h t be
o rig in al
the
=
tim e
of
channels
shown
expected,
1.35 o r
n ecessary
em p irical
35%
to
fo rm u lasw ith
error).
v ario u s
environm ent
the
of
m ig h t
same
the
be
th in g
elem en tal
ex p ected .
w ere b etw een
d ev iatio n s
experim ent,
had been
em p irical
sin ce
th e
from
are
in
only carbon,
in sta lle d
form ulas
on th e
co uld be
p recisio n
10% t o
form ulas
can
T able
V II
a c cu ra te ly
M IP
i n T a b le VI.
m easurem ents v a r i e s
p artial
The d a ta
o f t h e 0 . 5 mm q u a r t z t u b e
th is
only p a r t i a l
They a r e
show
standard
p a r t due to th e l i m i t e d s t a b i l i t y
th e
d istin g u ish a b le
sta n d a rd d e v ia tio n s
relativ e
a
ca lc u la te d ,
m olecular
as
in
p a rtic u la r
p recisio n
h ig h
be
and
for
th e peak.
no
calcu latio n s
the
system
elem en t
can
is
one
the
sp ecific
fo rm u la
th is
th ere
as
elem ent
each
peak
fo r
ch lo rin e
not
of
id en tify in g
U n fo rtu n ately ,
d e te rm in a tio n
10% a n d
in
S im ilar
an
e m p iric a l
ex p erim en t
betw een
carbon.
m o les
an
aid
is
to c a lib rate
ch ro m ato g rap h ic
III
d ifferen ce
of
th at
w hich sh o u ld g r e a t l y
in
plasm a
should be p o s s ib le
th e
p articu lar
induced
v a r y up t o
show s
c a lc u la te
carbon
to
15%,
of
the
the
error
in
35% ( 1 . 1 5 / . 8 5
the
p rec isio n
p a rtia l
em p iric a l
h alo g en
ratio s.
It
was
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
37
TABLE
T able
of P a rtia l
VI
E m p irical
P artial
Com pou nd
Form ulas
E m pirical
Form ula
% Error
A ctual
GC MIP
Perm ethrin
c 21c l 2
C 20C12
5
C y flu th rin
CnCl
C i 2Cl
9
F en v alerate
C 25 C I
C3 3 C1
32
D eltam ethrin
Cl l B r
CgBr
18
G r a n d A v e r a g e 16%
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
38
T ab le VII
P r e c is io n R equirem ents
o
2/1
+ / -
14
7
3/1
+ /-
11
5.5
4/1
+ /-
9
4 .5
5/1
+ /“ 7 .5
3.8
10/1
+ /-
4.3
2.1
15/1
+ / “ 3.0
1.5
20/1
\
+
CO
1.1
0.9
1.6
0.8
+ / -
i
+
\
30/1
•
CM
1
25/1
i-1
1
10
to
1/1
00
R e l a t i v e S.D .
( i n %)
•
R e l a t i v e 95%
C onfidence I n te r v a l
(in %)
Form ulas
+
s
R atio
C arbon/halogen
fo r E m p irical
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
39
c alcu lated as
fo llo w s:
The e l e m e n t a l r a t i o c a l c u l a t i o n
was
t o b e made fro m t h r e e e x p e r i m e n t a l m e a s u r e m e n ts a n d t h a t
the
95% c o n f i d e n c e
lev el
X + /-
th e
w orst
o p p o site
= tgcj^ * s . d . /
p o ssib le
ends of
in th e
fin a l
resu lt.
95% C o n f i d e n c e I n t e r v a l
95% C . D .
In
was d e s i r e d
the
case
th e
n
tru e
95% c o n f i d e n c e
m eans
w ould
be
at
in terv als.
C a r b o n Xc + / - ( ^ 9 5 % * s . d . ) / n
R a t i o + D e v i a t i o n = -------------- = -------------------------------------------H a l o g e n X H - / + ( t g 5% * s . d . ) / n
But if
it
th e r a t i o
sh o u ld
is
d ev iate
V alues a re
for
resu lts
given
are
p recisio n
is
in
have
E.
to
It
from
in creases.
a
w ide
stan d ard
the
tru e
ratio ,
the
tru e
ratio .
t g j % a n d n.
Then th e
stan d ard
d ev iatio n are
h alo g en
ratio s.
can be
to a c cu rately
d eterm in in g
to be
carbon
in T able V II.
ratio
relativ e
0.49
and r e l a t i v e
v ario u s
required
h alo g en as t h i s
than
fo r d ev iatio n ,
in terv al
ca lc u la te d
form ulas
no m o re
su b stitu ted
95% c o n f i d e n c e
useful
t o ro u n d down o r up t o
seen
estim ate
Thus i f
range
of
d ev iatio n s
th at
the
greater
carbon
to
t h e M IP i s t o b e
common
of
The
less
e m p irical
than
1% w i l l
obtained.
Summary
The
in d u ce d
use
of
p lasm a
the
0.5
to rch
mm q u a r t z
w ith
th e
tu b e
as
co m p u ter
a
m icro w av e
co n tro lle d
polychrom ator d a ta a c q u is itio n
sy stem has s e v e r a l a s s e t s
and
to
lim ita tio n s
d isch arg e
tu b es.
when
It
com pared
is
sim p le
larg er
in d e s ig n ,
in n er
low
d iam eter
in c o s t and
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
40
very s e n s itiv e .
and m e ltin g
15%
RSD)
B ut,
w hich
to
it
lead s
is g re a tly
to
a c cu ra te ly
elem en tal r a tio s
in s u ffic ie n t p recisio n
c a lc u la te
25/1
range
(p artia l
is
and
e m p irical
estim ates.
carbon
to
(10 t o
h alo g en
o f g r e a t e r t h a n 1 / 1 w i t h 95% c o n f i d e n c e .
The p y r e t h r o id s u sed to t e s t
to
l im ite d by tube e tc h in g
C learly,
as
th is
ex p ected ,
fo rm u las)
sy stem
the
p ro v id e
fall
in th e
c a lc u la te d
cn ly
10/1
ratio s
"b allp ark "
a p la s m a w i t h m ore lo n g te r m s t a b i l i t y
needed.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
41
III.
Codding Type Tangential Flow Torch
A.
Introduction
In
1981
d esig n
B o llo-K am ara
o f a new m ic r o w a v e
and
C odding
p u b lish ed
induced plasm a
th eir
d isch arg e
tube
( 1 2 ) . T h i s M IP t o r c h c o n s i s t s o f a n o u t e r t u b e 4 mm i . d . , 6
mm
o .d .,
a
h o llo w
co n n ectio n s
th read ed
for a n a ly te
m o d ified
v ersio n
efflu en ts
is
in F ig u r e 9.
of
4 L /m in.
th is,
the
m ain tain
to
1.1
produce
flow
cen tered
L /m in.
w ere
plasm a.
used.
o v er a plasm a
th e plasm a does
term
sta b ility
a degraded
The
is
tan g en tial
They
thus
flo w
a
tan g en tial
flow
the
cap illary
rates
allo w ed
th e plasm a
via
flow r a t e s
plasm a.
A fter
300 m L /m in . a n d s t i l l
flow
resides
rates
of
p lasm a
has
on th e
w all.
a
0.4
several
S ince
w a ll of th e d isc h a rg e tu b e,
life
is
extended;
Memory e f f e c t s
from
reduced.
to rch
was
by Goode,
c a rrie r
m L /m in. and a s u p p o r t g a s
sim p le
or cen tered
im proved.
efflu en ts
used
h elium
red u ced and tu b e
also
tube w a ll a re
ch ro m ato g rap h ic
(23).
is
A
ch ro m ato g rap h ic
In itia l
A cen tered
w hich
ap p ro p riate
in tro d u ctio n .
gas
A nalyte
not touch th e
th e amount o f e tc h in g
long
for
can be reduced to
the
advantages
used
a suspended
rate
and
and su p p o rt gas
slig h tly
shown
in se rt
ev alu ated
C ham bers
gas
a n a ly te
heliu m
flo w
flo w
of
for
gas
and B uddin
rate
of
2.5 L /m in .
65
The
t o r c h w as show n t o b e much m o re r u g g e d t h a n
the
quartz
in jectio n
t h e G.C.
w ith
discharge
of
The h ig h
flow
jut.L a m o u n t s o f s o l v e n t s
into
little
tu b e.
effect
on t h e
plasm a.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
42
Figure
9.
M o d ifie d Codding
tan g en tial
flow t o r c h .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
43
CODDING
TORCH
□ $
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
44
When
th ese
d isch arg e
q u a n titie s
tu b e
(0.5
to
are
run
in to
2 mm i . d . )
a
th e
sim p le
plasm a
q u artz
is
u su ally
e x tin g u is h e d and th e
in s id e of th e d is c h a rg e tu b e w i l l be
c o ated
of
w ith
a lay er
carbon.
The
lim its
of
r e p o r te d by Goode e t a l . w ere n o t p a r t i c u l a r y
but
in
in th e
the
3
lig h t
n g/sec
the
tan g en tial
high
s.d .
of
flow
high
flo w
rates
h elium
to rch ,
reduce
support
are
lim its
for su lfu r,
a n d 60 n g / s e c
B.
q u ite
the an aly te
d e te c tio n
are
1.1
gas
d etectio n
im p ressiv e,
flow
rate
reaso n ab le
residence
ng/sec
for
used
sin ce
tim e.
The
carbon,
15
fo r brom ine.
Experimental
S o lv e n ts and S tan d ard s
HPLC g r a d e
hexane
from
f o r a l l G.C. s t a n d a r d s .
w ere used a s
in th e
E quipm ent and
The
gas
F isher
was u se d
as
The same p y r e t h r o i d
the
so lv en t
in se c tic id e s
p rev io u s experim ents.
In stru m en tatio n
chrom atograph,
m icrow ave
co m puter c o n tr o l le d back g ro u n d
induced
co rrectin g
plasm a
w ith
poly ch ro m ato r
d ev elo p ed by E ck h o ff e t a l. has been p r e v io u s ly d e s c rib e d
(see
sectio n
C R 700-20
I).
and
a
Two H a m ilto n c o n s t a n t
C R 700-200
Nevada w ere u s e d
in te rfa c e
for a ll
from
rate
H am ilto n
in jectio n s.
was m o d ifie d by r o u tin g
sy rin g es;
Company,
o p erated
reflected .
The
at
80
w a tts
the a u x il ia r y
forw ard
chrom atographic
and
Reno,
The g a s c h r o m a t o g r a p h
th e t a n g e n t i a l flo w p o r t a s show n in F ig u r e 10.
was
a
power
plasm a
flo w
to
The p la s m a
and
0 w a tts
co n d itio n s
are
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
F igure
10. M odified g as chrom atograph
t a n g e n t i a l flow t o r c h .
fo r use w ith th e
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
46
I ?
H IP
yixn <a
w<piioarNi
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
47
shown i n
T able
V III.
C.
Design Modifications
The
th read ed
in se rt
Codding t a n g e n t i a l
was d e c re a s e d
flow
from
was m o d if ie d
from
to rc h as fo llo w s:
0 . 6 4 mm t o
the
The t h r e a d d e p t h
0 . 1 3 mm a n d 0 . 2 6 mm a n d t h e
t h r e a d w i d t h w a s i n c r e a s e d f r o m 0 . 5 1 mm t o 1 mm.
num ber of th r e a d s
d isc h a rg e tu b e
i.d .
in
th e
rates
and
than
proved
less.
a
the
m L /m in .,
was
cen tered
rep o rted
tru e,
as th e
in
flow
to
by
th e
prone
to
f r o m 10 t o 7 .
The
6 mm o . d . v e r s u s 4 mm
th o u g h t
tan g e n tia l
th at
lin e a r
plasm as
Goode
heliu m
flo w
lo w er
flo w
Indeed
th is
at
(23).
flo w r a t e s
needed to
rate
to m a in ta in a c e n te re d plasm a
depth
in sert
cen tered
etch in g
to rch
th ese
m o d ified
w ork a t a s l i g h t l y
because
A lso, th e
th e
0 . 1 3 mm t h r e a d
less
D.
It
allo w
c e n tered
was d e c id e d
and
th u s
The m inim um
usin g
w a s 3 mm i . d . ,
w ould p ro d u c e a h ig h e r
th o se
to be
m ain tain
itse lf
in ch was red u c e d
o rig in a l.
m o d ificatio n s
v e lo c ity
per
o rig in al
was
5 tim es
4 00 m L / m i n .
h ig h e r flo w r a t e
plasm a
the
w ere
was
discharge
m ore
It
o f 475
stab le
tube.
Results and Discussion
The com pounds and c h r o m a t o g r a p h i c c o n d i t i o n s u s e d w i t h
th e ta n g e n tia l
flow
t h e 0 . 5 mm q u a r t z
to
Figure
shows
th e
p y reth ro id s
5 for
to rc h w ere e s s e n t i a l l y
d ischarge
the
least
on th e
tube,
m ultichannel
squares
so the
th e same a s w ith
reader
is
chrom atogram .
c a lib ra tio n
carbon and c h lo r in e
lin es
for
channels.
referred
F igure
11
the
four
The
least
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
48
squares
d ataare
lin earity
su m m arized
was o v e r
in
lim its
fo r the
sum m arized and com pared w ith
E ckhoff in T ab le X and th e
channel
are
d isc h a rg e tube
to rch
proved
to
be a
show n
d etectio n
lim its
alth o u g h
som ew hat
ta n g e n t ia l flo w
w orse
than
The
of
are
the
flow
lim its
T ab le
p e r com pound on
X I.
The
to
0 . 5 mm q u a r t z
the
p lasm a.
m o d ified
im p ro v ed
to rch are
r e p o r t e d by Goode and
m o d ified
th o se a v a ila b le
response
lo n g -term
tan g e n tia l
tube
flo w
and
The s e n s i t i v i t y
tan g en tial
over
th e
flo w
it
and
to rch ,
C odding-G oode
per
from
ng
of
is
the
0 . 5 mm q u a r t z
tube.
elem en t, irre s p e c tiv e
shown in F ig u r e
of
its
12 a n d s t a t i s t i c a l
shown i n T a b l e X I I .
sh o rt-term
tube
ag a in ,
t o r c h , a r e one to tw o o r d e r s o f m a g n itu d e
The s t a t i s t i c a l
w orse
Once
of th e
rugged
m o le c u la r environm ent,
d ata
th o se
in
sup erio r
m ore
tan g en tial
d etectio n
in te g rity
was v a s t l y
IX .
tw o o r d e r s o f m ag n itu d e .
The d e t e c t i o n
each
T ab le
p recisio n
than
the
torch.
response
in d icates
d ata
of
the
sh o rt-term
In a d d itio n
in T ab le X III
tan g en tial
p rec isio n
sta tistic a l
p e r n m ole o f c h l o r i n e
th at
d ifferen ces
in
are
the
no
larg e
ch lo rin e
response/nm ole fo r p e rm e th rin
from
in d icate
flow
th a t the
to rch
is
a b it
o f t h e 0 . 5 mm q u a r t z
com parison of
th e
mean
four p y re th ro id s
sta tistic a lly
elem en tal
the
sig n ific a n t
responses.
and c y f l u t h r i n a r e
The
sta tistic a lly
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
49
T able V III
C h ro m ato g rap h ic and Plasm a C o n d itio n s f o r
T a n g e n t i a l Flow T o r c h E x p e r i m e n t s
the
Column
6 f t . 4 mm i . d . g l a s s
OV 101 2% o n c h r o m o s o r b WHP
Oven T e m p e r a t u r e
235°C
In jectio n Port
300°C
T r a n s f e r B lock
300cC
Column Flow R a t e
30 m L / m i n .
T a n g e n t i a l Flow R a t e
475 m L/m in.
In je c tio n S ize
100
V e n t Time
2 m in.
Torch
T a n g e n t i a l Flow T o r c h
isotherm al
jt.T .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
50
F igure
11.
L e a s t s q u a r e s c a l i b r a t i o n p l o t s f o r ADC*sec o n
c a r b o n o r c h l o r i n e c h a n n e l s v e r s u s ppm o f e a c h
p y r e t h r o i d ( P e r m e t h r i n < P > , C y f l u t h r i n <C>,
F e n v a l e r a t e <F>, D e l t a m e t h r i n <D>).
< > d e n o te s p l o t sym bol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
5X10*
PYRETHROIDS
<MG/D
51
33S*3CJV
X
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
52
T able
IX
L e a s t S q u a re s S t a t i s t i c s f o r Carbon and H alogen R esponses
v e r s u s ppm o f P y r e t h r o i d
Compound
S lope
y= b x
ADC*sec
ppm
95%
C .I.
of
slo p e
t
in terc e p t =0
t
95%
c o rrelatio n
co efficien t
P erm ethrin
Carbon
C h lo rin e
2779
173
+ /+ /-
264
7
1.663
0.988
12.706
4.303
0.9992
0.9995
C y flu th rin
C arbon
C h lo rin e
3633
206
+ / - 1 20
+ /“
13
1.565
1.281
4.303
4.303
0.9998
0.9989
F en v alerate
Carbon
C h lo rin e
3634
100
+ /+ /-
70
26
2.589
0.349
4.303
12.706
0.9999
0.9917
+ /“
76
+ / “ 291
1.060
0.870
4.303
4.303
0.9998
0.9880
D eltam eth rin
Carbon
2776
Brom ine
1312
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
53
T able X
C om parison D e te c tio n
(3 s . d . )
Goode T a n g e n t i a l Flow
(23)
M o d i f i e d T a n g e n t i a l F l o w **
C
Br
0.036
0.130
1.1
60
1.1
00
(21)
(ng/sec)
•
0 .5 Q u a r tz Tube
Elem ent
u>
Torch
L im its
Cl
110
9
* * T h i s Work
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
54
T a b l e XI
D e t e c t i o n L i m i t s m g/L o f com pound
f o r t h e T a n g e n t i a l Flow T o rc h
(3 s . d . )
100 yuJ, i n j e c t i o n
C om pou nd
Elem ent M o n ito red
C
Br
Cl
P erm ethrin
0 .64
/
6.2
C y flu th rin
0.67
/
7.6
F en v alerate
1.0
/
21
D eltam ethrin
2.2
5.9
/
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
55
F igure
12.
L e a s t s q u a r e s c a l i b r a t i o n p l o t s f o r AD C *s e c o n
c a r b o n o r c h l o r i n e c h a n n e l s v e r s u s ng o f e a c h
e le m e n t from P e r m e t h r i n , C y f l u t h r i n , F e n v a l e r a t e ,
D e lta m e th rin w ith o u t re g a rd to m o le c u la r en v iro m en t.
c a r b o n <C> , c h l o r i n e <C1>
< > d e n o te s p l o t sym bol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
56
u
u
f CO
tJ
-CM
u
LOG ng OF C OR Cl
r lO
f O
N
CD
j o c s
10
CO
CM
< a u » & 9 u u
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
57
T ab le X II
S tatistics
E lem ent
f o r Log-Log E le m e n ta l P l o t
T a n g e n t i a l Flow T o rc h
I n t e r - 95%
cept
Slope
C .I.
95%
C .I.
t
(slope
for
t
95%
the
C orr.
C oef.
=1)
Carbon
C hlorine
1.27
0.928
+ /- 0 .3 6 1 .1 2 + /- 0 .1 2
2.061 2.160
0.983
+ /- 0 .2 8 1 .03 + /- 0 .1 0
0.705 2.262
0.992
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
T able X III
S h o r t T e r ra P r e c i s i o n a n d C o m p a r i s i o n o f R e s p o n s e
p e r nm ole o f C h l o r i n e
Compound
P erm eth rin
C y flu th rin
ADC * s e c / n m o l e
o f Cl
319
411
334
R elativ e
18%
12%
17%
S.D .
F en v alerate
Compounds Com pared
fcc a l c
fc95%
P erm eth rin -C y flu th rin
2.806
2.776
P erm eth rin -F en v alerate
0.405
2.776
C y flu th rin -F en v alerate
1.710
2.776
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
slig h tly
d ifferen t.
It
probably
not
a
sin ce
th e
both
due
actu al
perraeth rin
th at
S im ilar
d ifferen ce
carbon
and
not sig n ifican t
assum e
to
th e
are
X IV
shows
from
th e
m o d ified
E.
Summary
The
tan g en tial
over
d eterm in atio n
g reatly
extended
lo n g -term
accu rate
gas
disch arg e
m ore c o s t l y
em p irical
to m ake,
and g la s s b lo w e r.
torch
in clu d in g
versus
$0.80
for
m ate ria ls
The g r e a t e s t
and d e te c tio n
req u irin g
lim its.
p lasm a a s a p r a c t i c a l
d etecto r,
the
not
as
to
provide
tube
to rch
are
fu lfill
for
to
the
has
to
a
b etter
y ield
m ore
it
is
of a m ach in ist
of a ta n g e n tia l
w ould be
about
flo w
$90
tu b e.
th e degraded s e n s i t i v i t y
to rch
a ll
an
lim ited
It
leads
sk ills
m u lti-ch an n el
flow
w ell.
calcu lated
F or th e u se o f a m icro w av e
tan g en tial
d ire c tio n b u t does
e ffects.
U nfortunately,
lab o r
is
moment
0 . 5 mm t u b e .
w hich
cost
0 . 5 mm q u a r t z
lim ita tio n
th e
w hich
appears
th e
and
is
efflu en ts.
form ulas.
The t y p i c a l
the
the
life
it
difference
carbon
to rch
mm q u a r t z
A lso,
in
form ulas
appears
tube
id en tical
for
to
flo w
ch rom atographic
p recisio n .
p artial
ap p ly
em p irical
torch
0.5
us
is
environm ent
environm ental
o b tain ed w ith
flow
difference
are
th is
let
m o lecu lar
tan g e n tia l
th e
of
98% l e v e l ,
p artial
improvement o v e r th o s e
bonds
S ince
sta te m e n ts
the
th is
m olecular
ch lo rin e
no
num bers and
T able
to
th at
in
cy tlu th rin .
at
there
im provem ent
is b eliev ed
is
gas
a
induced
ch ro m ato g rap h ic
step
MIP t o r c h
in
the
rig h t
requ irem en ts.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
60
T a b l e XIV
P artial
E m p irical
Com pou nd
Form ulas w ith
the T an g en tial
Flow T o rc h
P a r t i a l E m p iric a l Form ula
% E rror
A ctual
GC-MIP
Perm ethrin
c 21c l 2
c 20C12
5
C y flu th rin
cn ci
CnCl
0
F en v alerate
C 25 CI
C26C1
4
D eltam ethrin
CnBr
Cl l B r
0
G r a n d A v e r a g e 2.3%
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
61
IV.
Laminar Flow Torch
A.
Introduction and Design
A fter
much s t u d y a n d n u m e r o u s m o d i f i c a t i o n s
tan g en tial
flu id
flow
dynam ics
E n g in eerin g ,
th is
area
w ith
the
a
set
U n iv ersity
flo w
to the
up a
cen tral
W hile
tan g en tial,
so lu tio n
was d e c id e d to
M r.
of
D.
C in cin n ati,
d iscu ssin g
(or
was
gas
flo w
sy stem
The a n n u la r
and a c t
as
an
the
lam inar
flow
th ere
th e
of
flo w
an
in
a
torch,
p o ssib le
an n u lar
flo w
of
high
la y e r betw een
throughout
the
th e
lin e a r
the
The c e n t r a l
for
and a
quartz
flow
w ould
plasm a.
plasm a
If
region,
m ix in g b e tw e e n th e tw o flo w s , and a
c e n te re d plasm a
sen sitiv e
flow
as
w ould b e
h eliu m
in su lated
sh o u ld be pro d u ced . T h is ,
m ost
A erospace
The o r i g i n a l p l a n was
w ith
th e
some
was m ost h e lp f u l
su g g ested
in su latin g
w ere m a in ta in e d
w ould be l i t t l e
low f lo w ,
w all
m ajo rity
from
tu rb u len t)
d isc h a rg e tu b e w a ll and th e plasm a.
p ro v id e
w ith
th e p ro b lem s a s s o c ia te d
in p r a c tic e
approach
co n su lt
L ah ti
h ig h flo w p ro b lem .
flo w .
v elo city
it
ex p erts.
(46).
lam in ar
to
torch,
on th e
flow
from t h e d i s c h a r g e tu b e
w h ile
arrangem ent.
fu n ctio n al,
was not
Instead,
o p tim al
the
flo w a r r a n g e m e n t w as one i n w h ich t h e r e w as no c e n t r a l flo w
w ith
the gas c a rry in g
F ig u res
th ese
13
fig u res
a rearw ard
body
and
w ith
14
show
facin g
a
the a n a ly te
suggest
is
a
th is
used as
arrangem ent
recircu latin g
step . A rearw ard
sharp
edge
w here
the an n u lar
region
facin g
the
(40).
flow .
W hat
dow nstream
step
of
is a b lu ff
fac e of the s te p
is
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
62
F igure
13.
u - v elo city
facing ste p ,
p r o f i l e s dow nstream o f th e
Re^ = 1 2 6 .
R e f e re n c e (40)
rearw ard
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
63
X / h — 00 4
I
X /M C H 6
■
I
■
X /h « 1-90
X /h-^00
I
<
X /h« 2 5 0 0
s
I
9
9
m-
•!
:
s\
4/A
;
■
■
■
9
■
■
J
■
0.09
0 .9 0
0 .9 0
1 .00
u/uiNr
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
64
F igure
14
D e ta ile d flow b e h a v io r n e a r th e
edge.
R e f e re n c e (40)
sharp t r a i l i n g
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
7777777777777777777
Reproduced with p e n s i o n otttre copyright owner. Further reproduction prohibited without permission
66
p erp en d icu lar
th is
flo w
to and dow nstream
d e scrip tio n
then th is
may
reg io n
w ould g r e a t l y
a n a ly te
sta b iliz e.
in
a n aly tical
th e
In
in
the
w ith in
The
is
rep lace
in
the
it
com bination
( a
was b e l i e v e d
a
th at
q u a n tita tiv e
approach
used
in
many
holders
in
com bustion
m ain tain
v elo city
a
flu id
The f lo w
(46).
of
the
the b a se
flu id
p attern
h alf
slo t
of
the
g reater
approach
taken
plasm a
at
low
tan g en tial
is
and
form ed,
hole
flo w
sw irlin g
and to
s lo t/b lu ff
w ith
for
is
in
base
it).
It
it
is
pocket
higher v e lo c ity
gas
torch
in
is
to
the
p articu larly
where
recircu lato ry
th is
sim ila r
dev ices,
cham bers,
shown
d esired
of
low
stream .
F igure
15
th e to p h a lf of th e t o t a l geom etry.
w ould be d e s c r ib e d
sy m m etrical.
sep arates
reg io n .
and
dynam ic
in an o th e rw ise
b o th h alv es a re
through
a n aly sis
sta b iliz e d ,
T h is r e p re s e n ts
The b o tto m
the
s u c h a n a r r a n g e m e n t w o u ld b e m uch m o re
to
to
step
w hich
tim e
tu rb u len t
th e plasm a
facing
lit,
(46).
the
an n u lar
If
is
k e y to
a sta b iliz ed
sim p le
rearw ard
th e
paragraphs
.
recircu latin g
dynam ic
a h ig h ly
am en ab le
flam e
flu id
where
in
resid en ce
to e lim in a te
region
w ith
th is
ap p aren tly
w hich p ro d u c e s
flo w field
th e
flo w
p lasm a
region
ad d itio n ,
fo llo w in g
tu b e
th e
v elo city
to p roducing
th e
th e bu lk
after
len g th en
p lasm a;
The a p p ro a c h
d ev ice,
low
sen sitiv ity .
sum m arized
flo w
v alid
w ould p r o v id e a
p lasm a
is
is
from
From
at
It
the
th is
in th e
sam e way s i n c e
i s s e e n t h a t th e g a s flow
sharp
corner
sep aratio n
at
p o in t
the
edge
to
some
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
67
Figure
15.
Flow p a t t e r n
b lu ff body.
dow nstream from a r e a r w a r d
C ourtesy of
L ah ti, (46).
facing
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
68
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.
