close

Вход

Забыли?

вход по аккаунту

?

DESIGN AND FABRICATION OF MONOLITHIC BROADBAND MICROWAVE GALLIUM-ARSENIDE LOW NOISE FET AMPLIFIERS (MMIC, CAD, CHARACTERIZATION)

код для вставкиСкачать
PLEASE NOTE
The negative microfilm copy o f this dissertation was prepared and inspected by the
school granting the degree. We are using this film w ithout further inspection or
change. I f there are any questions about the content, please write directly to the
school.
INFORMATION TO USERS
The follow ing explanation o f techniques is provided to help clarify markings or
notations which m ay appear on this reproduction.
1 .T h e sign or “target” for pages apparently lacking from the docum ent
photographed is “Missing Page(s)” . If it was possible to obtain the missing
page(s) or section , they are spliced in to the film along w ith adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure com plete continuity.
2. When an image on the film is obliterated w ith a round black mark, it is an
indication o f either blurred copy because o f m ovem ent during exposure,
duplicate cop y, or copyrighted materials that should n o t have been film ed. For
blurred pages, a good image o f the page can be found in the adjacent frame. If
copyrighted materials were d eleted, a target note will appear listing the pages in
the adjacent frame.
3. When a map, drawing or chart, etc., is part o f the material being photographed,
a definite m ethod o f “sectioning” the material has been follow ed. It is
customary to begin film ing at the upper left hand com er o f a large sheet and to
continue from left to right in equal sections w ith small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until com plete.
4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Custom er Services Departm ent.
5. Som e pages in any docum ent may have indistinct print. In all cases the best
available copy has been film ed.
University
Micrtxiims
International
300 N. Zeeb Road
Ann Arbor, Ml 48106
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.
8504486
Ho, Thomas Chen-Chou
DESIG N A N D FA B R IC A TIO N O F M O NO LITHIC BRO ADBAND M IC R O W A V E
G A L LIU M -A R S E N ID E L O W N O IS E FET A M PLIFIERS
C o rn e ll U n ive rsity
University
M icrofilm s
International
Ph.D.
1985
300 N. Z eeb R oad, Ann Arbor, Ml 48106
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.
DESIGN AND FABRICATION CF MONOLITHIC
BROADBAND MICROWAVE GaAS LOW NOISE FET AMPLIFIERS
A T hesis
P resented
to
the F a c u lty
of
th e G raduate School
of C o rn ell U n iv e rsity
in P a r t i a l
F u lfillm en t of
D octor
th e R equirem ent
for
th e D egree of
of P hilosophy
by
T h o m a s C h e n - C h o u Ho
January
1985
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
BIOGRAPHICAL SKETCH
T h o m a s C . Ho w a s b o r n
1948.
He r e c e i v e d
In stitu te
degree
in S h ia n g -h e i,
a B .S . d e g re e
of T echnology,
Tao-Yuan,
from t h e U n i v e r s i t y
M arch 1 9 7 5 ,
receiv in g
both
fin ish
In Ju n e,
E lectro n ics
In stitu te
Taiw an.
T aiw an and an M .S.
of C a lifo rn ia ,
t h e M .S. d e g r e e ,
his
1976,
Los A ngeles
he p u r s u e d
can d id ate
he j o i n e d
a Ph.D .
1982,
he was em p lo y ed
resp o n sib le
d esign
directed
the
S o lid
R & D effo rts
D evices S e c tio n
and
MIC c o m p o n e n t s a n d s u b s y s t e m s
and c o m m u n ic a tio n
sin ce
S tate
he was A s s i s t a n t
on th e d e v e lo p m en t and a p p l i c a t i o n
E l e c t r i c a l E n g in eerin g ,
1982;
w h e r e he was
a n d d e v e l o p m e n t o f MIC
l e a v i n g CSIST,
o f m icrow ave d e v i c e s ,
radar
a s an
e m p h a s i s o n l o w - n o i s e a n d p o w e r GaAs FET
B efore
head o f
but
(CSIST), Lung-Tan,
and A s s o c i a t e S c i e n t i s t ,
S ectio n
1975,
at
the departm ent of
A ssistan t S c ie n tist
am p lifiers.
degree
i n December
and T e c h n o lo g y
Fr om 197 6 t o
com ponents w ith
A fter
and D e v e lo p m e n t, Chung Shan
of S cience
the
in
stu d ie s.
R esearch
for
22,
1970 from Chung Cheng
in E l e c t r i c a l E n g in e e rin g .
UCLA, a n d b e c a m e a P h . D .
he d i d n ' t
in
C h in a on J u n e
system s.
He j o i n e d
C o rn ell U n iv e rsity ,
t h e n he w o rk e d on t h e d e s i g n
and
for
the School of
in A ugust,
fab ricatio n
o f m o n o l i t h i c m i c r o w a v e GaAs I C .
ii
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Dr.
tech n ical
c ircu its
Tau
Ho h a s
published
rep o rts
in
the
and s u b s y s te m s .
Beta P i ,
four
area
papers
and num erous
of m icrow ave
He i s
in teg rated
a m em b e r o f E t a K a p p a N u ,
t h e N a t i o n a l E n g i n e e r in g Honor S o c i e t y ,
the
IEEE a n d t h e A m e r i c a n P h y s i c a l S o c i e t y .
i ii
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
T o my p a r e n t s
and
my l o v i n g
my c h i l d r e n
W ithout
th eir
I
far
w ife L i l l i a n ,
S u san and W i l l i s
stren g th
c o u ld n 't
fin ish
and c o n s t a n t e n c o u ra g e m e n t,
the
Ph.D . d e g r e e .
I owe f a r m o r e t o
th an could ever
them
be e x p r e s s e d
here.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ACKNOWLEDGEMENTS
I w ould l i k e
t o my a d v i s o r
Eastm an
for
t o e x p r e s s my m o s t s i n c e r e
and com m i'ttee c h a i r m a n ,
his
co n stan t
guidance.
I a l s o w ish t o
H erbert J .
C arlin
in terest
and f o r
P rofessor
support,
Professor
his
F.
Paul
to Professor
R. M c l s a a c f o r
s e r v i n g o n my c o m m i t t e e .
W a l t e r H. Ku f o r
L ester
e n c o u ra g e m e n t and a b l e
e x p r e s s my t h a n k s
and P r o f e s s o r
g ratitu d e
I
their
thank
support d uring
the
b e g i n n i n g o f my MMIC r e s e a r c h .
I
staff
t h a n k P r o f e s s o r E d w a r d D. W o l f a n d
for
the
use of
the
th e N a tio n a l R esearch
S tru ctu res.
C o stello ,
L ithograph
I
In p a r t i c u l a r ,
I g reatly
equipm ent
for
in
Subm icron
a p p r e c i a t e D.
a n d R. T i b e r i o
for
th eir
a n d D a v i d Mann M a sk F a b r i c a t i o n .
to Dr.
pro cessin g
D.W. W o o d a r d f o r
in stru ctin g
a n d a n s w e r i n g man y p r o c e s s
S p ecial
t h a n k s m u s t go t o L o v e l l
sharing
his
and
the a r t
en tire
a n d a d v i c e o n APPLICON CAD, SEM, E - b e a m
am o b l i g e d
in d e v ic e
of
and R eso u rce F a c i l i t y
D. M c C o l l i s t e r
in stru ctio n
state
his
ex p ertise
(S tretch )
i n m an y a r e a s
me
problem s.
C am nitz f o r
of d evice
p ro cessin g
h e l p i n g me w i t h E - b e a m m a s k f a b r i c a t i o n .
My t h a n k s
also
t o many o t h e r s
have w orked, m ost n o t a b l y J .
S m ith,
P.
T asker,
L u n a r d i , T.
Ohashi
B erry,
S. M ukherjee,
and C.
H.
a t C o r n e l l w i t h whom I
D. Van d e r M e r w e , P .
Lee,
J.
Hwang,
L.
N ear.
v
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Elma W eaver
hig h -q u ality
is
g ratefu lly
typing
of
th is
acknow ledged
th esis.
Linda B row nridge
assistan ce
Jorgensen
great
arran g in g
pro v id ed
speed
I
Dr.
in
conference
help
trav el.
d raftin g
of
and
Jane
the
fig u res
w ith
and d i l i g e n c e .
P a o S u n Lu a n d D r .
t o e x p r e s s my s i n c e r e
Kan C h o u , D i r e c t o r
of D epartm ent of E l e c t r o n i c s
D e v e l o p m e n t , Chung-S'nan I n s t i t u t e
T echnology,
fast,
I a l s o w ish to
her courteous
sk illed
a l s o w ould l i k e
D irecto r
for
her
Her p r o f e s s i o n a l ,
f r i e n d l y m a n n e r a r e much a p p r e c i a t e d .
thank
for
T aiw an,
of
thanks
and D eputy
R esearch
S cience
R epublic of C hina,
to
for
and
and
th eir
co n stan t
s u p p o r t and e n c o u r a g e m e n t.
T h e GaA s w a f e r s
su pplied
In stitu te
used
in
t h i s work w ere
by t h e H e w l e t t - P a c k a r d Com pany.
of S cience
much a p p r e c i a t e d
and T e c h n o lo g y ,
fellow ship
L aboratory provided
research
support,
kindly
Chung-Shan
R .O .C .,
provided
the
a n d COMSAT
support.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE OF CONTENTS
CHAPTER
TITLE
PAGE
1
INTRODUCTION
1
2
DESIGN CONSIDERATIONS OF MONOLITHIC
BROADBAND LOW NOISE GaAs FET AMPLIFIERS
5
2 .1
In tro d u ctio n
5
2 .2
M aterial C o n sid eratio n s
5
2 .3
Low N o i s e FET D e s i g n
7
2 .3 .1
M ininum N o i s e F i g u r e
4. L .
cue
2 .4
/"» _ »
_
ucttis
of
nnm
ra x
/
2 .3 .2
D evice S t r u c t u r e
10
2 .3 .3
D evice M e ta l lu r g y
15
2 .3 .4
D evice P a t t e r n
16
P assive
Layout
and A c t iv e E le m e n ts
for
M MIC 's
20
2 .4 .1
In tro d u ctio n
20
2 .4 .2
Lumped C o m p o n e n t s
22
2 .4 .3
M ic ro s trip T ransm ission
L ines
2 .4 .4
31
The G a l l i u m A r s e n i d e M e t a l S em iconductor
F ield E ffect
T ran sisto r
2 .5
36
B r o a d b a n d Low N o i s e MMICD e s i g n
42
2 .5 .1
42
G eneral
D esign P r i n c i p a l
vi i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER
T IT L E
2 .5 .2
PAGE
P r a c t i c a l Topology and
C irc u it R ealizatio n
C o n sid eratio n s
2 .5 .3
45
B ia s M ethods and
C o n sid eratio n s
3
48
A 7 - 1 4 GHz BROADBAND LOW NOISE GaAs
FET AMPLIFIER
54
3 .1
In tro d u ctio n
54
3 .2
G e n e ral Theory of N oiseT w o-ports
and Power G a i n
3 .2 .1
N oise T e m p era tu re ,
Figure
N oise
and N o i s e M easu re
3 .2 .2
Po w er G a i n s o f
3 .2 .3
S tab ility
of
3.3
55
a T w o-port
59
C o n sid eratio n s
a Tw o-port
64
D evice
C h aracterizatio n
65
3 .3 .1
T est F ix tu re
and C hip
H andling
3 .4
55
66
3 .3 .2
S -p a ra m e te r M easurement
68
3.3 .3
N oise P a ra m e te rs M easurement
80
B r o a d b a n d S i n g l e - e n d e d Low
N oise
FET A m p l i f i e r D e s i g n
3 .4 .1
Synthesis
86
of D istrib u te d
Broadband M atch in g N etw orks
86
vi i i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER
T IT L E
3 .4 .2
Perform ance
PAGE
and A n a l y s i s
o f B ro a d b a n d Low -N oise
FET A m p l i f i e r
3 .5
91
B r o a d b a n d Low N o i s e B a l a n c e d
A m plifier
4
10 0
A NEW FABRICATION TECHNIQUE OF LOW
NOISE GaAs MESFET FOR M M I C 's
10 6
4 .1
In tro d u ctio n
10 6
4 .2
T he C h a r a c t e r i z a t i o n
o f Mid-UV
P hotoresist
107
4 .2 .1
Mid-UV C o n t a c t L i t h o g r a p h y
10 7
4 .2 .2
The C h a r a c t e r i z a t i o n
of
AZ 4110 P h o t o r e s i s t
4 .3
4.4
5
109
D evice
Processing
116
4 .3 .1
In tro d u ctio n
116
4 .3 .2
M e sa D e f i n i t i o n
120
4 .3 .3
Ohmic C o n t a c t F o r m a t i o n
1 22
4 .3 .4
S ch o ttk y G ate D e f in itio n
124
4 .3 .5
Gold P l a t i n g
131
D evice
Perform ance
133
4 .4 .1
DC C h a r a c t e r i s t i c s
133
4 .4 .2
M icrow ave P e r f o r m a n c e s
144
Form ation
DESIGN AND FABRICATION OF GaAs
MONOLITHIC BROADBAND MICROWAVE LOW
NOISE AMPLIFIER
157
iX
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER
T ITLE
PAGE
5 .1
In tro d u ctio n
5.2
M o n o lith ic Broadband L o w -n o ise
A m plifier
157
D esign
5 .2 .1
C i r c u i t D esign
5 .2 .2
C irc u it R ealizatio n
S im ulated
5 .2 .3
5 .3
158
and
Perform ance
S en sitiv ity
O verlay C a p a c ito r
for
5 .4
158
A nalysis
167
F ab ricatio n
T ech n iq u e o f Broadband
Low N o i s e M M IC 's
1.78
5.4.1,
GaAs IC P r o c e s s i n g
5 .4 .2
M a sk D e s i g n a n d
O verview
F ab ricatio n
5.5
178
17 9
GaAs MMIC P r o c e s s i n g
18 4
P erfo rm an ce o f G aA s^M onolithic
B r o a d b a n d Low N o i s e A m p l i f i e r
6
16 4
Technology
M M IC 's
5 .4 .3
162
193
MONOLITHIC BROADBAND POWER COMBINER
205
6.1
In tro d u ctio n
205
6.2
D esign and R e a l i z a t i o n
of
7 to
14 GHz H y b r i d B r o a d b a n d I n t e r d ig itated
Lange C o u p le r
206
x
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER
T IT L E
6 .3
D esign
PAGE
and F a b r i c a t i o n
o f GaAs
M o n o lith ic Broadband I n t e r d ig itated
Lange C o u p le r
6 .3 .1
In tro d u ctio n
6 .3 .2
GaAs M o n o l i t h i c C o u p l e r
D esign
6 .3 .3
7
209
214
GaAs C o u p l e r P r o c e s s i n g
Overview
216
6 .3 .4
GaAs C o u p l e r F a b r i c a t i o n
217
6 .3 .5
GaAs C o u p l e r P e r f o r m a n c e
221
CONCLUSIONS AND SUGGESTIONS FOR FUTURE
RESEARCH
APPENDIX A
2 29
E-BEAM SOFTWARE FOR CORNELL LOW
NOISE MMIC' s
APPENDIX B
20 9
23 2
APPLICON CAD CHECK-PLOT OF
SEPARATE LEVEL FOR AMP38 BROAD­
BAND LOW-NOISE M M IC 's
APPENDIX C
237
MICROSTRIP ENGINEERING DESIGNAIDED DATA FOR SEMI-INSULATING
GaAs AND FUSED S I L I C A SUBSTRATES
REFERENCES
244
2 58
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
L I S T OF ILLUSTRATIONS
F IG U R E
2.1
2 .2
2 .3
2 .4
2 .5
2 .6
T IT L E
PAGE
The t y p i c a l e l e c t r i c a l p r o f i l e o f i o n i m p l a n t e d LEC u n d o p e d GaAs w a f e r f o r
C o r n e l l M M IC's.
8
C ro ss s e c t i o n o f f i v e ty p e s of low n o i s e GaAs M E S F E T ' s .
(a)-(d ) Recessed
s t r u c t u r e r e p o r t e d so f a r , (e) c o n ­
v e n t i o n a l f l a t - t y p e MESFET.
12
B asic device s tr u c tu r e of recessed
FET w h e r e L = 0 . 8 ym, W = 3 0 0 ym,
Ls d = 3ym.
14
G ate l i n e
d esig n .
p attern s
for
g ate
l o w n o i s e FET
18
C o r n e l l 3 0 0 8 0 . 8 ym g a t e l e n g t h ,
g a t e w i d t h GaAs FET l a y o u t .
300
ym
19
(a) A S i n g l e l o o p i n d u c t o r ; (b) a s t r a i g h t
r i b b o n i n d u c t o r ; (c) a c i r c u l a r s p i r a l
in d u cto r; (d) a square s p ir a l in d u cto r;
(e ) e q u i v a l e n t c i r u c i t f o r a s p i r a l
in d u cto r.
23
2 .7
C onfig u ratio n of
26
2 .8
(a) C o n f i g u r a t i o n o f an i n t e r d i g i t a l
c a p a c i t o r ; (b) c o n f i g u r a t i o n o f a n o v e r ­
l a y c a p a c i t o r w i t h a i r b r i d g e ; (c)
e q u iv a le n t c i r c u i t fo r s e r i e s m ounting;
(d) e q u i v a l e n t c i r c u i t f o r s h u n t
m ounting.
28
2 .9
C o n fig u ratio n
32
2.10
( a ) Th e p h y s i c a l
o r i g i n o f t h e MESFET
m o d e l ' s e l e m e n t s ; (b) t h e s m a l l s i g n a l
e q u i v a l e n t c i r c u i t o f a MESFET.
(A fter L i e c h t i , R ef. 3 3).
38
N o i s e e q u i v a l e n t c i r c u i t o f a GaAs
MESFET ( a f t e r P u c e l e t a l . , R e f . 3 5 ) .
41
2.11
of
resisto rs
f o r M M IC 's
a m icro strip lin e .
xi i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
F IG U R E
2 .12
2.13
2 .1 4
T IT L E
PAGE
(a) W ideband .lo w - n o is e a m p l i f i e r d e s i g n
w i t h l o s s l e s s e l e m e n t s ; (b) s i m p l i f i e d
d i s t r i b u t e d u n i l a t e r a l model f o r low noise desig n .