69
d istan ce
below
the
fu rth er
w hich
is
d ow nstream
the
recircu latin g
higher v e lo c ity
at
three
lo catio n s
as
shown
in
reg io n
is
reasoned
w ould
the
F igure
th at
gas
em issio n
R eynolds
num ber
a
at
w hich
diffu sed
the
betw een
It
th e
the
tim e
th is
than
an
base
it
was
region
those
in
enhanced
considered
4000 a r e
than
4000
said
are
The R e y n o ld s number
is
1, is th e gas
th e
num ber
step
th at
in ertia
d en sity
1500 a r e
to
of
relates
below
the
and
lam in ar,
to be
in
to
Po
is
Vo i s
h is
the
of
sheer
th e
stress
to
the
the
flo w in g
R eynolds num bers
those
tra n sitio n
as
R eynolds
p ro file
v isco sity
fu lly
The
the
stream
e sta b lish e s
flo w
. T y p ically ,
referred
.
and
tu rbulent
in th e range
and
num bers
(47).
given by
Re = P o * Vo * h /
w here
p ro files
n eg ativ e)
in to
is
region are
in
p ro v id e
reg io n ,
flu id
and th e flo w v e lo c i ty
greater
residence
base
d im en sio n less
geom etry,
1500
v elo city
p laces
flu id
of
The v e l o c i t y
th erefo re
lay er
and above w hich
some
recircu latin g
v isc o sity .
dev ice
and
shear
dynam ic p a r a m e te r w hich c h a r a c t e r i z e s
th e
is
to
the
longer
stream ,
p ro p o rtio n ality
due
a
flu id ,
free
sig n al.
of
num ber
in
a
the re c irc u la tin g
S ince
(and
have
The f l u i d
len g th
15.
is
stream .
to
any elem en ts
n atu rally
m ain
m ain gas
relativ e
lo w er
th ere
Mv
the gas d e n s ity
the gas
the
stream
h eig h t of
v elo city
the base
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
70
Mv i s
In
order
th e m o lecu lar v is c o s ity
to
calcu late
m ust be assum ed.
of
1 L /m in .,
If
th e
T herefore,
rate
th e
in d ic a te s
1 = (6)(1 .4
o p eratin g
can be
sig n ifican t
rate
to be
th e
103.9
len g th
t o b e a p p r o x i m a t e l y 6h
T herefore,
flow
volum e flo w
ft/sec .
Mv
) (1 03.9
f t / s e c ) ( 1 . 4 m m )(. 00328 f t/ m m )
1 8 4 . 8 x 1 0 “7 l b / f t - s e c
(40)
region
A ctual
calcu lated
rate
Re = 1 6 1 . 9
R eference
sep arated
is
a flo w
R e y n o l d s n u m b e r = P o * Vo ^ h /
lb /ft3
= (0.00627
gas v e lo c ity ,
one assu m es a h e liu m
v elo city
T herefore,
th e
of the g a s.
experience
recircu latio n
in
th e
(h = 1.4m m).
has
shown
reduced
len g th
th at
the
volum e
(5 m L / m i n ) w i t h o u t a
sen sitiv ity .
reg io n
of
mm) = 8 . 4 mm
sig n ifican tly
red u ctio n
(1)
T his
itse lf
is
suggests
that
not a c r i t ic a l
f a c t o r , b u t r a t h e r j u s t th e f a c t th a t one e x i s t s a t a l l
m ore
as
im p o rtan t.
fig u re
length
16)
even as
F ig u re 5 from R e fe re n c e
in d ic a te s
the
the
R eynolds
be a sm all,
F igure
but
non-zero
th e
flo w
recircu latin g
rate
number a p p ro a c h e s
not
9 from
(show n h e re
reg io n
R eynolds num ber a p p ro a c h e s z e ro .
In o th e r w ords, as
th u s
a
(40)
is
in fin itely
R eference
approaches
zero,
th ere
z e ro and
w ill
sm all r e c ir c u la tin g
(40)
(show n h e re a s
s till
region.
fig u re
17)
show s t h a t a r e c i r c u l a t i n g r e g io n a l s o e x i s t s in f r o n t of a
forw ard
rearw ard
in se rts
facing
step .
facin g
in b o th
step
T his
suggests
and
ends of the
a
that
forw ard
d isch arg e
a com bination
facin g
step
of a
(so lid
tu b e) c o u ld g iv e an
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
71
even
larger
recirculating
region
g reater
a n a ly tic a l
s e n s itiv ity
(insert)
lam inar
torch.
B.
flow
and
may
than
the
provide
even
single
step
E x p e rim e n ta l f o r T orch Development
Gases and S ta n d a rd s
U ltra
high
purity
helium
M atheson Gas P r o d u c t s .
obtained
basis)
from
in
ultra
ppm CH jB r i n u l t r a
CBrF3
1.0
and
They
high
CHCIF2
were
1.4
purity
high p u r ity
ppm
was
obtained
from
Three custom gas m ix tu re s were a ls o
M atheson.
o f CH 3 C I
99.999%
helium
helium
in
ppm
(m ole/m ole
99.999%,
99.999% a n d
ultra
high
1.0
1.0 ppm
purity
helium
99.999%.
Equipment and I n s t r u m e n t a t io n
The
data
includes
a
collection
m odified
chrom atography
80 w a t t s
unless
Flow
was
version
of
(21).
The
programs
otherwise
m eters
system
described
the
above
o rig in al
plasma
was
and
Eckhoff
operated
at
noted.
w e re FM-150 m o d e ls
from S c i e n t i f i c
Gas
P r o d u c t s a n d a f l o w m i x e r m o d e l MFM- 150 f r o m S c i e n t i f i c G a s
P roducts
were
appropriate
used
to
m easure
a ll
c a li b r a t io n w ith a bubble
M a th e s o n m o d el 3500 s t a i n l e s s
u s e d on a l l
except
gas
tanks.
tubing
f o r th e m ain su p p ly l i n e s
were 1/4" aluminum.
hexane,
All
All tubing
then baked o vernight
flow
rate s
a fte r
flow m e te r.
steel regulators
was 1/8" s t a i n l e s s
were
steel
from th e gas ta n k s which
was r i n s e d w i t h a c e t o n e and
in a drying
oven a t
150 C t o
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure
16.
V a ria tio n of reattachm ent length with s te p -h e ig h t
Reynolds number.
Taken from R e f e re n c e (40)
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
°°Pyri'9ht
°Wne ,
'
FUrther
reProa>Pction
Profiibjte
d , .
a w'thout
Permh
]'s sior)
74
Figure
17.
u - v e lo c ity p r o file for a forw ard-facing
Re^ = 1 6 0 .
Taken from R e f e r e n c e (40)
step,
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
75
S/A
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
76
reduce
contam ination
system
is
The
the
shown i n
Figure
lam inar
flow
Swagelok t e e
in
to
gas
of
the
This
gas
torch
tee
consisted
of
brass
a
opposite
branch
V espel/G raphite
and a
the discharge
into
ferrules
tapered
the
centering
quartz
R F - 4 0 0 / 6 m m VG1
through
were
used
tube.
on b o t h
insure gas tig h t
seals.
The a n n u l a r
bottom
r ig h t a n g le branch of the te e and the c e n tr a l
w e n t down t h e
centersert
The c e n t e r s e r t s
6 mm o . d .
quartz
S cientific,
made a nd
custom
or
C incinnati,
in
through
the
flow
made
2mm o . d .
Ohio.
from e i t h e r
quartz
V arious
rods
flange
3mm i . d .
by
Thomas
sizes
were
tested.
positioning
it
tightening
the
the
was c e n t e r e d
in
the
m iddle
centersert
lam inar
flow
was
centersert
nut
radial
alignm ent
system
steel
pipe
brass
1/4
w ith
which
a
of
and taped so t h a t
nut.
a
1 inch
soldered
The o t h e r
thumb
discharge
tube
in itia l
somewhat
alignm ent
silver
inch Swagelok
this
sim plified
consists
was
the
A fter the
torch,
procedure
in the d isc h a rg e tube by
of
nut.
alignm ent
drilled
was b r o u g h t
tube.
were
tubes
The c e n t e r s e r t
w ith
flow
insert
discharge
tu b e and th e c e n t e r s e r t to
helium
1/4"
6 mm o . d . q u a r t z d i s c h a r g e t u b e
(rearw ard facing s t e p - c e n t e r s e r t ) tube extending
the
control
18.
w i t h a 2mm i . d .
one b r a n c h
stream s.
by
success
cumbersome
replacing
system.
The
length
to
and
of
the
end of
screws could be
the
radial
5/8
back
the
i.d.
of
a
p i p e was
inserted
in
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure
18.
Gas c o n t r o l
m ents.
s y s t e m f o r L am in ar Flow T o r c h E x p e r
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
78
* 666'66
WnirBH
SN03Md * wnnaH
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
79
a tripod
arrangem ent.
See
radial
alignm ent
ferrule
on t h e c e n t e r s e r t
system
"0 ”
ferrule
and
an
aligning
the
centersert.
in
the
convex le n s
The
torch
quartz sleeve.
the
8 mm
to
provide
The
a
pivot
was
point
then
into
end of
focal
the
torch
in
a tight
a
through
achieved.
It
appears
w ater cooled
keep th e
and
of
the
lam inar
MIP
snuggly in to
cavity.
the
in
the
quartz
cavity
are
discharge
sleeve
not
can be
silicone
heat
The
low
w ith
snug,
tube
dead
constructedfrom
stainless
an
tu b e and
cavity,
be
is req u ired to
from m e l t i n g ,
flow
either
the
design.
the
If
even w ith
the
discharge
therm al
fit
a
of
between
tube
conductivity
improved by a p p l i c a t i o n
sink
is
t h e l o w e r f l o w s d o n o t r e m o v e a s much
tangential
junction
o.d.
and
c a v i t y and th e d is c h a r g e tu b e
quartz
as
sleeve
It
t h a t good t h e r m a l c o n t a c t b e tw e en th e
cen tered plasma sin c e
heat
quartz
flow
6 mm i . d . 8 mm o . d .
fittin g
Beenakker
the
a
length.
( 6 mm o . d . )
tube
hole
sleeve,
for
radially
n ecessary t h a t a t i g h t f i t betw een the discharge
quartz
and
w ith a b rass back
The w hole a s s e m b ly th e n s l i d
i.d.
torch
V espel/G raphite
centersert
tube
a 10 c m .
slipped
The
for
t h e t h r e e thumb s c r e w s a s needed w h i l e
discharge
was
22
was r e p la c e d
discharge
w ith
19 -
d etail.
ring
aligned by a d ju stin g
looking
Figures
o r MI P
of
the
Dow C o r n i n g 3 4 0
compound.
volum e,
a n n u la r flow o n l y , to rc h
8" s t r a i g h t
steel
piece
tubing
,
was
o f 0,8
mm i . d .
1/16"
two
small
NiCr
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
80
Figure
19.
O riginal
design
o f L a m in a r Flow T o r c h .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TORCH
FLOW
LAMINAR
(pi man
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
82
Figure 20.
Lam inar Flow T o rc h c e n t e r i n g
(centerserts).
inserts
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
83
£3
_J
o
CENTERSERTS
CO
f
Reproduced with permission o f the copyright o w n er Further reproduction prohibited without permission.
Figure
21.
The R a d i a l a l i g n m e n t
lam in a r flow t o r c h .
system f o r
the
original
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
85
<
>
L ...
D
Z
IU
iz
0
o
IU
P
Q»sz
(p
t
5
ID
r
<
>
■~i
D
Z
ID
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
86
Figure
22.
L a y o u t o f Lam inar Flow T o rc h and B eenakker
cavity.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
QUARTZ SLEEVE
87
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
88
loops
of w ire and a s o lid
figures
23 a n d
24.
tapered
The s t a i n l e s s
and
w ire
the
loops
were
stainless
quartz
w ith
the
tube
tube.
centering
so
solid
that
the
a
the
press
quartz
centering
alignm ent
torch,
if
was
end.
no
the
it
Next,
in
the
tube being
held
in
would a l s o
straight
the
be
in
end
oval.
of
the
steel
2 mm i . d .
6 mm
center
possible
p iece of s ta in le s s
tube
but
stainless
original
the
compressed
that
the
the
steel
circular
the
from
in
tw o NiCr
center
was t h e n
longer
placed
to
stainless
into
system
shown
assem bly
slides
It
The
grooves
on
then
fit.
assem bly
was g ro o v ed
tube
centersert
was
tight
wires.
a very
these
w ires
hole
discharge
radial
were
NiCr
steel
same
The e n d o f
centersert
w ith
in
the
tube-solid
tube-centersert
o.d.
3 cm f r o m
placed
steel
discharge
slightly
The
other
as
o n e a b o u t 1 cm f r o m t h e
w ith a tu b in g c u t t e r a t two p o i n t s ,
end
centersert
to
use
lam inar
steel
w ith
the
flow
tubing
available.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
89
Figure
23.
Low D e a d V o l u m e A n n u l a r F l o w T o r c h .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
□5
is 8
i
LOU DEAD
VOLUME
ANNULAR
FLOW TORCH
90
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
91
Figure
24.
C l o s e u p o f Low D e a d V o l u m e A n n u l a r F l o w T o r c h .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
92
S . S . TUBE
£
,
I
INSIDE
DISCHARGE
TUBE WALL
annular flow
)s o l i d
centersert
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
93
C.
Results and Discussion regarding Torch Development
The d e v e l o p m e n t
initially,
was
set
sinceit
up.
It
of
the
lam inar
flow
t o r c h was u n u s u a l
worked and worked w e ll
also
changed a
few
of
the
the
ideas
a " g o o d " p l a s m a a n d how t o p r o d u c e o n e .
believed
to
that
obtain
a centered
a long
plasma
discharge
m eltin g of the d isc h a rg e
need
for
external
on q u a r t z
It
sleeve
was
patterns
the
was
that
produce
plasm a
has
been
listed
in
Table
detection
lim its
a
Not
varied
it
was
was n e c e s s a r y
repeated
are
centered
w ith
discussion
one
several
plasm a.
a ll
flow
surprisingly
from
(See
section.)
there
m aintained
XV.
concerning
But a f t e r
recognized.
previous
discovered
which
that
it
tube w ith a c e n te re d plasm a, the
cooling
in
life.
tim e
In itially
was a l l
tube
first
flow
gas
flow
A centered
arrangem ents
the s e n s itiv ity
configuration
to
and
the
other.
In itia l
studies
of the
lam inar
m i x t u r e o f 1.4 ppm ( m o l e / m o l e )
studies
finally
There
size
Is
used
m ixtures
CHC1F 2 ( F r e o n
w ith
22)
and
w e r e many q u e s t i o n s
discharge
tube?
What
flow
o f CH 3 C I i n h e l i u m .
1.0 ppm C H j B r
CBr Fg
(Freon
to be answered:
is
to rc h used a gas
the
optim al
in
13B1)
helium
in
What i s
size
Later
helium.
the b e st
centersert?
t h e r e a s u p e r i o r flo w c o n f i g u r a t i o n and flow r a t e ?
generator
other
power g iv e s
lam inar
flow
the
torch
d is c u s s io n below a tte m p ts
maxi mum
designs
to answer
signal
that
these
to
be
and
noise?
studied?
What
Should
The
questions.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
94
T a b l e XV
L am in ar Flow A r r a n g e m e n t s
A n n u l a r Flow
to be Considered
Central
Flow
High
Zero
High
Low
Me d i u m
Me d i u m
Low
High
Zero
High
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
95
An e x h a u s t i v e
MIP
plasm a
study
torches
of
should
experim ents to help unravel
various
experim ental
and a n a ly s i s
three
of variance
dim ensional
m easurements
would be
how d o e s
b e tte r.
it
is
Also,
to
of
noise,
valuable
and
in
how
presented
in
may
the
flow
it
it
the
only the p relim in ary ste p s
torch as
plasm a
answering
be
of
the
optim ization
useful.
other
constitutes
lam inar
sim plex
to
design
interaction
the
and
approach
fa c to ria l
could prove q u ite
function
What
flow
the probable
p ro file s
signal
lam inar
include
variables.
sensitivity,
of
the
Finally
regarding
spectroscopic
the
questions
made
to
follow ing
work
pages
toward understanding
is used w ith microwave
induced
plasmas.
E arly
discharge
i.d.
experim ents
tube
provided
discharge
tube.
was used w ith
the
the
tube
discharge
open tube
greater
But,
flow
and m elte d
torch.
the
sensitivity
s e t up,
it
the
all
2
than
mm
the
the plasm a
of
the
the
i.d.
3 mm
discharge
ju s t as w ith
Therefore,
were done w ith
d isch arg e tube.
that
w h e n a 1 mm i . d .
lam inar
quartz
experim ents
suggested
tube
filled
sim ple
follow ing
2 mm i . d . 6 mm o . d . q u a r t z
S u i t a b l e c o o l i n g m a y a l l o w u s e o f a 1 mm
i.d. d isc h a rg e tube.
Next th e
question
of which flow c o n f i g u r a t io n provided
th e g r e a t e s t s e n s i t i v i t y and lo w e s t d e te c ti o n
investigated.
were
run
in
The
the
flow
studies
follow ing
shown
manner:
in
high
lim its
Figures
purity
was
25 a n d 26
helium
was
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
96
u s e d f o r t h e a n n u l a r f l o w a t v a r i o u s f l o w r a t e s f r o m 100 t o
20
m L/m in,
and
20
constituted
the
coordinate
values
portion
the
off
of
central
in
the
this
of
flow.
graph.
com pletely;
Next,
m L/m in
These
helium
Then,
is
the
C t^Br
are
gas
the
m ixture
points
with X
annular-analyte
the annular
flow
central
was
th e p o in t a t which flow
turned
rate
= 0.
t h e a n a l y t e g a s m ix f lo w was r e r o u t e d t o becom e t h e
annular
flow
re su lt
is
in
There
detection
the
was
analyte
the
of
the
was
graph
set
to
as
flow
portion
improvement
in
zero.
of
to
zero
torch,
that
it
was
was b e t t e r
and
the helium
flow
remained
sw itched
even more
of
graph.
sensitivity
(analyte
flow
The
rate
the
c a rb o n and bro m in e a s
analyte
the
suggested
flow
annular
decreased
When
portion
This
in
for both
was
constant).
seen.
central
a gradual
lim its
flow
annular
the
represented
20mL/min.
annular
and
to
the
im provem ent
was
to use
the analyte
g a s f l o w a s t h e a n n u l a r f l o w w i t h no c e n t r a l f l o w .
Experim ents
analyte
gave
of
flow
the
the
best
rates
be expected
vary
undertaken
were
optim al
results.
centersert.
d ia m e te r and
would
were
length
that
from
Since
of
the
one
Step
the
to
and
height
the
what
is
step
height
to
which
size
equal
the
height
the
radius
changes
region,
and
annular
step
to
height
recirculation
sen sitiv ities
step
discern
it
detection
next.
/
ng o f
elem ent)
and
detection
lim it
for
might
lim its
Figures
30 g r a p h i c a l l y d e p i c t t h e v a r i a t i o n o f s e n s i t i v i t y
sec
the
27 -
(ADC *
carbon
and
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
97
Figure
25.
Lam inar Flow Torch s t u d y o f v a r i o u s flow c o n f i ­
gurations.
R esults of carbon.
ADC * s e c / n g c a r b o n < 0 > , D . L . p g c a r b o n / s e c . < X >
< > d en o tes p l o t symbol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CENTRAL
ANALYTE
■»
a
-j
Q.
ID
CJ \
CO LU o
< Q O * ^ lilU \2 C fl
CJ
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ANALTTE
ANNULAR
car
■
HELIUM
GO
FLOW RATE
(ML/MIN)
98
99
Figure
26.
L am inar Flow T orch s t u d y o f v a r i o u s flo w c o n f i ­
gurations.
R esults of bromine.
ADC * s e c / ng b r o m i n e < 0 > , D . L . p g b r o m i n e / s e c . < X >
< > d e n o te s p l o t symbol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
- s
FLOW RATE
CK
(ML/MIN)
100
HELIUM
CD
CD
kb
5
e
_
j
i
i
Q —l
< Q O
CL CO
CD c r \
*C 0 m C J \
2
C9
CO LL1 u
CD CL
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
101
brom ine
w ith
the b e st
rates.
th e
three
resu lts
d ifferen t
w ere
cen tersert
obtained
W hat was s u r p r i s i n g
se n sitiv itie s
and
at
was th e
d etectio n
varying
f r o m 0 . 5 mm t o 0 . 9 9 mm.
of
re c irc u la tio n
th e
c e n te rse rt,
sen sitiv ity
reason
d id
produces
an aly te
a
ex citatio n .
plasm a
energy
for
The
d en sity
various
o rig in a l
flo w
th ro u g h ,
m ix tu re
gas
as
an n u lar
flo w
lin e .
occured,
the
32.
S ince
th e
Hence came th e
flow
only,
less
lam in ar
each
lim its
th is
dead
but
am ore
tim e
and
o th er
versus
in
step
s e e F ig u r e 31.
a
rath er
larg e
w h ic h was p a r t o f t h e
on ly
pure
when
flo w
of the
the
the
heliu m
volum e
m ix in g
p ro b lem
gas
volum e
flo w s a re
was t o b e u se d
the
torch,
went
a n aly te
irreg u lar
to rch
d esig n of
flow
had
m ore
efficien t at
of resid en ce
to rch
an n u lar
th u s
produces
o ffse ttin g
When
The r e s u l t s
ch ro m ato g rap h y ,
overcom e.
be
th e
a n a ly tic a l
and
also
is
th e Sw agelok t e e
no p r o b le m s
was u s e d
it
w hich
from
larg er ce n te rse rt
show s no t r e n d s ;
lam in ar
su p p ly
in F ig u re
co u ld
h eig h ts
p l a s m a . One p o s s i b l e
reg io n
tim e,
plasm a
elem en ts
becam e a p ro b lem .
shown
th e
A graph of d e te c tio n
m ix in g volum e i n s i d e
an n u lar
of the
The tw o f a c t o r s
experim ents.
h eig h t
a ffe c t
lim its
residence
step
d o w n -stream
g rea tly
(lo w er energy)
ato m ic
th ese
for
in
I t appeared th a t the s iz e
recircu latio n
long
flow
lack of d iffe re n c e
is t h a t even though th e
larg er
w ith a
d iffu se
not
As e x p e c t e d ,
low est operable
lim its
reg io n ,
and d e t e c t i o n
for th is
the
sizes.
had
to
for
be
low d e a d v o lu m e ,
w h ic h was d e s c r i b e d
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
102
above.
See F ig u re s
Flow
to rch
to
lam in ar
d etectio n
to rch
stu d ies
in su re
flo w
23 a n d 2 4 .
w ere
th at
to rch .
perform ed
it
acted
The
lim its
are
shown
elim in ated
the
flo w
c o rre c te d
as
the
w ell
resu ltin g
in
F igures
low d e a d
as
the
is
33
and
irre g u la ritie s.
shown in F ig u re 35.
the
chart
volum e
o rig in al
se n sitiv itie s
co m p u ter p lo t of th e e x p e rim e n ta l
elem en ts
strip
w ith
34.
and
T his
A background
run
for
fiv e
F i g u r e 36 w a s t a k e n f r o m
recorder.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
103
F igure
27.
Step h e ig h t and a n n u la r
carbon s e n s i t i v i t y .
flow s tu d y .
R esu lts
for
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(ML/MIN)
- 5O*
<5
FLOW RATE
X
HELIUM
CENTERSERT
STEP HEIGHT
104
c
< Q O * CT)LLJC_J\:Zt£>
C_5
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
105
Figure
28.
S te p h e ig h t and a n n u la r flow s tu d y .
carbon d e te c tio n lim its .
R esu lts
for
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
106
SJ
r - lO
(ML/MIN)
. 8
STEP
- 9
s
m
m
«a
rn
CL CD
8
HELIUM
X ca
CENTERSERT
m
FLOW RATE
HEIGHT
Os
l
5
O S.COUJO
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
107
F igure
29.
S tep h e ig h t and a n n u la r
brom ine s e n s i t i v i t y .
flow
study.
R esu lts
for
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
R e p ro d u c e d with perm ission of the copyright owner. Further reproduction prohibited without permission.
109
F igure
30.
S te p h e i g h t and a n n u la r flow s tu d y .
brom ine d e te c ti o n l i m i t s .
R esu lts
for
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
110
I n
(ML/MIN)
r S
E
hi
FLOW RATE
I
hi
HELIUM
Ov
E
s: 2: r
CN
S3
CO CN O
LQ
®
®
II
o
SJ
II
II
X
<i
S N *
Q
—!
□ _ CO
m iE N W U J U
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Ill
F igure
31.
D e te c tio n l i m i t s of v a rio u s elem ents v e rsu s
c e n te rs e rt step h eig h t,
c a r b o n <C> , b r o m i n e <B>, c h l o r i n e < C 1 > ,
f l u o r i n e <F>. < > d e n o t e s p l o t s y m b o l.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
112
CP CO
(MM)
CO
CO
SI
CO
CENTERSERT
CO
CO
STEP
CO
HEIGHT
CO
^CN
'g u
,
Q_1
CLCD\ t 0 U 4 O
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
113
F igure
32.
I r r e g u l a r flo w m ix in g volum e p ro b le m s w i t h
o r i g i n a l l a m in a r flo w t o r c h . A sm ooth t r a n s ­
i t i o n from b a s e l i n e t o s i g n a l l e v e l i s th e
expected b e h a v io r.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
MINUTES
114
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
115
F igure
33.
Low d e a d v o l u m e a n n u l a r f l o w t o r c h f l o w s t u d y .
S e n s i t i v i t i e s (A D C * s e c /n g ) f o r c a r b o n <C>,
c h l o r i n e <C1>, a n d f l u o r i n e <F>.
< > d e n o te s p l o t sym bol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
HELIUM
FLOW RATE
(ML/MIN)
116
U
§1
S) 4-
< Q C J & CQ UJ O N. Z CD
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
11 7
Figure
34.
Low d e a d v o l u m e a n n u l a r f l o w t o r c h f l o w s t u d y .
D e t e c t i o n l i m i t s f o r c a r b o n <C> , c h l o r i n e < C 1 > ,
an d f l u o r i n e <F>. < > d e n o t e s p l o t sy m b o l.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(ML/MIN)
118
,o
U, U
- 9
HELIUM
FLOW RATE
GN
u u l
o
Q -J
CL CD \
0) lilU
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
119
F igure
35.
Background c o r r e c te d p l o t o f a gas m ix tu re
d a t a a c q u i s i t i o n r u n w i t h t h e low d ead volume
to rch .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
120
O
t—i
C_3
DQV
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
121
Figure
36.
O n -lin e
O ff-lin e
a c q u isito n run.
p lo t of a gas m ixture d a ta
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
122
3QV
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
123
The to p o f each e le m e n ta l
sig n al
at
th e
corresponds
and
th e
to
p articu lar
the
b o tto m
th e
d ata
a n aly tical
sig n al
th e
rep resen ts
of
are
corresponds
an aly tical
background s ig n a l.
and
trace
trace
the
to tal
w avelength
(th is
plus
to
the
background)
the
off
lin e
or
The c o m p u te r c o m p u te s th e d i f f e r e n c e
an aly zed
from
th e background
c o rrected
resu lts.
th e
The
p o sitio n
back
sid e
c en tersert
of
of
the
th e
end of
the
p lasm a
c en tersert
was
relativ e
in v estig a ted .
The
was p l a c e d b e h i n d t h e p l a s m a a n d g r a d u a l l y moved
back a to ta l
of
2 5 mm. T h e r e
was
some d e t e r i o r a t i o n
in
the
se n sitiv itie s
and d e te c tio n
lim its b u t,
su rp risin g ly ,
was
larg e.
though
se n sitiv ity
not
very
d etectio n
lim its
Even
d id
w as moved aw ay fro m
sum m arized
th e
not change g re a tly ,
e tc h in g and d eg rad atio n
are
increased
th e plasm a.
i n F i g u r e s 37 -
rap id ly
forw ard
se n sitiv ity
d id
th e
g en erally
n o ise.
seen as
pow er
w ith
as
These e x p e rim e n tal
0
f r o m 20 t o 90
re flec ted .