P r a c tic a l m o n o lith ic d is tr ib u te d
m atching n etw o rk s.
P r a c tic a l m ono lith ic d is tib u te d
m atching n etw o rk s.
2 .15
Kuroda h i g h - p a s s
2.16
T h e DC c h a r a c t e r i s t i c s
GaAs MESFET.
2 .17
3 .1
3.2
3.3
input
46
output
47
tran sfo rm atio n .
of
51
A v a i l a b l e power and a c t u a l
a tw o -p o rt netw ork.
for
52
power o f
view o f
P h o t o g r a p h o f NE 1 3 7 0 0 ( 0 . 5
l e n g t h ) FET c h i p b o n d i n g .
61
test
67
m pgate
69
3 .4
P hotograph of
3 .5
Sm all s i g n a l S -p a ra m e te r m easurem ent
te s t set-u p .
71
P h o t o g r a p h o f HP8409A a u t o m a t i c
n e t w o r k a n a l y z e r (ANA) s y s t e m a t
C o rn ell.
72
3 .7
Test
74
3 .8
S L1 a n d S 2 2 o f NE137 00 FET p l o t t e d
o n S m i t h c h a r t f r o m 2 - 1 8 GHz.
78
S 1 2 a n<3 S 2 l o f NE13700 FET
p l o t t e d on S m ith c h a r t from
79
3 .6
3 .9
3.10
fix tu re
test
49
a ty p ical
Five b a s ic b ia s in g c o n fig u r a tio n s
c o m m o n - s o u r c e GaAs MESFET.
The t o p v iew and s i d e
fix tu re.
43
fix tu re.
70
m odel.
Test set-u p of
m easurem ents.
2 - 1 8 GHz.
g a in and n o i s e
81
Kill
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE
3 .11
T IT L E
PAGE
S o u rce-pull te s t set-u p for
p a ra m e te rs m easurem ent.
noise
84
3.12
G ain re s p o n s e o f
3 .13
D is trib u te d e q u iv a le n t c i r c u i t of
NE1370 0 MESFET ( 7 - 1 4 GHz) f o r low
n o ise d esig n .
90
S y n th e siz e d broadband m atching
n e t w o r k s f o r 7 t o 1 4 GHz l o w - n o i s e
am p lifier.
92
7 t o 1 4 GHz b r o a d b a n d l o w - n o i s e FET
a m p l i f i e r c o n f i g u r a t i o n u s i n g NE13700
0 . 5 m i c r o n s g a t e l e n g t h MESFET..
93
C alcu lated g ain response of 7 to
1 4 GHz l o w - n o i s e FET a m p l i f i e r .
94
C a l c u l a t e d n o i s e f i g u r e and n o i s e
m e a s u r e r e s p o n s e s o f 7 t o 1 4 GHz l o w n o i s e FET a m p l i f i e r .
95
I n p u t and o u t p u t m i c r o s t r i p l a y o u t
on 1 5 - m i l - h i c k f u s e d s i l i c a
su b strates.
97
S i n g l e - e n d e d m odule o f 7 t o
l o w - n o i s e FET a m p l i f i e r .
98
3.1 4
3.1 5
3 .1 6
3 .17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
a m atching netw ork.
1 4 GHz
The m e a su re d p r e d i c t e d p e r f o r m a n c e s
o f 7 t o 1 4 GHz l o w - n o i s e a m p l i f i e r .
S ch em atic diagram
am p lifier.
of
88
99
balanced
101
M i c r o s t r i p l a y o u t s o f w ideband
balanced a m p lif ie r .
10 3
P h o to g ra p h o f w ideband b a la n c e d
a m p l i f i e r (7 t o 1 4 GHz) .
104
The m ea su red g a i n and n o i s e
a n c e s of w ideband b a la n c e d
am p lifier.
105
perform ­
xi v
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
F IG U R E
4 .1
4 .2
4.3
4.4
4.5
4 .6
4.7
4 .8
4 .9
4.10
PAGE
T IT L E
P h o t o g r a p h o f K a r l S u s s M J B / 3 UV300
s u b m i c r o n m as k a l i g n e r i n t h e
N a t io n a l R ese a rc h and R e so u rce
F a c i l i t y f o r Subm icron S t r u c t u r e s .
108
T h i c k n e s s o f AZ4000 s e r i e s p h o t o r e s i s t
v ersu s sp in speed a fte r a s o f t prebake
a t 8 0 ° C , 20 m i n u t e s .
112
SEM p h o t o g r a p h s h o w s t h e o p t i m a l
p h o t o r e s i s t (AZ41 10) p r o f i l e s
r e s u l t i n g f r o m Mid -U V p h o t o l i t h o g r a p h y .
114
SEM p h o t o s h o w s a n i n a p p r o p r i a t e
p h o t o r e s i s t (AZ4110) p r o f i l e r e s u l t i n g
f r o m Mid -U V p h o t o l i t h o g r a p h y .
115
An i n a p p r o p r i a t e c r o s s s e c t i o n a l
p h o t o r e s i s t p r o f i l e form ing th e
unw anted "wing t i p s " .
117
SEM p h o t o g r a p h o f m e t a l " w i n g t i p s "
due to an i n a p p r o p r ia te c r o s s s e c t i o n a l p r o f i l e of the g a te lin e
o p en in g .
118
C o n fig u ratio n of C o rn ell
MESFET.
119
(a) Mesa e t c h e d
m etalli z a tio n .
p attern
3 0 0 8 GaAs
(b) o h m i c
12 3
A lig n m en t m arks used i n th e g a t e
lith o g ra p h ic process of C o rn ell
3 0 0 8 GaAs MESFET.
1 25
A p e r f e c tly alig n ed
G aA s w a f e r .
126
p attern
from a
4 .11
G ate r e c e s s
4.12
(a) A u n ifo rm g a t e r e c e s s e t c h e d in
GaAs o b t a i n e d b y NH4 0 H : H 2 0 2 : D I : : 4 : 2 0 0 ;
( b ) SEM m i c r o g r p a h o f A Z 4 1 1 0 p h o t o ­
r e s i s t p r o file a f te r g ate recess
etch ed .
and l i f t - o f f
procedure.
127
129
xv
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
F IG U R E
4.1 3
4 .14
4 .15
4.16
4 .17
4.1 8
4 .19
4.20
4 .21
4 .22
4.23
T IT L E
PAGE
SEM m i c r o g r a p h o f C o r n e l l 3 0 08
MESFET ( a ) 0 . 7 5 pm g a t e o n r e c e s s e d
c h a n n e l ; (b) g a t e l i n e o v e r t h e m e s a
edge.
130
Photograph of
th e m esa.
132
gate
feed lin e
across
C o r n e l l 3 0 0 8 GaAs MESFEt a f t e r
gold p l a t in g .
134
SEM m i c r o g r a p h s h o w s a c l o s e - u p
view o f t h e g a t e f e e d a r e a a f t e r
p latin g .
gold
135
T y p ic a l I-V c h a r a c t e r i s t i c s o f C o r n e ll
0 . 7 5 pm g a t e l e n g t h i o n - i m p l a n t e d
l o w n o i s e M ESFETs, ( a ) I d s - 40 mA,
V<jS = 3 . 5 V ; ( b ) I ^ s s ~ 60 mW/
Vd s = 3 * 5V*
137
G ate-d rain c h a r a c e r is tic s of C o rn ell
3 0 0 8 i o n - i m p l a n t e d l o w - n o i s e GaAs
MESFETs.
138
Photograph o f tra n s m is s io n l in e t e s t
p a t t e r n f o r t h e ohm ic s p e c i f i c
r e s i s t a n c e m easurem ents.
The s p a c i n g
b e t w e e n t h e p a d s a r e 2 , 3 , 5 , 1 0 , 20
m icro n s.
140
C o n t a c t r e s i s t a n c e s m e a s u r e d from
th e tra n s m is s io n l i n e t e s t p a t t e r n .
141
Photograph o f g a te r e s i s t a n c e
p a t t e r n and Fat-FE T p a t t e r n .
1 42
test
O p t i m a l n o i s e f i g u r e (NFm;[ n ) a n d
a s s o c i a t e g a i n (Gn f ) v e r s u s
frequency a t bias c o n d itio n s of
V.
= 3 . 5 V and I .
= 10mA.
ds
ds
N o ise f i g u r e and a v a i l a b l e g a in
c o n t o u r s o f C o r n e l l 3 0 0 8 MESFET
a t 1 2 GHz.
150
151
xv i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
F IG U R E
4.24
4 .2 5
4 .26
4 .2 7
5 .1
5 .2
5 .3
5 .4
5 .5
5 .6
5 .7
5 .8
T IT L E
PAGE
N o i s e f i g u r e (NF) a n d a s s o c i a t e d
g a i n (Gn f ) v e r s u s d r a i n c u r r e n t
f r o m C o r n e l l 30 08 GaAs a t 10 GHz.
152
E q u i v a l e n t c i r c u i t o f C o r n e l l 30 08
i o n - i m p l a n t e d l o w - n o i s e GaAs MESFET
u n d e r t h e b i a s c o n d i t i o n s o f V<3 S = 3 . 5 V
a n d I d s = 1 0 mA* T h e e f f e c t o f
bonding w ire in d u c ta n c e is not
in clu d ed .
153
P o w e r g a i n s f o r a C o r n e l l 300 8 GaAs
MESFET v e r s u s f r e q u e n c y u n d e r l o w noise co n d itio n s.
154
P o w e r g a i n f o r a C o r n e l l 30 08 GaAs
MESFET v e r s u s f r e q u e n c y u n d e r h i g h
g ain b ia s c o n d itio n s .
155
s l l » s 22 a n d r on o f C o r n e l l 30 08
i o n - i m p l a n t e d GaAs MESFET u n d e r l o w n o ise bias c o n d itio n .
159
S 1 2 an<3 S 2 1 o f C o r n e l l 30 08 i o n i m p l a n t e d GaAs MESFET u n d e r l o w - n o i s e
bias c o n d itio n .
160
S y n th e s iz e d broadband m atching netw orks
f o r 6 t o 1 2 GHz m o n o l i t h i c GaAs l o w noise am p lifier.
161
6 t o 1 2 GHz m o n o l i t h i c b r o a d b a n d l o w n o ise am p lifier c o n fig u ra tio n .
163
The a r t w o r k l a y o u t f o r C o r n e l l
b r o a d b a n d l o w - n o i s e MMIC (AMP38)
r e a l i z a t i o n s w ith in te r n a l bias
circu i try.
165
C a l c u l a t e d g a i n r e s p o n s e and n o i s e
fig u re versus frequency.
166
G ain s e n s i t i v i t y
v a riatio n .
168
to
transconductance
G ain s e n s i t i v i t y to s u b s t r a t e t h i c k ­
n e s s v a r i a t i o n o f LEC GaAs S . I . w a f e r .
169
xvi i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE
5.9
T IT L E
PAGE
G ain s e n s i t i v i t y to w id th v a r i a ­
tio n of m ic ro strip lin e s .
170
5.10
O verlay c a p a c ito r
172
5.11
T h i c k n e s s o f p o l y im id e (Dupont P I-2 5 5 5 )
v e r s u s s p i n s p e e d a f t e r c u r i n g a t 270°C
f o r 60 m i n u t e s .
174
SEM p i c t u r e o f a f i n i s h e d o v e r l a y
c a p a c i t o r by u s i n g p o l y i m i d e a s
d ie le c tric fie ld .
176
F a b r i c a t i o n flow c h a r t o f C o r n e l l
broadband lo w -n o ise a m p lif ie r .
180
APPLICON CAD l a y o u t ( F ET 3 8 8 ) o f
m o d i f i e d C o r n e l l 3 0 0 8 GaAs MESFET
f o r b r o a d b a n d l o w - n o i s e M M IC's.
181
APPLICON CAD l a y o u t o f C o r n e l l
b r o a d b a n d l o w - n o i s e M M IC 's (AMP3 8 ) .
182
A l i g n e r m a s k s d e s i g n o f AMP38 b r o a d b a n d
m icrow ave lo w - n o is e a m p l i f i e r .
185
The f a b r i c a t i o n s e q u e n c e o f t h e m o n o l i t h i c
m i c r o w a v e GaAs I C by u s i n g i o n im planted la y e r.
18 6
A c o m p l e t e GaAs MESFET o n a b r o a d b a n d
l o w - n o i s e MMIC w i t h a g a t e l e n g t h
o f 0 . 6 5 ^m.
188
M icrograph of g a te
t h e m e s a i n MMIC.
189
5 .1 2
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
w ith a ir b r id g e .
feed lin e
across
SEM m i c r o g r a p h s h o w i n g a g a t e
m e s a e d g e i n MMIC.
lin e
over
Photograph of polyim ide d i e l e c t r i c
f i l m on t h e g r o u n d o l a n e a f t e r c u r e d
250°C.
( a ) RF b y - p a s s o v e r l a y c a p a c i t o r i n
b r o a d b a n d l o w - n o i s e M M I C ' s ; (b) A i r ­
bridge to in te rco n n e c t the m ic r o s tr ip
l i n e a n d t o p m e t a l o f RF b y - p a s s
overlay c a p ac ito r.
190
at
122
194
xv i i i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
F IG U R E
5.23
5.24
5 .25
5.26
5 .2 7
5 .2 8
5.29
5.30
6.1
6.2
6 .3
6 .4
6 .5
PAGE
T IT L E
P h o t o g r a p h o f C o r n e l l AMP3 8 m o n o l i t h i c
broadband lo w -n o is e a m p l if i e r a r r a y
o n a GaAs w a f e r .
195
C olor m icrograph o f C o rn e ll broadband
l o w - n o i s e MMIC a f t e r s c r i b i n g .
Chip
s i z e i s 2 . 8 mm x 1 . 8 mm x 0 . 2 mm w i t h
i o n - i m p l a n t e d GaAs MESFET, L = 0 . 6 pm,
Wg = 3 0 0 Mm.
9
196
SEM m i c r o g r a p h o f d e v i c e s a i r b r i d g e
i n MMIC.
(a) T o p v i e w ; (b ) t i l t i n g
sid e
view.
197
P h o t o g r a p h s h o w i n g C o r n e l l 6 - 1 2 GHz
m o n o lith ic broadband lo w -n o ise
a m p l i f i e r c h i p on t h e f a c e o f a d i m e .
199
I - V c h a r a c t e r i s t i c s o f C o r n e l l 0 . 6 5 pm
g a t e MESFET on i o n - i m p l a n t e d Ga A s MMIC.
200
P h o t o g r a p h o f C o r n e l l b ro a d b a n d low
n o i s e MMIC c h i p a f t e r s c r i b i n g a n d
b o n d i n g on a c h i p c a r r i e r .
201
Broadband m o n o lith ic lo w -n o is e a m p l if i e r
m o d u le on a t e s t f i x t u r e .
202
The m ea su red and p r e d i c t e d p e r f o r m a n c e s
o f a 6 t o 12 GHz b r o a d b a n d GaAs
m o n o l i t h i c low n o i s e a m p l i f i e r .
203
3 - d B i n t e r d i g i t a t e d L a n g e c o u p l e r on
1 5 -m il-th ic k fused s i l i c a s u b s tr a te .
20 8
Photogrpah of
fused s i l i c a .
210
3-dB Lange c o u p l e r
on
P h o t o g r a p h o f a p a c k a g e d 3-dB i n t e r ­
d i g i t a t e d Lange c o u p le r m odule.
211
C oupling as a fu n c tio n o f freq u en cy a t
c o u p l e d and d i r e c t p o r t s o f t h e f o u r - l i n e
in te rd ig ita te d co u p ler.
212
M e a s u r e d i s o l a t i o n a n d VSWR o f i n t e r ­
d i g i t a t e d L a n g e c o u p l e r on f u s e d
s ilic a su b strate.
21 3
xix
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE
6.6
6.7
6.8
6.9
6.10
6.11
T IT L E
C o n fig u ratio n of
Lange c o u p l e r on
su b strate.
PAGE
3-dB i n t e r d i g i t a t e d
2 0 0 - U m - t h i c k GaAs
APPLICON CAD p l o t o f
Lange c o u p l e r .
215
in terd ig itated
218
F a b r i c a t i o n p r o c e s s s e q u e n c e o f GaAs
m o n o l i t h i c i n t e r d i g i t a t e d Lange
co u p ler.
219
C om plete m o n o li th i c
c o u p l e r on GaAs.
222
in terd ig itated
P h o to g rap h show ing th e c o u p lin g
i n t e r c o n n e c t e d by a i r b r i d g e s .
strip
223
SEM m i c r o g r a p h s h o w i n g a 6 -Umh e ig h t a ir brid g e of m o n o lith ic
b ro ad b a n d i n t e r d i g i t a t e d Lange
co u p ler.
224
P hotograph o f th e t e s t f i x t u r e for
t e s t i n g GaAs m o n o l i t h i c i n t e g r a t e d
co u p ler.
225
C o u p lin g as f u n c tio n o f freq u en cy
a t c o u p le d and d i r e c t p o r t s of th e
GaA s m o n o l i t h i c i n t e r d i g i t a t e d c o u p l e r .
227
B .l
APPLICON CAD c h e c k - p l o t o f AMP3 8 0 1 .
238
B.2
APPLICON CAD c h e c k - p l o t o f AMP3 8 0 3 .
239
B. 3
APPLICON CAD c h e c k - p l o t o f AMP3803.
2 40
B. 4
APPLICON CAD c h e c k - p l o t o f AMP3804.
241
B. 5
APPLICON CAD c h e c k - p l o t o f AMP3805.
242
B. 6
APPLICON CAD c h e c k - p l o t o f AMP3806.
2 43
C .l
C o n fig u ratio n of m ic ro s trip
tran sm issio n l in e .
245
6.12
6.13
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
L I S T OF TABLES
TABLE
2.1
2.2
3 .1
3 .2
TI TLE
PAGE
T he c o l o r c o d e s o f FET38 A p p l i c o n
CAD c h e c k - p l o t .
20
T h e P r o p e r t i e s o f Som e R e s i s t i v e F i l m s
f o r M M IC 's ( a f t e r P u c e l , R e f . 1 ) .
26
Common s o u r c e S - p a r a m e t e r s o f NE13 700
GaA s FET u n d e r l o w n o i s e b i a s
c o n d i t i o n s , V^g = 3 . 0 V a n d I d s = 10mA
(~ 15% I<3ss) •
e f f e c t o f bond w i r e
inductance is in clu d ed .
77
N o i s e P a r a m e t e r s o f N E 1 3 7 0 0 0 . 5 urn G a t e
L e n g t h GaAs FET a t V ,
= 3.0V ,
! d s = 10mA.
85
4 .1
Mid- UV R e s i s t E v a l u a t i o n P r o c e s s .
11 3
4 .2
D evice P ro c e s s in g L e v e ls .
120
4 .3
Summary o f C o r n e l l
C h a ra cte ristic s.
145
4 .4
4.5
4.6
5 .1
3 0 0 8 MESFET DC
Common S o u r c e S - p a r a m e t e r s o f
C o r n e l l 3 0 0 8 GaAs FET u n d e r l o w n o i s e
b i a s c o n d i t i o n s , V^g = 3 . 5 V a n d
I d s = 10mA (~ 15% l o s s ) • T h e
e f f e c t o f bond w i r e i n d u c t a n c e i s
not in clu d ed .
146
Common s o u r c e S - p a r a m e t e r s o f C o r n e l l
3 0 0 8 GaAs FET u n d e r h i g h g a i n b i a s
c o n d i t i o n s , Vds = 4 . 0 V a n d I d s = 45mA
(~ 75% I n s s ) •
T h e e f f e c t o f b on d
w ire inductance is not i elu d ed .
147
N o i s e P a r a m e t e r s o f C o r n e l l 3 00 8 GaAs
MESFET a t VDg = 3 . 5V a n d I DS = 10 mA.
14 9
C om parison o f M easured R e s u l ts of
O v erlay C a p a c ito rs u sin g D if f e r e n t
D i e l e c t r i c i n M M IC 's B e t w e e n t h e
L a b o ra to rie s in I n d u s tr y .
177
xx i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE
T IT L E
PAGE
5.2
GaAs I C P r o c e s s i n g L e v e l s .
17 8
5.3
T h e C o l o r C o d e s o f AMP3 8 a n d FET3 8 8
APPLICON CAB C h e c k - p l o t .
183
The C o lo r Codes
CAD C h e c k - p l o t .
2 17
6.1
C.l
C.2
o f LACOP APPLICON
C h a r a c t e r i s t i c i m p e d a n c e ZQ , s h o w w a v e f a c t o r A /X
versus
m i c r o s t r i p l i n e w i d t h f o r S . I . GaAs
s u b s tr a te w ith e
= 1 2.9 and
th ic k n e ss H = 8 m ils.
246
C h a r a c t e r i s t i c i m p e d a n c e ZQ , s l o w wa v e f a c t o r X /X
versus
m i c r o s t r i p l i n e w idth f o r fu se d s i l i c a
w ith e
= 3 .7 8 and t h i c k n e s s
H = 15 m i l s .
253
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER 1
INTRODUCTION
The s u p e r i o r
over
use
those of
silico n
the m a te ria l
ap p licatio n s
speed
p h y sical
for
d ig ital
p ro p erties
have le d
researchers
as sem i-co n d u ctin g
both
high
in teg rated
circu its
increased
FETs and p a s s i v e
und esirab le
p arasitic
p la c in g m atching
in
th e
bandw idth,
gain
ap p licatio n
of
number o f c i r c u i t s
facto rs
in d icate
m icrow ave
that
to
m o n o lith ic
in teg rated
p o ten tial
and p r o m is e
com m unication,
systems. ^ ^ ^
for
the
above
be a c h i e v e d
In a d d itio n ,
These
to
hybrid
reliab ility ,
m icrow ave
A c c o r d in g l y , m icrow ave
c ircu its
are
showing
in p h a s e - a rr a y
electro n ic
in
a large
in p a r a l l e l .
compact c h ip s i z e ,
(M ICs).
im provem ents
(MMICs ) w i l l h a v e
and econom ic a d v a n ta g e s com pared
circu its
bonds and
a rse n id e m o n o lith ic
circu its
perform ance,
in teg rated
can
be p r o c e s s e d
of
By e l i m i n a t i n g
t h e FET,
fig u re
gallium
The
in teg ratio n
to w ire
these d e v ic e s.
can
to
a r s e n i d e FET c a n b e
elem ents due
and n o i s e
in teg rated
sig n ifican t
and d e v i c e s . ^
com ponents.
netw orks c lo s e
w orldw ide
a n a lo g u e and h ig h
by t h e m o n o l i t h i c
circ u it
arsenide
and s e m i - i n s u l a t i n g
frequency
p e r f o r m a n c e o f m icrow ave g a l l i u m
su b stan tially
of g alliu m
great
radar,
c o u n te r m e a s u r e and s u r v a l l e n c e
T o make m o n o l i t h i c m i c r o w a v e c o m p o n e n t s
sy stem s,
the
use o f
ion
im p lan tatio n
1
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
2
d irectly
in to
a ttractiv e
sem i-in su latin g
t e c h n i q u e owing
rep ro d u cib ility
In t h i s
in v o lv es
(CAD)
for
su b strates
to
its
is
a very
u n ifo rm ity ,
and s e l e c t i v i t y .
research
d evice
w ork,
a sy stem atic d esign
ch aracterizatio n ,
and c o m p u te r - a id e d
which
com puter-aided
sy n th esis
(CAS)
has
design
been s tu d ie d
b r o a d b a n d GaAs m o n o l i t h i c l o w - n o i s e a m p l i f i e r s .
achieve
subm icron g a te
w afers,
a state
process
has
l e n g t h GaAs FET by u s i n g
o f a r t mid-UV
been d e v e lo p e d
4000 s e r i e s
p h o to resist
sin g le-en d ed
FET a m p l i f i e r
has
co n tact
o p tical
circu itry .
To im prove
sin g le -e n d e d m o n o lith ic
am p lifier,
the
c o u p le r^
was a l s o
technique
has
by u s i n g
technique
input
broadband
in v estig ated ,
w ith
in tern al
2,
T his
the
l o w - n o i s e FET
in terd ig itated
and a n o v e l
the
Lange
fab ricatio n
g e n e ra l design c o n s id e ra tio n s
involves
the
design
p rin cip le of
tran sm issio n
lin e,
a n d l u m p e o e l e m e n t s o n GaAs s u b s t r a t e s ,
broadbanding
bias
been d e v e lo p e d .
n o i s e GaAs F E T , m i c r o s t r i p
design
design
am p lifier,
30 0 nm, UV
b r o a d b a n d GaAs l o w - n o i s e FET a m p l i f i e r
d escribed.
o p tim al
low n o i s e
a n d o u t p u t VSWR o f
broadband m o n o lith ic
In C hapter
m o n o lith ic
broadband
been developed
the
t h e AZ
The f a b r i c a t i o n
m o n o lith ic
lith o g rap h ic
im planted
p h o to lith o g rap h y
a t C o r n e l l by u s i n g
system s.
technology of
also
( 3 0 0 nm)
To
and
o f MMICs.
ru les
the
of
C hapter
and
for
are
low
d istrib u ted
the
3 covers
basic
the
a 7 - 1 4 GHz l o w n o i s e GaAs FET
so u rce-p u ll
technique
to c h a ra c te riz e
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
3
F E T 's
n oise p aram eters,
reflectio n
co efficien t
(F
(R ) a n d min im um n o i s e
n
a m p lifiers,
fabricated
such
as o p tim al
),
eq u iv alen t
fig u re
3
a single-ended
on 1 5 - m i l - t h i c k
noise
(NF . ) .
mm
1
noise
by u s i n g
com m erical a v a i l a b l e
E lectric
Company.
S im ulated
resistan ce
Two b r o a d b a n d
and a b a la n c e d
su b strates
source
ty p e,
are
v i a MIC t e c h n i q u e s ,
0 . 5 m i c r o n s FET f r o m N i p p o n
and m easured r e s u l t s
are
com pared.
C hapter
ach iev e
using
4 co n sid ers
a 0 . 7 5 Um g a t e
a new f a b r i c a t i o n
l e n g t h G aA s FET
im planted w a fe rs .
The d e t a i l
technique
(C ornell
process of
to
3008)
by
near-deep
UV ( 3 0 0 nm) p h o t o l i t h o g r a p h y w i t h AZ 4 0 0 0 s e r i e s
p h o to resist
system s
the C o rn ell
3 0 0 8 FET a r e
C hapter
is
5 describes
m o n o lith ic
th e
broadband
em ploying C o r n e ll
shown.
a ls o m easured
design
3008
circu itry .
The g e n e r a t i o n
sim u latio n
are
electro n -b eam
resu lts
GaAs l o w n o i s e
the
masks
given
are
is
of
am p lifier
Then
f i n a l MMIC
o f MMIC p a t t e r n s
process
are
fab ricatio n
em p lo y ed on
of
and p r e s e n t e d .
0 . 7 5 m i c r o n s FET.
an aly ses
t h e MMIC f a b r i c a t i o n
and
( 6 - 1 2 GHz)
sen sitiv ity
d irect-w rite
M icrow ave p e r f o r m a n c e s
for
the
show n, and d e t a i l s
presented.
The
and com pared to
e x p e r i m e n t a l l y m easurer3 p e rfo rm a n c e s .
C hapter
6 co n sid ers
in terd ig itated
silica
Lange c o u p le r
su b strate
fab ricatio n
the
via
technique
design
of
broadband
on a 1 5 - m i l - t h i c k
t h e MIC t e c h n i q u e .
of m o n o lith ic
fused
A novel
broadband
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
of
4
in terd ig itated
su b strate
is
perform ances
co n clu sio n s
fu tu re
Lange c o u p le r
also d escrib ed .
o n GaAs s e m i - i n s u l a t i n g
The m easured and c a l c u l a t e d
a r e com pared and p r e s e n t e d .
a r e made
effo rts
in C hapter
in extending
th is
7 w ith
F in ally ,
suggestions
so m e
for
work.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER 2
DESIGN CONSIDERATIONS OF MONOLITHIC BROADBAND
LOW NOISE Ga As FET AMPLIFI ERS
2.1
Introduction
Gallium a rse n id e
the
loss
field
effect
dielectric
microwave
( Ga As )
is
transistors,
in
its
integrated
an e x c e l l e n t m a t e r i a l
and
it
sem i-insulating
circuits.
basic m aterial
for
integrated
circuits
both a c t i v e
initial
where
a r e co m b in e d on t h e
design
device
and
passive
control
should
advance
in order
initial
design
chapter,
achieve
and f i n a l
system atic
broadband
the m aterial
and p a s s i v e
During the
low-noise
preparations,
active
a n d IC p r o c e s s
altogether
carefully,
a good a g r e e m e n t
experimental
design
the
GaAs h a s
broadband
designs
be c o n s i d e r e d
to
form f o r
same c h i p .
circuitry
be a l o w
t h e m o n o l i t h i c microwave
phase of m o n o lith ic
Ga As FET a m p l i f i e r s ,
also
Therefore,
become t h e
elem ents
can
for
between
results.
considerations
l o w n o i s e Ga As FET a m p l i f i e r s
in
In
this
for m onolithic
w ill
be
described.
2.2
M aterial Considerations
The q u a l i t y
for
low n o i s e
MESFET.
doping
and
U sually,
levels
of
t h e Ga As m a t e r i a l
high g ain
performances
uniform ity,
and a c t i v e
is
layer
the
in microwave
close control
thickness,
key f a c t o r
of
n-type
freedom
from
5
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
6
im purities
profile
and
are
traps,
the
Now f i v e m a j o r
layer
necessary
(VPE),
( 3)
(MOCVD),
m olecular
im plantation.
from poor
( 2)
beam e p i t a x y
the
control
a b ru p t doping p r o f i l e s ,
techniques
C urrently,
VPE i s
industry.
selectivity
highest p u rity ,
and s u r f a c e
are
capable
to cost
still
and p l a n a r i t y
ion
t h e economy,
of device
im plantation
but
ion
suffers
of
th e most
the high
remain
used
a n d p o w e r Ga As ME S F E T ' s
because of
(5)
considerations.
t h e m o s t c ommon t e c h n i q u e
However,
(1)
smoothness.
and have d e m o n s t r a t e d
due
low n o i s e
configurations
namely,
( MBE) , a n d
l a y e r s ^ '^ '* ^ , they
laboratory
fabrication
form t h e c h a n n e l
AsCl^ v a p o r - p h a s e e p i t a x y
A l t h o u g h MBE a n d MOCVD t e c h n i q u e s
performance device
to
chem ical vapor d ep o sitio n
LPE o f f e r s
thickness
used
o f a good m a t e r i a l .
transistor,
(LPE),
metal organic
( 4)
are
effect
epitaxy
and s h a r p d o p i n g
requirem ents
techniques
o f Ga As f i e l d
liquid-phase
smooth s u r f a c e
is
for
in
uniform ity,
and c i r c u i t
a very a t t r a c t i a v e
technique.
Recent e f f o r t s
sem i-insulating
(LEC)
on t h e g r o w t h o f
produced
high
suitable
for
thermal s ta b le
crystals
im plantation.
High p e r f o r m a n c e
GaAs ME S F E T ' s h a v e
dB a s s o c i a t e d
purity
bulk
GaAs b y L i q u i d E n c a p s u a t e d C z o c h r a l s k i
m e t h o d ^ h a v e
m aterial
high
been
realized
resulting
gain
at
in
12 GHz ,
resistivity
use
in d i r e c t
ion-im planted
with
and
ion
low-noise
this
a 1 . 6 dB n o i s e
figure
a n d a 2 . 2 dB n o i s e
a n d 10
figure
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
7
with
7.4
dB a s s o c i a t e d
gain
A m o d e r a t e l y doped
doping c o n c e n tra tio n
to
fabricate
work.
formed
x 10
and
profile
cm
of
-2
an
of
2.3.
x 10
2.1
is
17
—
cm J h a s
with
at
is
peak
been choosen
in
u n d o p e d LEC t y p e w i t h o u t
The a c t i v e
im plantation
230 keV.
ion-im planted
the
approxim ately
dose
dose
C o r n e l l MMI C ' s
m obility
io n -im p lan ted wafer
a n+ l a y e r .
by s i n g l e
12
1 8 GHz.
l o w n o i s e M E S F E T ' s a n d MMI C ' s
The s u b s t r a t e
epi-layer
6
the
of
at
channel
a buffer
layer
of Si^g w ith
The t y p i c a l
this
a dose of
electrical
LEC u n d o p e d Ga As w a f e r
shown i n F i g u r e
above m a t e r i a l
has
2.1.
is
The H a l l
been m easu red ,
for
electron
and
is
4 2 3 0 cm2 / V - s .
Low N o i s e FET D e s i g n
2.3.1
Mi n i mu m N o i s e F i g u r e
Consider
frequency
the
c a s e where
below c u t - o f f
of
t h e Ga As FET
t h e FET i s
frequency,
operating
fT, at
at
a
room
tem perature.
T h e mi n i mu m n o i s e f i g u r e , F _ . , a s s h o w n b y
3
mm
ri 3 i
Fukui
, i s d e s c r i b e d by t h e f o l l o w i n g e x p r e s s i o n :
F
• = 1 + KLf / g (R + R )
min
Jm g
s
where
f
operating
K
noise
L
effective
frequency,
coefficient
gate
of
i n GHz
approxim ately
length,
0.27
in micron
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
8
co
6 E 12 c m' 2
E
2 3 0 kev
o
1 10
Z
o
I-
<
GC
tZ
in
o
z
o
o
10
GC
UJ
CC
GC
<
o
.15
10
02
0.4
DEPTH
Figure
2.1.
The t y p i c a l
-
Cornell
pm
electrical
ion-implanted
for
0.6
profile
of
LEC un d o p e d GaAs w a f e r
MMI C' s .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
9
gm
transconductance at
ft 1 o r
ac g a t e
Rs
total
reducing
the
resistance
series
source
gate
series
length,
improve
transconductance,
noise
the
or
length
is
result
in a compromise
through
most
usually
several
times
MESFET's,
given
source
be s e e n
resistance,
the noise
the gate
i n ft.
figure.
or g a te
Increasing
the
frequency without
resistance
w ill degrade
influences
resistance.
important design
between t h e
that
the
noise
Therefore,
param eter,
desired
the
gate
a n d ma y
performance
fabrication.
To o b t a i n
is
in
i n ft
can
T h e g a t e w i d t h , W,
only
it
it
the operatin g
figure
the
bias,
resistance,
source or g a te
figure.
and e a s e o f
resistance,
above e q u a tio n ,
w ill
decreasing
gate
S
Rg
From t h e
null
the
a more r e a s o n a b l e
desirable
and n o i s e
to choose d ev ices
the operating
unit
gain
frequency.
c u rre n t gain c u to f f
with
For
figure,
fT values
short gate
frequency,
fT , is
f 141
by E n g l e m a n n and L i e c h t i 1
f
T
where L is
J as
~ i _ Ze
2n L
gate
of a p p ro x im a te ly
(2 . 2 )
length
2
x 10
and
7
is
a peak e le c tr o n
velocity
cm/sec.
R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.
10
Sub-quarter-m icron gate
very
low -noise,
performance
of
0.8
is
high-frequency
instead
of
length
MESFET,
at
operating
of
0.8
2.3.2
essential
source
section
for
larger
and g a t e
than
A typical
indicates
metal
(Nippon E l e c t r i c
1
that
It
12 GHz .
than
the
A gate
Cornell
low n o i s e
wafer.
a short
due
to
the
is
the
surface
0.5
C o m p a n y NE388)
is
the
The s o u r c e
F E T ' s was f o u n d
this
o f more t h a n
gate
a lso minimizes
resistances.
flat-type
expected
to
parasitic
resistance
b e much
depletion
ym-gate
layer.
low-noise
which has s o u rc e
5 Si, b u t a g a t e
resistance
of
Si[ 1 8 ] .
There are
resistance,
recess
com plicated
for
through
on an i o n - i m p l a n t e d
example of
resistance
and
cutoff
40 GHz i s mu c h h i g h e r
low n o i s e .
of conventional
only
and slow er
(EBL), t h e c a l c u l a t e d
frequency
length
Device S tr u c t u r e
Last
FET
a ga te
by u s i n g m i d - U V o p t i c a l
ym h a s b e e n c h o s e n f o r
fabricated
For
t h e more e x p e n s i v e
approximate
if
K-band or Ka-band)
t o be o b t a i n e d [ 1 5 - 1 7 ] ^
E l e c t r o n Beam L i t h o g r a p h y
frequency
are d esirab le
(i.e.,
vim, w h i c h c a n b e a t t a i n e d
lithography
desired
lengths
t wo a p p r o a c h e s
preparation
gate
to reduce
of
a selective
structure.