As
ex p ected ,
changes
in
b u t so
sig n al/n o ise
w ere
s h o w n i n F i g u r e s 40 a n d 4 1 .
T ab le
shows
resu lts
39.
The p r e c i s i o n o f th e l a m in a r flo w
in
and
the c e n t e r s e r t
w e n t up a s p o w er i n c r e a s e d ,
O nly s m a l l
it
th e r a te of tube
The m icro w av e g e n e r a t o r pow er was v a r i e d
w a tts
to
XVI
th e
elem en ts
in
and
average
the
illu stra te d
resp o n se/n a
freo n -h eliu m
gas
in
to rch
F igure
for
th e
m ix tu re.
is
tab u lated
42.
F ig u re
fiv e
d ifferen t
The b a r s
42
above
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
124
F igure
37.
D i s ta n c e from c e n t e r s e r t t o p lasm a s t u d y .
S ensi­
t i v i t y ( A D C * s e c / n g ) <0> a n d d e t e c t i o n l i m i t s <X>
f o r c a rb o n . < > d e n o te s p l o t sym bol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
125
DISTANCE
PLASMA TO CENTERSERT
(MM)
CD
CD
CD
CD
Q -J
<
q o
ifc co
CL CD
mU
u \
\
Z CD
com u
u
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
126
Figure
38.
D i s ta n c e from c e n t e r s e r t t o p lasm a s t u d y .
S ensi­
t i v i t y ( A D C * s e c / n g ) <0> a n d d e t e c t i o n l i m i t s <X>
f o r h y d ro g en . < > d e n o te s p l o t sym bol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
127
in
GD
(MM)
cn
CD
<3
CD
-SI
CD
CD
CD
w
CD
CD
CD
DISTANCE
- a
PLASMA TO CENTERSERT
CD
CD
------------------1—
■
■
i---------------" i ---------
U)
I
£
i
o
x
Q -J
CL CD
X \ 0 ) LUO
<Q U *C 0m U \2tJ)
X
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
128
F igure 39.
D is ta n c e o f c e n t e r s e r t t o plasm a s tu d y .
S ensi­
t i v i t y ( A D C * s e c / n g ) <0> a n d d e t e c t i o n l i m i t s <X>
f o r c h l o r i n e . < > d e n o te s p l o t sym bol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
GD
CD
CD
GD
X
G>
ca
DISTANCE
PLASMA TO CENTERSERT
(MM)
129
a.
Q .J
0
<
q
u
CL CD
* co m c j \
0 _ J \0 ) U IU
z
ld
cj_ j
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
130
Figure 40.
P ow er s t u d y , s e n s i t i v i t y (ADC*sec/ng)
and s ig n a l to n o ise < > f o r carb o n .
< > d e n o te s p l o t sym bol.
<0>
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(WATTS)
131
. a
W 2 < J \ Z
a
O
< Q O * 0 ) L L 1 0 \ 2 C D
h
GENERATOR
POWER
- 9s i
O)UJ
CJ
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
132
F igure
41.
Pow er s t u d y , s e n s i t i v i t y (ADC*sec/ng)
.and s i g n a l t o n o i s e < > f o r c h l o r i n e .
< > d e n o te s p l o t sym bol.
sO>
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
133
r §
s
o'
te a
60
•4*
CD
GENERATOR
POWER
sS 3
(WATTS)
00
- a
5M
to
i
o
+
(f)
I-I CD "Z.
<
_J \
< Q O * <0 LL| O \
z
o t-1 CQ m
Z CD
U _J
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
134
Figure
42.
P r e c i s i o n o f low d e a d volum e a n n u l a r f lo w t o r c h
f o r c a r b o n <C> , h y d r o g e n <H>, b r o m i n e < B > ,
c h l o r i n e <C1> a n d f l u o r i n e < F > .
95% c o n f i d e n c e
i n t e r v a l s shown. < > d e n o te s p l o t sym bol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CARBON
HYDROGEN
*
ELEMENT
BROMINE
CHLORINE
FLUORINE
135
• cs u
I®
< a t J
* C0LUCJ\2LD
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
136
TABLE XVI
P recisio n
E lem ent
o v e r 3 D a y s f o r t h e Low D e a d V o l u m e A n n u l a r
Flow T o r c h
R elativ e
S t d . Dev.
95% C . I .
ADC*SEC/NG
3 days 3 hrs
Carbon
Hydrogen*
B rom ine
1650
+ /-
135
16300
+ /-
2100
66.1
+ /“
3 .3
12%
1 . 1%
28%
9.3%
6.4 %
1.6%
C hlorine
41 0
+ /-
13
6 .5 %
1.9%
F luorine
369
+ /“
12
4 .5 %
2.9%
*
H ydrogen s e n s i t i v i t y
co n tam in atio n .
is
in
error
due
to
gas
stream
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
137
TABLE X V I I
Gas M ix tu re D e t e c t i o n
L i m i t s w i t h t h e L a m in a r Flow T o rc h
(3 s . d . )
pg/sec
E lem ent
U nsm oothed
Sm oothed
Carbon
26
8.9
Hydrogen
24
7.3
Brom ine
360
82
C h lo rin e
1 70
51
F luorine
44
9.0
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
138
and
below
the
means
represent
the
95% c o n f i d e n c e
in terv al
shown i n T a b le XVII.
These
lim its.
The d e t e c t i o n
lim its
are
com pare f a v o ra b ly w ith th e d e te c tio n
th e
0 . 5 mm q u a r t z
The
tube
d iag ram s
R ev isited "
(40)
torch
"S tream
th e
facin g
ste p
(present
facin g
ste p
to
current
m inimum o f 5 m L /m in.
the a n a ly te
d etectio n
tw o
lim its.
step
flo w s
resid en ce
(tw o
b elo w
forw ard
a x ially
step .
facin g
step ,
or
through
A lso
some
a
T his
a
rates
forw ard
than
flo w
ex perim ents
to rch
p o ssib le.
w ould
fib er
o p tic
co u p lin g
coo lin g
the
w ith
in d icated
of
need to be
w ith
forw ard
the
increase
Because
plasm a
for
and
flo w
th e
m eans
rearw ard
im prove s e n s i t i v i t i e s
lam in ar
w ere
a
w ould p r o b a b ly
p relim inary
m L /m in.
for
V o rtic ity
of
d esig n )
lo w er
tim e and
in sert)
1
flo w
s till
Some
F u n ctio n
co m b in atio n
lam in ar
ach iev e
rep o rted
(21).
from
suggest
lim its
the
and
the
th at
the
view ed
forw ard
step
may b e
necessary.
D.
Experimental for Gas Chromatographic Applications
G ases and S ta n d a rd s
U ltra
h igh
p u rity
h eliu m
M a th e so n Gas P r o d u c t s .
(m o le/m o le)
CHC1F2
CBrF^
(Freon
purchased
22)
A cu sto m
(Freon
in
99.999%
u ltra
13B1)
gas
and
hig h
was
ob tain ed
m ix tu re
1.0
p u rity
ppm
of
1.0
from
ppm
(m o le/m o le)
h eliu m
was
a lso
from M atheson Gas P r o d u c t s .
HPLC g r a d e
hexane
from
F ish er
was u sed
as
the
so lv en t
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
139
f o r a l l G.C. s t a n d a r d s .
o btained
from
show n:
th eir
v arious
P erm eth rin
C y flu th rin
99.4% f r o m
R oussel
86.4%
S hell
iso m ers
for
stan d ard s
w ere o b ta in e d
97.8%
2 ,7
from
from
at
the
In c .,
F en v alerate
D eltam eth rin
from
w ere
p u rities
A m ericas,
C o rp .,
A m erican
93.0%
from
Zoecon,
and
C y an am id .
D io x in
, 1 , 2 , 3 , 4 a n d 1 , 2 , 3 , 4 ,6 , 7 ,8 , 9
from
Chem
1 ,2 ,4 ,6 ,7 ,9
th e
IC I
98.17%
, 1 ,2 ,4
purchased
for
Company,
F lu v a lin ate
th e
w ere
from
Mobay C h e m ic a l
C hem ical
F lu c y th rin a te
in se c tic id e s
m anufacturers
93.0%
from
U claf,
stan d ard s
The p y r e t h r o id
S erv ice
and
Inc.
D ioxin
1 , 2 , 3 , 4 ,6 , 7 , 9
isom ers
t h e Food a n d Drug A d m i n i s t r a t i o n .
Equipm ent and I n s t r u m e n t a t io n
The
gas
chrom atograph,
com puter c o n tr o lle d
m icrow ave
induced
background c o rre c tin g
plasm a
w ith
p o ly ch ro m ato r
d ev elo p ed by E ck h o ff e t a l . has been p r e v io u s ly d e s c rib e d
(see
sectio n
I).
The o v e r a l l
and
p o ly ch ro m ato r
is
lay o u t
show n
in
is
show n in f i g u r e
fig u re
44.
The
43
only
m o d i f i c a t i o n was t h e r e p l a c e m e n t o f t h e t h r e e way s w i t c h i n g
valv e
w ith a high
v alv e
from V aleo .
Two
H am ilto n
tem p eratu re
( 3 0 0 C)
co n stan t
in jectio n s.
d escrib ed
c e n te rse rt
rate
sy rin g es;
Reno,
a
C R 700-20
and
a
was
used
fla n g e
c h ro m a to g ra p h ic and plasm a
in
a ll
d iam e te r
co n d itio n s
a
Nevada w ere u s e d f o r
The low d e a d volu m e l a m i n a r f lo w t o r c h ,
above,
had
way s w i t c h i n g
S e e F i g u r e 45 f o r t h e G.C. a r r a n g e m e n t .
CR700-200 f ro m H a m i l t o n Company,
all
four
as
ex p erim en ts.
The
of
The
are
1.1 2
given
mm.
in T a b le X V III.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
140
Figure
43.
O v e r a l l G .C .
MIP P o l y c h r o m a t o r C o m p u t e r s e t u p .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
141
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
142
F igure
44.
P olychrom ator
in m oderate d e t a i l .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
143
ZR
uv
PHc?K>A^lUn FUCK.
TUBES.
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.
F igure 45.
Gas c h ro m a to g ra p h m o d i f i c a t i o n s
volum e a n n u l a r flo w t o r c h .
for
the
low d e a d
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
145
yooiQ wouoarNi
>
6 J
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
146
TABLE X V I I I
Gas C h ro m ato g rap h ic and Plasm a C o n d itio n s
f o r t h e L a m in a r Flow T o rc h E x p e r im e n t s
Plasm a power
80 W a t t s
Column
6 F t . 4 mm i . d . g l a s s
OV 10 1 2% o n C h r o m o s o r b
WHP
Column F low R a t e
65 m L / m i n .
No A u x i l l i a r y
Flow R a te
In jectio n Port
300°C
T r a n s f e r B lock
300c C
In jectio n
2 0 m-L
S ize
For P y re th ro id s
V e n t Time
12 M i n u t e s
Column T e m p e r a t u r e
2 00 13C I s o t h e r m a l
For D ioxins
V e n t Time
2 M inutes
T em p era tu re Program
19 0 ''C
ramp
290t C
2 M inutes
5 0 'C /m in u te s
2 M inutes
4 M inutes
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
147
E.
Results and Discussion for Gas Chromatographic
Applications
P y reth ro id s
The s t r u c t u r e s
F ig u res
46 a n d
for
47.
th e
six
The c h r o m a t o g r a p h i c
pro g ram s w ere m o d ifie d
to allo w
d a ta
and
to
be
ap p en d ices
c o lle c te d
II
chrom atogram
each
the
on
the
b o tto m
background
o b viously
of
necessary
ratio s
if
shown d o es
av o id ed .
is
not
The
rep resen ts
and
to
be
peaks
c o n tain
in
Least
shown
in
be
on
the
top of
m o n ito red
p lus
elem ent
the
o ff-lin e
or
each
channel
is
Go o d
out
even
the
if
good
selectiv ity
is
though peak
elem en t)
c a lc u la te s
o ff-lin e
(sig n al
su b tracted
obtained.
in
are
to be
d ifferen ce
ch ro m ato g ram .
and
These a re
49 a n d 5 0 .
squares
F ig u res
show n
p articu lar
(peaks p re s e n t
th e
com puter
fig u res
th at
background
m ust
are
response
each
The
in
a q u isitio n
Once a g a i n ,
to ta l
trace
shown
channel o n -lin e ,
48.
produces a background c o rre c te d
shown
and
for
are
false
th e
d ata
w avelength
read in g .
ch an g in g
se le c tiv ity
The m u l t i
trace
are
m ore th a n s i x m in u te s of
an aly zed
shown i n F ig u r e
e le m en ta l
background)
and
and I I I .
is
p y reth ro id s
c a lib ra tio n
51,
52 a n d
p lo ts
53
and
slo p e
(or
and
s ta tistic s
T ab les
XIX,
are
XX,
XXI,
X X II.
The
carbon,
d ifferen ces
hydrogen,
d ifferen ces
in
ch lo rin e
in p e rc e n t
channels
com p o sitio n
se n sitiv ity )
are
for
larg ely
C,
H,
C l,
on
the
to
the
due
and
F and
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
148
random e x p e r i m e n t a l n o i s e .
be
due
to
v o litility
en v iro n m en t
effects.
sen sitiv ity )
on
the
d ifferen ces
The
flu o rin e
e x p la in e d by d if f e r e n c e s
experim ental
T h e r e m a i n i n g d i s c r e p a n c i e s m ay
and
sm all
differences
channel
in
can be
m o lecu lar
slo p e
(or
co m p letely
in m o l e c u l a r f o r m u la and random
noise.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
F igure 46.
S tru ctu res
n ate.
fo r P erm ethrin,
C y flu th rin ,
F lu cy th r
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
150
o
Ik
z
u
X
0
1
Vz0 X
<o
UZQ £
u
X
u
II
u
u
i-0 <
a*
U
I I
<J
A _
O u
u
I
u
/N
U.U.
Z
i—i
CK
£
<
z
u
fc
CJ
3LL
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure
47.
S tru ctu res
m eth rin .
fo r F en v alerate,
F lu v alin ate,
D elta-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
2
X
o - o
o Z O
uzo
u - u <
o
o
IJ
* \
.
CQ
i
CO
s
z
a
<
-J
IL
LL
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
153
F igure
48.
M u ltic h a n n e l o n - l i n e o f f - l i n e chrom atogram o f th e
p y r e th r o id s . Peak o rd er P e rm e th rin , C y flu th rin ,
F lu c y th rin a te , F e n v a le ra te , F lu v a lin a te , D eltam eth rin .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
PYRETHROIDS
154
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
155
Figure
49.
B ackground c o r r e c t e d chrom atogram o f th e p y r e ­
th ro id s.
C arbon and Hydrogen c h a n n e ls .
Peak o rd e r P erm eth rin , C y flu th rin , F lu c y th rin a te ,
F e n v a le ra te , F lu v a lin a te , D eltam eth rin .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
156
TIM E ( M IN )
9
CN
*
o*
3Q V
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
157
F igure
50.
B ackground c o r r e c t e d chrom atogram o f th e p y r e th ro id s.
C h lo rin e and f lu o r in e c h a n n e ls .
Peak o rd e r P e rm e th rin , C y f lu th r in , F lu c y th r in a te /
F e n v a le ra te , F lu v a lin a te , D eltam eth rin .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
158
9
t—i
O
O
..CM
S}
W
3Q V
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
159
Figure
51.
L e a s t s q u a r e s c a l i b r a t i o n p l o t o f AD C* se c v e r s u s
ppm o f p y r e t h r o i d o n c a r b o n c h a n n e l f o r p e r m e t h r i n < P > , c y f l u t h r i n <C>, f l u c y t h r i n a t e <Y>,
f e n v a l e r a t e < F > , f l u v a l i n a t e <V>, d e l t a m e t h r i n
<D>.
< > d e n o te s p l o t symbol
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
2 .5 E + 6
PYRETHROIDS
(M G /D
160
< Q O * C Q L U t J
0 2
O
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
161
TABLE XIX
S ta tistics
Compound
f o r R e s p o n s e v e r s u s ppm o f P y r e t h r o i d
on t h e C arbon C hannel
S lope
y=bx
ADC*sec
ppm
95%
C.I.
of
slo p e
t
in ter­
c e p ts
t
95%
co rrelatio n
co efficien t
Perm ethrin
18000
+ /-
43 0
0 .803
12.706
0.9999
2 1 10 0
+ /-1350
0.661
12.706
0.9996
F lu cy th rin ate
22300
+ /-2500
1.330
12.706
0.9989
21400
+ /-2980
1.103
12.706
0.9983
15400
+ /-1180
1.273
12.706
0.9995
13600
+ /-1330
0.673
12.706
0.9992
C y flu th rin
F en v alerate
F lu v alin ate
D eltam eth rin
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
162
F igure
52.
L e a s t s q u a r e s c a l i b r a t i o n p l o t o f AD C* se c v e r s u s
ppm o f p y r e t h r o i d o n h y d r o g e n c h a n n e l f o r p e r m e ­
t h r i n < P > , c y f l u t h r i n <C>, f l u c y t h r i n a t e <Y>,
f e n v a l e r a t e < F > f f l u v a l i n a t e <V>, d e l t a m e t h r i n
<D>.
< > d e n o te s p l o t sym bol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
E+5
PYRETHROIDS
(M G /L)
163
<N
<
Q O
*
CD LLl O
O
Z
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
164
TABLE XX
S ta tistics
Co m p o u n d
f o r R e s p o n s e v e r s u s ppm o f P y r e t h r o i d
on t h e H ydrogen C hannel
Slope
y=bx
ADC*sec
ppm
95%
C .I.
of
slope
t
in terc e p t =0
t
95%
co rrelatio n
co efficien t
Perm ethrin
3800
+ /-
27 1
0.537
12.706
0.9995
2900
+ /-
22 9
0.136
12.706
0.9994
F lu cy th rin ate
3160
+ /-
459
0.767
12.706
0.9982
2660
+ /-
242
0.919
12.706
0.9993
2150
+ /-
395
0.250
12.706
0.9999
1450
+ /-
1 91
0.420
12.706
0.9985
C y flu th rin
F en v alerate
F lu v alin ate
D eltam eth rin
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
165
F igure
53.
L e a s t s q u a r e s c a l i b r a t i o n p l o t o f AD C* se c v e r s u s
ppm o f p y r e t h r o i d o n c h l o r i n e c h a n n e l f o r p e r m e t h r i n < P > , c y f l u t h r i n <C>, f e n v a l e r a t e < F > ,
f l u v a l i n a t e <V>.
< > d e n o te s p l o t symbol
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
166
- ^
2 .5 E * » 5
PYRETHROIDS
S3
(M E /L )
r *3
< Q O
* CO LLI C_)
0 2
O _J
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
167
TABLE XXI
S tatistics
C om po und
f o r R e s p o n s e v e r s u s ppm o f F y r e t n r o i d
on th e C h lo r in e C hannel
Slope
y=bx
ADC*sec
ppm
95%
C .I.
of
slope
t
in terc e p t =0
t
95%
P erm ethrin
2090
+ /-220
0.897
C y flu th rin
1600
/
/
/
/
/
/
/
/
F lu cy th rin ate /
12.706
c o rrelatio n
c o efficien t
0.9990
F en v alerate
770
+ /-128
0.983
12.706
0.9988
F lu v alin ate
57 7
+ /-71
11.723
12.706
0.9985
u C j. w u m w u i t i . a h
//
//
//
//
/
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
168
F igure
54.
L east squares c a lib ra tio n p lo
ppm o f p y r e t h r o i d o n f l u o r i n e
c y f l u t h r i n <C> , f l u c y t h r i n a t e
f l u v a l i n a t e <V>.
< > denotes
t o f ADC*s ec v e r s u s
channel for
<Y>,
p l o t sym bol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
1.5JE-+5
PYRETHROIDS
CMG/L)
169
«-•
< Q U
IN
* 0)1140
S3
O Z
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
170
TABLE X X II
S tatistics
C om p ou n d
f o r R e s p o n s e v e r s u s ppm o f P y r e t h r o i d
on th e F l u o r i n e Channel
Slope
y=bx
ADC*sec
ppm
95%
C .I.
of
slo p e
t
in terc e p t =0
/
/
/
/
P erm ethrin
/
C y flu th rin
51 0
+ /-146
/
F lu cy th rin ate
914
+ /-77
1.144
F en v alerate
/
/
/
F lu v alin ate
1100
+ /-98
0.894
/
/
/
D eltam eth rin
t
95%
12.706
/
12.706
/
c o rrelatio n
co efficien t
/
0 .9994
0.9994
/
0.9993
/
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
171
L in earity
ch an n els
is
d etectio n
as
of
55.
N ote
and
expected
d eterm in ed
in
th e
th re e
fig u res
orders
shown in t a b l e s
least
th eir
alm o st
reaso n ab le
1
are
lo g -lo g
reg ard less
co in cid e
shown
ty p ic a lly
lim its
The
F igure
as
squares
m o lecu lar
th at
th e
ex actly .
the
slo p es
of
a
s ta tis tic a lly
p lo t
m ag n itu d e
and
for
and
a ll
c o rrelatio n
is
show n
d iffer
p lo t.
the
d eterm in in g
if
su g g ests
th at
T h is
the
i n t e r c e p t was d i f f e r e n t
th ere
is
some
was
of each
s lo p e w ith 1 in an a n a lo g o u s m anner a s was d i s c r i b e d
for
are
from
T his
v alu e
in
lin es
co efficien ts
sig n ifican tly
co m p arin g
elem en ts
flu o rin e
c a lib ra tio n
by
all
e n v iro n m en ts
do n o t
lo g -lo g
of
for
X X I I I a n d XXIV.
ch lo rin e
The
above
from
in d ifferen ce
above
0 (44).
to
the
from
the
m o lecu lar environm ent of a p a r t i c u l a r elem ent.
The p a r t i a l
average
XXVII.
em p irical
response
As
may
be
not p e rfe c t.
e ffe c ts
on
to
seen,
T his
elem en tal
env iro n m en t th e y a r e
attrib u tab le
calcu lated
p e r nm ole o f e le m e n t a r e
although
th e
fo rm u las
the
ov erall
in d icates
accuracy
that
responses
shown in T a b le
by
if
there
the
is good,
are
any
m o lecu lar
s m a l l s i n c e many o f t h e v a r i a t i o n s a r e
random e x p e r im e n ta l
noise.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
172
T a b le X X III
A verage E lem en tal D e te c tio n L im its
(3 s . d . )
Elem ent
for
the P y re th ro id s
pg/sec
Carbon
8 „C
Hydrogen
4.9
Brom ine
62
C hlorine
40
F luorine
3.6
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
173
T a b l e XXIV
D etectio n
L i m i t s b y Co m po un d o n E a c h C h a n n e l
(3 s . d . )
m g/L o f com pound
100 yui i n j e c t i o n
C
H
F
Cl
Br
Perm ethrin
0.026
0.20
/
0 .46
/
C y flu th rin
0.039
0.34
0.24
0.72
/
F lu cy th rin
0.049
0.40
0.18
F en v alerate
0.054
0.45
F lu v alin ate
0.051
0.44
D eltam eth rin
0.039
0.33
/
/
/
2.3
/
0.13
2.3
/
/
/
0.49
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
174
T a b l e XXV
Average S e n s i t i v i t y p e r Elem ent f o r th e P y r e th r o id s
( f r o m lOOppm a n d lOpp m l e v e l s w i t h 20/xL i n j e c t i o n )
E lem ent
A D C*sec/nm ole
C arbon
15700
Hydrogen
2680
B rom ine
7010
C hlorine
15600
F luorine
8870
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
175
F igure
55.
Log-Log l e a s t s q u a r e s p l o t o f h y d r o g e n , c a r b o n ,
c h l o r i n e and f l u o r i n e from p y r e t h r o i d s w i t h o u t
re g a rd to m o le c u la r environm ent.
(N ote - c h lo ­
r in e and f lu o r in e l i n e s c o in c id e alm o st e x a c tly .)
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
F
CL
H
C
OF
NG
LOG
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
177
T a b l e XXVI
S ta tistics
f o r Log-Log E le m e n ta l P l o t
Elem ent
In tercep t
+ / - 95% C l
Slope
+ / - 95% C l
t
slo p e
= 1
t
95%
Carbon
3 .0 0 + /-.2 6
1 .0 4 + /-.1 1
0.756
2.120
0.979
Hydrogen 3 . 5 7 + / - . 1 5
0 .8 9 + /-.1 1
1.909
2.120
0.971
C h lorine
2 .5 7 + /-.2 2
1 .0 4 + /-.1 3
0.737
2.306
0.989
F luorine
2 .5 8 + /-.1 2
1 .0 5 + /-.0 8
1.647
2.447
0.997
C orrelai
C oeffic
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
178
T a b l e XXVII
P artial
P y r e t h r o i d E m p ir ic a l Form ulas
Com po un d
P artial
E m p ir ic a l Form ula
A ctual
C alculated
A verage %
E rror
Perm ethrin
c 21 h 20c 1 2
C2 1 h 2 3 C 1 2
4. 3%
C y flu th rin
C2 2 h 1 8 C 1 2 f
c 24h19c 1 2 F
F lu cy th rin
C2 6 h 2 3 f 2
C2 6 H2 0 F 2
5.0%
F en v alerate
C2 5 h 2 2 C1
C2 9 H2 3 C1
6 . 8%
F lu v alin ate
C2 6 h 2 2 C 1 f 3
C2 1 h 1 9 c 1 f 3
9. 9%
D eltam ethrin
C2 2 H1 9 B r 2
C2 2 H1 9 B r 2
0 . 0%
Grand A verage
3 .6 %
4 .9 %
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
17 9
D ioxins
The s t r u c t u r e s
are
shown in F ig u r e
lin e, o ff-lin e
v isu al
56.
is
ch an g in g
selectiv ity
necessary
ratio s
if
shown does
av oided.
The
are
to
peaks
be
in
from th e
on
su b tracted
obtained.
58 a n d
channel
out
th e
d etectio n
to
v ariab le
GC c o l u m n b l e e d
ru n .T h is
was m o st p ro n o u n ced
in
fig u res
is
ev en though peak
elem en t)
b leed .
A lso
th e
v isib le
in th e c h lo r in e
th e
ta il
of
d etectio n
for a ll
d u rin g
in
are
to be
is
shown i n
suffered
slig h tly
of
the
on t h e
58.
th e
effects
tem p eratu re
of
program
hydrogen channel.
T his
The sam e
also
fig u res
carbon b a s e lin e ,
d u e to colum n
(CH 2 C l 2 )
is
ch a n n el chro m ato g ram ,
F igure
59.
levels
range were
d io x in s.
squares
have
because
57 a n d
sh ift
L east
lim its
p y reth ro id s
show a s l i g h t
p o ssib le
good
Good s e l e c t i v i t y
m o n ito red
rela tiv e
N ev erth eless
if
is
59.
The e l e m e n t a l
seen
57 ( n o t e
o th ers to aid
each
(peaks p re s e n t
th e
F igure
T he b a c k g r o u n d c o r r e c t e d c h r o m a t o g r a m
F igures
can be
offset
be
m u ltic h a n n e l on­
dep icted
m ust
co n tain
th e
background
and
false
not
is
slig h tly
cla rity ).
o b v io u sly
Once a g a i n
chrom atogram
each chrom atogram
in
f o r th e s i x ch lo ro d ib en zo d io x in s(C D D )
the
so lv en t
in
the
See T a b le s
c a lib ra tio n
peak
low
ppb
XXXI a n d XXXII.
p lo ts
and
sta tistic s
are
s h o w n i n F i g u r e s 6 0 , 61 a n d 6 2 a n d t a b l e s X X V I I I , XXIX a n d
XXX.