The fo rm e r
fabrication
a reproducible
process,
and
r 191
product1
, while
the
source
n+ c o n t a c t
layer
has very
is
very d i f f i c u l t
the
latter
is
more
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
11
easy
to con tro l
Recently,
to
during
the
be s u p e r i o r
process.
recess gate
in performance
type M ESFET^^'^^ .
be c l a s s i f i e d
the
as
structure
to
has been
shown
the conventional
flat-
The p o s s i b l e
illustrated
recessed
in Figure
structures
2.2(a)
-
( d) .
gate
r e c e s s was fo rm ed by t h e
same t e c h n i q u e
four
cases.
s u r f a c e was c o v e r e d
The e n t i r e
wafer
A Z -photoresist.
After
photoresist,
u n m a s k e d Ga As w a s e t c h e d
solution.
of
the
the
This etching
epitaxial
channel
reached
was found
to
a specified
the
substrate.
chemical
2 . 2 (a-c),
used.
was o b v i o u s
advantageous
becuase
source
resistance,
source
resistance
the
region
(d)
is
of
resistance
\181
MESFET 1
should
the
to
J.
be
has
it
better
to
the p r o file s
in F ig u re
that
(a)
type
the
is
layer
active
structure
was m o st
the
difficult
thin
in
directions
Comparing
in
than
the gate
nature of
effectively
Therefore,
in
2.2
faceting
It
that
the a c tiv e
crystallographic
b e e n shown t o
half
of
shown i n F i g u r e
would p r o d u c e
Rg .
a deep-recess
sh a p e which
the
T h i s was d u e
etch
it
to
the
value.
in th e p r o f i l e s
relative
an
away by e t c h i n g
thickness
design
the
remove a p o r t i o n
be c a u s e d by t h e d i f f e r e n c e
orientations
the
the
to
The
with
a g a t e window i n
was c o n t i n u e d
GaAs u n t i l
The d i f f e r e n c e
of
patterning
in a i l
can
type
type
(a).
and
the
the
(c)
since
large.
a cylindrical
reduce
possible
reduce
becomes
with
source
to
( b)
of conventional
the
lowest
Type
edge
source
flat-type
resistance
Since
the
in
type
(d)
specified
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
12
G ate
S ource
(a)
D ra in
-y
'/77777A
7777777,
S'
n - Layer
B u f f e r & S I. S u b s t r a t e
(b)
ZZZZZ2L
(c)
1777m
(d)
m m
(e)
Figure
2.2.
.M f fi
W/7777.
■ —
■
Y zm n .
■2Z22Za_
Cros s
section
low-noise
Recessed
(e)
3ZZZZZL
of
five
types
GaAs MESFET' s .
structure
Conventional
(a)-(d)
reported
flat-type
of
so
far.
MESFET.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
13
ion-im planted m aterial
achieve
p re v io u s ly mentioned could
the d eep -recess,
chemical
solution
unknown,
so th e
recessed
gate
for
and s i n c e
cylindrical
type
(a)
structure
the
parasitic
the
s um o f
Rs
=
where R
are
Rsc 2
source
three
Rc
is
c
source
detailed
+
P a r t : *-a l
and g a t e
+
source
rs c
where
p ,
c*
~
of
carrier
concentration,
is
has
improved,
the e le c tro n
the
The
and
the channel
The c o n t a c t
2.3,
as
by
R
.
scl
between
resistance
the
in a
t^l]
( 2 - 4)
width,
q is
m obility,
'a'
is
the
NQ i s
the
electron
the
active
free
layer
T o m i n i m i z e R„ s o t h a t R„
c
s
ohmic c o n t a c t
to a value
pc wa s m e a s u r e d
and
s p e c i f i c ohmic c o n t a c t
contact.
the s p e c ific
been o p tim iz e d
work.
the
the gate
y is
under
resistance,
-'P c/fq i'V )
charge,
thickness
in Figure
be e x p r e s s e d
S
ohmic c o n t a c t
electrodes.
2
W is
R_, can
structure
( 2 - 3>
resistances
i n &*cm , i s
resistance,
recess-gate
2
s h o r t c h a n n e l FET c a n b e f o u n d
Rc
as
component r e s i s t a n c e s ,
Rs c l
the
is
i o n - i m p l a n t e d MESFET.
As d e p i c t e d
resistance,
wet
2 . 2 was a d o p t e d
for Cornell
3 0 0 8 GaAs MESFET.
special
edge shape e t c h
in Figure
F i g u r e 2 . 3 shows th e
for Cornell
the
not
of
by t h e
6
x 10
resistance,
—7
£2 #cm
transm ission
2
in
p
this
line
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced
with permission
l-sd
Gate
of the copyright owner.
Drain
Source
Further reproduction
SC1
Active Epitaxial
Laye r ( C h a n n e l I
jjlSiy D e p l e t i o n
Region
prohibited without permission.
S e m i - I n s u l a t i n g Ga As
S u b s t r a t e -------
Figure
2.3.
Basic
device
L = 0.8
p m,
structure
W = 300
ym,
of
recessed
= 3 ym.
gate
FET wh e r e
15
m e t h o d ^ 2 ®^, w h i c h w i l l
and r s c 2
can
also
structure t
2.3.3
be d e s c r i b e d
be m i n i m i z e d
by o p t i m i z i n g
s o me l a b o r a t o r i e s
morphology,
high
low r e s i s t a n c e
temperature
that
same p u r p o s e
keeping
is
very
line
important
contact
m etallization
Ag l a y e r
prevents
participation
of
the
overall
plating,
in
Schottky
, but
work.
criteria:
but Al g a te
m ultilayer
AuGe-Ni/Ag/Au
During
t h e AuGe-Ni l a y e r
high S c h o ttk y
stability,
the
quality
as a w e ttin g
in
gate m e ta lliz a tio n
transm ission
stable
and s e r v e
in high
Therefore,
this
of
is
and v e r y d i f f i c u l t
m icrostrip
remains
silver
achieving
lines
the
the
agent,
alloying.
f o r MMI C ' s i s
high m e t a l l i c
stability
com patible with
interconnect
i n MMIC's.
especially
m etallization
at
the
and
and
B o t h A l a n d Au h a v e
not
to
1)
barrier
process co m p atib ility .
conductivity,
r 251
2)
and
for
u p p e r Au l a y e r
b a s e d on t h r e e
conductivity,
a smooth
N ickel£23' 24] i s
t h e Ni s e r v e s
balling
The c h o i c e o f
generally
for
was a d o p t e d
operation,
for
a smooth c o n t a c t morphology,
lithography.
alloying
poor
the channel
been used
offers
a g in g ^ 22^.
as a replacem ent
in
has
contact,
f re q u e n tly used
fine
Rs c i
Device M etallu rg y
MESFET i n
which
4.
.
The AuGe/Ag/Au o h m ic c o n t a c t
under
in Chapter
with
3)
high
the gold
the
A l t h o u g h Au h a s
high
Ti/Pt/Au
tem perature
has
been
R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.
16
achieved
used
a v e ry good q u a l i t y o f S c h o t t k y g a t e ,
f o r MMIC f a b r i c a t i o n
combines
using
a Pt
implanted
this
barrier
to
pattern
of Schottky g a te
figure
the gate
from
Hence,
was u s e d f o r
broadband
ion-
l o w n o i s e MMI C ' s
for
the gate
a l o w - n o i s e FET
resistance
w ill
resistance.
the voltage
degrade the
Gate s e r i e s
drop associated
in the g ate
m etallization
contact
pad and
other
must
network w ith
given
been d e te r m in e d ,
current
gate m etallizatio n
resistance
series
a s much a s s o u r c e
results
distributed
has
is very im portant
flow of g a te
between
length
since the gate
resistance
the
diffusion.
Device P a t t e r n Layout
design,
the
It
t h e c o n d u c t i v i t y o f Au
interm etallic
l o w n o i s e MESFET a n d
Once t h e g a t e
noise
[26,27] ^
work.
2.3.4
line
industry
good a d h e s t i o n o f T i w i t h
Ti/Pt/Au m e ta lliz a tio n
in
in
and w i d e ly
the
be c o n s i d e r e d
an e q u i v a l e n t
end.
with
Hence,
as a
lumped g a t e
by*' 2 ® ' 2 9 '*
(2.5)
w h e r e Rm i s
the g a te m e t a l l i z a t i o n
R = -—i-r
m
Lh
resistance
g i v e n by
(2. 6)
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
17
where
gate
is
metal
the
gate metal
thickness,
Figure
2.4
and L i s
Also,
Rg,
figure,
increased.
m U M *
line
by a f a c t o r
(2.5)
layout
and
width
single
gate
gate.
pads.
of
i _
n
xu
-c l y u i c
^
in F ig u re
n
four
fingers
4
i . U «
• *t /
tn c
resistance,
gate
The s o u r c e
for
to
that
noise
layout.
»
h“ y a t c
between
gate
of
a total
3008
an
is
use
two
k = 16 o v e r a
t e r m in a l wraps around
m e t a l was c h o s e n
2.4.
so the g a te
by a f a c t o r
the C ornell
to
it -
fingers,
with
gate
in an i n c r e a s e d
a very good compromise
and g a t e
in order
A
gate
the
c a n be s e e n
the gate
The c o n f i g u r a t i o n
aluminum
it
( W) , r e s u l t s
be d e c r e a s e d
3 0 0 Pm w a s c h o s e n
The g a t e
(2.6),
K '-')
gives
w ill
shown
/ — \
b onding pad t o d r i v e
resistance
m ultiple
adds co m p lex ity to the
^ yb/cr
complexity
either
might reduce
k as
number o f
a
configuration,
The u s e o f
gate p a d s ^ ^
the
uut r
for
gate
But t h i s
xtic*.CLuicr
patterns
shows t h e p o s s i b l e
in g a te
unless
the
length.
from E qs.
increase
h is
gate
or m u ltip le
resistance,
resistivity,
the
l o w n o i s e FET d e s i g n .
fingers
specific
the
gate
two
width of
i m p l a n t e d FET.
be a A u / P t / T i
be c o m p a t i b l e w i t h
system
later
instead
MMIC
processing.
The c o m p l e t e d
system
at
layout
the N atio n a l Research
Submicron S t r u c t u r e s
is
wa s d o n e o n t h e A p p l i c o n CAD
the colour
as
codes of
The low e x p a n s i o n
glass
and R esource F a c i l i t y
shown i n F i g u r e
2.5.
Table
for
2.1
t h e F E T 3 8 APPLICON CAD c h e c k - p l o t .
c h r o m i u m mask p l a t e s
(supplied
by
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
18
W /A
y/ / a
Rg2 . -?9! , k - 4
k
• T - gate •
(c)
(--------
w
G a t e F in g e rs
W : g a te w id th
Figure
2.4.
Ga t e
line
patterns
for
l ow n o i s e
FET d e s i g n .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fi gure
2.5.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
layout.
FET
Co r n e l l
3008
0.8
ym gate
length,
300
ym,
gate
wi dt h
GaAs
19
20
Tau L a b o r a t o r i e s )
were
used
ohmic,
for
generating
which
in c lu d e s mesa,
using
t h e C a m b r i d g e EBMF-2 e l e c t r o n
C ornell.
The d e t a i l e d
presented
in Chapter
gate
t h e mask s e t
and p l a t i n g
levels,
by-
be a m l i t h o g r a p h y
at
device processing
w ill
be
4.
Table 2.1
T h e C o l o r C o d e s o f FET38 APPLICON
CAD C h e c k - p l o t
Level
Color
Function
1
Black
Me s a
2
Blue
Ohmic
3
Red
Gate
4
Orange
Plating
Passive
2.4.1
and A c t i v e E le m e n ts
Introduction
Ga As h a s
become t h e
m o n o l i t h i c microwave
both
chip.
f o r MMI C' s
active
distributed
integrated
and p a s s i v e
The p a s s i v e
or
basic m aterial
circuits
elem ents
elements
take
lumped e l e m e n t s
for
the
( MMI C' s )
where
a r e c o m b i n e d on t h e
the
form o f
same
either
w h o s e maxi mum d i m e n s i o n
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
21
is,
a t most,
a tenth
frequencies^.
of a wavelength
Two m o s t p o p u l a r
w i t h Ga As a r e m i c r o s t r i p
M icrostrip
and
transm ission
fabrication
coplanar
plane
since
waveguide,
on t h e
circuits.
transm ission
and c o p l a n a r
lines
it
top surface
has
the chip
"Via Hole"
work,
transm ission
and w i l l
elem ents,
useful
be d e s c r i b e d
resistors,
resistive
is
lumped e le m e n t s
For
lower
for
distributed
it
bands
inductive
increases
the
2.4.2.
and c a p a c i t o r s
the
bias
inductors
elem ents
(L-band
packing d e n s ity
the
in
this
Lumpe d
are
networks,
In
design
very
a n d RF
some c a s e s ,
flexibility.
c a n be e x t r e m e l y
particularly
and S - b a n d )
stubs with
sim ple
u s e d a s DC b l o c k i n g
the c o u p le rs .
spiral
the matching
frequency
been a d o p te d
p r o d u c e more c i r c u i t
i n s t a n c e , .p l a n a r
useful
for
for
Hence,
they are
for
only
ground
t e c h n o l o g y makes
in Sectio n
where
capacitors
term ination
has
inductors
i n MMIC d e s i g n ,
a n d RF b y - p a s s
line
than
an a c c e s s i b l e
m i c r o s t r i p d e s i g n muc h m o r e f l e x i b l e .
m icrostrip
used
h a v e d o m i n a t e d MMIC d e s i g n
it
of
lines
waveguide.
ha s more a d v a n t a g e s
since
The r e c e n t
a t microwave
larger
for
instead
in s i z e .
the
of
Thus,
o n t h e GaAs c h i p
significantly.
The a c t i v e
GaAs m e t a l
element
semiconductor
to
be s t u d i e d
field
effect
in t h i s
work
is
transistors
( ME S F E T ) .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
22
2.4.2
A.
Lu mp e d C o m p o n e n t s
Planar
Inductors
Planar
inductors
realized
with
for
a number o f
m onolithic c ir c u its
c a n be
configurations,
achieved
a single-layer
m etallization
popular
a straight
forms,
m ultiturn
'sp ira l'
2 . 6 ( a ) , ( b ) , (c) ,
The
2 . 6 (a)
and
ribbon,
inductors,
SL i s
width
and
be c a l c u l a t e d
is
interesting
greater
thickness
to note
inductance
same t o t a l
conductor
length.
that
I,
The
inductors
-
loop
1.76)
inductor
in F ig u re
of
the
nH/mil
the
the m e ta lliz a tio n .
It
a straight
loop,
( 2 *7)
w is
than a s in g le
conductor
loop
The i n d u c t a n c e o f
is
has a
inductor
the
strip
having
the
straight
is
L = 5 . 0 8 x 1 0 - 3 £ ( Jin ^
where
l o o p and a
a s ^ ^
the circum ference of
t
a single
three
a s shown i n F i g u r e s
a single
L = 5 . 0 8 x 1 0- 3 J l ^ n ^
where
There are
by
( d) .
inductance of
can
scheme.
all
w and
t
are defined
inductance
can
+ 1.193
of
single
be p r a c t i c a l l y
+ 0.2235 ^ ) n H / m i l
as
in
the
last
equation.
l o o p and s t r a i g h t
realized
for
( 2 ’ 8)
the
ribbon
inductance
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
23
a
W
w
Cb)
Ca)
—I H-P
Cd)
Cc)
------------11-----Co
R
L
0---- —vWV'--- Mj ODOO'—
: C,
C2 :
O
(e)
Figure 2 . 6 .
(a)
A single
ribbon
inductor;
inductor;
(e)
loop
(d)
equivalent
inductor;
(c)
(b)
a circular
a square
circuit
spiral
for
a straight
spiral
inductor,
a spiral
inductor.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
24
range of
2 to
3 nH o r
the m u ltitu rn
Ga As w i t h
film
less.
'sp ira l'
results
circular
of
L = 0 . 0 3 1 2 5 n 2d
inductor
up t o
'sp ira l'
For
the
has
50 nH.
inductor
larger
inductance,
been f a b r i c a t e d
The
inductance of
in Figure
2.6(c)
is
nH/mil
o
on
thin
given
(2.9)
where
dQ = 5di
n is
and
the
s
is
number
the
practical
inductor
area.
L -
in
spacing
a greater
given
as
of
view,
c m,
strips
the
achievable
for
strip
in m ils.
square
From a
'sp ira l'
spiral
inductance
square m u ltitu rn
in m ils
inductor
t h e CAD
per
usable
spiral
f 321
1
1
surface
and N i s
width of
than a c ir c u la r
85S4/ 3 p “ 5/ 3 = 8 . 5
the
the
ease of p r e p a r a tio n of
inductance
is
w is
between th e
because of
and
where S i s
width
turns,
i s more p o p u l a r
The
inductor
of
(2 . 1 0 )
( w+s )
design point
in MMIC's,
artwork,
= 2.5 n
area
the
s 1/ 2 n 5 / 3
nH
2
i n cm , p
number o f
is
( 2 . 11 )
the
spiral
turns
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
25
Figure
'sp ira l'
the
2.6(e)
is
inductor.
form o f
an e q u i v a l e n t
There a re
self-capacitance
CQ , a s
well as
due
to
the
the
l o s s which
the
loss
the
shunt
effects
factor
substrate,
the Q factor
the
w ill
because
skin
100 t o
proxim ity of
effective
the
inductor.
accurate
B.
for
proportional
.
to
the
on t h e Ga As
d e p e n d e n t on t h e m e t a l
thicknesses
are
usually
close
thickness
200
the
ym.
Thus
the
effect
plane
under
the
chip
and
increase
The f o r e m e n t i o n e d
the design
inductance
R accounts
t h e GaAs c h i p
inductance,
into
a n d C2
I n many c a s e s
a ground
the
considered
the m etal
depth.
be o n l y
also
in
I t may b e s h o w n t h a t
a n d f 1 *5
is
a
capacitance
capacitance
is
for
parasitics
The s e r i e s
o f an i n d u c t o r
model
inter-turn
be m i n i m i z e d .
and s t r i p w i d t h
to
and
fringing
inductance
thickness
associated
of ground.
should
circuit
for
the
factors
in o rd er
of
is
to
loss
factor
should
to get
reduce
of
be
a more
t h e MMIC's.