The
ch lo rin e
d ifferences
channels
from
in
slo p e
one
on t h e
d io x in
to
carbon,
the
hydrogen and
next are
probably
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
1 80
due
to
differen ces
in p e rc e n t
and random e x p e r i m e n t a l
L in earity
log-log p lo t of
com pound
effects.
was
See F ig u re
The p a r t i a l
average
over
no
1,2,4,6,7,9-C D D
in
th is
d io x in peak.
the
Hf a n d C l
m ag n itu d e.
ng o f e l e m e n t
The
reg ard less
m o lecu lar
fo rm u las
the accu racy
isom er
estim atin g
p ro b ab ly due to
of
of
en v iro n m en t
c alcu lated
p e r n m o le o f e le m e n t a r e
of
made
C,
63 a n d T a b l e XXXIV.
Once a g a i n
was
versus
orders
sig n ific a n t
XXXV.
the
th ree
em p irical
response
for
noise.
response
show s
co m p o sitio n
the
shown
is good e x c ep t
where
a
num ber o f
large
from
in T able
in th e
relativ e
hydrogens
case
error
th is
im p u r ity p eak s w hich o v e rla p p e d
See F ig u re
the
was
w ith
58 a n d T a b l e XXXV.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
181
F igure
56.
M olecular s t r u c t u r e s of
2,7-CDD;
1,2,4-C D D ;
1 , 2 , 3 , 4 - C D D ; 1 , 2 , 4 , 6 , 7 ,9 -C DD ; 1 , 2 , 3 , 4 , 6 , 7 , 9-CDD;
a n d 1 , 2 , 3 , 4 , 6 , 7 , 8 , 9-CDD; D i o x i n s .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
182
X
Ds
>a
o
O CN
O
o
4-
COD
X
n
u
u
X
u cn
^ H U
X
u
u
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
F igure
57.
M ultichannel
the d io x in s.
o n -lin e
o ff-lin e
chrom atogram o f
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TIME
(M IN )
134
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.
185
Figure
58.
B ackground c o r r e c t e d chrom atogram of
Carbon and Hydrogen c h a n n e ls .
the d io x in s.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
186
HMBD
T C0
aav
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
187
F igure
59.
Background c o r r e c te d
C h lo rin e ch an n el.
chrom atogram o f t h e
d io x in s.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
188
oav
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
189
F igure
60.
L e a s t s q u a r e s c a l i b r a t i o n p l o t o f AD C * s e c v e r s u s
ppm o f d i o x i n o n c a r b o n c h a n n e l f o r 2 ,7 - C D D < 2> ;
1 , 2 , 4 - C D D < 3 > ; 1 , 2 , 3 , 4 - C D D <4>
< > d e n o te s p l o t sym bol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
DIOXINS
(MG/L)
190
r*
<C Q O
Q*
Jfe CQ LL| C J
S3
0 2
o
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
191
TABLE X X V I I I
S tastistics
C o m po un d
Slope
y=bx
AD C * s e c
ppm
f o r R e s p o n s e v e r s u s ppm o f D i o x i n
on t h e C a rb o n C hannel
95%
C .I.
of
slo p e
t
in ter­
c e p ts
t
95%
c o rrelatio n
c o efficien t
2,7-CDD
13900
+ /-869
2.012
4.303
0.9989
1,2,4-C D D
14900
+ /-515
0.997
4.303
0.9997
1,2 ,3 ,4 -C D D
13700
+ /-132
0.700
4.303
0.9999
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
192
F igure
61.
L e a s t s q u a r e s c a l i b r a t i o n p l o t o f ADC*s ec v e r s u s
ppm o f d i o x i n o n h y d r o g e n c h a n n e l f o r 2 , 7 - C D D < 2 > ;
1 , 2 , 4 - C D D < 3 > ; 1 , 2 , 3 , 4 - C D D <4>
< > d e n o te s p l o t sym bol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
193
DIOXINS
>0
CMG/D
r
000GI
IK
< Q u
m c o m cj
a z.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
194
TABLE XXIX
S ta tistics
C o m po un d
Slope
y=b x
ADC*sec
ppm
f o r R e s p o n s e v e r s u s ppm o f D i o x i n s
on t h e H y d r o g e n C h a n n e l
95%
C .I.
of
slope
t
in terc e p t =0
t
95%
co rrelatio n
co efficien t
2,7-CDD
1460
+ /-305
1.861
12.706
0.9944
1.2.4-C D D
1460
+ /-
85
0.393
4.303
0.9990
1.2.3 .4 -C D D
1320
+ /-180
0.691
4.303
0.9943
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
195
F igure 62.
L e a s t s q u a r e s c a l i b r a t i o n p l o t o f ADC* se c v e r s u s
ppm o f d i o x i n o n c h l o r i n e c h a n n e l f o r 2 , 7 - C D D < 2 > ;
1,2,4-C D D <3>; 1 ,2 ,3 ,4 -C D D <4>.
< > d e n o te s p l o t sym bol.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
196
DIOXINS
S3
(M G / L )
r SI
0000s
< Q O
*
CQLUCJ
0 2
O _J
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
197
TABLE XXX
S tatistics
Co m p o u n d
Slope
y=bx
ADC*sec
ppm
f o r R e s p o n s e v e r s u s ppm o f D i o x i n
on t h e C h l o r i n e C h an n el
95%
C .I.
of
slope
t
in terc e p t =0
t
95%
c o rrelatio n
co efficien t
2,7-CDD
1970
+ /-187
1.671
4.303
0.9976
1 . 2 .4-CDD
3400
+ /-350
0.747
4.303
0.9971
1 . 2 . 3 .4 -C D D 4 1 4 0
+ /-229
0.494
4.303
0.9991
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
198
TABLE XXXI
A verage E le m e n ta l D e te c tio n L im its
(3 s . d . )
for
th e D ioxins
Elem ent
pg/sec.
Carbon
29
Hydrogen
16
C h lo rin e
100
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
199
TABLE XXXII
D e t e c t i o n L i m i t s b y Co m po un d o n E a c h C h a n n e l
(3 s . d . )
mg/L o f compound
in jectio n )
(100 ^ L
D ioxin
C
H
Cl
2,7-CDD
0.0061
0.080
0.043
1 , 2 ,4-CDD
0.0069
0.11
0.032
1 , 2 , 3 ,4-CDD
0.0078
0 .15
0.027
1 , 2 , 4 , 6 , 7 , 9 - -CDD
0.010
0.40
0.024
1 , 2 , 3 , 4 , 6 , 7 , 9-CDD
0.013
1.0
0.026
1 , 2 , 3 , 4 , 6 , 7 , 8 , 9-CDD 0 . 0 1 7
/
0.029
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.
200
TABLE X X X I I I
A verage S e n s i t i v i t y p e r Elem ent f o r th e D io x in s
( f r o m t h e 10 ppm a n d 4 ppm l e v e l s w i t h 20 m.L i n j e c t i o n )
Elem ent
AD C*sec/nm ole
Carbon
15200
Hydrogen
3 1 20
C hlorine
13000
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
20 1
F igure
63.
Log-Log l e a s t s q u a r e s p l o t o f h y d ro g e n , c a rb o n
and c h l o r i n e from d i o x in s w ith o u t r e g a r d t o
m o le c u la r environm ent.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
LOG
DIOXINS
NG
OF
202
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
203
TABLE XXXIV
S tatistics
Elem ent
In tercep t
f o r Log-Log E le m e n ta l P l o t
Slope
t
slope
t
95%
= 1
C o rrelatio n
C o efficien t
Carbon
3.00+ /"*21
1 . 0 8 + / - . 15
1.148
2.228
0.981
Hydrogen
3 .5 2 + /-.2 2
1 .0 9 + /-.5 1
0.405
2.365
0.884
C hlorine
2 = 5 4 + / - . 14
1 .0 4 + /-.1 2
0.787
2.228
0.987
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
204
TABLE XXXV
P artial
D io x in E m p ir ic a l Form ulas
P artial
E m p iric a l Form ulas
C om p o u n d
A ctual
C alcu lated
2,7-CDD
c 6 h 3c i
c 6 h 3 C1
1,2,4-C D D
C1 2 h 5 C 1 3
C1 2 h 5 C 1 3
0 . 0%
1 , 2 , 3 ,4- CDD
C3 HCI
C 3 HCI
0 . 0%
1 , 2 , 4 , 6 , 7 , 9-CDD
C6 HC1 3
C6 H2 C 1 3
1 , 2 , 3 , 4 , 6 , 7 , 9-CDD
C1 2 HC17
C i 1H C I 7
3.0%
C3 C 1 2
0 . 0%
1 , 2 , 3 , 4 , 6 , 7 , 8 , 9-CDD c 3 c i 2
Average
% E rror
0 . 0%
16%
G r a n d A v e r a g e 3.2%
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
205
C a l i b r a t i o n w i t h Gas M ix tu r e
Id eally ,
the
sam e r e s p o n s e
reg ard lesso f
m icrow ave
elem en t
its
A lso,
th is
allo w
w hich a llo w s th e
based
a class
of
gas m ix tu re,
of
each compound.
the
of ru n n in g
per
d io x in s
T a b l e XXXVI.
In g e n e ra l,
vary
except
in
the
from
th e
and
g rea tly
case
freon
the
here.
in
fu tu re
co n tam in atio n
ca lib ra tio n
gas
per
e a rlie r.
lin es
and
for
then c a lc u la te both
fo rm u las.
elem en ts
The
from
is
than
is
the
shown
in
are
e m p irical
d esirab le)
hydrogen
H ydrocarbon
ex ercised ,
p artial
sta n d a rd s
m ix tu re
m ore
ex p erim en ts
is
an a p p ro p ria te
r e s p o n s e p e r nm ole d o e s n o t
carbon
supply
co n tro l
and
the
m ix tu re .
in
w ith
v ario u s
freon
th e
contam ination
Thus,
o fp artia l
d iscu ssed
em p irical
(th o u g h
of
gas
as
then be ab le
nm ole o f
p y reth ro id s,
to
elem en t
response
in d iv id u al
compound m ass a m o u n ts and p a r t i a l
response
average
MIP d e t e c t o r
On e s h o u l d
appear
the
to th e m o le c u la r en v iro n m en t should
the
in stead
on
c a lc u la tio n
com pounds,
in d ifferen ce
calib ratio n
average
give
m o le c u la r e n v iro n m en t.T h is a p p e a rs to be
fo rm u las
for
should
fo r a g iv en am ount of a p a r t i c u l a r
very n e a rly tru e ,
em p iric a l
induced p lasm a
the
when
m ore
responses
and
lik ely
m ore
c u lp rits
strin g en t
m eaningful
fo rm u las
w ater
m ass
sh o u ld
be
p o ssib le.
F.
Conclusion
At
th is
m icrow ave
p o in t
an
induced plasm a
o v erall
torches
co m p ariso n
that
of
have been
the
th ree
used
is
in
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
206
TABLE XXXVI
A v e ra g e R e s p o n s e p e r nm ole
f o r V arious E lem en ts
Elem ent
Co m p o u n d C l a s s
(ADC*sec/nmole)
C
H
Br
P y reth ro id s
15700
2680
7 0 10
D ioxins
15200
3120
Freons
19800**
16500**
/
5280
Cl
15600
13000
14500
F
8870
/
7010
** S e e b o d y o f t e x t .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
207
order.
F ive
d esig n ,
c o st,
flow
rate,
areas
w ill
be
sta b ility
and
and d e t e c t i o n
O b v io u sly ,
th e
c o n sid ered :
lo n g ev ity ,
sim p lest
d esig n
The l a m i n a r f l o w
to rch
desig n
sim p lic ity ,
the
torch
is
easily
assem bled
flo w
b low ing
req u ired
to
tan g en tial
since
is
(eith er
the
to rch
in
10 t o
req u ires
flow
th e
torch
m m quartz
fo llo w s
in
s e rv ic e s of a g la ss blow er a re
serv ices.
make
o p erab le
0.5
d esig n )
when m aking th e c e n t e r s e r t s .
tan g en tial
g lass
m inim um
of
lim its.
tu b e.
needed on ly
sim p lic ity
In
rates
15 m i n u t e s .
ex ten siv e
a d d itio n ,
th read ed
q u artz
as
The r e s t o f t h e
the
The C odding
use
a
of
custom
m ach in ist
in se rt.
is
Thus
m ost c o m p lic a te d
the
of the
th ree.
tu b e
In
regard
is
le a s t expensive,
o n ly c o s ts
to
the
in itia l
a b o u t $ 1 .5 0 .
$5 t o $10 w h i l e t h e
g la s s blo w in g
sin ce
c o st,
once a g a in
a 6 inch p ie c e
The l a m in a r
t a n g e n t i a l flow
and m a c h in in g ,
flo w
torch,
c o sts
and
th e
weeks
when u s e d
good f o r j u s t
tan g e n tia l
p ro p erly .
one,
for a ll
rela tiv e
p recisio n
th ree
sta n d a rd
(several
sta b ility
to rch c o sts are
inclu d in g
custom
L o n g -term
la m in a r flo w
sh o u ld
last
mm q u a r t z
and p r e c is io n
falls
d ev iatio n .
But
is
tubing
is
2 to
4
n o rm ally
tw o d ay s.
to rch es
days)
the
ab o u t $80.
to rch
The 0.5
or perhaps
The s h o r t - t e r m
span)
flo w
0 . 5 mm
of
c o s ts a re q u ite a n o th e r s to r y sin c e b o th th e
to rch
the
(one
hour
tim e
i n t h e r a n g e o f 2% t o 5%
long-term
m arkedly
sta b ility
d ifferen t.
The
0.5
and
mm
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
208
q u artz
tu b e
lam in ar
d o e s n 't
flow
tan g en tial
have
to rc h 's
flow
any
p recisio n
to rch
used.
d ire c tly
to
Very o f te n ,
lim its
of
th e
the
flow
rate
cost
of
low er
d etectio n .
(RSD)
is
p recisio n .
The
6 %.
ty p ically
The
n o m i n a l l y 8 %.
is
The m inim um o p e r a b l e
relates
lo n g -term
the
The 0.5
is
im portant because i t
th e
high
flow
rate,
mm q u a r t z
p u rity
heliu m
the b e t t e r
tube
can
su stain
p la s m a a t flo w r a t e s g r e a t e r t h a n 5 m L /m in. b u t t h i s
a c e n te re d and suspended p lasm a.
the
a
is not
The la m in a r flo w
to rch
c an o p e r a t e a t f lo w s down t o 5 m L /m in. b e f o r e th e p la s m a is
no l o n g e r c e n t e r e d
to rch u s u a lly
and e x t i n g u i s h e s . The t a n g e n t i a l
req u ires
m L/m in. t o m a i t a i n
The m o st
effect
flow
torch
o ther
In
best
fo r b o th
having
a
o f g r e a t e r t h a n 400
th e
n early
slig h t
though
is
and d e te c tio n
0 . 5 mm q u a r t z
the
edge.
a to rc h 's
lim its.
The
tube
and the
sam e, w ith th e
lam in ar
D etectio n
t o r c h ran g e from 3 t o
lim its
10 0 t i m e s
for
the
w orse than
tw o t o r c h e s .
sh o rt,
th e
ch aracteristics
of th e ir
sen sitiv ity
to rch are
t a n g e n t ia l flow
the
rates
im p o rtan t c h a r a c te r is t ic
lim its
la m in a r flo w
flow
a c e n te re d plasm a.
on a n a l y t i c a l
d e te c tio n
to tal
flow
lam in ar
of
flo w
its
tw o
to rch
seem s
predecessors
to
have
w ith o u t
the
many
shortcom ings.
The above
d iscu ssio n
is
sum m arized
i n T a b l e s XX XV II
a n d XXXVIII.
T h e h y p h e n a t e d t e c h n i q u e GC-MIP h a s b e e n s h o w n
to
be
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
209
T a b l e XXXVII
T orch C om parison
S im p licity
O v erall
Cost
0 ,5mm T u b e
T an g en tial
Flow
Lam inar
Flow
ex cellen t
fair
good
good
fair
v e ry good
S h o rt-term
S tab ility
v e ry good
v e ry good
v e ry good
L ong-term
S tab ility
poor
v e ry good
v e ry good
Minimum F l o w R a t e
5m L/m in.
400m L/m in.
5m L/m in.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
210
T a b l e XXXVIII
T o rch Com parison
D e te c tio n L im its
(3 s . d . )
Torch
(pg/sec)
Elem ent
Low p r e s .
1mm i . d .
tube
0 . 5 mm i . d .
(38)
C
H
300
300
Br
4 50
Cl
F
150
300
11
/
tube
0.6
3
(15)
4.1
w /o b a c k g ro u n d c o r r e c t i o n
11
50
65
/
/
100
130
27 0
36
/
130
110
/
(23)
1100
/
60000
/
/
(**)
1100
/
3800
2 9 00
/
(25)
1 50
75
/
380
/
(24)
/
/
45
120
/
4 .9
62
40
(3)
(15)
/
w/ background c o r r e c ti o n
(39)
T an g en tial
Flow
o
•
th is
(**)
00
L am in ar Flow
(**)
7 .5
3
work
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
211
useful
in
d e te rm in in g
p artial
em p irical
in secticid es)
trace
form ulas
and of
of
am ounts
the
and
calc u la tin g
p y reth ro id s
(a
class
the p o ly ch lo ro d ib en zo d io x in s
of
(CDDs).
G. Suggestions For Future Research
Much a d d i t i o n a l
is
needed.
(such as
be
B e tte r
and
d e ta il.
in sert)
flo w
of
the
a n a ly tic a l
and
LFT.
at
low
be
resid en ce
se n sitiv itie s
w ith
m ech an istic
stu d ies.
of
regard
sta tistic a lly
d esig n
and
d eterm in in g
flo w
rates
co n tro ller)
th e
low
tubes
w ith
th e
tim es
of
w ill
flo w
vario u s
in
tw o
and
and d e te c tio n
fu th er
step
(tw o
lim its.
im proved
D etailed
to
an aly tical
stu d ies
some g r e a t l y
w ould be g r e a t l y
X, Y,
o p tim iz a tio n
of
and
aided
Z p o sitio n er.
The
such a s f a c t o r i a l
w ould
in teractio n
the
needed
ch aracteristics
designed e x p erim en ts
degree
th u s
o f v a r i o u s p la s m a s from b o th
These
sim p lex
th e
(LFT)
in v estig ated
by th e use of a co n p u ter c o n tr o lle d
use
flow
view s co u ld p ro v id e
info rm atio n
h eliu m
to rch
t o r c h s h o u l d p r o d u c e e v e n l o w e r m inimum
lo n g er
and r a d i a l
flow
D isch arg e
sh o u ld
th re e d im en sio n al p r o f ile s
ax ia l
lam inar
in v e s tig a te
ex p erim en tatio n
la m in a r flow
rates
the
co n tro l
fu lly
m aterials
A lso
of
p ro v id e d by a m ass
to
c h a ra c te ristic s
siz e s
flo w
w ould b e
re q u ire d
stu d y
be
useful
betw een
in
the
various
w ith
b e tte r
plasm a p a ra m e te rs .
The
p o ly chrom ator
e lectro n ics
p recisio n ).
(th is
sh o u ld
sh o u ld
The a d d it io n
be
upgraded
im prove s i g n a l / n o i s e
ratio s
and
of oxygen and n itro g e n c h an n els
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
212
and
the
reactiv atio n
of
the
su lfu r
and
phosphorus
channels
s h o u ld make t h e M I P - P o ly c h r o m a to r s y s te m a p p l i c a b l e to a
w id e r range o f o rg a n ic com pounds.
the
d eterm in atio n
cases.
A novel
rep o rted
lin e
be
obtained
as
com plete
background
(48).
sig n als
of
It
allo w s
such
w ith
also
im prove d e t e c t i o n
fo rm u las
system
m o n ito rin g
the
o scillatin g
lim its.
the
amount
refracto r
of
in
m an y
was
recen tly
o n -lin e
and o f f ­
Thus background
reducing
lin e
em p irical
co rrectio n
co n tin u o u sly .
w ith o u t
T h is w ould a l s o a llo w
co rrectio n
may
tim e
on­
p lates.
spent
T his
should
I n s h o r t much w o rk h a s b e e n
d o n e , b u t m u ch m o r e r e m a i n s .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
213
REFERENCES
1.
J.W .
C a r n a h a n , Amer.
2.
H .E . T a y l o r , J . H . G ib so n an d R .K . S k o q e r b o e ,
C hem ., 1983, 4 2 , 1569.
3.
C .I.M . B eenakker and P.W .J.M .
A c t a , 1978, 33B, 53.
Boumans,
S pectrochim .
4.
R.K . S k o g e rb o e and G .N . C olem an, A n a l .
4 8 , 611A.
C hem ., 1976,
5.
A . T . Z a n d e r a n d G.M. H i e f t j e ,
35, 357.
6.
F . C . F e h s e n f e l d , K .M . E v e n s o n a n d H . P .
S c i . I n s t r u m ., 1965,
294.
7.
G .O . B r i n k , R .A . F l u e g g e ,
I n s t r u m . , 1 9 6 8 , 39^, 1 1 7 1 .
8.
S . Ramo, J . R . W h i n n e y , a n d T . V a n D u z e r , F i e l d s a n d
W a v e s i n C o m m u n i c a t i o n s E l e c t r o n i c s , 1 9 6 5 ( W i l e y , New
Y ork).
9.
C .I.M .
483.
B eenakker,
L a b ., 1983,
1J3, 3 1 .
A pplied S p e c ., 1981,
B roida,
an d R.G . H u l l ,
S pectrochim . A cta,
and J .
A nal.
Caruso,
Rev.
1976,
Rev.
S ci.
31B,
10.
D. H a a s , J . C a r n a h a n ,
1983, 37, 82.
11.
N. R a i t , D.W. G o l i g h t l y , a n d C . J .
chim . A c t a . , 1984, 39B, 931.
12.
A. B o llo -K am a ra ,
36B, 973.
13.
F . A . H u f f a n d G.W . J a n s e n ,
38B, 1061.
14.
G.W . J a n s e n , F . A . H u f , a n d H . J . d e J o n g , 1 9 8 4 W i n t e r
C o n f e r e n c e on P la sm a S p e c t r o c h e m i s t r y , San D ie g o ,
CA. p a p e r # 5 7 .
15.
S.A . E s t e s , P .C .
53, 1829.
E.G . C o d d in g ,
A pplied Spec.
M assoni,
S p ectro ­
S p e c tro c h im . A cta
1981,
S p ectro ch im . A c ta , 1983,
U d e n , R.M. B a r n e s , A n a l . C h e m . 1 9 8 1 ,
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
214
16.
D .F . H agen, J . B e l i s l e , and J . S .
ch im . A c t a , 1983, 38B, 377.
17.
K. T a n a b e , H. H a r a g u c h i a n d K. Fuwa,
A c t a . , 1983, 38B, 49.
18.
C .S . Cerbus and S . J .
1 9 8 3 , 38B, 3 87.
19.
C . I . M . B e e n a k k e r , B. Bosman a n d P .W .J .M .
S p e c tr o c h im . A c ta ., 1980, 33B, 373.
20.
W .R . M c C l e a n , D . L . S t a n t o n a n d G . E . P e n k e t h ,
1973, 98, 432.
21.
M .A . E c k h o f f , T . H . R i d g w a y , J . A .
1983, 55, 1004.
22.
K .B . O l s e n , D .S . S k l a r e w , J . C . E v a n s , R.D . S m ith ,
B. W r i g h t , a n d H .R . V o l s e t h , 1984 W i n t e r C o n f e r e n c e
on P la sm a S p e c t r o c h e m i s t r y , San D ie g o , p a p e r #62.
23.
S . R . G o o d e , B. C h a m b e r s ,
1 9 8 3 , 21_, 4 3 9 .
24.
J.W . C arn ah an ,
1984.
25.
D .L .
26.
R . D . D e u t s c h a n d G .M . H i e f t j e , 8 t h A n n u a l M e e t i n g
F e d e r a t io n o f A n a l y t i c a l C h e m istry and S p e c tro sc o p y
S o c i e t i e s , P h i l a d e l p h i a , PA , 1 9 8 1 .
27.
R . D . D e u t s c h a n d G .M . H i e f t j e , 9 t h A n n u a l M e e t i n g
F e d e ra tio n o f A n a l y ti c a l C h em istry and S p e c tro sc o p y
S o c i e t i e s , p a p e r # 1 7 9 , P h i l a d e l p h i a , PA, 1 9 8 2 .
28.
A .J . M cC orm ack.,S .C .
1965, 37, 1470.
29.
S . R . G o o d e , 1984 W i n t e r C o n f e r e n c e on P la s m a S p e c ­
t r o c h e m i s t r y , San D iego, p ap er #61.
30.
R.M. D a g n a l l , T . S .
1972, 44, 2074.
31.
K . J . M u l l i g a n , M.M. Z e r e z h g i , J .A. C a r u s o ,
S p e c tro c h im . A c t a , 1983, 38B(1 - 2 ) , 369.
32.
J . B onnekessel,
29.
H aas,
G luck,
Ph.D .
P h.D .
S p ectro ­
S pectrochim .
S pectrochim .
A c ta .,
Boumans,
Caruso,
N.P . B u d d i n ,
D iss.,
D iss.,
M arhevka,
U n iv ersity
A n alyst,
A nal.
A pplied
W est,
M. K l i e r ,
Spec.
of C in cin n ati,
U n iv e rsity of T h esis,
Tong,
Chem .
1984.
W.D. C o o k e , A n a l . C h e m .
P.
W hitehead,
A nal.
A nal.
Chim. A c ta
Chem.
1978,
103,
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
215
33.
K .S .
B renner,
J.
Chrom.
1978,
34.
D .L .
W indsor,
35.
D .F . H agen, J . S .
36.
D .F. H a g e n , J . S . M a r h e v k a , L.C. H a d d a d , 1 9 8 4
W in ter
C o n fe re n c e on P lasm a S p e c t r o c h e m i s t r y , San D ieg o ,
paper #58.
37.
K e - W e i , O . Q i n g - Y u , W. G u o - C h u e n a n d Y . W e i - L u , 1 9 8 4
W in te r C o n f e re n c e on P lasm a S p e c t r o c h e m i s t r y , San
D iego, p a p e r #60.
38.
0 . Q i n g - Y u , W. G u o - C h u e n , Z . K e - W e i a n d Y . W e i - L u ,
S p e c tr o c h im . A c t a , 1983, 38B, 419.
39.
M. A. E c k h o f f ,
1982.
40.
C .A .J . F l e t c h e r , K. S r i n i v a s ,
C om puter M ethods in
A p p l i e d M e c h a n i c s a n d E n g i n e e r i n g 1 9 8 3 , 41_, 2 9 7 .
41.
M. E l l i o t t , A .W . F a r n h a m , N . P . J o n e s ,
B.C . P e a r s o n , N a tu re 1967, 2 1 3 , 49 3 .
42.
Farm C h e m i c a l s , 1 9 8 3 , J a n u a r y , 4 8 .
43.
G.W. H o l c o m b e , G . L . P h i p p s , D . K . T a n n e r ,
E nviron­
m e n t a l P o l l u t i o n , 1 9 8 2 , S e r i e s A , V o l . 2 9 , N o . 3^, 1 6 7 .
44.
W .J. Y ouden, S t a t i s t i c a l M ethods f o r C h e m i s t s , J o h n
W iley & S o n s , I n c . , 1951, p . 4 4 .
45.
J . T . M cC lave, F .H . D i e t r i c h , S t a t i s t i c s , D e l le n Pub­
l i s h i n g Company, 1 9 7 9 , p . 2 92.
46.
P e r s o n a l C o m m u n i c a t i o n w i t h D. L a h t i , A e r o s p a c e
E n g in eerin g , U n iv e rs ity of C in c in n a ti.
47.
V a n N o s t r a n d 1s S c i e n t i f i c E n c l y c o p e d i a , 6 t h e d . ,
D.M. C o n s i d i n e E d . , V a n N o s t r a n d R e i n h o l d Comp.
48.
A. d eW it an d R . J .
1984, 39B, 939.
49.
J . S . F r i t z , G .H . S c h e n k , Q u a n t i t a t i v e A n a l y t i c a l
i s t r y , 3 rd E d . , A l l y n and Bacon I n c . , 1974.
M .B . D e n t o n , A n a l .
M arhevka,
P h.D .
D iss.,
167, 365.
Chem. 1 9 7 9 ,
5JL, 1 1 1 6 .
L .C . H addad, in p r e s s .
U n iv ersity
N eugebauer,
of C in c in n a ti,
P .H .
Needham,
1983,
S pectrochim . A cta,
Chem­
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
216
50.
J . R . G r e e n a n d D. M a r g e r i s o n , S t a t i s t i c a l T r e a t m e n t
of E xperim ental D a ta , f i r s t re v is e d r e p r i n t , E ls e v ie r
S c i e n t i f i c P u b l i s h i n g Com p., 1978.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
217
A ppendix A
REGRES
calc u la te s
It
is
a least
th e
com putes
least
the
squares
squares
95%
is
slo p e
s ig n ific a n tly
flo atin g
b e tte r
sig n ific a n tly
lev el.
It
in tercep t
fit
th ro u g h
to
th e
confidence
com paring
the
data
to
sets
each o th e r.
lin e
th e
d ata
o rig in
lev el
if
d iffe re n t
than
the
least
they a re
See r e f e r e n c e s
w hich
to
from
0 and
gives
lin e
T h is
1
a
see
at
to
te s t
lin es
sig n ifican tly
th e
if
the
if
the
th e
95%
test
if
the
sig n ifican tly
w hich
co n tain s
squares
b oth
tests
an F v a lu e
REGRES a l s o
of
for
from
(Y = A + BX)
(Y = B X ) .
also .
slo p es
test
in terv als
d ifferen t
calc u la te s
program
Y = BX a n d Y = A + BX.
T his program a l s o
in tercep t
confidence
lin e s
co n fid en ce
i n te r c e p t and slo p e.
is
sta tistic a l
is
is
at
forced
th e
p ro v isio n
from
95%
for
d ifferen t
d ifferent
from
(4 4 ,4 5 ,4 9 ,5 0 )
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
218
10 Reft REUSES LAG 1N G O l r l E D Gin 3 / 5 / U3 il*V finish DKULE
j!
20 D i r t F 3 < 1 2 0 ) i f H 6 l ) i l < x c u ;
30
D i r t Av < 1 ) » ci*I» C10 t u I* ( 1 ) f J > s i ) t £■* \ 2 > t FO ( 1 ) f U-i* < 1 ) f HS* s 3 ) ’f l v i 1 )
Fu D i r t K$ < 1 ) » L $ (1 > * f ' K i ) t T v s •! I ) » X'M*iO >t H ( l o > f 2'# 4 1 )
50 Girt Cl ( G > f C2 ( h ) »u I G ; > 11 ( ti) r l 2 sU ) f r 2 v o >
I
011 fI - 1 6 0 1 Rlirt VALUE OF ‘ GRACE*
I!
70 RErt * * X * X DA I’li I N P U T
li
ao r c «
90 Pi< Ii\T
i
‘ i-iGn fiANY
DATA S E T U r'1'
Ij
loo
in pu tf
S
11 0
12o
130
140
150
loo
1 /0
lo t ,
1 90
20 0
210
220
2GU
2*iU
250
26U
270
2BC
2 '/ 0
300
310
320
330
•3-40
360
360
370
380
390
400
410
^20
430
440'
450
46G
470
4S0
190
DXrt N \ G ) f X nG*Cic i i Y sG>»60 ) / bv ( 6 i t iT ( 6 )
D irt u r j c a i F L ^ x i w F F u X ' . ^ F > F u i s 6 F F i x < u > F n ; i i a > F X u ( 6 F F A s a ) F a / c a )
DLrt X 2 ( 5 > f XUC'o ) f K 2 s 6 f f 'i x (.6 J f i UsU)
RErt
FOR I m
u
S
‘
i ;
p rilN r
|
PS I N I 217. i ’ Him ilt-iNY X f Y i ' n l S . i I N U n iri S c i S' a F l F * i | l 6 0 h A X > “
IN P U T N ( I )
ii !
i r N<1) < 2 l i .t ,i 1 /u
1
RErt
l u l i K - 1 TU H < i >
:
P R IN T * X f V PrU P * * f I . f “ - ? ( X TritlN YU*
1
INPlJ I f X ( Kxib »■1 / f Ys K*G I-.1 >
;
NEXT K
i
P R IN T
: ;
PRINT
P R I N T ‘ DATA SET 4- " f I
P R IN T
P R IN I •
X
Y'
i
PUR K = -1 TO N < I )
i '
P R I N T X E 6 /i f *
“ FX lr<*U +lF f •
* fY <K *S + I>
j
G0SU8 6 2 2 0
'
NEXT K
;
P R IN T
'
'
! :
PR IN T
i
P R IN T "DO YOU WANT T u CHANGE ANT Or YOUR DATA P T S , ? < Y / N > *
IN P U T
0 9 '■
;
I r D*
= ‘ Y*
THEN
-H1U
i •
I f D+
= * N “ THEN
‘HO
GOTO 3 6 0
-j i
PR IN T ‘ IN P U T P O I N T - * f X a , Y ‘
| !
IN P U T K f X <K * S , + I > f Y <K * S V l )
{
GOTO 2 5 0
i :
RErt
I
NEXT I
:
i
RErt '
.j
RErt * * * * * QUESTIO N SE CTIO N * * * * *
,j' i '
RErt
I ;
P R IN T ‘ I N P U T 1 P O IN T P L O T T IN G SYMSGL FOR EACH DATA S £ T < E X + X O 0 ) ‘
5 0 0 . INPUT s »
■ ,
I
. ;i I I-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
219
511 ) I F
L E N i S * ) < S T ritN 490
P R I N T *DO YOU WANT THE LEAST SOUAKES CALCULA TIONS-AND PLOTS*
P R I N T 'F O R Y = A + BX
<Y OR N > *
540 I N P U T B *
i
550 I F 6 $ = * Y * THEN 5 6 0
Sol) I F 6 * = * N * THEN S8d
!
5 7 0 GOTO 5 2 0
i '
5 3 0 P R I N T ’ DU YOU WftNT THE LEAST SGUAKES CALCULATIONS AND PLOTS*
5 9 0 P R I N T ’ FOR Y = fc'X
( Y UR N ) *
j
6 0 0 IN P U T c *
6 1 0 I F C$ a * Y * THEN 6 4 0
1
6 2 0 I F C * = * N “ THEN 6 4 0
!
6 3 0 GOTO 5 8 0
i
6 4 0 I F 6 * = C * THEN L * =
650 A * = * *
6 6 0 I F L * = * N * THEN A * - * N *
■
■
I ;
6 7 0 I F S = 1 THEN A * a * N *
!
1
6 3 0 I F A * = * N * THEN 9 8 0
i
:
6 9 0 P R I N T ’ DC YOU WANT TO CUPiPARE THE SLOPES OF ANY OF YOUR L I N E S V ( Y / N > *
7 0 0 IN P U T A *
;
7 1 0 I F A * = * Y * THEN 7 4 0
7 2 0 I F A * = * N “ 1'hEN 9 8 0
7 3 0 GOTO 6 9 0
7 4 0 P R I N T %1%>"HOW MANY P A I R S OF L I N E S DO YOU WANT TO COMPARE <8 M A X )?*
7 5 0 IN P U T C
7 6 0 I F C > 2 * S THEN 7 4 0
7 7 0 I F C > 8 THEN 7 4 0
7 8 0 REM
7 9 0 FOR I = 1 TO C
8UU P R I N T ' I N P U T THE DATA SET NUMBERS TO BE COMPARED FOR COMPARISON * * » I
8 1 0 IN PU T C 1 < I ) fC 2 ( I )
8 2 0 I F C K I ) > S THEN 8 0 0
8 3 0 I F C 2 ( I > > S THEN 8 0 0
8 4 0 I F L 5 = * Y" THEN 8 6 0
8 5 0 GOTO 9 5 0
8 6 0 P R I N T * Y = f c'X
OR
Y = A t ex
( £ ' OR B £ ) 1
8 7 0 IN P U T E *
8 8 0 I F E * = * B ' * THEN 9 1 0
8 9 0 I F E ( = *B B* THEN 9 3 0
9 0 0 GOTO 8 6 0
9 1 0 C(I> = 1
9 2 0 GOTO 9 7 0
930 G ( I) » 2
9 4 0 GOTO 9 7 0
9 5 0 I F B * = ' Y * THEN G ( I >
9 6 0 I F C * = ' Y * THEN G (lXI )) = 1
9 7 0 NEXT I
9 8 0 REh
9 9 0 I F I * » * Y " THEN 1 1 0 o
1 0 0 0 P R I N T *DO YOU WANT A LOG/L OU PLOT < Y / N ) ? ‘
1 0 1 0 IN PU T I #
.1 0 2 0 I F I * . « ,?Y' THEN. 1 0 5 0 .
.
.......
520
530
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
220
1030
1040
1OS0
1060
1070
1080
1090
1100
m o
1
.
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
,1 5 40
I F I * = ’ N* THtf't l i u Q
GOTO 1UUU
!
FOR I = 1 TO a
FOR K a 1 TO N ( I >
X < K *S + I> = L U G (X (K * S + I> ) i Y U U S + I) = L Q G ( Y ( K * S + Ij>
NeXT K
NEXT I
P R I N T *DO YOU WANT THE A X I S ? ( Y / N ) ’
in p u t g*
I F G * • * Y * THEN U S D
I F GS a * N * THEN 1 3 3 0
GOTO 1 0 9 0
P R I N T ’ I N P U T X A X I S LABEL ( 4 0 CHARS MAX 3 6 FOR L O G / L O G ) 1
.i
I N P U T X$
I = L EN (X*>
I F I < 1 THEN 1 1 5 0
I F I * * ’ N* THEN 1 2 4 0
IF
I > 36
THEN
1150
T'*
a x*
X*
= ’ LOG
•
X*
= ALTE R < T ‘« »5 r 5 » I ;
P R I N T ’ I N P U T Y A X I S LAoEL ( 1 6 CHARS MAX 1 2 FOR L O G / L O G ) 1
IN P U T Y *
I - LE N (Y *>
I F I < 1 THEN 1 2 4 0
I F I * = ’ N* THEN 1 3 3 0
I F I > 1 2 THEN 1 2 4 0
T * = YU
Y+ = ’ LOG ’
Y* = A L T £ R (T *t5 rS + l)
P R I N T ’ I N P U T X L I M I T S ( X r tlN THEN XMAX ) ’
i n p u t h »l 2
I F I # = * Y ’ THEN I F L I < = 0
THEN 1 3 3 0
I F L I > = L 2 THEN 1 3 3 0
I F I * a ’ N ’ THEN 1 3 V 0
L I = L Q G l L D i L2 = L0G (L2>
P R IN T
’ I N P U T Y L I M I T S ( Y M IN THEN YMAX > ’
IN P U T L 3 r L4
I F I * a * Y ’ THEN I F L 3 < = 0
THEN 1 3 9 0
I F L 3 > = L 4 THEN 1 3 9 0
I F I * = ’ N ’ THEN 1 4 5 0
L3 = L Q G (L 3 > » L4 = L O C (L 4 )
P R I N T ’ WHERE DO YOU KANT YOUR GRAPh ANO OATA ( P |.T ;O R SCR) *
IN PU T H *
I F H * = ’ P L T ’ THEN 1 5 0 0
I F H * = ’ SCR* THEN 1 6 1 0
GOTO 1 4 5 0
P R I N T ’ DO YOU KANT TO COLOR CODE YOUR G R A P h ? ( Y / N i ’ !
IN P U T K *
I F K * a ’ Y ’ THEN 1 5 5 0
;
I F K * a ' . ’ N ’ THEN 1 5 5 0
•
j i
GOTO 130Q. ..
. i -i .
i.
,
, i
,L .i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
221
1550
1560
137 0
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1730
1790
1800
1810
1820
1820
1840
1850
I8 6 0
1270
1820
1290
1900
1910
1920
1930
1940
1950
i9 6 0
1970
1980
1990
2000
2010
2020
2030
2040
2050
C O N F I G ( P l OT ON PL O T )
PLOT ( P . O rO )
E R A S (l)
P R I N T * PRESS SPACE BAR WHEN REACT TO PLOT*
if
p es K ts ) = w then i6 *u
GOTO 1 5 90
CONFIG (P L O T ON SCR)
ERASd)
K» = *N •
Rcrt
RE(1 * * * * * LEAST SC.UAKES CALCULA TIONS * * * * *
REN
I F US = * N * THEN 3 3 5 0
T ( 1 ) = 1 2 .7 0 6
T<2) =
4 .3 0 3
T<3> =
3 .1 8 2
T (4 > =
2 .7 7 o
T (5 ) =
2 .5 7 1
T (6 ) a
2 .4 4 /
T (7 ) =
2 .3 6 5
T<8) =
2 .3 0 6
T<9) =
2 .2 6 2
T (10 ) = 2 .2 2 2
T <1 1 ) = 2 . 2 o i
T (1 2 ) = 2 .1 7 9
T( 13) a 2 .1 6 0
T (1 4 ) = 2 .1 4 5
T ( iS ) = 2 .1 3 1
T ( 1 6 ) = 2 .1 2 U
T (1 7 ) = 2 .1 1 0
T (1 8 ) = 2 .1 0 1
T <19) = 2 .0 9 3
T < 2 0 ) = 2 • 0o6
T ( 2 1 ) = 2 .0 2 U
T (2 2 ) a 2 .U /4
T (2 3 ) = 2 .0 6 9 '
T (2 4 ) = 2 .0 6 4
TC25) = 2 .0 6 0
T '(2 6 ) = 2 . 0 5 6
T (2 7 ) = 2 .0 5 2
T<28) = 2 .0 4 8
T (2 9 ) = 2 .0 4 5
—
‘
T (3 0 ) = 2 .0 4 2
T (2 1 ) = 2 .0 3 9
T (3 2 > = 2 .0 3 7
T (3 3 ) = 2 .0 3 4
T (3 4 ) = 2 .0 3 2
T (3 5 ) a 2 .0 3 0
T (3 6 ) a 2 .0 2 8
T (3 7 ) = 2 .0 2 6
;
' - '
T ( 3 8 ) = •2 .0 2 4
,
. ; i
;
............. ....
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
222
2 06o
2 0 /0
2oac
2090
2100
2110
2120
2130
2H0
2150
2160
2170
2180
2190
2200
2210
2220
2220
2240
2 2 MO
2260
2270
2280
2290
2300
2310
2320
2330
2340
2330
2360
2370
2380
2390
2400
2410
2420
2430
2440
2430
2460
2470
2480
2490
230 0
2310
2320
2330
2340
2330
.2 3 60
T <3 V ) = 2 . 0 2 3
T (4 0 ) = 2 .0 2 1
T (4 1 > = 2 .0 1 9
T (4 2 ) = 2 .0 1 8
T <43) = 2 .0 1 7
T <44) = 2 .0 1 5
T <45) » 2 .0 1 4
T (4 6 ) = 2 .0 1 3
T (47 > = 2 .0 1 2
T < 48> = 2 . 0 1 1
1 ( 4 9 ) = 2 .0 U 9
T (S O > = 2 . 0 0 8
T (3 1 ) = 2 .0 0 7
T (5 2 ) = 2 .0 0 6
T (5 3 ) = 2 .0 0 6
T (5 4 ) = 2 .0 0 5
T (551 = 2 .0 0 4
T (5 6 ) = 2 .0 0 3
T (5 7 ) ^ 2 .0 0 2
T (33 > = 2 .0 0 1
T (5 9 ) = 2 .0 0 1
T (6 0 ) = 2 .0 0 0
F 3 ( l ) = 161
F 3(2> =
1 8 .5 1
1 0 .1 3
F 3(3 ) =
7 .7 1
F 3(5> =
F 3 (5 )'=
6 . 61
5 .9 9
F 3(6 ) =
F 3(7 ) =
5 .5 V
F 3(B ) =
5 .2 2
F 3 (9 ) 3 .1 2
F 3 (1 0 ) =
4 .9 6
F 3 ( 1 1> =
4 .8 4
F 3 ( 12) =
4 ,7 3
F 3 (13) 4 .6 7
F 3(1 4 ) 4 .6 0
F 3(1S > — 4 .5 4
F 3(16) =
4 .4 9
4 .4 5
F 3 (i7 ) =
F 3 ( 18) =
4 .4 1
F 3(1 9 ) =
4 .3 3
F3C2U) =
4 .3 5
F 3 (2 l) =
4 .3 2
F 3 (2 2 ) =
4 .3 u
F 3 i2 3 ) *
4 .2 8
F 3(24> =
4 ,2 6
F 3(2 S ) =
4 .2 4
F3<26> =
4 .2 2
F 3(2 7 ) =
4 .2 1
F 3(2 8 ) =
4 .2 0
F 3 ( 2 9 ) =f. . 4 . 1 8
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
223
2570
2580
F3<-3U ) a
•H .l/
FOR I = 1 TO b
2 5 9 0 s a = o;
2c,0 0
2610
262u
2630
26*) O
2bS0
2660
2670
2oUG
2o90
2 /0 0
2 /1 0
2 /2 0
2 /3 0
27 *)0
2 /5 0
2760
2 /7 0
2780
2790
2U0 0
2B10
2820
2330
2840
2850
2860
2870
2880
2890
290 0
2910
2920
2930
2 9 *)0
2950
2960
2970
2980
2990
3000
3010
3020
3030
30*i0
3U50
3060
3070
.
= u; sti - o; b o - o
S 3 C I) = 0
FOR K = 1 TO N C I )
S2 = S 2 +
X(K xS + I )
S 3 < 1 ) = S 3 C 1 ) + XCtCxS + X ) * X CK *S ■*■ X )
S*I a S*i +
Y (K *S + I )
S5 = S 3 +
Y ( K « S + XJ *
Y C K *S + X)
S 6 a S 6 ■*• X ( K * S ■*• 1 ) *
Y (rC *b + 1 )
NEXT K
R£i1
X I a S 2/N C X )
Y1 a 3 * i / N C l )
RErt x x * Y a 0 ' X x x x
I F C * = "N * TriEN 2 0 0 0
B U I) = S 6 /S 3 d )
01 ( I ) a 8 5 - 36 * 8 6 / S i f C l *
D2 » O U D / I N U ) - ! )
03 a S liR C D 2 /S 3 (I> )
X K I ) a T ( N ( I j - 1 ) x0'3
R K I ) a SGR( A B S C l - C D i ( I ) / ( S 5 - N ( I > * Y 1 * Y 1 ) ) ) )
I F B i d ) < 0 THEN R i d ) a - R i d )
RErt x x x Y a a
t:X x x x
I F BO = * N * THEN 3 1 1 0
X 0 < 1 ) = S 3 ( I ) r N C I ) * X 1 X X1
B 2 i l ) a C b 6 -N C I)x x ix Y i)/x u < X )
A C I ) a Y1 - B 2 C I ) x > . i
S 7 C X ) a at; - N d ) * Y l * Y l - B 2 C X ) * £ 2 c D * X U ( I )
D l aS 7 C I ) / ( N C I) - 2 )
05 a
S O R C D ^ /X U C I))
D6 = SQi'CC C D * s * b 3 v . I ) ) / ( N C l ) * X G ( I ) ) )
I 2 C I ) a T C N ( I ) - 2 ) x D5
1 3 (1 ) = T C N (I)-2 )*0 6
I F S 5 - N C D X Y i x Y l < > 0 THEN 2 y *l0 '
R 2 C I) = 1
GOTO 2 9 5 0
R 2 C I ) = B2 ( I ) »Sdf\ ( X O ( 1 ) / ( S 3 - N ( I ) * Y i # Y1 ) )
REft I S A S I G . D X F F . FROf) 0
I F 0 6 < > 0 THEN 2 9 9 0
T K I ) = 99999
GOTO 3 0 0 0
“
T K I ) = A B S C A C D /0 6 )
REn I S B S I G . D I r F . ThAN 1
I F OS < > 0 T H £ N 3 0 * i t
T 3 C I) a 99999
GOTO 3 0 5 0
T 3 C I ) = ABSCC1 - E i 2 ( I ) ) / D S >
IF L* O
* Y * THEN 3 1 0 0
I F 8 7 ( I ) < > 0 THEN 3091)
F ( I ) a 999V9
;
;■
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
224
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
33303340
3350
3360
3370
3380
3390
3 'iOO
3410
3420
3430
3440
3450
3460
3*170
3*iao
3*i9u
3500
GOTO 3 1 0 0
F (I) - < D i< I;-S 7 < I))*lN ll)-2 )/8 7 (I)
RErt
NEXT X .
REh
REh * * * * * SLOPE CGnPARISXONS * * * * *
REh
I F A * = ‘ N* THEN 3 3 5 0
FOR I = 1TO C
IF G < I)
= 1 THEN 3 1 9 0
IF G (I)
= 2 THE n 3 2 6 0
REn * * *
Y = B ‘ X COnPARIsXONS * • * *
REn
F i l l ) = N lC liX ;) + N < C 2 il)) -2
VI = < D H C llI))+ t)l< C 2 < I)))/F K I)
V2 = V I * ( 1 / S 3 1 C 1 I X ) ) + l / S 3 ( C 2 l I ) > )
T 2 < I ) = A E iS t B ilC lC I.) ) - B l I C 2 < I ) ) > /S G R ( V2)
GOTO 3 3 2 0
REn * * * Y = A + bX GOnPARXliUNS * * *
REn
F l ( I ) =>' N ( C1 ( 1 ) ) + N I £ 2 1 X ) ) - ‘I
V 3 = < S 7 ( C U I . i > + S / I C 2 1 X ) ) > / F l <X )
V4 = V3 * l l / X u < C l I I ) ) + 1 / X 0 1 C 2 1 I ) ) )
T 2 1 I) = A £ S lG 2 lC l< I))-b 2 lC 2 iI)))/S G R lV 4 )
NEXT I
REM"
REh * * * * * GRAPHICS * * * * *
REn
G1 = . 1 3 ! G2 - . (i t C3 - . 9 5 ) G4 = . 3
I F G * =; * N * THEN 3 6 v u
REn * * * X A X I S * * *
P L O T lO ,G l,G 4>
P L 0 T U .G 2 » G 4 >
P = 0
REn
07 = IL 2 - l 1 ) / S
FOR I — b Tu 5
P L O T I P r C 2 —I * . 1 3 4 » 0 4 >
P E 0 ril» G 2 -I* .lU -t.L .*i-,U i)
P L O T I P . G 2 - 1 * . 1 3 4 - . Ii25»l>-i- • i>H; ( 1 )
• .... •„
next i
;
;
RE.1
— '
L ‘j - L E M X I . '
I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
225
. . . w • i *X•1 J
; . .r< f» .
L.C J ~ . u 2 i ) 5 - I * . GHl > < 2 > Z *
3/1/1-/ U NEX") X
3.190 I r H * - ‘ SCR* THEN NG3U
3 7 uO REil ,
3 7 1 0 REn * * * SLOPE Cu nP ARISON ST m T S . * * *
3 7 2 0 REn
3731) GOTOHGiO
37*»G I r A * = ‘ N* ThEN *tU10
3 7 3 0 I F K * = * N * I h E n 3a3l»
37<>0 P R I N T
377 0 PR IN T
3 7 UU P R I N T "THU SLOPE- CJftPrtRXSUN D rtiA 1 3 N E X I f CUuOR CHANCE*
3 7 9 0 P R I N T ‘ PRESS SP ACE'E AR TO CONTIN UE*
3 0 0 0 I F P E E K < 3 ) - W THEN 3 0 3 u
:
3 0 1 0 GOTO 3 3 0 0
! .
3 3 2 0 REn
3 0 3 0 FOR I ~ J. 11/
C
;
3 0 * i 0 0 — * 0 7 0 / Ci
< i . “ l >* 0
I
0 3 5 li I r ' G ( I ) — 1 li-iEii 0 o / u
•
I 1
3 o 6 U I P 3 ( 1 / — 1. i ric.i\ 3 / ~ . u
3 0 / u RE**:
-i -• t.
•• *
i
OOuU 1'LU ■ -tt- It./...
. .
.
j ■
t■
i
.•
!. :
: •
' . . . . : j.
“ f E l 1C2 <1) )
. . . . ■i iC A u C ) = * , ! T 2 < I )
: 1
■: 1-u.i n . 0 2 ) *TC95;;> = ‘ » T v F l t I !>>*
-iCOO
I '
' REn x x x Y =ft
f EX * * *
t I •
3 9 5 0 PLOT < P » 0 2 t 0 f C 3 - i i I ' - 1 H ' J ) £ . 0 2 M u ) * Y = A +• EX*
’
3 9 3 0 PLOT Cf*i02-t-0»G*3—\ I + 0 > * , 0 2 > 5 . 1 % » * B < * » C 1 C I ) » ‘ ) = * f X E o X f E L l C l 1 1 ) ).
3 9 7 0 P L Q T ( P » G 2 + G »C3—v 11 + 1 ) + G ) ^ . 0 D Z l ! u » * EH * rC 2c 'l> f Xs.a»» “ ) — * f E 2 ( u'L C I ) )
5 9 0 0 PLOTCP f G 2 t D f C3--1.111-2) i-UF-Ft. uu / XC.5/. f ' i \U A u C J - * f T 2 ( I >
3 9 9 0 PLOT ( P f G2 i 0 f C3—l i 11 3 J-T-u/.» . u2> * V 1 9 5 X ) — ‘ f I i f L u ) ) ■
'100C NEXT I
j
^C-lO R'rlfl
—
>
'•
‘i l/2 u RL n
XX/*
p'Lu i
tin t A r u l N i u v'uO L X a L u »./..
j
*i03u Ruft
•
*i 0*1 C Reft C E i E K / s l i L . ■» U
Tu F L l i l
i |
‘1050 ft — C
!l |
‘i i i / l i f ...
I
r
1CO
O ■
j ;
• t . / 0 1* OR
K
1I u
A *. e )
i
‘iin.ili Reft CHECK t Ur. itUftr bU I inc/Lc. DATA
1
0 9 0 P j t ., ) - U
I
■ ‘i i t O l i
XC K *S -vI)
L L THEN * ( I 5 i /
i
, ‘i l l O .^ r : X <K**iS+I) < L I THEN ‘i l S O
/
.1
• /
i
.. .u ,. ...
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
226
3120
3120
3130
3150
3140
3170
31C0
3190
3200
3210
3220
323 U
3230
3250
3240
3270
3280
3290
330 U
3310
3320
3330
3330
3350
3360
3370
3360
339U
3300
3310
3320
3330
3330
3350
3360
3370
3380
3390
350 U
3310
3520
353C
3530
3550
3560
357 0
3560
3590
3600
3610
3620
I F Y t f t X S - r l ) > L 3 TrlEN 3 1 3 0
I F Y l K x S + I ) < L 3 THEN 3 1 3 u
■'
GOTO 3 l b U
P R I N T y . V / . , ' h \ DATA SET *» 1 » * P O I N T #• • t K f * I s ' O U T S i y e
j •
REM I E FLAG NOn OPLQTTADLE P O IN T S
•1 '
PKK) = 1
NEXT K
REn x x SCALING PT S AND PLOT' T In G x *
.! .
I F K * = * N ' THEN 3 2 / 0
PR IN T
P R IN T
P R I N T ‘ DATA P 13 TO Bii PL U I'T E O f COLOR CHANCE*
P R I N T ‘ PRESS St m CE Bh R TO C O NT INUE*
I F P E E K tS ) = W THEn 3 2 / 0
;!
GOTO 3 2 5 0
P< = SU3ST R T S » » I f I >
:i !
FOR K = 1 TO N ( I j
, i
I F P K K ) = 1 THEN 3 3 3 0
i
X 9 - X ( I U S * - I ; / Y‘> = Y l U * U + I >
■
GC-SJ6 6 2 7 0
PLO T<PrX2f Y 2 ) 1 1 ) * . *
!
PLCiT i P f X 2 - . u u i f ' ) 2 - » 0 u 3 ) h >
;
NEXT K
I F !_'* - *N " ThErt 3 V 3 0
'!