Resistors
Planar
resistors
term inations
and
a variety
forms,
of
bias
are e s s e n tia l
networks.
film s
2.7
configuration
resistive
the
film
is
good microwave
of
resistor
on t h e
substrate.
resistor
are
good
RF
be r e a l i z e d
in
two fo rm s a r e
and d e p o s i t e d m e t a l
deposited
Ga As s e m i - i n s u l a t i n g
They can
but most p o p u l a r
semiconductor
shows
i n MMI C' s f o r
film s.
Figure
in which
top surface
of
the
the
The q u a l i f i c a t i o n s
stability
of
a
and
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
26
resistor
metal
semi-insulating substrate
Figure
2.7.
Configuration
Table
The p r o p e r t i e s
(after
m a t e r ia l
Cr
of
s ome
Pucel , Ref .
R E SIS T IV IT Y
(
yfl-C/7»)
of
resistors
for
MMIC' s.
2.2
resistive
films
for
MMIC's
1).
TCR
(p p * n /°C )
M ETHOD OF
D EPOSITION
S t A S iL i i Y
CO M MENTS
13 ( B U L K )
*3000 (B U L K )
EVAPORATED
SPUTTERED
C -E
EXCELLENT
ADHERENCE TO GaAs
SS 135
♦2500
EVAPORATED
SPUTTERED
G-E
EXCELLENT
ADHERENCE TO GaAs
180-220
-100 T O *500
SPUTTERED
60-600
200
E V A P . ( J0Q°C)
SPUTTERED
TuN
280
-180 T O
T .jN
300
*50 T O
1
—
Ti
Ni C r
BULK
GftAft
1 3-100
o h m t/sq .
*3 0 0 0
-300
*11 0
E
C A N BE A N O D IZ E D
G-E
S T A B I L I Z E D B Y SLOW
A N N E A L A T 100»C
R E A C T ! VE LY
SPUTTERED
C
C A N N O T BE A N O D IZ E D
R E A C T ! VE LY
SPUTTERED
E
CA N BE A N O D IZ E D
E P I T A X Y OR
IM P LAN TAT IO N
E
N O N L IN E A R A T H IG H
CU RR EN T DENSITIES
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
27
reliability,
low t e m p e r a t u r e c o e f f i c i e n t o f
and go o d power a n d c u r r e n t
applications
they
b u l k Ga As r e s i s t o r
have high
be r e a l i z e d
p o s i t i v e TCR.
ranging
from
In g e n e r a l, m etal
semiconductor
nonlinear
rather
since
behavior
nitride
C.
in Table
uses
three
exhibits
thin
circuits,
be c o m p a t i b l e w i t h
film m aterial
properties
of
and a
Not a l l
for m onolithic
titalum ,
a
densities
that
of
u s e d w i t h Ga As
nichrome,
ranging
and t a n t a l i u m
from 13-600
s ome r e s i s t i v e
types
the
of
interdigital
shown
in Figure
a single m etallization
layers.
The t o p and
which sandw ich
capacitors
that
film s
pftare
are widely
capacitor
and t h e M e t a l - I n s u l a t o r - M e t a l
capacitor
is
later
over
Capacitors
2.8(a),
airbridge
preferred
resistivities
u s e d o n GaAs M M I C ' s ,
overlay
which can
2.2.
The two b a s i c
Figure
are
h i g h DC c u r r e n t
tantalium ,
which have
Planar
film s
tech n o lo g y must
The d e t a i l e d
listed
c a n be u s e d e v e n t h o u g h
3-100 ohm/sq.
suitable
Some p o s s i b l e
chrome,
cm.
are
I n many
The r e s i s t i v i t y
because the
at
handling.
tem perature d e p e n d en c e ^ ^ .
film s
their
GaAs.
are
film s
strong
m aterial
density
resistance,
2.8(b).
the middle d i e l e c t r i c
used
to
interconnect
the
in
(MIM)
The f o rm e r
scheme whereas
bottom l a y e r s
shown
the l a t t e r
are
layer.
has
electrodes
Th e
top metal
layer
and
the c i r c u i t r y .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
28
a ir-b rid g e
d ie le c tric
7 -
.W
GaA^S^
(b)
(a)
L
R
C
- n m ' ----- 'A/V---- lh
T C1
Cc ;
\( d
»• />
Figure
2.8.
(a)
Configuration
capacitor;
over!ay
(c)
equivalent
(d)
an i n t e r d i g i t a l
configuration
capacitor
mounting;
for
(b)
of
with
circuit
of
an
airbridge;
for
equivalent
series
circuit
shunt mounting.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
29
The
interdigital
o n GaAs s u b s t r a t e s
capacitance
(less
capacitors
as m ic r o s tr ip
than
2 pf)
microwave f r e q u e n c i e s .
presented
where N i s
in
in
the
number o f
is
I
of
the
a function
enough,
A^ a n d A 2 c a n
assumed
for
2.8(a)
interdigital
of
length
the width o f each
each
finger
and
If
the
two e x t e r i o r
the
measured
substrate
fingers,
is
thick
b y A^ = 0 . 2 2 5
pF/in.,
v a lu e s were
an
and
but
the
infinitely
the
( b)
thick
show t h e
capacitors
and
substrate
or
no
are
and f r i n g i n g
circuit
mounting
Here, R r e p r e s e n t s
and s h u n t
the
represented
loss
in
by s e r i e s
capacitances
C-^ a n d C2
ground.
The m e t a l - i n s u l a t o r - m e t a l
shown i n F i g u r e
line
equivalent
in s e r i e s
parasitics
i n d u c t a n c e s L and
bias
the
have been
be a p p r o x i m a t e d
respectively.
the c a p a c ito r,
to
in
plane.
mounting,
due
realized
pF/unit
W is
the length
o f H/ W.
a n d A2 = 0 . 2 5 2
Figure
for
be
form ulas
fingers,
interior
and a r e
ground
Design
but small
T h e c o n s t a n t A-] a n d A2 r e p r e s e n t
contribution
actually
can o n ly
( er + l ) [ ( N- l JAj ^ + A2 ]
inches,
inches.
pF/in.
lines,
fabricated
by A l l e y a s
c = ft
finger
can be e a s i l y
2.8(b)
by-pass
and
is
(MIM)
a desirable
tuning
circuit
overlay capacitor
component
for
applications
dc
because
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
30
it
requires
than
the
larger
a much s m a l l e r
interdigital
i m p l e m e n t e d o n GaAs c h i p .
er
is
m aterial,
d is
the
and t h e r e b y
(2 p f -
the
I
*W
realative
perm eability of
the
dimension of
thickness of
the
dielectric
reported
by W o lf f and K n o p p i k ^ 4 ^.
capacitor
a length
I
of
can
be
is
C =
the d i e l e c t r ic
the
electodes,
layer.
an o v e r l a y c a p a c i t o r
In t h i s
considered
eo e r ^ ^
■ .------ + 2 C
d
el
and
Mo r e
has
been
analysis,
as m ic r o s tr ip
a n d w i d t h W, s h o w n
T h e c a p a c i t a n c e may b e w r i t t e n
in F ig u re
a
line,
2.8(b).
as
(2 1 3 )
u .-l j ;
+ 2 C
and C e0 are edge c a p a c i ta n c e s
c
t o be
(2.12)
and W a r e
retangular
allows
pF
calculation
Ce l
20 p f )
The c a p a c i t a n c e
accurate
having
a given capacitance
from
c = 8,842 £r
where
for
capacitor,
capacitance values
calculated
area
e2
given
by
= I f
1____________ e o £ r W1
(2.14)
2 l v 1 Z1 ( W , d , E r )
d
1 %
and
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
31
c
= i
e2
1
r
w h e r e v^ a n d v 2 a r e p h a s e v e l o c i t i e s ,
characteristic
impedances of
w i d t h W a n d &,
respectively,
Figure
capacitor,
the
2.8(c)
film s
is
is
loss of
about
very
and s i l i c o n
with d i e l e c t r ic s
dielectric
the
ranging
m aterial
dielectric
should
(Si^N^)
to
technology of o verlay
Chapter
overlay
tends
to
be
of
dielectric
oxide
(SiC>2 )
a r e most p o p u lar
three
films
from 3 .0
-
a GaAs c h i p ,
under
for
silicon
technology with
be p l a c e d
with
The Q o f o v e r l a y
The c h o i c e
Polyim ide,
Z2 a r e
line
in th e c a p a c i t o r
40.
im portant.
and
circuit
the e le c tr o d e s .
30 t o
nitride
and
the m ic ro s trip
the equivalent
the dominant lo s s
resistive
capacitor
is
(2.15)
] W
2 l v 2 Z2 (Jtr d , e r )
7.0.
Employing
the
the c o m p a tib ility
of
t h e Ga As MMIC p r o c e s s i n g
consideration.
capacitor
w ill
The d e t a i l e d
be d i s c u s s e d
in
5.
2.4.3
M ic ro s trip Transm ission Lines
M icrostrip
dielectric
is
separated
substrate
characteristic
is
given
illustrated
impedance of
w i d t h W, h e i g h t H a n d
0.005)
as
by
from a ground
plan
in F ig u re
2.9.
the m ic ro strip lin e
negligible
thickness
t;
by a
The
with
t/H £
[36' 371
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
32
S trip C on d uctor
G a A s S. I.
€ r ■ 1 2.9
G round
H = substrate
W = strip
t
Figure
2.9.
= strip
P la n e
thickness
c o n d u c t o r wi dt h
conductor
Configuration
of
thickness
a microstrip
line.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
33
F o r W/H < 1 ,
Z
o
= - 6 0 - An
,-------- ~
•^eff
(|5 +
'W
H
)
(2.16)
where
off
= £ r + 1 4. Er ~ 1
2
2
r /u
(
12H.-0.5
W
. n n.
0.04(1
W. 2 ,
jj) ]
(2.17)
F o r W/H > 1
z
“o
_________ 1 2 0 T i / / e e f f _______________________
An (W/H + 1 . 4 4 4 )
(2.18)
~ W/H + 1 . 3 9 3 + 0 . 6 6 7
where
e
ef f
e +1
e -1
r
+
r
2
2
=
f 161
Hammerstad1
ee f f
an<^ Zo *s ^ e s s
respectively,
W/H i n
For
note
for
terms of
that
(1 + 12H j - 0 . 5
t h e maxi mum r e l a t i v e
fc^ a n + 0 . 5 p e r c e n t
0.005
Zq a n d
(2.19)
< W/H <. 1 6 .
and
His
error
in
0.8 percent
expression
for
er are:
W/H < 2
W _
8 e x p (A)
H
e x p ( 2A) - 2
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
34
F o r W/H > 2 ,
|
H
= |
IT
e -1
+ -jU -
{B-1-Jln ( 2 B- 1 )
1
—
V—
2er
[in (B-l) +0. 39-
]}
er
(2 . 21)
where
/e
+1
e „ -l
n
...
A=eo/-V +r+i (0*23 +£ri)
2Zo / e r
The
also
zero-thickness
be m o d i f i e d
f 3 81
strip 1
1.
effective
Here
strip
(t=0)
to consider
the
strip
width,
formulas
the
width,
Wg a s
given
thickness
of
above can
the
W,
is
replaced
follows
(t
< H and
by a n
t
< W/ 2 )
F o r W/H > 1 / 2 -jt
F o r W/H < 1 / 2 t;
S
H
= » + _t
H
(1 + &n 4JLW
irH U
t '
(2.23)
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
35
At h i g h e r
constant,
frequency
ee f f »
and c h a r a c t e r i s t i c
m icrostrip line
Thus
the
begins
transm ission
dispersion
in
£e f f
m
e
p
f f
the e f f e c tiv e
is
= e
'
'
to
i m p e d a n c e , ZQ ,
of
a
change as frequency in c r e a s e s .
line
d isp ersiv e^ 38' ^
given
-
dielectric
.
The
by^40^
£f ~
(2.24)
£e f f
r
O
1 +
(f/fp)
G
where
f
(2.25)
p
G
Here,
" 81TH
= 0 . 6 + 0 . 0 0 9 Z^
frequency
i n cm.
It
f,
is
can be seen
(2.26)
i n GHz a n d
substrate
from Eq.
(2.24)
that
thickness,
for
f
H,
>> f ,
Cr
ee f f ( f )
= se f f .
The d i s p e r s i o n
in
ZQ i s
expressed
by
[ 41]
z
(f)
=
377 _H__________
We f f < £ > ^
where
the
effective
W_f f ( f )
width,
(2.27)
<£ >
we f f ( f )
is
g i v e n by
^eff(o)~W
2«)
^
U.2B)
= W+
i + ( f / f pr
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
36
The above e q u a t i o n s
m icrostrip
of
the
lines
1 9 8 1 ^ 2^).
S I GaAs i s
the
has
of
1 9 7 9 ;
been shown t h a t
loss
s h o u l d be c o n s i d e r e d
g e t more a c c u r a t e
of
of
the
designing
into
loss
been m easured
by
Higashisaka
the d i e l e c t r ic
alumina
the
of
is
insertion
al.,
loss
of
and
almost
loss
in order
performance sin c e
a Ga As s u b s t r a t e
et
substrate
t h e MMIC's d e s i g n
prediction
the
The i n s e r t i o n
the m ic ro strip lin e
However,
thickness of
o n l y 100 t o
2.4.4
a l .,
the conductor.
practical
for
o n Ga As h a v e
as s m a ll as t h a t
transm ission
that
lines
(Ch'en e t
It
used
o n a GaAs s u b s t r a t e .
transm ission
v a r i o u s work
were
to
the
f o r MMI C ' s i s
200 m i c r o n s .
Th e G a l l i u m A r s e n i d e M e t a l - S e m i c o n d u c t o r
Field
Effect T ransistor
T h e Ga As MESFET i s
device
in which
type of
the c u rren t
carrier.
So i t
MESFET i s c o m m o n l y u s e d
(MIC)
a three
is
flow
because
low n o i s e
figure
of
higher
gain,
field
and h i g h e r
electrons.
power
saturated
The l ow n o i s e
T h e Ga As
integrated
higher
due
drift
figure
to
output
(MMIC)
power, and
is
due
to s ilic o n ) .
the
velocity
is
circuit
circuit
The h i g h g a i n
(compared
is
by o n l y one
device.
integrated
in a m p l i f i e r s .
in output
carried
in microwave
higher m o b ility of e le c tr o n s
improvement
is
a unipolar
and m o n o l i t h i c m ic r o w a v e
designs
term inal m ajority c a rrie r
higher
of
partially
to
The
electric
the
due
to
the
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
37
higher
fewer
as
m o b ility of
noise
source
compared
to
supply
velocity,
accelerates
~
v g ~ 2 x 10
be m o d u la te d
at
gate
electrons
voltage
applied
gain
is
Figure
the
the
the c a rr ie r s
to
cm/sec.
the width of
input
the
required
up t o
is
and
(b)
and
operation
show t h e
in
capable of
portion
CgS ) r e p r e s e n t
models
the
saturated
it
of
the
show t h e
the
voltage
to
the m ajority
signal
Since very
voltage,
a
of
controlled
transadm ittance
y
m
the
gate-to-channel
stationary
the channel
current
relates
ids
t o model
line.
elem ents
the
the
In
the
(Cd g +
capacitance,
domain,
resistance,
source.
to
in
the FET's S -p aram eter
t h e FET m o d e l ,
the
region
lumped e q u i v a l e n t
LCR t r a n s m i s s i o n
of
of
equivalent
current
becomes n e c e s s a r y
total
effects
This
describing
the capacitance
Rd s
the
physical o rig in
the small s ig n a l
as a d i s t r i b u t e d
intrinsic
the g a te
of
possible.
1 2 GHz , w h e r e
channel
b y a VQS
bias
input capacitance.
to vary
in Figure
the channel
a r e m o d u l a t e d by t h e
across
noise)
t h e ma xi mum d r i f t
The r e v e r s e
comon-source c o n fig u r a tio n .
circuit
drain
Thus
elem ents
for
the
shown
frequency.
2.10(a)
circuit
circuit
is
(no s h o t
transistor.
a r e drawn t o
allows
Moreover,
t h e FET
t h e MESFET i s
a microwave
carrier
power
7
of
carriers.
in
bipolar
structure
Schottky-barrier
power
present
The e l e c t r o n s
that
little
are
the Si
The b a s i c
2.10(a).
the e le c tro n
Cd c
R^ a n d
and
i^ g is
The
v o l t a g e V„ a c r o s s
3
c
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
38
[y3 alloyed ohmic
B888&I Schottky metallization
11 11 ll regions essentially
free of carriers
Drain
Ld
active layer
R* !■ w «
substrate
intrinsic model
Drain
- c
Source
Source
'd , s Vmvc
Ym =gma
(b)
Figure
2.10.
(a)
The p h y s i c a l
Model's
s mal l
circuit
signal
MESFET.
origin
elements,
equivalent
(After
of
Liechti,
the
MESFET
(b)
The
circuit
Ref.
of
a
33.)
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
39
Cg s .
This
transadm ittance
ym ma y b e c h a r a c t e r i z e d
frequency-independent magnitude,
and
by a p h a s e d e l a y
transit
time for
The e x t r i n s i c
the
intrinsic
source
(parasitic)
portion
extrinsic
the
of
elements
operated
at
to
the
small
both
2
(f _)
substrate
not
part
of
Rg , t h e
Rg , t h e
capacitance,
Also p re s e n t
in
the
i n d u c t a n c e s L , L. and L due
g
d
s
The a b o v e e q u i v a l e n t
l o w - n o i s e and power F E T ' s
signal
(MAG) c a l c u l a t e d
which a r e
resistance,
leakage components.
applies
the c a r r ie r
t h e FET m o d e l a r e :
C^s , t h e
are
gm ,
th e ch annel where E > E .
P
the drain
elem ents
transconductance
reflects
bond w i r e c o n n e c t i o n s .
circuit
MAG ~
of
resistance,
a n d Rs u b t h e
gain
section
resistance.
gate-m etal
to
the
which
the
by a
levels.
for
this
T h e maxi mum a v a i l a b l e
circuit
1
4 (Rg + R i. +R s + T T T
f , L ) / R , +4
s
ds
TTf
is
g i v e n by
[45]
T Cd ,g ( 2Rg +R.i +R s 2 rrf T Ls )
(2.29)
and
the
cut
f
For
(2.29)
rate
T
frequency
~
reduce
the
by
9m
gs
seems t o
as
given
2 t\C
a given
(i.e.
fT is
set of
fall
1/f^).
parasitics
off
device param eters,
at
Thus,
t h e MAG i n
6 dB p e r o c t a v e
of
it
im portant
in ord er
becomes v e r y
to achieve
frequency
greater
to
usable
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
40
gain
and
at higher
the
frequencies.
resistance
Figure
MESFET.