I F C * ■= “ N * THEN 3 6 u 0
I F k ? = * N * TriEn 3 3 3 0
PR IN T
,i
p r in t
PRIN'I " L I N E AND CriLCULATED VALUES N E X T t
P R I N T ?PRESS S r 'f i C I OAR TO C O NT INUE*
I F P E E K < 3 ) = W THEN 3 3 3 0
GOTO 3 3 2 0
RErt x x PLOT Y = 6 ' X x x
,
REM COrtPUTE END pTS AT L l r t l T S
RErt L E F T ENU
Y3 - B K D x l i
I F y 3 > L 3 TH l N 3 5 3 0
I F Y3 < L 3 Tl'tLN 35&U
X3 - L 1
Y3 = Y3
GOTO 3 5 8 U
X3 = L 3 / B K I )
—
Y3 = L 3
j
GOTO 3 5 8 0
!
X3 = L 3 / U K I )
Y3 = L 3
RErt R IG H T END
Y5 = B K D X L 2
I F Y 5 > L3 THEN 3 6 5 0
I F Y 5 < L 3 THEN 3 6 b u
X6 = L 2 .
... .
.
COLOR CHANGE*
:
:i
'
U
;!
i!
;
'
;
1
*
ii
‘j
i
’
|
1
i
•
!
!
:‘l . j
:|
;
1i
1
!
■
;
?
.
;
I
:
1
I
!
. n
1
'j
!
i
■
; L . , i ...............
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
4630
4640
4650
'4 6 6 0
4670
4660
4690
4700
47i 0
4720
473U
4740
47S0
476U
4770
4760
4790
430 0
4010
4020
4620
4U40
4650
4660
467 U
4660
469u
4VOO
4910
4920
4930
4940
4950
496 0
49/ 0
4960
4990
5000
5010
5020
5030
5040
5050
5060
5070
5060
5090
5100
S ilo
5120
5130
; 5140
Y6 =
GUTO
Xc =
Y6 =
GOTO
X6 =
Y5
470 0
L 4/E .-1C I)
L4
4700
L 3 /B K I)
Y& = L 3
Hfc.fi SCALE END PTS AND PLOT
XV = X4» Y9 - Y4
GuSUt; 6 2 7 0
p l o t < p »X 2 » Y 2 >
X9 = X65 Y 9 - Y6
GOSUfc; 6 2 7 0
P L O T '(i» X 2 » Y 2 )
PLO ( ( P » X 2 + . O l » Y 2 - , 0 1 X l ) P * » * 1 •
(1 •= M + 1
RErt A L I N E HAS BEEN PLOTTED
I F H * =■ • S C R * THEN 4 6 6 0
R t O PLOT L I N E S ' U t l l i
G UIO 4 6 6 0
Y7 = i 2 - < r t - i ) »■• 02
PL U) < Pf . 0 / , Y 7 ) ( 0 ) P ' 4 i » r t i 7 . » I » « Y = B * X & ' - ’ r 2 E 6 2 » & l < I > , • + / - * » H d >
P L U T tP r .3 3 rY 7 ')£ Z 6 £ > *
R = *» R l(I)
IF L* O
" Y * THT-N 4 6 0 0
P L O T ( P » . 5 * Y / < 7(127: > * F <CALC» « • » F ( 1 > » *
F (957.) = : * . F 3 1 M D - 2 )
RErt * x PLOT Y - A + £SX xx
I F e * = * N * THEN 5 4 2 0
I F K * = * N * THE n 4 9 7 0
P R IN T
PR IN T
P R I N T • L I N E AND CAuCULAlED VALUES NEXTr COl OR CHANGE’
P R I N T •PRE SS SPACE EAR TO CO NTINUE*
I r PEEK( 3 ) — W T H tN 4 9 7 0
GOTO 4 9 5 0
’
|
RErt COMPUTE END h'TTi A I" L i i : I I S
I
RErt L EFT END
I j
Y3 = A l l ) 6 2 ( 1 1 * 1 . 1
j
I r Y3 >
L 4 THE n 5 0 5 0
i
I F Y3 <
L 3 THE n 5 0 6 0
!
X4
*
LI
Y4 = Y 3
•
GOTO 5 1 0 0
X 4 = <L4 - A ( I ) ) / G e T I )
Y4 = L 4
GOTO 5 1 0 0
X4 = < L3 - A d ) ) / E 2 ( I )
Y4 = L 3
RErt R I G H T END
Y5 = A ( I > + B 2 ( I > * L 2
I F Y 5 > L 4 THEN 5 1 7 0
I F Y 5 < L 3 THEN 52o£l
X 6 = 1.2. . ,
. .
-i
:
!
;
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
228
,
•
5150
5160
5170
5100
5190
5200
5210
5220
5230
5 2 ‘t0
5250
5260
5270
52U0
5290
530 0
5310
5320
5330
S3HU
5350
5360
5370
5060
5390
5H0 0
3H10
5H20
5H30
5HH0
5H50
5H60
5H70
5H80
5H90
5500
5510
5520
5530
55H0
5550
5560
5570
5500
5590
5600
5610
5620
5630
56H0
5650
Y 6 = Y5
CO 10 5 2 2 0
X 6 a <LH - A < I > ' ) / £ 2 U )
Y 6 » LH
'
GOTO 5 2 2 0
,
j
i '
X 6 » < L3 - A t X ) > / B 2 i l >
Y6 = L3
| |
REM SCALE END P i'S AND r'uLi'l
X 9 * XH» Y9 ^
COSUB 6 2 7 0
J
P L 0 T < P » X 2 .Y 2 >
X 9 « X 6 » Y9 - Yo
: '
GOSU& 6 2 7 0
>\
•
P L U I '< 1 » X 2 » Y 2 >
P L U r4 P » X 2 f . 0 1 . Y 2 - . 0 1 ) <1>P*
REM L I N E HAS BEEN f LOT I EL)
M = M + 1
:| .
I F H * = 'S C R * THEN 5 H 1 0
;i
REM PLO'l L I N E B i a TS
I
COTCiSHOU
1
Y7 3 , 2 - < M - l ) * . . u 2
•!
■■
P L 0 T 4 P . . u / » Y / M U > ; : i X . P * , I . ■ Y = A t BX A = 1 . X E 6 / 1 . A ( I ) » * + / - M j U )
P L 0 T < P » . 6 1 . Y 7 ) S 2 5 X » * T < i - . - u ) * ■ » H 4 I > » * T 4 ts » l> * . » , T 3 4 l > » - T 4 9 & X ) = *
P L 0 T < P ,. 0 5 . Y / ; i i N ^ l J - 2 )
j ;
P L 0 T 4 P » . 3 * I . Y 7 > X E < , 2 » * f e 3 • , y 2 t X > , « + / - * , 1 2 4 1 ) * * 1R i »
* » 7 .26 % » R 2 lI)
REM' END O r LCOP
! .
NEXT I
•
.
!
.
I F K * 3 - p l T ' THEN 59H0
P L O T ( P . . 1 . . I S . “PRESS SPACE BAR WHEN READY FORSTATS ON SCR*
I F PEEl< <3) =
W THEN 5 5 3 0
.
'
GOTO 5HH0
i ;
C O N F I G ( P R I N T ONT T Y )
'i
GOTO 5 5 3 0
'j
.
REn
i
P R I N T ’ WHERE UN PLOT TER 1 . 2 CiR 3 * J IN P U T P 7 ; 1 F P 7 > 3 T h £ n S H 6 u
I F P 7 < 1 THEN
f>10U
.
i!
:
C O N F IC tP L O T ON PL O T ) JPLU l'4 U . 0 » 1 - 4 P 7 - 1 > * . 3 3 ) 4 1 ) »CDNr 1G4PLOT ON SCR)
C O N F I G <P R I N T
ON F L 0 T )
i
i
ER AS( 1 )
FOR I 3 1 TO 6
, :
p * - S L B S T R (S v .I.x )
, .
!
I F C$ — * N * THE n 5 6 2 v ""
i| '
P R IN T
'! i
P R IN T
,
i
i
PR IN T X 1 Z » P * , “ * » 1 » *
Y 3 C 'X
B ' 3 • , X E c X . B l 41 ) » •; + / - ‘ . 1 1 ( I )
P R I N T %Z6% » T A £ 4 1 7 ) . *R = M i n i )
'
J. !
GQSUB
6220
,1 '
I F B-i = “ N*- THEN S 7 4 0
1
■! j
PR IN T
I i
P R IN f
P R I N T X l X . P ’t . I . *
Y = A + BX
A = • » X E 6 X . A 4 l ) . * + / - ■• . 1 3 4 1 )
SB60 PRINT XE6X.TAB<l*>/*e =, •».B24I>»
• t.I24l>
;i ■*.......................... '............
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
229
5 6 /U
Sotil)
5690
5200
5710
5720
5730
5740
5730
5760
5 /7 0
5700
57*70
5800
5810
5820
5830
5840
5850
5860
587u
5880
5890
5900
5910
5920
5930
5940
. 5950
5960
5970
5980
5990
60 0 0
6010
. 6020
6030
6040
6050
I
6060
6070
6080
6090
(. 1 0 0
:
6110
6120
6130
6140
6150
6160
6170
P R I n T ' M U & t ' T A & i I V >» • R * • » R 2 < I )
P R IN T 2 Z 3 X » T A B (1 9 > » ' T (r t-u > - • i T l ( I ) , * T ( 8 = 1 ) =
’ .T 3 (I>
P R IN T T A 0 ( 1 9 .> .'T ( 9 3 : : > = ' r T ( N ( D - 2 )
i| j
I F L * < > * Y ' THEN 5 / 4 0
P R IN T
!
l\ i
P R I N T 2 2 2 2 . T A B ( I V J » * F ( C A L C ) = * . F ( I > » ' F ( 9 5 X > = '!' . F 3 ( N ( I > - 2 )
COSUB 6 2 2 0
:i !
NEXT I
i
’
RErt SLOPE COn.’S
> ;
I F A * = * N ' THEN 5 9 4 0
:
FOR I = 1 TU C
:
I F G < I > = 1 THEN 5 0 0 0
!
I F C ( I > = 2 THEN
5 0 /0
PR IN T
P R IN T
!
PR IN T Z I Z . ' Y = 6 ‘ X
B ' C i C l l D i * ) = • » % £ 6 7 .» B 1 (C 1 '(I))
P R I N T X l % » T A & ( 1 0 > . ' B * ( ' r C 2 ( I > » ' ) - ' . Z E c X . C i (C2<I>:>
P R I N T Z Z 3 7 . . T A i . ; ( l U ) » ' T < C A L i ; > - * » T 2 ( 1 > » ' T ( ‘/5 X >
'« T (F 1 (1 )>
CQSUB 6 2 2 0
!
!
GOTO 5*730
P R IN T
!
P R IN T
!
P R I N T 2 1 % . * Y = A + BX
E i H i C K I ) . ' ) = ** . % £ 6 Z » B 2 < e i ( I > )
P R I N T Z l Z . T A B ( 1 3 ) . ' B ( ' » C 2 < I ) » ' > = ** t X E 6 2 » B 2 ( C 2 ( I > >
P R I N T Z Z 3 Z . T A £ ( 1 3 ) . * T ( C A L C ) = * » T 2 ( I ) » ' T ( ‘/ 5 % ; a * . T ( F 1 ( I > )
GOSUB 6 2 2 0
!
NEXT I
RErt
C O N F I G ( P R IN T UN SCUT »P R I N T 'P R E S S SPACE BAR FOR O P T IO N S '
I F P E E K <3> = W THEN 5 9 8 0
i i
G 0 T0 S 96 Q
ERA S( 1 )
P R IN T
i
C O N F I G ( P R IN T ON SCR)
PR IN T
P R IN T
' I N P U T H FOR HARO COPY OF STATS ON P R IN T E R ' j
P R IN T
' I N P U T D FOR HARD COPY OF STATS ON PLOTTER' ;
P R IN T
' I N P U T C FUR ANOTHER COPY OF T H I S GRAPH*
PR IN T
' I N P U T L TO CHANGE X - Y L I M I T S '
1 j
P R IN T
' I N P U T A TO CHANGE A X I S AND L A B E L S !
i
P R IN T
' I N P U T C TO CfctGNGE SLOPE COMPARISONS'
i
!
P R IN T
' I N P U T S TO CHANGE LEA ST SQUARES CALCULATIONS* •
P R I N T ' I N P U T P TO CHANGE PLOT SYMBOL'
P R I N T ' I N P U T E TO END*
' !
IN PU T r F *
j ;
I F F * s • H * THEN 5 4 6 0
;!
i
I F F * - • O ' THEN 5 4 8 0
=
IF F*
* G ' THEN 1 4 5 0
I F F * = • L ' THEN 1 3 3 0
11i :i
I F F * — • A * THEN 1 1 0 0
I F F * .= , • c
THEN 6 9 0
.
i!
:
:;...!
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
230
6180
6190
6200
< 6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
I F F * = * S * THEN 5 2 0
I F F $ « * P ’ THEN 4 9 0
IF
F * * * E * THEN END
GOTO 6 0 4 0
REH W A IT SUBROUTINE
I F P E E K C 2 ) = 2 1 1 THEN 6 2 5 0
RETURN
•
I F P E E K ( 3 ) = 1 9 9 THEN RETURN
GOTO 6 2 5 0
REH SUB FOR S C A LIN G X AND Y
X2 = <X9 - L I ) x ( G 2 - G l ) / t L 2
Y2 = ( Y9 - L 3> x < G 3 - G 4 )7 < L 4
RETURN
-
L l>
L3)
+ G1
+ G4
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
231
Appendix B
M IX 1.4FR
ca lc u la tio n
allo w
gas
a
p o rtio n
easier
m o d ific a tio n
of
c a lcu latio n
m ix tu re
sig n al/n o ise
is
the
of
ex p erim en ts.
ratio s,
each d iffe re n t
of
program
the
d ata
T h is
se n sitiv itie s
CHROM4
has been
(39).
m o d ified
co llected
program
and d e t e c t i o n
during
The
to
the
c a lc u la te s
lim its
for
elem en tal channel.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
232
10 E RA S<1>;CLR
•
20 D IM M < 2 0 0 0> » Y < 7 2 0 > fT < 7 2 0 > > 6 ( 7 2 0 > rS < 2 Q 0 )» D *< 7 2 )fZ 9 (2 :)» A *< 10)
2 5 D IM E 9 ( 5 ) > S * ( 2 ) r F ( 1 0 )
!'•
2 6 P R I N T \ H X l . 4 F R USE WITH 1 PPn CHCLF2 AND CBRF3 EACH"1
2 7 P R I N T * n A R K BRUCE 6 / 2 1 / 8 4 *
. ;
2 8 P R IN T 'C H A N G E # * S AROUND 5 2 3 0 TO CORRESPOND TO NG /M L OF EACH ELEMENT*
3 0 P R I N T ' T H I S PROGRAM I S DESIG NED TO TAKE FOUR*
if
3 1 P R IN T 'C H A N N E L S OF BLANK THEN ANALYTE DATA FROM*
3 2 P R I N T ' T H E POLYCHROflATOR W ITH BACKGRUNO*
*
3 3 P R I N T 'C O R R E C T I O N AND AUTORANGING G A IN *
3 4 P R I N T »P R I N T ' USE CHROrrt B A S IC WITH T H I S PROGRAM*
3 5 P R IN T 'C H A N N E L
EL EM ENT '
:!
36 P R IN T '
1
CARBON*
37 P R IN T 5
HYDROGEN*
2
38 P R IN T '
3R
F LU O R IN E *
3V P R I N T *
3L
BROMINE *
■I
40 P R IN T '
CHLORIN E* ; P R I N T i P R I N T ; P R IN T
4
41 P R I N T ' 1
in it ia l iz e
r e f r a c t o r p l a t e on
h g li n e *
' ‘
4 2 P R I N T ; P R I N T * 2 = CHROMATOGRAPHY RO UTINE*
4 3 P R I N T ; P R I N T * 3 = R E T R IE V E DATA FROM D I S K '
■
;i
4 4 S V = ' R ' ; P R I N T ; P R I N T * C A L C U L A T I O N S ARE SET FOR CHANNEL 3 TO BE F LU O R IN E *
4 5 REM S $ * ' L ' ; P R I N T ; P R I N T ' C A L C U L T I Q N S a r e SET FOR CHANNEL 3 TO BE BROMINE*
50 F l= 2 0 -0 ;F 2 = * 2 0 Q U ;F 3 4 5 3 U O ;f4 = 1 0 0 ;F 5 = 1 0 0 ;F 6 = lU Q ;F 7 = 1 0 Q ;F 8 = 1 0 Q
100 K = P E E K < 3 )-1 2 8
!
•
•
101 IF K =4 9 T H E N G 0 T 0 F l
1 0 2 IFK=S OTHENGQTOF2
I !
1 0 3 IFK =51THENG 0T0F3
i
1 0 4 IFK =S 2 T H £ N G 0 T 0 F 4
|! |
1 0 5 IF K = 5 3 T H E N G Q T Q F 5
1 0 6 IF K = 5 4 T H E nG0T0F6
107 IFK =5S TH S N G 0T 0F7
.\ \
1 0 8 IFK =5 6 T H E N G 0 T 0 F 8
!! I
1 1 0 COTOIOO
■
■! !
2 0 0 ERAS< 1 > ; P R I N T • I N I T I A L I Z E REFRACTOR PLATE ON HG L I N E *
21 0 p r i n t ; p r i n t ; p r i n t ; p r i n t * i = c lo c k w is e s te p *;p f:in t!
j
2 1 5 P R I N T * 2 * COUNTERCLOCKWISE S T E P * ; P R I N T
;i ,
2 2 0 P R I N T * 3 = SELECT O P T I O N S '
2 2 5 F 1 = 2 4 0 ;F 2 =2 S O ;F 3 =1 Q ;G U T 0 1 0 0
2 40 P O K E (2 2 9 )= 1 6 ;P O K E < 2 2 9 4 = 0 fG Q T O 1 0 0
2 5 0 POKE( 2 2 9 ) = 3 2 ; POKE( 2 2 9 > - 0 i GOTOlOO
’
3 0 0 E R A S ( 1 ) ; C 0 N F 1 G < P R I N T ON SCR> ; p r i n t
3 1 0 P R I N T 'D E P R E S S SPACEBAR TO I N I T I A T E DATA A C Q U I S I T I O N *
3 2 0 K *P E E K < 3)-1 28 ;iF K = 3 2 T H E N 3 S O ;G O T Q 3 2 0
3 5 0 E R A S < 1 ) ; P L O T ( 0 » . 4 » . 5 ) ' A C Q U IR IN G * ;R E T U R N
4 0 0 P 9 = P 2 - 1 0 ; D O I T <SEARCH >Y ( 7 ) > P 9 >B 1 >L 1 )
420 IF B 1 -L K 1 0 0 T H E N B 5 = 1 0 0 ;G O T 0 4 3 0
421 IF B 1 -L K 2 0 0 T H E N B 5 = 2 0 0 ;C O T 0 4 3 0
!. !
4 22 IFB 1-L K 50Q TH E N S S =500;G O TG 430
M
4 2 3 IF B 1 -L K 1 0 0 0 T H E N B S = 1 0 0 0 ;G O T 0 4 3 0
‘ 1
4 2 4 I F 6 1 t L 1 < 2 0 Q 0 T H E n B5 = 2 U 0 O ; G O T O 4 3 0
I i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
233
4 2 5 I F B l - L K S U 0 OTHE n BS^SOOO ?G O T 0 4 3 0
[
<>26 I F B l-L l< ;iO O O O T H E N fc ;5 -lU O U O ? G Q T 0 4 3 U
i
<127 I F B 1 - L 1 < 2 0 0 0 0 T H E N & 3 - 2 U U I ) U ?GOT0 4 3 0
<i28 B 5 = 4 00 l» 0
4 3 0 RETURN
600 P L O T (Q ,.4 » .0 1 )* n lN U T E S * ? P L Q T (0 ,.0 1 ,.7 S )* I*
j6 0 1 P L O T ( U , . 0 1 , . 7 ) * N * ? P L O V ( 0 , . 0 1 . . 6 5 ) * T * ? P LQ T (Q , . 0 1 , , 6 ) * E *
6 0 2 P L Q T ( 0 » . 0 1 , . 5 5 ) * N * ? P L O T ( 0 , . U l » . 5 ) * S * ?PLO T(0 , . 0 1 , 1 4 5 ) * 1 *
6 0 3 P L O T ( 0 » . 0 1 » . 4 ) * T * . P L O T ( 0 , , 0 1 , . 3 5 ) ' Y * ?RETURN
I.
BOO C O N F IG ( P L O T ON S C R ) ; P L O T < 0 » . 8 2 , . 3 8 ) * 1=HCQPY*
>
8 0 1 PLOT ( 0 , . 8 2 » . 3 5 ) * 2 - * X - A X I S • ?PLOT < 0 , . 8 2 * . 3 2 ) • 3 = Y - A X I S •
8 0 2 P L O T < Q , . 8 2 , . 2 6 ) * 5 - N E W P L O T * ? P L D T ( 0 , . 8 2 , . 2 3 ) * 6 = lN T E G R A T E *
»
8 0 3 P L O T < O, . 8 2 , . 2 0 ) * 7=ST AKT * ?P L O T ( 0 , . 8 2 , . 1 7 ) • O^NEPEAT* ? RETURN
9 0 0 P L O T ( 0 , . 8 2 3 8 ) * 1 = SET L * ? P L U U 0 , . 8 2 , . 3 5 ) * 2 = S £ T R*
9 0 3 P L O T ( 0 , . 8 2 , , 3 2 ) * 3 - S E T N O I S E * ? P L O T ( l i » . 8 2 , . 2 9 ) *4=MQVE R*
9 0 S P L O T ( 0 , , 8 2 , , 2 6 ) * S=MOVE L * i P L O T ( 0 , . 8 2 , . 2 3 ) *6 = F AST R*
9 0 7 P L O T ( 0 , . 8 2 , . 2 0 ) * 7 = F A S T L * ? P L O T ( 0 , . 8 2 , . 1 7 ) *8=0P T IQ N S *
9 2 0 RETURN
!
1000 P 3 - p l- M Q l- 5 ) x * l+ C l- S ? P 4 - f > 2 - Q l + l l
1 010 F O R I^ IT O P A ! K = I * 4 + P 3 - 4 ? S ( I ) = h ( K ) ? NEXTI
'
i
1020 O Q IT ( G O L A Y ;Z 1 ,Z ( U ),F '4 ,S ( I2 ),Y ( I3 )>
1 0 3 0 W1=0 ? W G = < Y ( 6 ) + Y ( P 4 - 5 ) ) / 2
i
1 0 4 0 F O R I = 6 T Q ( P 4 - 5 ) ? W 1 = W 1 + ( Y ( I ) - W O ) / R 1 ? N £ X T I ? R E T U R N .!
1 1 0 0 P R I N T ? P R I N T * DATA A C Q U I S I T I O N RATE = 1 *? R1= 1
.*
1110 IF R 1 = 1 T H E N N (0 )= 4 6 ? N (1 )= 7 3 8
1111 IF R *l= 2 T H E N N (0 )= 5 e ? N (l)= 3 Q 4
j •
1112 IF R l= 3 T H E N N (0 )= l6 2 ? N (l)= 1 0 5
1 1 1 3 P R I N T ' E N T E R D E S C R I P T I O N C S * , I . D . , WAT TS ,LAM ,SER T,ANAL YT E FLOW*
1 1 1 4 IN P U T D *
1 1 1 5 P R I N T ‘ I N P U T ANALYTE M L / M I N * ?I N P U T M7
1 1 2 0 P R I N T ?P R I N T * ENTER VENT T IM E ( M I N U T E S ) FOR SOLVENT BYPASS*
1121 V1=0
? T 1 = V 1 ? N (2 )= 5 0
*
! '
.1 1 3 0 P R I N T ? P R I N T * TOTAL T IM E ( M I N U T E S ) OF DATA*
1 1 3 1 P R I N T * A C Q U I S I T I O N AFTER SOLVENT VENT = 3 *
! :
1132 T 2 = 6 ? N (3 )= T 2 *(> 0 *R 1 ? M 1 = N (3)*4
j !
1 1 4 0 N 1 = 0 ?N 2 = 4 ?RETURN
i i
1300 P l = ( T l - V l ) * 2 4 u * R l ? P 2 = ( T 2 - T l + V l ) * 6 0 * R l
1 :
1310 IF P 2 X 3 6 0 *R 1 )T H £ N P 2 = < 3 6 Q *R 1 )
I
1 3 2 0 IF P 2 >7 2 Q T H E N P 2= 7 2 0
"i I
1350 F 0R J=1T0P 2?K =J*4+C 1+P1-3?B (J)=M <K )?N EXTJ
i :
1360 Z l= 9 ? Z 2 = l? Z 3 = 5 ? Z ( 0 )= 2 3 l? Z (l) = -2 l? Z ( 2 ) = 1 4 ? Z (3 ) = 3 9
1361 Z (4 ) = 5 4 ? Z ( 5 ) = 5 9 ? Z ( 6 U S < K Z ( 7 ) = 3 9 ? Z ( S ) = 1 4 ? Z ( 9 ) = - 2 1
'
1 3 7 0 D O I T ( G O L A Y , Z l , Z ( 0 ) , P 2 , B ( Z 2 ) »Y < Z 3 ) ) ? RETURN
; !
1 4 0 0 E R A S ( l ) ?P R I N T ’ ENTER CHANNELS FOR S P L IT -S C R E E N P L O T T IN G *
1 4 1 0 P R I N T ?P R I N T * ENTER CHANNEL O N E * ? I N P U T C 2
, :
1 4 2 0 P R I N T ? P R I N T ‘ ENTER CHANNEL TWO*? INPUTC3?RETURN
1500 F Q R < J = 1 T Q P 2 ? T ( J ) = ( Y ( U ) - L 1 ) * ,4 /B 5 + .6 ? IF 7 ( J)>1T H E N T ( J ) = l
1 5 1 0 NEXTJ?RETURN
1
!
> !
1 6 0 0 F O R J = 1 T 0 5 ?PLOT ( 0 , . 1 4 , J * , 1 + . 5 ) ?PL O T < 1 , , 1 6 , U * , 1 + . 5 ) ? NEXTU
1605 P L O T ( 0 ,« 0 5 ,.9 0 ) ( 1 ) 6 5 . P L O T ( 0 ,.0 5 ,.5 8 ) * 0 * .
1
j i
1610 F O R J = 1 T Q 7 ? P L Q T < 0 ,J X .1 0 + .1 0 ,.5 4 )? P L O T (1 » J *.1 0 + .1 0 .,S 6 )? N E X T J
, 1620 PlTP T < 0 r . . l 5 , l > ? P E P T < l » , 1 5 , . 5 S ) ? P L Q T . l l » , 8 , . 5 5 ) ;
,i i , .
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.
234
1630
1640
. 1650
i6 S i
1700
1710
1800
1805
1810
1815
'
1820
1830
1840
1850
1851
1900
1910
1920
1930
’1 9 4 0
2 0 00
2030
2031
2032
2033
2034
2035
2036
2037
2040
3000
3010
3020
3030
3040
3045
3050
3060
3200
3210
3300
3310
3400
3410
3420
3425
3430
3435
3440
4000
4010
P L O T ( 0 * 3 / ( 3 6 0 * R i ) + . 2 > T ( 5 ) ) »P“ 1
F O R J - 5 T 0 P 2 - 5 5P L O T I P »J * .«»/ ( 3 6 0 * R l > + . 2 . T < J > ) ) NEXTJ
P L O T < 0 » . 8 1 . . 9 ) 'CHA NNEL • » C 2 ; i F C 2 » 3 T H £ N P L O T < 0 » . 9 3 . . 9 ) S *
p l o t <o »q . o > ; r e t u r n
F Q R J = 1 T P P 2 ;B (J )= (Y < J )-L 1 )**4 /B 5 + .1 5 ;IF B < J )> .5 5 T H E N 6 < J )= *5 5 '
N E X T J .R E T U R N
‘
F O R J = 1 T Q 5 ;P L G T < 0 > .1 4 .J *.1 + .Q 5 );P L Q T < 1 » .1 6 » J *.1 + .0 5 );N E X T J :
PLOT < 0 . . 0 5 . . 5 3 ) 6 5 5 PLOT < 0 r . 0 5 . . 1 3 > * 0 ‘
F O R J = 1 T Q 7 ; P L O T ( 0 , J * , 1 0 + . 1 0 . . 0 9 ) ; P L Q T ( 1 » J * , 1 0 + ,1J»* . 1 1 ) .‘ NEX TJ
P L Q K O f . 7 8 5 . , Q 5 ) T l + 6 ; p L Q T < 0» , 1 8 5 . , 0 5 > T 1
!1 ;
P L O T ( 0 . • 1 5 . > 5 5 ) » PLOT ( 1 . . 1 5 . . 1 Q ) » P L Q T ( l r > 8 * > 1 0 ) '
P L Q T (Q » 3 /(3 6 Q *R 1 )+ .2 > B < S ));P = 1
F 0 R J = 5 T 0 P 2 - 5 J P L O T ( P . J X . 6 / < 3 6 0 * R l ) + . 2 . B < J ) ) > NEX TJ
P L O T < 0 » . 8 1 . . 4 0 ) ‘ CHANNEL 1 . - C 3 ; I F C 3 = 3 T H E N P L D T < 0 > . 9 3 . . 4 0 )SS
P L O T ( 0 . 0 . 0 ) ; RETURN
P 3 = P 1 + < 0 3 —5 ) * 4 + C l - 3 »P 4 = 2 0
ij .
F 0 R I = 1 T 0 P 4 »K = I * 4 + P 3 - 4 >S < I ) = h ( K ) » N E X T !
:| i
D Q IT (G O L A Y » Z 1 .Z (0 )» P 4 .S < Z 2 > » Y (2 3 ));S 1 = 0 ;S 2 = 0
F 0 R I= 6 T Q 1 3 ;S l-S it-Y (I);S 2 = S 2 4 -Y (I)x Y (I);N E X T I
,
:t
S 4 = (S 2 -(S l*S l/1 0 ))/9 ;S 5 = S C iR (A e S (S 4 ));R E T U R N
•
1
ERAS <1> 5P R I N T * CHROMATOGRAPHY RO UT INE * i P R I N T ; GQSUB11 0 0
G O S U B 3Q O »D O IT (M U G »N 1.N 2»M O ) . h i » n < 0 > >
)
P R I N T ’ STQRE DATA ON D I S K Y / N *
!
I N P U T Z * » I F Z * = * N * THEN 2 0 4 0
P R I N T ? P R I N T ’ RUN CODE <8. OR LESS C H A R S ) ? * J I N P U T AS :
C O N F IG ( S T O R E ON D I S K )
| !
O 0 = 2 0 0 0 ;R 0 = 1 0 ;F (l)= V i;F < 2 )'T 2 ;F < 3 )= R i;F < 4 )= N 7
PUT AS ; PUT DS
PUT M(G O ) i PUT F ( R O ) E N D
j
GOTO 2031
!
GOTO 5 0 0 0
'
i
GOSUB 1 4 0 0
t
E R A S ( 1 ) ; P L O T ( 0 , , 4 5 » . 5 ) ' S C A L I N G * ; C l = C 2 ; G O S U B 1 3 0 0 ;i i
GOSUB400 ; B 3 = B 3 ; L 3 = L 1 i COSUS15 0 0> ERAS( 1 ) iGOSUB6U0 } G 0 S U B 1 6 00
C 1-C 3;C O S U B 1300>G O S U S 4u 0 ;& 4 = S S ;L 4 = L 1
GOSUB1700
,
GQSUB1 800
■
'] :
■
G O S U B 800;F l= 32Q 0;F 2= 3300
i :
F 3= 3 4 0 0 ;F 4=100»F 5-3000;F 6= 4000;F 7= 10;F 8= 2030;G O T 0100
COSUBS0 0 ; C O N F I G ( PLOT ON P L O T ) ; G U S U B 6 0 0 ; B 5 = B 3 ; G O S U B 1 6 0 0
B 5=B 4;G O T Q 3045
i :
E R A S < 1 > ; P R I N T * E N T E R T?ME TO START CHROMATOGRAPHIC PLOT*
IN P U T T i;G Q T O 3 U 1 0
E R A S ( 1 > * » P R I N T * ENTER NEW Y - A X I S MAXIflUrtS FOR DUAli PLOTS *
P R I N T . P R I N T ’ ENTER n A X I n U n FOR CHANNEL ONE* .‘ IN P U T B 3
P R I N T ; P R I N T ' E N T E R MAXIMUM FOR CHANNEL T W 0 * ; i N P U T B 4
ER AS( 1 ) ; P L Q T ( U . . 4 5 . . 5 ) ‘ S C A L IN G *
i
L 1=L3;B 5=B 3;C 1=C 2;G O S U B 1300;G O S U B 1S O O
E R A S (D ;G O S U B 6 00 ;G O S U B 16 00
! :
L 1 = L 4 ; B 5 = B 4 ; C 1 = C 3 ; G Q S U B 1 3 0 u ;GOTO3U40
'
! I
G O SUB4900 ; G O S U B 4 9 5 0 ; GOSUB80 0 ; GQSU690 0 ; 0 4 = 3 / ( 3 6 0 * R 1 ) + . 2
4 * 5 ; CURSOR( 1 1 Q 4 r . 13>.»C U R S O R l l « B 4 « . . 5 8 ) » F l = 4 1 0 0 ; F 2 * 4 2 00 .............
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
235
1*1020
0100OUO
0120
0200
0210
0215
0220
0221
0230
tin
0 3 0n0n
0310
0315
0320
0321
•I . i - . '.i
•i uU
F 3 = O 3 O Q ;F O = O O Q Q ;F 5 = O S Q 0 ;F < S = 'O 6 0 Q ;F 7 = O 7 Q 0 ;F 8 *.O 8 0 Q ;G a T p i0 0
CUR S Q R (O fC H * . 1 3 ) * C U R S b R ( Q ? 0 0 r * 5 8 ) / p L Q T < 0 * 0 0 * » 1 3 ) 1il *» Q 1 = J
J » J + l 0 JQO * J * 16 / ( 3 6 0 * R 1 ) + * 2 » CURSOR ( 1 >QO'» 1 1 3 >
i
:i j
C U R S O R (l» Q O r« 5 8 )»G Q T Q 10 0 ; ■ ■
j| !
CURSOR < 0 r QO » . 1 3 ) ; CURSOR ( Q» QO» . 5 8 ) i pLOT!< 0 1 qo t . 1 3 ) 12 • ; Q2
<J=J+10 » Q O = J * . 6 / < 3 6 0 * R 1 >+ . 2 ; CURSOR< 1 » QO> . 1 3 )
j
' n 11
CURSO R <lfQ 0 » .5 8 > ;G O S U Es O 9 Q Q ;
c is * i; g o s u b io o o ; a i= w i; c i= 2 ;g o s u b iq o o ;a 2 =wi ,
C 1 = 3 » G 0 S U B 1 00 0 J A 3 = W 1 i C 1 = 0 ; GOSUB10 0 0 ; A0=W1.
GOSU809QO r G Q T O l 00
! !I ' '
rMDcno/fllnAC U R S O R (0 ? Q O r. 1 3 ) JCURSOR C0 >CIO r . 5 8 ) ;PLQT<Q>CW>. 1 3 ) 3*:;Q3=a'
u=*j+iq ;qo = J x . 6 / ( 3 6 0 * R l > + .l2 ; lC U R S Q R ( l > 0 0 > . r - . i .
CURSOR< 1 > 0 0 > . 5 8 ) .G 0 SU B 0 9 5 G
. Vuo j J2C l= » i;G Q S U B 1 9 0 0 ;O i a 'u iC l - i ,
C l?w
. JJ,.
" T
C plO l. u j
l-
.
FcSQUv u i . . *. j
i!' .-t
i j.
• ;i. ■
, if ;
J.:|i
. . ..
j.
.ii.
i
.. . . i
.it. ,;i.
•:
:
(..
; :j . •
'. • . .»:• Cl.'' ! •" ;
t-
...... ■'
• ..............
..„
i ■
; ..
i
’ i
-
>
'‘
' '
'
j
•i
!
• . ... r U R S Q R < l » Q O f , 1 3 > ; C U R S O f i a » a O » . 5 8 > ! G O T Q 1 0 0 !
!
070 0
0710
0720
0800
-J *:. .
;r J 4 - , 6 / < 3 6 u * R l
j
■
::
;!. ...
u -.i0 0 6 2 0
t.. i .
>2 . .
:
1
CURSOR <o i QO> .1 3 > »CURSOR <0>QO J ,5 8 > ? IF J < 1 1THENGQT00720
J=»J-10JQ O =U *.6/<360*R l> + .2
'
!|
1
CW RSORCl»QO».13>;CURSOR(lfaOf,58);GQTQ100' i
I
GOSUB900;GOTO3b50
i ;
1!
!
0952
5000
5003
5000
5u05
P L O T (0 > * 8 2 r .6 )* S O = *» 0 3 » PLOT(0
E R A S (l> ;G O T O S tilu
C O N F I G ( P R I N T ON P L O T .
1
CONr l G ( P l i O ' . Li.. P L O T )
i
P L 0 :‘ n0 *U» » 9 5 H 1 )
“ ulu P R i n T ; ' c s *
.5 0 2 0 P R IfiT : c-. :
5G3Q Ftii.t C.'
. :
f
.8 2 > it i; * S O -"
Mv
I
i i
ii;;
1 1
I!
IL L i.
II
I:'
.
Ii!
in ...
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
236
15
til 16
5118
5120
5150
5160
5170
5180
5190
5200
521U
5220
5 'Z 'i.'/
5228
5229
523C
5221
5232
5233
523"»
5235
5236
5 2 'iO
5250
5260
5270
5275
5280
5285
5286
5287
5290
5300
5310
5320
5330
53H0
5350
5360
5370
5330
■:;9+nS
S8=S8+M 6*n6
NEXT PB
S 7 -S U R (A B S U S B -S 9 *8 9 /3 U )/2 9 > )
P R IN T " B L A N K ( ADC) = * j M9 » * BLANK 3D = " f S 7
S9 = 0 ; S 8 - U
FOR P 8 - ( Y 2 - 1 ) * o 0 TO U ' 2 - l ) * 6 b n ; 9
S9= S 9+ M tC 9+ P a«*}-51
SS —S
B
^ N
v i ** riiLV+rO '<H—5 )
NEXT PB
S o —EOF.^A£si>< ISU-SjWB'j'/LO J / 2 1/ )
)
[ i
;
i;
i'i8 -S V /3 U
•; .
’
P R l H I " S I G N A L <ALrli) ~ * 9 i’lii i " BlLiNHU 5 0 —" r 3 0
,,
R£rt Ui-lLU.-cunL l r-.Mi-tc. l . * t pl'ri
PEii E 9 < l < ~ . / 5 . ' L ? 0 2 i - . l v ; L 9 < 5 J - y 9 9 9 i L y 0 ‘i > - 2 . £
;
PEN BPO n On E I HAihL 1 , 0 prY,
'i
REN E 9 U ) = . 5 5 5 , E v t 2 J = . i a - :i » E 9 ( 3 ) = 8 . 5 6 » E 9 t N ) = 9 y 9 9
PEN FLOURO/lETHrtNE 1 , 2 PPrt
REN E9< 1 ) - = . 6 ^ 5 ; E ' / t 2> = . 1 6 2 5 £ 9 l 3 ) - l . 02? E9 t*r > - 9 9 9 9 ,
RE.T FREON 2 2 1PPN + FREON 1 3 B 1 l P P n
E 9 a > « 1 .0 7 2 iE 9 < 2 > = .0 4 5 ;E 9 < '0 = 1 .5 8
I F S V = "R *T H £n E 9 (3 )-"» .2 "F
:
I F S S =-L "T hE N E 9 t 3 ) ^ 3 . S o 7
!
F 9 = r t 7 * E 9 ( C V ) / «, 0
P R I N T 5NO E L E / 3 E C = * » F 9 » " S E N S I T I V I T Y ( A D C Z n G E L E / S E C ) = " » l M S - n 9 ) / F 9
P R I N T ? S / N = * , < h 8 - h 9 > / S 7 r " D . L . t 3 S O ) = " 13 * S 7 * F 9 / C n 8 - t t 9 >
NEXT C9
C O N F I G <PLOT ON SCR)
CONr1 0 < P R I N T ON SCR)
i '
P R I N T " P R I N T S I' a TS On
PLOTTER Y / N "
;i !
IN P U T Z *
I F Z ‘I = " Y " THEN GOTO
5003
i
GOTO 3 0 0 0
1
E R A S < 1 ; J P R IN T S P R I N T " R U N COOE TO BE R E T R IE V E D ? " 5 I n PUT A *
i
C O N F I G <STORE ON D I S . O
Q O = 2 0 0 0 ;R Q = a O
.
GETA*
| :
GETD*
,1 |
G ETn(UO )
'
C £ T F iR O )E N 0 5 3 7u
:j !
V l= F (i);T 2 = F < 2 );p l= F (3 )? Y l= V l;M 7 = F l" i>
•
'
:! 1
N ( 2 ) = 5 Q ; N < 3 > - T 2 * 6 q * . :U . ? f U = N « . 8 > * ‘i;GOTG2G'‘iO
j
I
'■
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
237
A ppendix C
EM P E R 3 . 0
is
a m o d ified
v ersio n
o f CHR0M4 ( 3 9 )
perform s elem en tal r a t i o c a lu la tio n s based
and av erag e e le m e n ta l
se n sitiv itie s
are
responses.
c a lc u la te d
o n GC p e a k a r e a s
A lso d e te c ti o n
for
each
w hich
lim its
elem en t
of
and
each
compound.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
238
10 REM
20 REM
***
E p P E R 3.0
***
I
D. HAAS 0 4 / 1 8 / 8 4
REn
M . ERuCE 0 8 / 2 0 / 8 4
SO REM
60 REM *
T H I S PROGRAM I S AM E X T E N S IV E L Y M O D I F I E D !
7 0 REM
VERSIO N OF 'M O H R O N *(W R IT T E N BY M. E C K O F F ) .
1
SO REM
THE ASSEMBLY CALLS OF * 4 C r l R 0 n ‘ HAVE BEEN
M A IN T A IN E D BUT THE PROGRAM HAS BEEN M O D IF IE D
90 REM
100 REM
TO PERFORM THE FOLLOWING!
110 REM
120 REM
1) CALCULA TIO N OF INTEG RATED AREAS AND
1 3 0 REM
STANDARD D E V I A T I O N S ( S . D . ) I N A MORE
1 4 0 REM
CORRECT MANNER.
ISO REM
2 ) PR IN T O U T OF AREA AND S . D .
1 6 0 REM
3> STORAGE AND;REC ALL OF DATA WITH D I S K
1 7 0 REM
4 ) CALCULA TIO N OF DET ECT IO N L I M I T S
1 8 0 REM
I N P C / S . <3 SO D L )
1 9 0 REn
S> C ALCULATIO N OF ELEMENTAL RATIOS
200 REM ‘
FOR C / C L r C / F AND C/'H ALONG WITH THE
:i
210 REM
PERCENT ERROR I N THESE R A T I O S .
220 REM
i; :
2 3 0 REM
2 4 0 REM
CHROMATOCRAPhlC DATA I S COLLECTED ON FOUR
2 5 0 REM
CHANNELS SIM ULTANEOUSLY AS FOLLOWS!.
2 6 0 REM
2 7 0 REM
CHANNEL
CARBON
2 8 0 REn
CHANNEL
HYDROGEN
290 REM
CHANNEL
FLO U R IN E
3 0 0 REM
CHANNEL
c h l o r in e
3 1 0 REM
3 2 0 REM
330 rem
;
;
3 4 0 E R A S ( l ) ! C L R ! D I n F ( 1 0 ) , U 0 < 10> >U1 < I I ) > rU2< 1 0 > »EU<l U > » E l C l O > »E2< 1 U> * E3< 10 >
, 3 5 0 D I M n t 1 6 0 0 ) »Y < 7 2 0 > . T ( 7 2 { l > f B < 7 2 0 ) » S < 4 0 0 > t A$< 1 0 ) r B * < S 0 > , 2 ( 3 0 )
•
3 6 0 D I M A < 3 0 > f D < 5 u ) » W < 1 0 > n < ; u ‘Q > F p ( 3 0 > . I ( 3 0 > * C ( 3 0 > » E ( 2 l } > » G < 3 Q ) .
3X0 D l M n < 3 0 ) » U < 3 0 ) » J ( 3 0 ) » K ( 3 0 ) » L < 3 U ) ? Q 1 3 0 ) » H I ( 1 0 ) f 0 1 C I O )
1
;
380 D IM U 6 (1 Q > » K 0 U U )
385 K 0=U !K l=0!2*0
1
.
I ;
3 9 0 F 1 = 5 7 0 ! F 2 = 1 S 3 0 ! F 3 - 2 1 8 0 ; F ^ = 4 5 ' 0 ; F 5 = 4 5 0 ; F 6 = 4 ^ C i ; F 7 = S Q ‘0 0 ; F S = 4 5 0 ;
. 400 E R A S C l) J P L O T lO r ,3 5 » . 9 0 j • * * * E n P E R l.O x x * '
i
41P. P E D T < Q » , 8 3 . , S ( i ) * 0 . . HAAS
04/10/84*
ii.
2(1 R£rt
40
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
239
.
;
;
• U S P L O T C 0 . . 3 3 » . 7 0 ) * h . BRUCE
0 6 /2 1 /8 4 *
4 2 0 P L O T C U » . 2 6 . . 5 0 ) * 1 = I N I 1 I A U X Z E REFRACTOR P L A T E j
430 P L Q T C Q » .2 6 » .4 0 )*2
CHROnaTOGRAphIC RO UTINE*
4 4 0 PLOTC Q . , 2 6 » . 3Ci) * 3
=
R E T R IE V E Dp T a FRGri D I S K *
450 K = P E £K C 3 )-1 2 8
'
I ■
4 6 0 IFK =49T H E N G 0TO F l
;i
4 7 0 I F K = 5 0 THENGOT0F2
!
:! j
480 IFK =S 1TH E N G 0T0F3
i i
4 9 0 IF K = 5 2 T H E N G Q T 0 F 4
"
5 0 0 IFK =53TH£N GU TGFS
,
5 1 0 IFK =54THENG 0TQ F6
5 20 IFK =S 5TH E N G 0T0F7
ij
530 IFK=56THENCG T0F8
I !
540 IFK =57TH EN 238Q
i
550 IF K = 4 8 T H £ N 2 1 8 0
,
! :
5 6 0 GOTQ450
•[ . '
5 7 0 E R A S ( 1 ) S P R I N T " I N I T I A L I S E REFRACTOR PLAT E ON hG L I N E *
5 8 0 P R I N T S P R I N T ; P R I N T . P R I N T *1 » CLOCKWISE S T E P * S P R I N T
5 9 0 F 'R I N T * 2 = COUNTERCLOCKWISE S T E P * S P R I N T
j ,
6 0 0 P R I N T * 3 = SELECT OPTIO NS1
;
1
1
610 F l= 6 2 0 » F 2 -6 3 0 S F 3 = 1 0 » G G I0 4 5 0
|
6 2 0 POKE< 2 2 9 > - 1 6 SPOKEC2 2 9 ; = 0 SCOTO450
I
6 3 0 POKE < 2 2 9 ) = 3 2 SPUKEC2 2 9 ) = 0 SGOTQ4S0
j •
6 4 0 E R A S C 1 ) S C O N F I C r P R I N T ON S C R ) S P R I N T
6 5 0 P R I N T ’ DEPRESS SPACEBAR TO I N I T I A T E DATA A C Q U I S I T I O N *
6 6 0 K=’P £ E K ( 3 ) - 1 2 3 ; I F K - 3 2 T H E N 6 / 0 ; C O T 0 6 6 0
6 7 0 E R A S C l ) S P L U T C G . , 4 . . 5 ) * AC G U I k I n G*SRETURN
!! :
6 8 U P 9 = P 2 - 1 0 SOOIT(SEARCH'. Y C 7 ) » P y » B l » L 1 )
j !
6 9 0 I F B 1 - L K 1 OOTh £ n U 5 -1 U O SG0T078Q
•
.!
700 IF B 1 -L 1 < 2 0 U T H E n U 5-200S G u T 07 u O
, 1
7 1 0 I F 6 1 - L K 5 0 0 T H E N B 5 - 5 0 0 SGOT07.80
.
I :
7 2 0 I F B 1 - L 1 < 1 0 G U T H E n B 3 = 1 0 0 0 SG0T078Q
7 3 0 IFB 1-L 1< 2 0 0 0 T H E N 3 S = 2 00 0 S G O T 0 7 B U
!
7 4 0 I F B l —L l< 5 t ) O 0 T H E N B 5 - 5 u 0 O S C u T 0 7 8 o
'
j . .
750 IF B 1 -L K 10 0 0 0 T M E N B 5 -1 0 0 0 0S G O T 0 7 6 0
7 6 0 I F B 1 - L K 2 0 0 0 u T H E N B 5 = 2 u 000SG OTO 7S0
i '
770 8 5 -4 0 0 0 0
7 8 0 RETURN
i I
’7 9 0 . P L O T < 0 r » 4 » . 0 1 ) * i 1 I N U T E S * S P L O T l 0 . . 0 1 » . 7 5 ) * I *
| •
8 0 0 P L O T < 0 » . 0 l F . 7 ) * N * ; P L O T C . 0 r . 0 1 » . 6 5 ) * T * SPLOTCO. . 0 1 . . 6 ) * E * ‘
8 1 0 PLOT C O . . 0 1 . , 5 5 ) *N *S P L O T C 0 . . 0 1 » . 5 ) * S * S P L O T C 0 . . 0 1 . . 4 5 ) * 1 *
820 P L O T C Q ..G 1 » .4 )*T *;P L O S IO V .Q 1 » .3 5 > *Y *
j ;
830 P L O TC O .,1 8 ..98 )A 4 > i>*
*.B$S RETURN'
; i
8 4 0 CO NFIG CPLTlT ON SCR) SPLuTc I ) . , 8 2 . , 3 8 ) * 1 -H CQ PY*
; :
;850 P L U T < 0 f , 8 ? . . 3 5 ) * 2 = X 4 - «
* SPLOTCOi » 8 2 « . 3 2 ) ?3“ Y - A X I 5 . * j - 1
:\\
'|!
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission
240
6 6 0 PLOT < U , . 6 2 , . 2 o > " S -A L H FLU I * . FLO i' C0 , .U -i > , 2 ' j j *6~XNTEG RftI E *
6 7 0 PLOT ( O r . 8 2 , . 2 0 1 * 7 = I N P U T * 5PLO T ( 0 » . 0 2 , . 1 7 >
'S ^ F IX I T *
861) PLOT < 0 » . 8 2 , . 1 5 ) * 9 - 0 L CALC • 5 PLOT I Cl, . 8 2 , . 1 3 > * 0 = D I S K * 5RETURN
89.0 PLOT < 0 , . 8 2 , . 3 8 1 * 1 - S E T L * »P L O T I 0 » . 82» . 3 5 > * 2 = S £ T R*
9 0 0 PLOT < 0 , . 8 2 , . 3 2 > * 6 - S E T N O I S E * ; P l 0 U U , . 0 2 .
. 2 9 ) *4 = n Q V £ R*
9 1 0 P L O T < 0 , . 8 2 , . 2 6 ) ' 5 ~ n U V £ L * ) P L O T ( 0 , , 8 2 . . 2 3 ) * 6 * F A S T R*
9 2 0 P L O T ( O r , 8 2 > , 2 0 ) *7=FAST L * ; PLOT< 0 , . 6 2 , . 1 7 > * 8 = 0 P T I0 N S *
9 3 0 PLOT ( 0 , . 8 2 , . 1 5 > * 9 - 0 L CALC * i PLOT ( Cl, . 8 2 , . 1 3 ) ' * 0 = D I S K *
94Q RETURN
950 P 3 = P l + ( 0 1 - 5 ) * 4 + C l~ S » P 4 = G 2 - G 1+11
9 6 0 F O R I = 1 T Q P 4 } K - I * 4 + P U - 4 i S I 1 >= n ( K > 5 N E X T I
970 D O rr< G Q L A Y > Z l,Z < 0 )fP 4 ,S < Z 2 )» Y < Z 3 > >
9 8 0 REn W l = 0 ; W 0 = ( Y C 6 > + Y ( P 4 - 5 > > / 2
9 9 0 REh F a R I - 6 T U < P 4 - S > » w l = W l + t Y ( I > - W 0 > / R i ; N E X T i ; R E T U R N
1000 W 0 = 0 ; X 4 = < Y ( P 4 - 5 > - Y ( 6 > ) / ( P 4 - 5 - 6 > )X 5 = Y < 6 ) - < X 4 * 6 )
1 0 0 5 I F A 9 = l THEN X 4 = 0 ; X 5 = Y ( o )
1 0 0 6 I F A 8 = l THEN X 4 = 0 ; X 5 = Y ( P 4 - 5 >
1010 F 0 R I= 6 T 0 P 4 -5 J W 0 = Y < I> -(X 4 * I+ X 5 )+ W 0 # N E X T I
1 0 2 0 W 1 = < W Q /R 1)
1 0 2 7 A (K 0)= W 1
1 0 2 6 K Q-K0+1
1 0 2 9 RETURN
1 0 3 0 P R I N T ? P R I N T ‘ RUN CODE < is OR LESS SYnBOLS ) ? * ; I N P U T A *
m u p r i n t ; p r i n t *SAnPLE d e s c r i p t i o n ? * ; i n p u t b *
1 0 5 0 P R I N T ; P R I N T ‘ ENTER 1 OR 2 P T S / S E C ACQUISITION R A T E * ; i N P U T R l
1 0 6 0 I F R 1 = 1 T HE n n ( 0 > - 4 6 ; n < 1 > = 7 3 8
1 0 7 U IF R 1 = 2 T H E N N (0 > = S o ; n < 1 > = 3 u4
1 0 6 0 REM I F R l = 3 T H E N N < 0 ) - 1 6 2 ; N l l > = l 0 5
1 0 9 0 P R I N T ; PRINT ‘ ENTER VENT T I n E ( N I N U T E S ) FOR SOLVENT BYPASS*
11UU I N P U T V i ; T l = V l ; N ( 2 ) ^ 5 0
1 1 1 0 P R I N T ; > R I N T * E N T E R TOTAL T I n E ( n I N U T E S ) OF DATA*
1 1 2 0 P R I N T ‘ A C Q U I S I T I O N AFTER SOLVENT VENT*
1 1 3 0 I N P U T T 2 ; N ( 3 >= T 2 * o 0 * R 1 ; M1 =N < 3 ) * 4
m o n i = o ; n2 = 4 ;return
1150 P l = ( T l - V l > * 2 4 u * R i ; P 2 = C T 2 - T l + V i > * 6 0 * R l
1160 I F P 2 X 3 6 0 * R 1 )T H E N P 2 = (3 £ > U *R l)
1 1 7 0 I F F ’2 > 7 2 0 THLNP2—7 2 0
1 1 8 0 F O R J - l Y U P 2 ; K - J * 4 + C l + P l - b ; B ( J ) - M ( K ) ; n EXTJ
1190 Z l = 9 ; Z 2 = i ; 2 3 = 5 ; Z ( 0 ) = 2 3 1 } 2 ( l ) = - 2 i ; 2 C 2 ) = 1 4 ; Z ( 3 ) = 3 9
1200 Z ( 4 ) = 5 4 ; Z C S ) ^ 5 9 ; Z ( 6 ) = S 4 ; Z ( 7 ) = 3 9 ; Z ( 8 ) = 1 4 ; Z < 9 ) = - 2 1
1 2 1 0 O O I T ( G O L A Y ? Z l , Z ( 0 ) , P 2 , 6 ( Z 2 ) > Y < Z 3 ) ) ; RETURN
1 2 2 0 ERAS < 1 ) ; P R I N T * ENT ER-CHANNELS FOR S P L I T - S C R E E N P L O T T IN G *
1 2 3 0 P R I N T ! P R I N T ' E N T E R CHANNEL 0 N E * ; i N P U T C 2
1 2 4 0 P R I N T ; P R I N T ' E N T E R CHANNEL T W O ';I N P U T C 3 ; R E T U R N
1 2 5 0 F Q R J - 1 T Q P 2 > T ( J > = ( Y ( v l ) - L l > * . 4 / B 5 + . 6 ; l F T ( J ) > 1 THE n T ( J ) = l
1 2 6 0 NEX TJ ;R E T U R N
1 2 7 0 F O R J = 1 T O S ;P L O T C O » . 1 4 , J * . 1 + . 5 ) ; P L O T ( 1 , . 1 6 , J x . 1 + . 5 ) ; N E X T J
1280 P L O T ( 0 ,.0 5 ,.9 B ) ( 1 > B S ; P L O T ( 0 , . 0 5 » . 5 6 ) * 0 *
1 2 9 0 F 0 R J = 1 T 0 7 ; P L 0 T < 0 , J * . 1 0 + . 1 0 , . 5 4 ) ; P L O T ( 1 , J x , 1 0 + . 1 0 , . 5 6 ) ; NEXTJ
1300 P L O T < 0 » . 1 5 » l ) ; P L O T U , . 1 5 , . 5 5 ) ; P L O T C l , . 8 f .5 5 )
1310 P L O T < 0 ,3 /< 3 6 Q *R 1 )+ .2 ,T < 5 > > ;P = 1
.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
241
132U
1330
1310
1350
1360
1370
F O R J = 5 T 0 P 2 - 5 i P L O T ( P »J * . 6 / ( 3 o 0 * R 1 ) + . 2 » T ( J ) ) i NEXTJ
P L Q T < 0 f . 8 1 f . 9 ) ‘ CHANNEL * r C2 >PLOT ( Q f O f O ) ; RETURN
F 0 R J = l T 0 P 2 ; B < J > = m J > - L l > * . 1 / B 5 - « - . l b ; l F B ( J > > . 5 5 T H E N S < J > = .S S
NEXTJJRETURN
F O R J = 1 T 0 5 ; P L Q T ( O f . 1 1 » J * . 1 + . O S ) 5 P L O T ( 1 » . 1 6 f J * . 1 + . 0 5 ) ; NEXTJ
P L Q T< Q f . 0 5 f . 5 3 > B S ; P L O T < Q f . 0 5 f . 1 3 > * 0 *
1 3 8 0 F O R J = 1 T 0 7 ;P L Q T < O fJ * . 1 0 + . 1 0 f . 0 9 ) ;P L O T < 1 f J * . 1 Q + . 1 0 r . l l K N E X T J
1 3 9 0 P L O T < 0 f . 7 8 5 f . 0 5 > T 1 + 6 fP L O T < 0 f . 1 8 5 f . 0 5 ) T 1
1100
1110
1120
1130
1110
1150
1160
1170
1180
1190
1500
1510
1520
1530
1510
1550
1560
1570
1580
1590
160 0
1610
1620
1630
1610
1650
1660
1670
1680
1690
1700
1710
1720
1730
1710
1750
1760
1770
1780
1790
1800
1810
1820
PLOT < 0 f . 1 5 f . S 5 ) >PLO r ( l r . l 5 > . 1 0 ) r P L O T < 1 f . 8 f . 1 0 )
P L Q T < 0 f3 / C 3 6 0 * R 1 ) + . 2 f6 < 5 ) ) ; P = 1
j.