2.11
Noise
induced g a te
ratio
is
the source
drain
series
circuit
The
signal
intrinsic
noise
saturated
, caused
regions of
by t h e
J
s o u r c e s and
this
figure
increases
to
R
g
transistor
2.3
noise
drifting
input
the
in the
noise
circuit
through C__,
of
the
of
a n d R„ a l s o
s
noise
two i n t e r n a l
that
these
add
is
increasing
to
i ^ generator
region
at
due
the
noise
generators.
therm al noise
have been d e s c rib e d
The p r i m a r y
the drain
noise
channel
chapter.
due
hot
noise".
a function
resistos
the o v e ra ll
the
is
thermal
the
the
are:
the channel.
th e complex c o r r e l a t i o n
The e x t r i n s i c
in S ection
to
"induce gate
figure
noise of
voltage
sources
c h a n n e l and d i f f u s i o n
ng
the
noise of
source
in th e
The n o i s e
which
the
electrons
i
r e Pr e s e n t
and t h e r m a l n o i s e
by t h e r m a l
the
of
Rg,
o f a GaAs
thermal
caused
being coupled
to
cirucit
( 1)
(2)
fT
resistance R , respectively.
b
impedance.
velocity
frequency
be a l s o o p t i m i z e d .
noise,
resistance
P a r a m e t e r s e g a n d Zg r e p r e s e n t
and s o u rc e
the
i n g / i n d * e n g ' and e ns
the gate m e ta lliz a tio n
of
R^g/R^ m u st
a noise equivalent
source
noise,
In a d d itio n
to
bias
dependence
drain
current,
dipole
saturated
layers
drift
velocity.
Based on
theoretical
the
above
noise
mi n i mu m n o i s e
equivalent
figure
of
circuit,
a MESFET h a s
the
been
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
41
Intrinsic FET
© e 8
ns
i—o
S
Figure
2.11.
Noise
(after
equivalent
Pucel
et
circuit
al.,
ref.
of
GaAs MESFET
46).
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
42
derived
by P u c e l ^ * ^ ,
expression
effect
given
of
included
in
the noise
param eters,
theory,
at
but
this
resistance
in Chapter
of
Therefore,
technique
is
view,
(F
(Rn ) i n s t e a d
noise param eters.
been
voltage
it
has
B r o a d b a n d Low N o i s e MMIC D e s i g n
would
noise
•„)»
min
the
(^
) and
coefficient
2.5
the
a small
signal
been d e v e lo p e d ,
and
3.
General Design P r i n c i p l e
For
octave
the d e sig n of wideband a m p l i f i e r s ,
or
achieve
more,
the
special consideration
highest
sim ultaneously
gain
desired
For
low n o i s e d e s i g n ,
should
frequency
be m a t c h i n g
and p r e s e n t
coefficient,
ML i s
at
flattening
the
A fter
of
figure
3
be p r e s e n t e d
Zo n '
not
the
the
experimental
w ill
2.5.1
that
effect
point
the
reflection
characterization
as
a low d r a i n - s o u r c e
t o work w i t h
source
noise
theoretical
noise
Notice
n a m e l y , minimum n o i s e
noise
equivalent
(2.1)
p ra c tic a l design
be more c o n v e n i e n t
by F u k u i
s c a t t e r i n g h a s
by o p e r a t i n g
Prom t h e
optim al
t h e Eq.
inter-valley
minimized
( Vds ) •
in
and m o d if ie d
to
the
the
band a s
the
found,
gain
to
band e d g e w h i l e
response
throughout
shown i n F i g u r e
the optim al
the
be g i v e n
one
2.12(a).
in p u t m atching network
the optim al
r Qn t o
upper
must
typically
input
a modified
noise
port
noise
source
impedance
reflection
of
output
the
transistor.
model can
be d e r i v e d
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
43
O utp ut
Matching
N etwork
Input
Matching
Network
Mi
Mo
*on
1^=0
ft
rL=o
*22
f2
f1
f2
in
R in >
Q
5 Ro
20
0/
- n o i s e model
Figure
2.12.
(a)
Wi de band l o w - n o i s e
amplifier design
with
lossless
(b)
distributed
noise
elements;
unilateral
mode l
simplified
for
l ow-
design.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
44
by c a s c a d i n g
this
with
the activ e
d e s i g n MQ f o r maxi mum a v a i l a b l e
c o n j u g a t e power match a t
mismatch
port
as
for
gain
shown i n F i g u r e
Figure
2.12(b)
is
gain,
the output
flattering
must
very
can
for
the
term inated with
be o b t a i n e d
with
the
source
model
for
from t h e
bro ad b a n d low
n o i s e model
is
a series
a resistor.
by c o m p u t e r
the measured optim al noise
is
a
at output
distributed
initial
open-circuited
the output
words,
t r a n s f o r m a t i o n ^ 49^ .
Th e i n p u t
can
then
Thus,
be o b t a i n e d
n o i s e MMIC d e s g i n .
elem ents
port.
a sim plified
useful
stub
in o th e r
be p r o v i d e d
l u m p e d R~C m o d e l ^ 4 9 ^ v i a R i c h a r d ' s
is
and
2.11(a).
a l o w n o i s e GaAs MESFET t h a t
T h is model
device,
sim ulation
impedance,
a shunt open-circuited
The
to
fit
ZQ n , w h i l e
stub also
term inated
a resistor.
For
broadband
broadband
impedance m atching
performance.
This
referred
to
complete
solution
complex
am plifier
to the
difficult
practical
designs
The g a i n
and
the
am plifier
is
Y oula^12^
g a v e a more
generally
im portantly,
for
by u s i n g
bandwidth l i m i t a t i o n
elegant,
usually
theory
for
lim itation
but
to
both,
in
unapplicable since
involve double matching.
Y a rm a n ^ 24^ extended
More
the
s i n g l e m atching problem
o f Fano and Y o u la a r e
are
the c o n d itio n s
lim it
as F an o 's^ 50^ l i m i t .
practice,
system .
w ill
gain-bandwidth
norm alization.
theories
design,
C arlin
and
the double matching
practical
designs,
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
45
\
r 1271
C arlin1
which
introduced a numerical
b y p a s s e s many a n a l y t i c
For
the
ideal
tapered
gain-bandwidth
lim itation
P etersen^^.
Their
a reactive
slope,
broadband matching
network s y n th e s is
this
gain
work.
function,
was d e r i v e d
results
reduction
show t h a t
the c a p a b i l i t y of
with d i f f e r e n t
gain
and b a n d w i d t h .
To s y n t h e s i z e
the
an i n t e r a c t i v e
A system atic design of
2.5.2
Practical
the optim al
b y Ku a n d
p r o g r a m , CADSYN^2 ^, h a s
w ill
the problem
varies
network,
am plifier
to
difficulties.
element a b so rp tio n
gain
approach
be g i v e n
distributed
been used
in
broadband lo w -n o is e
in Chapter
3.
T o p o lo g y and C i r c u i t R e a l i z a t i o n
Considerations
Usable m onolithic topologies
networks
openline
not
are
or
rather
short-circuited
section.
be r e a l i z e d
included
Series
stubs
open- or
discussed
are only
These elem ents
practical
point
should
increase
the
included
are
of
in
t o model
not
be u s e d
allow
short-circuited
stubs
so
be
i t could not
some o f
Series
the
topologies
t h e FET i n p u t
to
a m i n i mu m o f
reduce
packing d e n s ity
can
open-
reactance.
physically constructed.
view,
element
and c a s c a d e t r a n s m i s s i o n
for m onolithic a p p lic a tio n s.
stubs
to
distributed
S i n c e we c a n o n l y
in m ic r o s t r ip ,
circuited
element
lim ited.
for
From a
r e a c tiv e matching
t h e MMIC c h i p s i z e
and
o n a GaAs w a f e r .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
46
(a)
(b)
Ri
50ft
Ri
Z0 3
(c)
so f t
p
Z02
^
j-czzJ
-04 ^-03
(d)
ZOI
^-02
50 ft
R:
Z0 4 Z q3 Z q 2
(e)
50ft
Zo4
Figure
2.13.
Z 0I
Practical
input
Zo3 Z 02
monolithic
matchi ng
Zoi
distributed
networks.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
47
(a)
(b)
R0 >
50X1
r C ?
'
—
•01
Z02 Z03
(c)
z(
(d)
Ro
Z02
(e)
2.14.
Z0 4
Ro
z
Figure
Z03
Practical
Z02
Z03
monolithic
out put matching
Z04
distributed
networks.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
48
Therefore,
f o u r t h o r d e r m a tc h in g netw orks were o n l y
considered
in
Figures
and o u t p u t
this
2.13 and
network
m onolithically.
Figures
MMIC d e s i g n .
2 . 1 4 show s e v e r a l
topologies
The t h i r d
likely
FET p a r a s i t i c
to
The r e s t
2.14 are
a Kuroda
high-pass
circuits
except Figures
fourth
i n to each
for
the
technology
thus
the
bias
m onolithic
2.5.3
B ia s Methods
very
of a
.
2.13
in order
in F ig u res
Figure
All
(a),
to
network
2.15
is
these
( e ) have
the
to ad ju st
stub
form t h e
is
"short"
produce a co n v en ien t
An o v e r l a y c a p a c i t o r
been adeveloped
broadband low n o i s e
The c h o i c e
topologies
A shunt shorted
introduction.
bias
topology
impedance
networks.
which w i l l
in Chapter
is
the
2 . 1 2 and
circuit
described
point
the c o rre c t
order
f o r MM I C ' s h a s
internal
the sim p lest
a Kuroda t r a n s f o r m a t i o n
a bypass c a p ac ito r
point
shown i n
to sim ultaneously absorb the
of
impedance.
input
be r e a l i z e d
networks
transform ation
allowing
term inating
included
of
of
are
producing
2 .1 3 and
potential
(b)
be a b l e
while
transform ation.
the
order
2 . 1 3 and 2 . 1 4 ( a ) ,
which a r e
t h a t can
distributed
in t h is
wa s i n c l u d e d
am plifier
in
that
work,
the
w ill
be
5.
and C o n s i d e r a t i o n s
bias
important
circuit
for
A r e c o m m e n d e d DC o p e r a t i n g
and
broadband
point
for
a DC o p e r a t i n g
l o w - n o i s e MMIC's.
v a r i o u s RF
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
49
I :N
s9
R
L
N•B
Z o /N
Figure
2.15.
Kuroda
high-pass
transformation.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
50
applications
is
given
correspond
to
four
low n o i s e ,
lower
A power
(D).
S i n c e we a r e
point
a n d Vd s
the
order
voltage
FET.
The f i r s t
thereby
required
term
a source
(ta n 6)
properties,
G enerally,
selected
a lower
source
the
noise
However , e ve n
high
if
the
I ds
(B),
and e f f i c i e n c y
=0.1 -
the
0.15
Idss
biasing
"Bias Order"
sequence for
large
method
source
figure.
quality
application
destruction
of Figure
2.17(a),
improves high
the
source
inductance,
All other
configuration
efficiency.
one,
F r o m a n MMIC f a b r i c a t i o n
of
ground,
50
dF
introduce
have
gain,
.
a loss
dielectric
s o me
inductance.
type)
2.17(d)
is
is
used with
the only a v a ila b le
then Figure
point
to
(self-biasing
If
the
frequency
usually
of Figure
of
the
increasing
from t h e m a t e r i a l ' s
source
of
b ias methods
capacitors
chip cap acito rs
a negative
the
current
bypass c a p a c ito r ,
a single
am plifier
is
basic
connecting
resulting
while
gain
low n o i s e d e s i g n ,
and p o l a r i t y .
bias
by d i r e c t l y
and lo w e r i n g
B o r AB p o w e r
configuration
reducing
high
a common s o u r c e GaAs MESFET,
to prevent
dual-power-source
response
five
preferred
these
o f Ga As F E T s :
V[54].
c o n f i g u r a t i o n s ^ 5 -^ f o r
indicates
class
d e la in g with
2.17 g iv es
bias
P oint A through D
applications
be c hosen under
= 3 - 3 . 5
including
2.16.
(A), low n o i s e ,
( c ) , and
should
Figure
typical
power
class
bias
in Figure
2.17(e)
view,
the
applies.
dual-power-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced
with permission
of the copyright owner.
I DS
l DSS
0.9 lDSS
g s s POWER
(VGS = 0)
LOAD L IN E ( R l )
Further reproduction
G A IN
E FF IC IEN C Y
At.
prohibited without permission.
L O W N O ISE
3.5 V
Figure
2.16.
The DC c h a r a c t e r i s t i c s
8V
of
a typical
GaAs MESFET.
CJ1
52
B ias
0 rde r
Bias Type
HI---=D
1
o°
o
rHH'
V[D
GH H - r -t!
_L
-± Vc
t_r-—
K
Bias
polarity
1 - vG
vG < 0
2.
VD
vD >0
1.
vs
vs >0
2.
VD
VD > 0
1.
vG
2
VS
(a)
— ■0
V s V°
Hf— D
Go—If—T—
V
o
VQ
V
v
>w
i
>°
lc)
K
Vs
^J——
V D (o n ly )
—
VQ > 0
vO
r-X flA f iflfijT
I
1
— t H ( ------- o D
a
x i
le ;
Vq
( o n ly )
vG
<
R s?
0
VG
Figure
2.17.
Five
basic
biasing
c o mmo n- s o ur c e
configurations
for
GaAs MESFET.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
53
s o u r c e was a d o p t e d
noise
figure
for
to achieve
this
the
m onolithic
highest
gain
and l o w e s t
broadband lo w -n o ise
am plifier.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER 3
A 7 - 1 4 GHz BROADBAND LOW NOISE Ga As FET*
AMPLI FI ERS
3.1
Introduction
T h e 6 - 1 8 GHz f r e q u e n c y
long
been c o n s i d e r e d
satellite
warfare
in
in to developing
this
r e pl a c e
param etric
am plifiers,
noise
in
the
The d e s i g n o f
band.
and
broadband
ew
figure
design
which
In
c o n s i<3e r
a broadband
flat
band.
this
involves
(Computer-aided Design)
of
atm ospheric
has
am plifiers
and
signal
radar
both
system s.
gain
and low
design.
l o w n o i s e FET a m p l i f i e r
it
requires
over
chapter,
device
small
am plifier
since
frequency
radar,
traveling-w ave
and m u l t i - b a n d
broadband
and low n o i s e
for
has
H e n c e much e f f o r t
band low n o i s e
a complicated procedure
gain
low l e v e l s
few p a p e r s [6 4 ' 6 5 ,125]
figure
attractive
t ji e c o n v e n t i o n a l
a m p l i f i e r s 1 6 0 —6 3 , 1 2 4 ] f Qr
However,
the
narrow
[56 59]
(X a n d Ku b a n d )
r a d i o astronom y and e l e c t r o n i c
because of
and man-made n o i s e
gone
particularly
communication,
systems
range
achieving
the d e sire d
a practical
both
octave
broadband
characterization,
a n d CAS
is
CAD
(Computer-aided
* P a r t o f t h e work d e s c r i b e d i n t h i s c h a p t e r h a s b e e n
p r e s e n t e d a t I EEE 1 9 8 4 M i c r o w a v e S y m p o s i u m , P h i l a d e l p h i a ,
May 1 9 8 4 , Symp. D i g e s t o f p a p e r s , p p . 3 2 - 3 4 , e n t i t l e d "A
7 - 1 4 GHz B r o a d b a n d L o w - N o i s e GaAs FET A m p l i f i e r , " by
T h o m a s C . Ho a n d L e s t e r F . E a s t m a n .
54
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
55
Synthesis)
design
following
sections.
ended
techniques w ill
Two b r o a d b a n d
and a b a la n c e d
technique
be d i s c u s s e d
typed
based on t h i s
are
fabricated
optim al
figure,
have
the
a single­
v i a MIC
broadbanding d esig n .
E x c e l l e n t microwave p e r f o r m a n c e s ,
noise
am plifiers,
in
been a c h i e v e d
both
flat
in th e
g a i n and low
frequency
band o f
7 - 1 4 GHz .
3.2
General Theory of Noise Two-Ports
3.2.1
Noise Tem perature,
and Power G a i n s
Noise F igure
and N o i s e
Measure
In
an a c t i v e
MESFET,
power
add
at
to
noise
internal
noise
network,
source
the device o u tp u tt® 6 ].
the
sources
w ill
the
two-port
noise
input
(antenna
power
is
input
by t h e
assumed
with
The p o w e r,
P , available
T,
is
real
given
load
be t h e
p a rt of
as
generate
k = 1.381
noise,
etc.)
which
The a v a i l a b l e
input
290°K J o h n s o n - n o i s e
the
generator
in a bandwidth B a t
immitance.
absolute
by:
(3.1)
x 10- ^
The e f f e c t i v e
noise
from e x t e r n a l
P n = kTB
where
t h e GaAs
T t u S n o i s e power w i l l
transistor.
to
associated
tem perature,
the
w ill
to the device
noise,
be a m p l i f i e d
such
noise
Joule/°K .
tem perature,
T , of
an a m p l i f i e r
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
56
is
defined
as:
t
w h e r e PR i s
G is
its
e
=
the output
gain.
sensitivity
n o i s e power
The n o i s e
of
( 3 *2 >
kGB
figure
an a m p l i f i e r ,
from
is
the a m p lif ie r
described
and d e f i n e d
and
as the
as^®^:
S i /Hi
(3.3)
' V No
where S^/N^
power
and S0/N0 a r e
ratios
Equation
at
(3.3)
am plifier
can
r
ambient n o is e
to noise
respectively.
as:
?n
T kGB
o
(3.4)
!s
o
tem perature
( 3 . 5)
of
290°K.