F O R J = 5 T 0 P 2 - 5 ! PLOT ( P f J * . 6 / ( 3 6 0 * R 1 >+ . 2 » 8 ( J ) > rN EXTJ
P L O T ( 0 f . 8 1 f . 1 u ) 'CHANNEL * f C 3 ; P L Q T < 0 f 0 f 0 ) {RETURN ;
P 3= P 1 + < Q 3 -S )*1+ C 1 -5 ;P 1 = 2 U
F O R I = l T Q P 1 *. K = I * 1 + P 3 - 1 ; S 1 1 ) =M< K > 5N E X T !
D Q IT < G O L A Y f Z1 f K 0 ) f P 1 f S ( Z 2 ) f Y ( Z 3 ) ) f 3 1 = 0 >S2=0
,
REM F Q R I = 6 T 0 1 S ; S l = S l + Y ( I ) ; S 2 = S 2 + Y < I ) * Y C I ) ; N E X T I
S 1 = 0 ;S 2 = 0 ;X 6 = (Y < 1 5 > -Y (« .> > /9 ;X 7 = Y < 6 )-(X 6 *6 >
F O R I= 6 T Q 1 5 ;S l= (Y (I)-< X 6 *I+ X 7 ))+ S l
S2=< Y ( . ' £ ) - ( X 6 * I * X 7 ) ) * < Y ( I ) - ( X 6 * I + X 7 ) ) + 8 2 » N E X T I
S 1 = ( S 2 - - ( S 1 * S 1 / 1 U > ) / 9 f S5=SUR< A B S ( S 1 ) )
D (K 1)=S 5;K 1=K 1+1tR E TU R N
ER AS( 1 ) ; PRIN T • CHROMAVOGKAPHY R O U T IN E * ; P R I N T f GOSU8 1 0 3 U
G O S U B 6 1 0 ;U O IT U > U G » N l» N 2 » N (0 )» M ltM U > )
COSUB 1 2 2 0
ERA S11> »PLO T( O» . 1 5 » . S ) • S C A L I N G * 5C 1 * G 2 * G O b U B l 1 5 0
G 0 S U 8 6 8 Q • B 3 - B 5 1L 3 - L 1 i G O S U B 1 2 5 0 »ERAS< 1 ) ; GGSUG790 i GQSUB1270
C 1 » C 3 J G O S U B i I S O »GOSU86S0 » 8 1 * 8 5 i L 1 * L 1
GOSUB1310
G0SUB136U
G O S U 8 8 1 0 ;F 1 = 1 6 3 0 ;F 2 -6 0 0 0
F 3= 167 0 ;F 1 = 1 5 0 ;F 5 -15 5 0 ;F 6 = 1 71 0 » F 7= 5 0 0 0 »F 8 = 10 0 0 ;G O T 0 1 S O
G 0 S U B 8 1 Q ; C O N F IG ( P L O T ON P L O T ) 5G O S U B 7 9 0 ;8 5 = 8 3 f GGSUB1 2 7 0
8 5 = 8 1 JGOTOloOO
e r a s ( i ) ; p r i n t * e n t e r t i m e to s t a r t c h r o m a t o g r a p h ic p l o t *
I N P U T T 1 f C 0TQ156Q
E R A S < l ) ; p R l N T “ ENTER NEW Y - A X I S MAXIHUMS FOR DUAL PLOTS*
P R I N T ; P R I N T ‘ ENTER MrtXIn Un FOR CHANNEL O N E * . I N P U T B 3
P R I N T ; P R I N T ' E N T E R MAXIMUM FOR CHANNEL T W Q S I N P U T B 1
ERAS< 1 ) ; P L Q T ( O f . 1 5 f . 5 > ‘ S C A L IN G *
L 1 = L 3 ; B 5 = B 3 ; C i =C2;GOSUB11S O;GGSUB12S O
E R A S ( 1 > ; G O S U B 7 9 0 ;G Q S U 8 1 .2 7 0
H = L 1 ;B 5 = B 1 ;C 1 = C 3 ;G O S U B 1 1 50 ;G O T 0 1 5 9 0
G O S U B 2 0 7 0 ; G O S U B 2 0 9 0 ! G Q S U B 8 1 0i GOSUB890 i 0 1 = 3 / ( 3 6 0 * R 1 ) + . 2
J = S ; C U R S O R ( l » Q 1 » . 1 3 ) ;CURSQR<1 f C H f . 5 8 ) i F 1 = 1 7 S Q ; F 2 = 1 8 1 0
PLOT(0 f . 5 S f . 0 1 ) J
F 3 = 1 8 7 0 ;F 1 = 1 9 3 0 ;F 5 = 19 6 0 ;F 6 = 1 99 0 ;F 7 = 2 0 3 0;F 8= 2 0 6 0 ;G O T 01 5 0
CURSOR( 0 > Q 1 > . 1 3 ) > CURSO R(0 r Q 1 > . 5 8 ) ; P L O T < 0 f Q 1 » . 1 3 ) * 1 * ; Q 1 = J
PLOT( 0 r . 5 5 > . 0 1 ) j ; J = J + 1 0»0 1 = J * . 6 / < 3 6 0 * R 1 ) + . 2 ; C U R S O R (1fQ 1f«13)
CURSOR11 f 0 1 f . 5 0 > ; PLOT < 0 f . 5 5 f . 0 1 ) J ; GOTO1S0
CURSOR< 0 f U 1 f . 1 3 > ; CURSOR < 0 f 0 1 1 . 5 8 > * PLOT < 0 r 0 1 f . 1 3 ) ? 2 * ; 0 2 = J
PLOT ( ( I f . 5 5 f . 0 D J f J = J + l 0 ! 0 1 = J x , 6 / i 3 6 0 * K 1 ) + . 2 ; CURSOR < 1 f U 1 f « 1 3 )
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
242
1830
; 1810
1850
I8 6 0
1870
1880
1890
1900
• 1910
1920
1930
1910
195 0
1960
1970
1980
1990
2000
2010
2020
2030
2010
2050
2060
2070
2080
2090
2100
,
2110
2120
2130
2110
2150
2160
2170
2180
2190
2200
1
2210
■
2220 6ETB*
. 2230
2210
2250
;
I
CURSQRC1 f Q I f . 5 8 ) »P L O T ( 0 f . 5 5 » . 01 )J>GQSU B207Q
C 1 = 1 f G OSU B9SO ;A 1=W 1 f C1=2;GOSU&9SOJA 2=W1
ii
C 1 = 3 ; G U S U B 9 5 O ; A 3 = W 1 f C 1 = 1 f P Q S U B 9 5 0 f A1=W1
<
ji
!
'
GQSUB2Q70f GOTO1S0
;i :
CURSQ R<0 f Q 1 f < 1 3 ) i C U R S O R ( 0 f Q 1 f « 5 8 ) > P L Q T < 0 f Q 1 f » 1 3 j ‘ 3 * JQ3=J
P L O T (0 » .5 5 » .0 1 )J » J -J + 1 0 ;Q 1 ^ J *,6 /< 3 6 0 *R l)+ .2 ;C U R S Q e (< lta i» .1 3 )
I
CURSGR<1 f Q 1 f . 5 8 ) ; P L O T < 0 f . 5 5 f . 0 1 ) J ; G O S U 6 2 0 9 0
' j
;
c i= ifG O s u b iiio ;b i= s 5 f*c i= 2 ;g o s u b iiio ;d 2 = s s
;
C l= 3 ;G O S U B l1 1 0 ;D 3 = S 5 ;C l= l;G O S U B i1 1 0 ;D 1 = S 5
!
I
GQSUS2Q90 i G O S U B Z E /O f GOTUISQ
T ■
C U R S O R I0 f Q I f . 1 3 ) ! CURSOR( 0 , 0 1 f , 5 8 ) JIFJ=30 O H R 1 TH E H G Q T 0 1 9 SO
P L Q T < 0 f.S S f.0 1 )j;J = J + 1 » O 1 = .J *.6 /< 3 6 0 *R 1 )+ .2
iI
>
CURSOR < 1 » Cll F . 1 3 ) ; CURSOR < 1 f 0 1 f . 5 8 ) i PLOT < 0 f . 5 5 f . 01 ) J ; G QT015 0
CURSQRt 0 f Q I f . 1 3 ) r CURSOR( 0 f D 1 f < 5B> i 1FJ=1THENG O T019SO
P L Q T(0f . 5 5 f . 0 1 ) d » J = J - lf Q 1 = d x .6 /( 3 6 0 * R l) + .2
CURSOR < 1 f Q 1 f . 1 3 > >CURSOR < 1 f G 1 » . 5 8 > 5PLOT C0 f . 5 5 f . 0 1 > J } G Q T01S0
CURSQ R<0 f G 1 f . 1 3 ) ; C U R S Q R < 0 f Q 1 f . S 8 >
i
I F . J > C 3 6 0 * R 1 - 1 1 > T H E n GOT0 2 Q 2 0
j,
P L O T < 0 f f5 5 f • 0 1 ) J i
> U 1 = J X ,6 /< 3 6 U *R l) + ,2
I ;
C U R S O R (1 f Q 1 f . 1 3 ) ; C U R S O R ( 1 f Q 1 f . 5 8 > > P L O T ( O f . 5 5 f . 0 1 !) j ;GOT01SO
CURSQRC Q f Q1 » » 1 3 ) ; CURSQ R(0 r U 1 » > 5 8 ) i I F J < l l T H E N G O T Q 2 Q 5 0
'
P L O T (O F .5 S F .O l)j;j= J -lO ;a i= d *.6 /< 3 6 U *R l)+ ,2
C U R S O R (1 f Q 1 f . 1 3 > ; C U R S O R ( 1 f Q 1 f . 5 8 ) f‘ P L 0 T ( Q f , 5 5 f . 0 i ) j ; G Q T Q 1 S 0
G Q S U B a 9 0 ;C G T Q 1 6 1 0
PLOT < 0 f » 8 2 f . 8 S ) * A 1 = * f A 1 / P L O T ( O f . 8 2 f . 7 5 ) • A 2 = * f A2 j i
P L O T < 0 f « 8 2 f » 6 5 > • A 3 = * f A 3 f P L O T ( 0 f « 8 2 f » 5 5 ) * A 1 = * f A 1 f RETURN
P L O T < 0 r . 8 2 f , 8 ) * S D = * f D I >P L O T < O f . 8 2 f . 7 ) * S D = * f D2
j
P L O T ( 0 f . 8 2 f . 6 > " S D = * f 0 3 i P L O T ( O f < 8 2 f * 5 ) * S D = * f D 1 >RETURN*
C O N F I G ( STORE ON D I S K )
i
j
0 0 = 1 6 0 0 fR O = 1 0 fF < 1 ) = V 1 ; F < 2 ) = T 2 ; F ( 3 ) = R 1
‘
PUTA* ‘
PUTB*
!
j
PU T h (Q O )
j
!
P U T F (R 0)E N O
;! ;
GOTO150
'
'
,j i
I
ERAS < 1 ) 5 P R I N T ; P R I N T * RUN CODE TO BE R E T R IE V E D ? * » I N P U T A $
C O N F IG ( S T O R E ON D I S K )
I
!
0 0 = 2 0 0 0 }R 0= 10
GETA*
;
GETM(QQ)
'
‘
G E T F ( RO ) E N D 2 2 5 0
. . ‘ --i
V 1 = F < 1 ) 5 T 2 = F < 2 ) fR 1 = F ( 3 ) ; T 1 = V 1
!
:
:
2 2 6 0 N ( 2 ) = S 0 fN ( 3 ) = T 2 x 6 0 * R 1 ; m i = n 3 x 1>GQTQ1550
2 2 7 0 C O N F IG C P R IN T ON T T Y ) J I F Z > 0 T H E N 2 3 3 0
2290
2300
2310
2320
2330
. ?310
:
,,
!
;j
:
ji'
I
'!
i
!
I'
.;j
i l l
i
' 1
i
P R IN T » R U N CODE!
* f A»1
i
1;
'
if [ '
1
f
P R IN T * D ES CRIPTIO N ♦ * f6 * :
I
j
|i
P R I N T 5 P R I N T T A B < 3 ) i ‘ C H A N N E L :* » T A B ( 2 0 > f ' C { 1 ) * f T A £ ( 3 2 ) f * H ( 2 ) * f
P R I N T T A B ( H ) f , F ( 3 ) * f T A B ( 5 6 ) f * C L ( 1 ) * iP fllN T
!
| ;
,
|!i '
Z = Z -A 8J P R IN T T A B < 0 ) f"P E A K * f Z + 1 f T A B ( I O ) f ‘ A R E A :t f T A B ( 1 9 ) f % 3 % f A I f
I
P S IH T W ? .< 3 t > » A 2 » iT /)B < .4 3 > » :A 3 F T A & < 5 S ) .F A 4 . •i i il.-i.
!
. i.. u . „ ...
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.
243
:
2342
2343
2344
2330
2360
2370
2380
2390
2400
2410
24112412
2413
2414
2415
2416
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2340
2550
2560
„
i
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
26702680
2690
2700
2710
2720
2730
2732
2733
^ .,2 .7 3 4
I F A8=0 THEN' 2 3 5 U
F O R - L 8 = K 0 - 4 TO K O - i ; A < L 8 - 4 ) = A < L 8 - 4 ) + A < L 8 ) * N E X T L 8
!
K O o K O -4
■
j; jP R IN T T A B (1 0 )r*S .D .:*rT A B (1 9 > F X lZ ,O l» T A B (3 1 ),D 2 , !
i
P R I N T T A B < 4 3 ) , D 3 f T AB<S 5 ) » D 4 ; Z = Z + 1
i !M
1
C O N F I G <P R I N T ON S C R ) >RETURN
i .
;
E R A S U > ; p R I N T ; P R I N T ‘ NUhB£R OF PEAKS TO ANALYSE ? ‘ ;; N = 3
|
fo ri= ito n ;e ra s < i)
]j
P R I N T ; P R I N T ‘ I N P U T NUMBER OF C H F CL O N BR ATOMS I N COMPUNO‘ » I
F 0 R C = Q T O 3 ;C 0 = < I-l)*4 + C
^
;
C < 0 )= 2 i;C < l)= 2 0 ;C < 2 )= Q ;C (3 > = 2
!! C < 4 )= 2 2 ;C < 5 )= 1 8 ;C < 6 )= i;C < 7 > = 2
! i! i
’
C < 8 )= 2 6 ;C < 9 )= 2 3 ;C < 1 0 )= 2 ;C < 1 1 )= 0
H i
C < 1 2 )= 2 5 ;C < 1 3 )= 2 2 ;C < 1 4 )= 0;C < 1 S )= 1
-.! ;
C < 1 6 )= 2 6 ;C < 1 7 )= 2 2 ;C < 1 8 )= 3 ;C < 1 9 )= 1
I :
C < 2 Q )= 2 2 ;C < 2 1 > = 1 9 iC < 2 2 )= 0 ;C < 2 3 )= U
j! 1
IF C =O T H E N G = 12.011
! !
IF C =1 T H E N G = 1 .0 U 8
IF C = 2 T H E N G -1 8 .9 9 8
IF C =3T H E N G = 35.4S 3
X < I ) = C < C U ) * G + X < I > ; G < C 0 ) = C < C 0 ) * G ; n EXTC
!
X < 1 )= 3 9 1 ,3 ; X < 2 )= 4 3 4 ,3
X < 3 )= 4 5 1 t 3; X < 4 )= 4 1 9 .9
X (S )= 5 0 2 .9 ; X < 6 )= 5 0 5 .2
;
F Q R C = 0 T Q 3 »C 0 = < I-1 )*4 + C
!
P R IN T ; P R IN T ‘ IN P U T
OF COttPOUNi)‘ » I » ‘ IN J EC T ED ‘ ; I N P U T W ( I ) ; N £ X T I
F O R I= 1 T O N ;F Q R C = O T 0 3 ;C O = < I-1 )*4 + C
;
P < C U )= W < I)*3 *D < C )/A < C 0 )*G < C 0 )/X < I>
;|
IFC <C O )=O TH E N 2560
!• :
I< C Q )= A < C U )/W < I)/C < C 0 )*X < I)
:| !
N E X TC ; N E X T I
,1 :
fo rc = o to 3 ;h (C )= o » h i(C )= u ;q < C )= o ;q i< C )= o ;n e x tc
i I
fq rc = o to3 ; d=n ; f o r i= oton- i
1 !
H < C )= I< 4 * I + C ) + H < C ) ;H 1<C )=P< 4 * I+ C ) + H 1 < C )
i !
IF K 4 *I+ C )= 0 T H E N D = D -1
'
N E X T I;IF D = 0 T H E N 2 6 3 0
, I
Q < C )= H (C )/D ;Q 1 < 0 = H K 0 /D ,
j ;
F O R K = O T O N -i;iF Q < C )= U T H E N 2 65 0
I
Z <4*K +C )= A < 4X K + C )/U <C );IF C < 4 *K + C > = O T H E N Z < 4*K +C > = 0
>
I F Q ( C ) = 0 T H E N Z <4 * K + C ) = 0
:
j
N EX TK; N E X T C ; F O R I = I T C l N »I F Z t < 1 - 1 ) * 4 + 3 ) = 0 T H E N 2 6 8 0
'
! :
J < I)= Z < < I-l)*4 )/Z < < I= l)*4 + 3 )
1 s
i 1
I F Z C <1—1 ) * 4 + 2 ) = 0 T H E N 2 7 O Q
; j
K < I)= Z < < 1 -1 ) * 4 ) / Z ( < 1 - 1 > * 4 + 2 )
! j
I F C < < 1 - 1 > *4 + 3 )= 0 T H E N 2 7 2 0
!
L ( I ) = C ( < 1 -1 ) * 4 ) /C << 1 -1 > *4 + 3 );J 0 < I) = < J < I; - L < I)) /L < li* lO O
I F C < <1—1 ) * 4 + 2 ) = 0 T H E N 2 7 3 2
| i
0< I> = C < < 1 - 1 ) * 4 ) / C << 1 - 1 ) * 4 + 2 ) ; K 0 < I) = < K < I ) - Q < I ) ) / 0 < I ) * 1 0 0
I F Z< < 1 - 1 ) * 4 + l ) = 0 THEN 2 7 3 7
i
U 0 < I)= Z < < I-1 )*4 )/Z < < I-1 )*4 + 1 )
! '
...................
i
;J...1.. :
..
m < I)= C < ,< I-l)* 4 )/C < < Ir l)* 4 + l) .
M
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
.2 7 3 5
| ‘! 2737
i
2738
* !| 2 7 3 9
;2740
2741
M 1 22 77 44 23
2745
v
2750
■ 2760
2770
t
2780
2790
28Q 0
~ “ 2 8 iO
i >,2820
■ J'2 8 3 0
2840
.
2850
2860
2870
2880
2890
2900
2 9 1 3
U 2 < I> = (M Q .(I> -U i(I)> /U l(I> *1 0 0
IF J (I)> .« K < I)T H E N H 9 = d (I> j .
? FK ( I >> J <I ) THENM 9=K( I )
!
I F M 9 < U 0 ( I ) THENrt9 =U0 ( 1 )
! ! :
E 0 (I> » H 9
i
'
;
i
i |
I F U O ( I ) < > O T H E N E l ( I ) = N 9 / U 0 <I >
IF K (I)O Q T H E N E 2 (I> = M 9 /K (I> .
I F d ( I > < > 0 T H E N E 3 ( I >“ H 9 / U ( I > i
NEXT!
I
C Q N F I G < P R I N T ON T T Y )
i
P fC lN T
8 -- ----------------
•1
* ■ • '
, | It i ; :; |
■ .
1O K
•
i |...
’ .1
.
i i . i . ' - r j. .
.
.
»<•) •' 1
T i
,
/.*. Q
2985
2990
3000
4000
4010
4020
4025
4030
5000
5010
5015
■ 5017
5018
5020
1
1 i t ■•*r
N E X T I
1'
!
*
••
5 * •»
\
• f 1
|
i '-";
I
■
.
V. i . I >i i i
! - - i . ■'
•TV'1
.j
ii
:
i
f.U
'
'ii
'
■
.'
r. 1
> F * CL “ * F
f
1 •'
;
i
i
; j i .-.ji
•i i i
ir
.
•
. :
•J X
j • #•
i
'
’
,Ji1 .41 . 1
! *
if';
FGRI=1TC}N :
i j i !
: I; • :
it
i : || 1 !
%-g
P R I N T X O X f ’ P E A K ' f l r T A B C l O J r ‘ C - * f C ( ( 1 - 1 > * 4 + 0 > f * H - * :rC< ( 1 - 1 ) * 4 + l > f !
P R I N T * F - * f C ( < 1 - 1 > * 4 + 2 ) t * C L r ‘ f C ( < 1 - 1 ) * 4 + 3 ) f *NG C O f o P p * f W ( I )
P R IN T T A B (iq > F *N G /S :*F T A B (1 9 )» ;£ 5 Z rP < < I-l> *4 > F !
! I ■’ |. '
P R I N T T A B ( 3 l > f P ( ( 1 - 1 > * 4 + 1 ! ) r TAB( 4 3> f P ( ( 1 - 1 ) * 4 + 2 ) f T A B ( 5 5 ) * P ( ( 1 - 1 ) * 4 + 3 )
P R I N T T A B ( 9 > f * A / N H Q l : ■ * T A B ( 1 9 ) » X 1 X f I < ( I - l > * 4 > , fTA B (3 1 ;> p l ( < 1 - 1 > * 4 + 1 > f
P R IN T T A 6 (4 3 > » I((I-l)*4 + 2 )> T A B (5 5 )fI < ( I - l ) * 4 + 3 )
;! I
P R I N T T A B ( 9 > t ‘ N r tp L E J * fTABX 1 9 ) t X 2 S L i Z ( ( 1 - 1 ) * 4 ) f T A B < 3 1 > f Z ( ( 1 - 1 > * 4 + 1 ) »
P R IN T T A B T 43)f Z ( < £ - l ) * 4 + 2 ) r T A B < 5 5 ) f £ < ( I - l ) * 4 + 3 ) i N E X T I '
r
P R I N T ' - - . ----------------------- ;— '— r -------------------- - - ■ 4 — - ---------------------J 3 1 ) f Q1 ( 1 ) * !
P
R I N T T A B;........................
< 0 ) f .*
N G / S . CADE) 1 * r T A B ( 1 9 ) f Z S X f Q K O ) f TAB(
P R I N T T A B ( 4 3 ) » Q l ( 2 ) r T A B . ( 5 5 ) f Q K 3 ) -ii
j|
j
;
I
, ii' : .
NTTTTAABB< (Q0>) f *
A/NNC jL,
L |(
! (A U
9E>
A/NMC
) 55** f X A B ( 1 9 J f « i.|. f 0 (
/ .} i i »J I ' f » un * . 1 ' ! ;
P R IIN
P K l N T T A B ( 4 3 ) » 0 ( 2 ) » r f, t U l - . i
: !
■
i i
'
i
d d 4 / j . 1 J*-; ji’l U N X ) ’ '*
, 7A B C 50)fU 2<X )
>'.-.|
SI:
FOR I=rO JO ^ ; p R I c ( T % £ X f A j I * 4 > » ^ ( X 5 i c ^ + l . ) ’f A < X M + p f ^ ^ X x ^ + 3 ' > ; N E X T
CONFIG ( P R I N T ON S C R )? G O SUBS4D;G O TP 456 j
|! i
ERA S( 1 > f P R I N T ' L A S T * f F I R S T * t * T O ADDf CHANNEL!■i
IN P U T N 9 f N 8 f N 7 , N 6
! ! :
, !
| ■j : '
I
T
I
1
lj;=
V
FOR N5' * ’ N8 TO N9Frt ( N*+N3*4-3>=n<N6+N5*4H5>+NfFNE!XT NS
PRINT'AGAIN 1 NO Q dlN P U T N95 IF N 9 p l THEN 4D1|)
GOTO: 12X10
i
|
!
; ,
■I. '
ERAS
PRINT * INPUT AREAS*
FOR L 9 = 0 j TO 4 J IN P U T A , ( L 9 4 4 ) f A ( L 9 * 4 + 1 ) » A ( L , 9 * 4 + 2 >
NEXTl-9
j .
P R I N T *IP U T .. SO S '
IN P U T D ( 0 ) f O ( 1) f i ) \ 2 ) f D
. t t
C0TCJ-I5D I • !
i '■ I
feooo
P R IN T * INft'U I ■Hu i o i ' f i . s
tti*/ 4 Uv. i {J :*i •. 0 I
it.... I . l . u 4 i m u a . i >
ii. •» -i it i I. 4 ..i.i ii : t *. ■
Jl.*t *. 4
.m ~i.A« •
f A (L9)»i4+3J
with permission of the copyright owner. Further reproduction prohibited without permission.
;
Документ
Категория
Без категории
Просмотров
0
Размер файла
5 213 Кб
Теги
sdewsdweddes
1/--страниц
Пожаловаться на содержимое документа