Te
iS
to F as:
Te =
As s t a t e d
of
! +
signal
and o u t p u t
expressed
= 1 +
.
related
input
be a l s o
f
w h e r e TQ i s
the a v a ila b le
any l i n e a r
(F-l)
290°K
(3.6)
by R o t h e a n d D a h l k e ^ ® ^ ,
two-port
is
the
noise
figure
d e p e n d e n t on t h e
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
57
immittance of
generator
independent of
figure,
w ill
the o u tp u t.
Fm£ n / o f
and o n l y
This adm ittance,
load of
different
the
adm ittance.
Thus t h e
noise
port driven
by a g e n e r a t o r
represented
by^®^:
input
any given
the
which
w ill
of
but
is
noise
frequency,
source
t e r m e d YQ n , t o
transistor,
from t h e c o n j u g a t e
its
t h e mi n i mu m n o i s e
at
if,
a complex a d m i t t a n c e ,
transistor.
output
if,
to
Hence,
a Ga As MESFET,
be o b t a i n e d
presents
connected
is
the
independent of
in general
be
t h e MESFET i n p u t
figure,
F,
of
an a c t i v e
sim plified
9
(3.7)
as
R
F = F . + ^
nun
G
where R
the
n
is
sensitivity
= GS + j B S
Equation
reflection
-
s
of
is
~
( (G - G
)
vv s
on
the equivalent
Yo n = Go n + ^ Bo n '
YS
two-
a d m i t t a n c e Y_ may b e
|Y - Y
I2
1 s
on 1
or
the
noise
noise
figure
+
(B - B
)
s
on'
resistance
to
the
(3.8)
)
'
and
source
indicate
adm ittance.
* s t h e 0 P t i mu^, s o u r c e a d m i t t a n c e ,
the
(3.7)
and
source adm ittance.
can a ls o
coefficient
rg o f
be w r i t t e n
the
in
generator
terms of
the
:
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
58
(3.9)
where
rQn i s
the optim al
coefficient,
noise
source
and
rs
Equation
for
determined
w h e r e F^
and
=
l +y g
= 50 o h m s .
o
circles
reflection
(3.9)
defines
a set
which an a n a l y t i c a l
by d e f i n i n g
noise
constant
expression
a parameter
i s an a r b i t r a r y
of
noise
can
be
N^:
figure
greater
t h a n Fmj_n *
rQn, Fmi n a n d Rn a r e a s p r e v i o u s l y d e f i n e d .
radius
of the
R
F.
l
and c e n t e r
circle
is
The
g i v e n by
(3.11)
by
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
59
P
r
_
i “
on
1+Ni
Fr o m t h e a b o v e e q u a t i o n s
= F mi n a n d
the center
is
at
located
impedance
is
technique
the
ith
If
F
1
n-stage
conditions,
then
referred
as the
at
the
source
The " s o u r c e - p u l l "
in Section
the o v e ra ll
3.3.3.
noise
figure
F -1
+ _n
+ G a n - 1.
(3.13)
and a v a i l a b l e
their
cascade of
mi n i mu m n o i s e
lowest cascaded
n o i s e m e a s u r e , M,
M
-
3.2.2.
radius
g i v e n by
an i n f i n i t e
operated
to
zero
gain
of
respectively.
we c o n s i d e r
am plifiers
noise
with
The c o r r e s p o n d i n g
be g i v e n
am plfier,
and
= 0 when
as Z
, the optim al
on
F -1
F -1
+- I — + _ 1 _ + ...
G a -2
dl
a n d Ga i a r e
stage
to
ZQn w i l l
very im portant,
F =
w h e r e F.
referred
to measure
is
that
t h e Fmj n c i r c l e
mi n i mu m n o i s e f i g u r e .
In a cascaded
figure
we s e e
r Qn o n t h e S m i t h C h a r t .
often
impedance fo r
of
(3.12)
noise
is
identical
FET
figure,
bias
figure,
often
g i v e n by
F ~ 1
1—1 / G a
(3.14)
Power G a i n s o f T w o - p o r t
Some d e f i n i t i o n s
of
r 7 i 721
power g a i n s 1 '
1 are
very
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
60
useful
and
Consider
shown
im portant
the
power
in Figure
in
the design
f lo w from
3.1,
m atching netw orks.
of
am plifiers.
the generator
where
a n d MQ a r e
T h r e e power g a i n s
to
the load
lossless
w ill
be d e f i n e d
as
follow s:
The t r a n s d u c e r
gt
-
power g a i n
W
is
defined
PL
S > - pa
V
(3.15)
where S is
the S-param eters m atrix of
the
and r
the
of
load
are
reflection
respectively.
coefficient
Equation
G _
2)
assume t h a t
unilateral
S 12 = 0 i n
transducer
G,
(3.15)
I S2jl
A useful approxim ation
to
by
generator
be d e r i v e d
( 1 ~ l r s! ) 2
for
transducer
(3.15)
power
can
gain,
r
two p o r t ,
and
as
(3.16)
power g a i n
is
t o g i v e GT U, t h e
as
(1-1 r LII 2 /I
)| ‘-’211
s j 2 (v i - 1| r JS1 2 7)
(3.17)
U - s 2 / Ll 2U - s u r s | 2
For
S*^.
an i n p u t
Then Eq.
and o u t p u t m a t c h , T L = S^2
(3.17)
reduces
an(3 T s
to
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
61
T w o -po rt
M;
IS1
P:in
Figure
3.1.
ao
PA , pao
A vailable
p in, P|_
A ctual Pow er
Available
a two-port
Power
p o we r and a c t u a l
powe r o f
network.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
62
I s 21
TU
which
is
(3.18)
ma x
a useful
approximate for
t h e maxi mum g a i n wi th
sim ultaneous conjugate match.
The power g a i n
is
defined
S)
=
by
P.
G = G(r
3.19)
in
Equation
(3.19)
can
G = I1 -
be e x p r e s s e d
as
| I l | 2> lS21 I2
3.20)
I1 ' S 2 2 ' l | 2 ( 1 - Is 11 I2 ’
where
s ii
-
'
+ S i 2 S 2 i Fl
s
ii
3.21)
i - s i i rL
The a v a i l a b l e power g a i n i s d e f i n e d by
Ga = Ga ( r s , S )
= ^
(3.22)
T h i s can be d e r i v e d as
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
63
G
(J-- I r s | 2 > | S 2 1 | 2
=
a
C .23)
I2 <1 - ! s ' 2 2 I2
where
e* +
&2 2
G0
can
a
parameters
— c
"
22
also
of
i
S -i 0S -I r
1 2 21 s
1 - S ln T
11 s
ry
be e x p r e s s e d
the
two-port
.24)
in
terms of
the
Y-
[18]:
.25)
57 = § 7 ^ + g f I(Gs -Gog»2 + (Bs - Bog>l2
max
where:
G
=
max
y
| ^ |
*12
(K -
-------/K2 - l )
\< T^\
=
12
(K -
v * 2 - 1)
(3 . 2 6 )
2G1 1 G 22 ~ Re (Y1 2 Y2 1 }
"
.27)
lY21 - Y1 2 I
2
1 +
lS l l S 22 ~ S 1 2 S 21 I
~
1S 11 I
~
lS 22 I
2 lS12S 21 I
(3 . 2 8 )
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
64
IY 1 2 * 2 1 I
G
°9
= - I p L i
22
(3.29)
/K^-l
(3.30)
B
og
B11 +
“
2G
22
’22
R
69
(3.21)
1* 2 ! I 12
Y_
mn = Gmn + jJB mn
V m ', n e 1[ 1 ,' 2 ]1
* s = Gs + ^Bs
K is
known a s R o l l e t t ' s
fa c to r^ ^ ,
max i s
port.
which w i l l
invariant
be d e s c r i b e d
in Section
t h e maxi mum a v a i l a b l e g3 a i n , MAG,' o f
the
generator
admittance
corresponding
available
gain
If
"associated
of
stability
gain"
Gn ^ w h i c h
is
is
equal
defined
is very
as
3.2.3.
the
two-
t o YQn t h e
the
important
parameter
l o w n o i s e GaAs MESFET.
3.2.3
Stability
A two-port
than
unity.
is
Considerations of
unconditionally
If
stable
An o p t i m u m c o m b i n a t i o n o f T
s im u l ta n e o u s l y c o n ju g a t e matched
. .
maximize
a Two-port
to
both
S
if
K is
larger
and r T c a n
Li
ports
be
to
. f 7 51
the g a i n 1
.
K is
conditionally
smaller
stable
than
unity,
the
two-port
and Ts and r L m ust
is
only
be c a r e f u l l y
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
65
chosen
to operate
which
is
defined
stability
factor
introducing
provides
loss
the
by
active
'sta b ility
K can be
at
either
or
a n d Gmg c a n
in a s t a b l e
circles 1
increased
t h e maxi mum s t a b l e
feedback,
device
both
gain,
to
region
.
The
u n i t y by
two p o r t s .
This
G
, achievable without
ms'
be c a l c u l a t e d
as
Gms " MSG
21
(3.30)
512
3 .3
Device C h a r a c te r iz a tio n
Before designing
low n o i s e
am plifiers,
characterized
param eters.
first
the
desired
frequency
for
the
this
gate
the
devices
to
be
and n o i s e
param eters,
the
lumped n o i s e mod el and u n i l a t e r a l m o d el o f
initial
band c a n
synthesis
of
be s i m u l a t e d
the
by c o m p u t e r
broadband matching
T h e NEC N E - 1 3 7 0 0 l o w n o i s e FET c h i p w a s u s e d
work h a s a 0 . 5 m i c r o n g a t e
w i d t h on a 125 m i c r o n - t h i c k
The S - p a r a m e t e r s o f
uisng
have
Based on t h e measured
or
in
h y b r i d MIC o r m o n o l i t h i c MMIC
to get S-param eters
distributed
circuitry.
the
length
a n d 300 m i c r o n s
substrate.
th e d e v i c e were measured
by
a H e w l e t t P a c k a r d HP8409A A u t o m a t i c N e t w o r k
Analyzer
with
top computer.
t h e HP-IB bus c o n t r o l l e r
The n o i s e
a n d HP 9 8 2 5 B d e s k ­
p a r a m e t e r s were measured
by
R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.
66
using
a n HP 8 9 7 0 A N o i s e F i g u r e M e t e r
"source-pull"
impedance,
3.3.1
test
set-up
to get
the
(NFM) w i t h
a
optim al noise
ZQ n .
Test Fixture
The t e s t
and C h i p H a n d l i n g
fixture
used c o n s i s t e d
of
m ic ro strip launchers,
a chip c a rrie r
and a c a r r i e r
holder.
base
Chip c a r r i e r s
15-m il-thick
t w o APC- 7 t o
wer e made from b r a s s w i t h a n i c k l e
and were g o ld p l a t e d ,
long,
fused
3 microns
silica
thick.
substrates
Two . 1 5 "
with
m icrostrip line
were mounted on c h i p c a r r i e r
T e k H2 0 E s i l v e r
epoxy cured
D etails
are
of
shown
at
and
silver
110°C f o r
the m ic ro s trip c a r r i e r
in F igure
.010"
epoxy or
high
rib
is
should
be h a n d l e d
by a g r o u n d e d
E ither
therm al-com pression or
For
typical
30 m i n u t e s .
not exceed
tweezer
stress
S i n c e galli*um
silicon,
wire
relieved
bonding,
start
tem perature of
be a p p r o x i m a t e l y
40 g r a m s .
For
the
chips
with c a re .
ultrasonic
200°C and a t i p
should
than
.025"
by u s i n g e i t h e r
preform.
brittle
pure go ld ,
bonding fo rc e
and s h o u ld
more
therm al-com pression
tem perature of
Epo-
m a n u a l l y on a
of ch ip c a r r i e r
arsenide m aterial
used.
using
on a aluminum h o l d e r
attached
a 80/20 g o l d / t i n
0.7 m ils d iam eter,
50 ft
3.2.
T h e FET c h i p c a n b e d i e
wide
source
bonding of
wire can
with
be
a stage
150°C.
The
30 g r a m s
ultrasonic
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
67
AP C - 7
APC- 7
FUSED SILICA
A.
SI DE
■15 in
B
TOP
TEST
Figure
3.2.
VI E W
“ |.o 2 5 |- " -----.1 5 in
VIEW
FIXTURE
The t o p v i e w and s i d e v i e w
of
test
fi xture.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
68
bonding,
force
the
stage
c a n be h e a t e d
of approxim ately
to
25 g r a m s .
150°C w i t h a b o n d i n g
Figure
3 . 3 shows
a
p h o t o g r a p h o f w i r e b o n d s o f N E 1 3 7 0 0 FET c h i p .
Four
wires
with
gate,
drain
and s o u r c e p a d s .
.7 mil
The f i x t u r e
carrier
pin
to
diameter
is
on c a r r i e r
were
assembled
holder,
by f i r s t
aligning
the m ic ro strip c i r c u i t ,
screws.
Figure
3.3.2
bonded t o each
and
placing
the
then
tightening
3 . 4 shows a p h o to g ra p h o f
test
in Figure
3.5.
HP8409A A u t o m a t i c N e t w o r k A n a l y z e r
(ANA s y s t e m s
calibrated
using
the
compensated th e
reflections
and t h e
in
this
work.
inherent
test
12-term
In o rder
error
correction
system e r r o r s
introduced
to
the
the
the
a n d ANA wa s
m odel^^.
by
bias-Tee
fixture.
calibration
reflection
through-line
pad
port of
to
and e r r o r
to
was made w i t h
connected
dB a t t e n u a t o r
calibration
of
to get
network a n a ly s e r ,
When t h e m e a s u r e m e n t s w e r e
to
set-up
a photograph
have been used
Figure
test
reso n ab ly a c c u ra te S-param eter measurements,
FET,
fixture.
3.6 i s
which
This
the
S-parm eter Measurement
shown
the
the chip
coaxial center
A sm all s i g n a l S -p aram eter measurement
is
gold
to
be p e r f o r m e d
a bias-Tee
t h e ANA a n d
the
increase
to
the
transm ission
the
correction
return
connnected
end o f
port
loss.
calculations
on t h e
with
the
a 10
T h e ANA
were
R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.
69
Figure
3.3.
Photograph o f
length)
NE1 3 7 0 0
FET c h i p
(0.5
pm g a t e
bonding.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
70
Figure
3.4.
Photograph o f
test
fixture.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced
with permission
IF ATTENUATOR
of the copyright owner.
H P59306A
RELAY
ACTUATOR
HP8411
HP 8 4 1 0
NETWORK
ANALYZER
H P 8 4 I4 ,
MAG
HARMONIC
HP84IIA
jF R E Q . CONVERTER
REF
TEST
Further reproduction
HP 13743
R/T TEST UNIT
RF
8IAS TEE
H PII590A
HP 593I3A
A /D
CONVERTER
H P9866B I
THERMAL
PRINTER
H P -IB
H P9825
COMPUTER
HP 8620C
HP 8 6 2 9 0 B
SWEEPER
H P 9872A
PLOTTER
BIAS TEE
H PII590A
prohibited
without permission.
Figure
3.5.
S ma l l
signal
S - p a r a me t e r measurement
test
set-up.
72
Figure
3.6.
Photograph o f
HP8409A a u t o m a t i c
ne t wor k a n a l y z e r
at
(ANA)
systems
Co r n e l 1 .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
73
performed
under computer
control
"Accuracy Enhancement Pac"
p r o g r a m was m o d i f i e d
and de-em bed
The
exhibit
[791
the
test
fixture
The f i x t u r e
3.7.
with
Since
A21
=
With
errors
This
to c a lib ra te
i s modeled
fixture
is
be s y m m e t r i c a l
between
by t h e
both p o r ts
same t w o - p o r t e r r o r
m atrix
a s shown i n F i g u r e
passive
the
and
and c o n t a i n s
two-port erro r
no
network
is
and
A12
'
and sym m e try a s s u m e d ,
com pletely described
unknowns:
A - ^ » and
measurements
of
by t h e
the
three
fixture
complex
These are determined
known s t a n d a r d s
m i c r o s t r i p open c i r c u i t
The e r r o r
to
stra p coupling
reciprocity
are
program^®^ .
a routine
wa s a s s u m e d
ferrom agnetic m ate ria l,
reciprocal,
include
a scattering
the
software
fixture.
negligible
network,
to
b y u s i n g HP 1 1 8 6 3 D
which
include
from
a
and a t h r o u g h - l i n e c o n n e c t i o n .
model c o e f f i c i e n t s
can
be o b t a i n e d
as
follows
[79] .
A1 1 = Ml l .
A22M1 2 e ^
jBA
a
_
22
P M, 0 e J
12
(3.34)
- P m + M. ,
m______ 11
Mi12
2~^ ^ " Pm
mP **
oc.
(3.35)
M1
111
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
74
a
O
CM
CM ,
l<
<
Q.
LU
Q
CM
CM
<
O
>»
co
CO
UJ
UJ
z
55 r
1
CM
CM
MESFET
Q
o
m
CM
z
UJ
DC
Ul
DC
3
CM
CO
CO
UJ
u.
cn
Z
<
<0
Ul
o
z
Ul
LLI
CC
3
h
><
LL
DC
z
o
w
J
JCO
Ul
cc
CM
CM
I - DC
X O
DC
<
z
<
O
CC
V-
LU
CM
2
>-
CO
Fi gure
i : 0-
Ul
5
<
CM
s 3 I- ' <
UJ
U.
model.
—
CM
fixture
i- cc
x o
Test
cc
3 H
3.7.
Ul
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
75
(3.36)
A1 2 p
A1 1 + 1 - A ? 2 p
pm '
(3.37)
-j2B(*,o - a r )
(3.38)
p = e
(3.39)
where M ^ ,
M^2 a r e
transm ission
the desired
the measured
coefficients
input
of
and o u t p u t
reflection
the
and
through l i n e ,
reference planes.
pm i s
measured
reflection
coefficient
of
the open l i n e ,
the
reflection
coefficient
of
the one-port
true
&
r
is
the
is
the
lo c a tio n of
electrical
the d e s ire d
location
end-effect
capacitance,
(3.35),
can
it
|A + 2 ( Z r -
of
be a v o i d e d
the
error
standard.
in
[80].
n = 0,
by c h o s i n g
1,
the
2,
and
i
o
including
From Eq .
t h a t A22 b e c o m e s u n d e f i n e d
the c a lib r a tio n
On c e t h e
obtained,
as d iscu ssed
the
p is
reference plane,
t h e open c i r c u i t
l Q) | = n X / 2 , w h e re
problem could
length
be s e e n
of
between
I,
3 ...
if
.
This
appropriated
standards.
parameters
of
true S-parameters
t h e m e a s u r e d S - p a r a m e t e r s M^j
as
the
fixture
are
a re de-embeded
[791
follows
from
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
76
G (1 + A2 2 H)
'1 1
- A2 2 EF
(3.40)
N
S
= ^
&12
N'
(3.41)
S
= I
b 21
N
H (1 + A2 2 G)
N
22
- A2 2 EF
(3.42)
where
N =
(l +
a22g
)(l +
E - !ll2
r
*12
)-
a 22
EF
(3.44)
A2
12
M11 “ A11
H =
M22 " A11
12
When a p p l y i n g
voltage
large
and t h e n
drain
thermal
power
10 mA, a r e
for
Figure
t h e FET,
first
the d rain
voltage,
in order
to
transients.
the
shown
are
apply the
design
plotted
on
from both
t u r n e d on o r o f f
and
bias
to avoid
The m e a s u r e d S - p a r a m e t e r
low n o i s e
in Table
isolated
3.1.
bias,
o f NE
Vd s = 3 . 0 V a n d l ^ s =
Those
in Section
gate
to avoid
w h i c h ma y c a u s e o s c i l l a t i o n
T h e FET w a s
am plifier
param eters
bias
wh e n t h e y w e r e
1 3 7 0 0 FET u n d e r
used
to
runaway.
damage due
(3.45)
12
currents
supplies
(3.43)
w21
'
■LZ
G =
a 22h
parameters w ill
3.3.
a Smith Chart
be
The S -
in Figure
3 . 8 and
3.9.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced
with permission
Table
3.1.
Common s o u r c e S - p a r a m e t e r s
of the copyright owner.
bias
conditions,
The e f f e c t
Freq.
GHz
S 11
of
o f N E 1 3 7 0 0 Ga As FET u n d e r
low n o i s e
Vd g = 30V a n d I d g = 1 0 mA ( ~ 15% I d s g ) •
bond w i r e
inductance
is
S 21
included.
S 22
S 12
Further reproduction
prohibited
without permission.
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
2.00
.960
-
31.4
3.02
152.7
.039
71.2
.710
-14. 5
4.00
.880
-
50.1
2.74
139.1
.070
64.7
.680
-23.2
6.00
.780
-
70.2
2.48
125. 0
.089
58.2
.620
-28.1
8.00
.710
- 94.0
2.23
108. 3
.114
49.3
. 550
-35.6
1 0 . 00
. 660
-116.1
1.97
93.4
.120
42.1
.480
-45.3
12.00
. 630
-132.7
1.76
80.1
.125
37. 6
.430
-55. 0
14.00
.590
-150.3
1.62
66.8
.131
33.0
.390
-65.8
1 6 . 00
. 560
-167.2
1.46
54. 5
.135
29.1
.370
-82.3
'Vi
N*“E THOMAS HO
SMITH C H A R T FO R M B2-BS P R 0 -6 6 1
T,riE
ow
e, n o
NE 1 3 7 0 0 FET
KAY E L E C T ft IC CO M PA NY , PIN E BROOK. N J , © I 9 «
P R IN T E D IN U SA
IMPEDANCE OR ADMITTANCE COORDINATES
flfcOlAI.LT SCALED PAAAUCUftS
TCrvtRD CCNUUTW
Figure
3.8.
S- ^
and S 2 2
S mi t h
Chart
of
NET 37 0 0 FET p l o t t e d
on
f r o m 2 - 1 8 GHz.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission
79
NE 1 3 7 0 0
FET
60
50
1301
140'
40'
150
30°
160
20°
170'
10 °
180
0°
170’
160'
150
10 °
-
20°
-3 0 °
140
40
130
50
120°
Figure
-
3.9.
-1 1 0 °
-1 0 0
-9 0 ° -8 0
anc* $21
on S mi t h c h a r t
NET 3 7 0 0
70'
60
FET p l o t t e d
f r o m 2 - 1 8 GHz.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
80
3.3.3
N oise P a ram e te rs Measurements
Accurate experim ental c h a ra c te riz a tio n
low n o i s e a m p l i f i e r
design.
parameter occurs
the
best
device
impedance,
noise
at
figure
Figure
start,
and m e a s u r e
ZQ n , a n d a t
obtained
its
3 .1 0 shows t h e
tees.
Two h i g h
before
and a f t e r
mismatch e r r o r
during
sliding
figure
actual
components
are
device.
the
1
Am plifier
its
tuners,
isolators
the c a lib ra tio n
The i n p u t
adjusted
for
g a i n and
noise
with
and
the
its
bias
were placed
of
p ro c e d u r e and
and o u t p u t
minimum n o i s e
has
f ig u re measurement system needs
insertion
loss
of
its
various
as fo llo w s:
(f 2 -
F
of the
On c e t h e mi ni mum n o i s e f i g u r e
noise
for
the
source
t h e DUT t o r e d u c e t h e e f f e c t s
screw t u r n e r s
be c a l i b r a t e d
set-up
low l o s s
measurement^®^.
on t h e
phase, noise-
to check the
t h e same s e t - u p ,
both d u rin g
been a c h i e v e d ,
to
test
t h e DUT,
quality
key t o
the a m p lifie r.
a Ga As F E T .
m easurem ents were done i n
the
to s e le c t
optimum n o i s e
from
in p lace of
in order
t h e end i n o r d e r
n o is e measurements fo r
am plifier
In the desig n
is
F
d
3.46)
s
where
F2 = u n corrected
Fs = system noise
device
noise figure
figure
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced
with permission
of the copyright owner.
\
+ 28V
PULSED NOISE
SOURCE DRIVE
HP 8 9 7 0 A
N .F . METER
Further reproduction
BIAS TEE
HPII590A
IO ~ 3 0 M H z
<5^
TUNER
BIAS TEE
HPII590A
TUNER
H P346B
ISO.
L--CE3
—
MAURY 2640D
MAURY 2 6 4 0 0
Lv,
I/P
(x)
W.J. M28C
, MIXER
L.O.
V0
I
LOSSES L|
I
h — 0 /P LOSSES L0 - h
prohibited without permission.
H P8620C
H P86290B
SWEEPER
F( and G!
F, * F, -
Figure
3.10.
Test
set-up
of
gain
(Fz -I)
and n o i s e
meas ur e me nt
00
82
F 2 = second
state
= uncorrected
The l o s s e s
for
the device
the
input
device
with
and o u t p u t
slide
evaluated
for
method
Then
it
the
the
of
are
are
device
Fm^ n , w h i l e
setting^® ^,
is
50 o h m s .
found,
the
for
t h e y were
to
back"
tuner
loss.
position.
that
conjugate noise
The i n s e r t i o n
and
divided
loss
When i n p u t
and o u t p u t l o s s e s
associated
g a i n and n o i s e f i g u r e
can be c o r r e c t e d
of
as
<3 ‘ 4 7 >
= G1 + L i
When d e v i c e
of
by t wo t o
Fm i n = F1 Gn f
the
hence
the
tuner
both
lo s s e s vary
transform optim al
then measured
loss.
at
the
the desired
with another
to
losses
A "back
to measure
at
in c o rre c tin g
in co rrectin g
Typically,
been used
tuner
gain
im portant
im portant
tuner
impedance back t o
tuner
are
figure,
was l o c k e d
the matching
the
input
noise measurement.
previous
two t u n e r s
give
each
wa s c a s c a d e d
matches the
source
screw
tuner
associated
g a i n , Gn f .
has
the
figure
device
the
noise
associated
the
First,
at
noise
is
+ Lo
<3 - 4 8 >
removed,
coefficient
c a n be m e a s u r e d
determ ined,
the device
noise
the
source
to p rovide
reflection
r
on
and F
.
are
min
f i g u r e F is measured
again.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
83
The
input
turner
reflection
is
then
coefficient
removed t o p r o v i d e
of
zero.
a source
This measurement
( Fp _ Q)
s
together
w i t h F m£ n a n d
normalized
equivalent
r Qn a r e
noise
used
to c a lc u la te
resistance
r
as
n
follows:
r
=
- F
f
"
rs=o
11 *
”ln
f ° nl
(3 .4 9 )
4|ron| 2
where
o
A l s o , we c a n c o m b i n e
the gain
and n o i s e m e a s u r e m e n t
in Figure
3 .1 0 and S - p a r a m e t e r m easurem ent i n F i g u r e
to
in
result
3.11)
a on-line
by u s i n g
two H e l w e t t Packard
Fmin measuren,e nt
can
be s w i t c h e d
noise
"Source-pull"
is done,
to
calibration
connect
the
input
tuner
remain
the
o f NE-13700 have
calculated
frequencies
were
used f o r
noise m odelling
in
as
(Figure
When
and b i a s
t h e ANA i m m e d i a t e l y .
procedures
four
bench
R.F. sw itches.
The n o i s e - p a r a m e t e r
for
test
same a s
3.5
tee
The
before.
been m ea s u r ed and
in Table
am plifier
3.2.
These
design.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced
with permission
IF ATTENUATOR
of the copyright owner.
HP 59306A
RELAY
ACTUATOR
HP 8 4 1 0
NETWORK
ANALYZER
MAG
HARMONIC
HP84IIA
FREQ. CONVERTER
REF
TEST
Further reproduction
HP 8 7 4 3
R/T TEST UNIT
HP 593I3A
HP9 8 6 6 8
3zzzzfezz£> THERMAL
A /0
CONVERTER!
PRINTER
H P -IB
Z777^» H P9825
COMPUTER
H P84W ,
HP 8620C
HP 8 6 2 9 0 8
SWEEPER
RF
H P9872A
PLOTTER
BIAS TEE
HPII590A
JQ_
HP
HP84II
RF SWITCH
TUNER
-I-U
prohibited without permission.
Xf-1 MAURY 2 6 4 0 0
TUNER
j—T—T—i
DU
MAURY 2 6 4 0 0
BIAS TEE
H PII590A
JQ_
W.J. M2 8 C
MIXER
X
{ X } - — L. 0.
ISO. ( O
+28 V
PULSED NOISE
SOURCE DRIVE
Figure
3.11.
Source-pull
HP 8 9 7 0 A
N.F METER
test
set-up
10 .vi 3 0 MHZ
for
noise
parameters
meas ur e ment
00
-c*
85
Table
3.2
N o i s e P a r m e t e r s o f NE13700 0 . 5
Gate
l e n g t h Ga As FET a t Vd g = 3 . 0 V ,
Freq.
(GHz)
r
‘ on
Ma g.
F m •m
pm
I d s = 10 mA
Gn f
Rn
( ohms )
Ang.
(db)
(dB)
Yo n
(mhos)
7
.54
63
1 . 21
11.6
11
. 3 9 8 - j .540
9
.51
82
1.35
10.3
10.5
. 5 2 8 - j .720
12
.47
107
1.93
8.9
9.0
. 8 2 4 - j .950
14
.45
12 5
2.16
8.1
8.0
1 . 1 6 - j 1.07
ro n
:
Yo n
:
F
:
.
min
Rn
:
Gn f
:
Optimal
Noise Source R e f le c tio n C o e f fic ie n t
Optimal Noise Source Admittance
Mi n i mu m N o i s e F i g u r e
E q u iv alen t Noise R e sista n c e
Associated
Gain
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
86
3.4.
Broadband S in g le -e n d ed
L o w - n o i s e FET A m p l i f i e r
Designs
3.4.1
Synthesis of
D istributed
Broadband Matching
N e t w o r ks
The d i s t r i b u t e d
consist
of
an a r b i t r a r y
u n it element
circuit
total
element
(cascade
cascade
The g a i n
circuit
function
R ichard's
to
be s y n t h e s i z e d
of commensurate le n g th
transm ission
and s h o r t - c i r c u i t e d
number o f
networks
lines)
series
or
and o p e n -
shut stubs.
e l e m e n t s ma y b e e v e n o r
synthesis
transform ation
is
carried
out
in
odd^®^.
the
dom ain^^
n = tan
where w i s
(3.50)
frequency.,
commensurate l i n e s .
distributed
following
The
and
T is
the delay length of
The t r a n s f e r
network can
then
function
be e x p r e s s e d
of
the
the
in the
form
G ( f l 2 } = Kft2 m ( l + ft2 ) q
Pn (^2 )
=
Kx n? l + x ) q
pn U)
(3.51)
where
x = a2
? n<*>
=
an Nth o r d e r
polynominal
coefficients
are
to
in
x,
whose
be d e t e r m i n e d
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
87
K = gain
c o n sta n t chosen
to m aintain
realizability
(0 < G ( x ) £ 1 V x > 0)
m = number
to
of
high-pass
series
q = number
open s t u b s
of cascaded
B a s e d on E q u a t i o n
program
have
the
for
parameters
insertion
line
length
of
the
(3.51),
loss,
network
an a l g o r i t h m
the
topology,
frequency
are
coefficients
to
produce
and c o m p u t e r
for
the
When
ripple,
th e program
network
transfer
reflection
and f i n a l l y
extracts
f i n a l matching network.
distributed
w h i c h was m o d i f i e d
aid
networks
passband
specified,
synthesis
program,
from P e t e r s e n ' s
program,
been c o m m erically a v a i l a b l e ,
to
stubs
and d i s t r i b u t e d
co r r e s ponding
the
an i n t e r a c t i v e
CADSYN^®^,
tool
shorted
(UEs)
(assumning l o s s l e s s )
elem ents
Recently,
has
the
determ ines
coefficient
the
line
of network,
slope,
function,
shunt
of even o r d e r d i s t r i b u t e d
roci
by P e t e r s e n
1 at C ornell.
gain
calculates
or
corresponding
synthesis
been developed
six
elem ents
and
broadband matching d e s ig n
become a p o p u l a r
for
microwave
T O O ]
am plifier1
1.
param eters
with
Interactive
the
(531
I d e n t i t i e s 1 1 and
rapid
design
netw orks.
network
for
of
internal
adjustm ent of
capability
the
of
t h e Kuroda
the Norton T ra n sfo rm a tio n
input,
The g e n e r a l
synthesis
output,
gain
is
and
allow
interstage
response
shown
above s ix
of
in Figure
the
matching
a matching
3.12.
RI PPLE i s
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
88
LOG
GHz
MIS
RIPPLE
z
o
h£3C
UU
SLOPE dB/Octave
CO
Z
Figure
3.12.
Gai n r e s p o n s e
of
a matching
network.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
89
t h e maxi mum d e v i a t i o n
matching
work,
a t F^
the
program
To d e s i g n
source
fit
3.2
in
been used
impedance,
be s i m u i t a t e a
program
(COMPACT)
and d i s t r i b u t e d
wa s
used
low-noise
for
.
In
synthesis
7 to
input
to optim al
frequency
listed
1 4 GHz .
low n o i s e
noise
was f i r s t
parameters
band.
sim ulated
on t h e T a b l e
Also,
b a s e d on
bias condition
distributed
model
listed
o f FET c a n
a computer-aided o p tim iz a tio n
Figure
initial
3 . 1 3 shows a n o i s e model
synthesis
broadband matching
a broadband
GHz , a 4 t h o r d e r m a t c h i n g
synthesized
band
u n i l a t e r a l m o d e l o f t h e NE 1 3 7 0 0 FET t h a t
the
To p r o v i d e
the
distributed
the d esired
by u s i n g
gain
( i n GHz) .
a m p lifie r, the
the output
tapered
the broadbanding d esig n .
band o f
under th e
3.1,
at Fh
n o i s e model
noise
frequency
the S-parameter
also
ZQn f o r
the measured
on t h e T a b l e
for
be m a t c h e d
a distributed
the
and e n d s
the low-noise
network should
Therefore,
to
( i n GHz)
ideal
in dB /octave over
"CADSYN" i n t e r a c t i v e
has
matching
from an
network with a slope
which s t a r t s
this
( i n dB)
network
t h e FET's p a r a s i t i c
of
wa s a t t e m p t e d ,
be f o u n d
reactance while
Hence,
a high-pass
to a d ju s t
transform ation
ratio
required
in p u t matching
network w ith
five
to e x a c tly
providing
t r a n s f o r m a t i o n ^ 5 3 ^ was u s e d
the
1 4 GHz
l o w - n o i s e match from
could not
to
7 to
am plifier.
network
impedance t r a n s f o r m a t i o n .
the
the
but
14
the
absorb
a proper
Kuroda
impedance
value.
reactive
7 to
The f i n a l
elem ents,
0. 1. 9
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
90
R i = 23.2 ohm s
z i = 37.2 o h m s
6 0 ° a t 14 GHz
A.
NOISE
j
MODEL
?
r z.in t
3 -0
0
R:in
Rj = 23.2 ohms
:r .
R0 = 8 7 . 4
ohms
Z j = 37. 2 o h m s
Zo = 1 8 1 . 5 o h m s
All p h a s e s a r e 60° at 1 4 G H z
B.
DISTRIBUTED
UNILATERAL
MODEL
Figure
3.13.
Distributed
MESFET ( 7 - 1 4
equivalent
GHz)
for
circuit
low n o i s e
of
NE1 3 7 0 0
design.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
91
dB g a i n
slope
reduction,
0.1
was s y n t h e s i z e d
form at.
provide
r i p p l e a n d 0 dB g a i n
in a d is tr ib u te d
transm ission
line
An o u t p u t m a t c h i n g n e t w o r k wa s s y n t h e s i z e d
broadband
o u tp u t matching
transm ission
reduction,
slope.
dB g a i n
line
3.4.2
elements
0 . 1 dB g a i n
shown i n F i g u r e
for
the output
networks c o n s is t e d
The f i n a l
value w ill
g a in match
to generate
ripple,
synthesized
3.14(a),(b),
be d e s b r i b e d
of s ix
and
port.
The
distributed
a 0.1 db g a i n
3 dB/octave gain
t o p l o g y and r e s u l t s
and
to
the d e ta ile d
in S e c tio n
are
element
3.4.2.
P e r f o r m a n c e and A n a l y s i s
of Broadband Low-noise
FET A m p l i f i e r
Based on
aided
optim ization
optim ize
the gain
frequency
optim al
band of
final
length
program,
and n o i s e
7 to
optim ized
in
impedances
and l i s t e d
in Figure
calculated
gain
the
optim ized
given
figure
free
and l i n e
3.15.
response
of
in Figure
to
in the d esired
is
shown
distributed
the
a computer-
The c o n f i g u r a t i o n
transm ission
The i n i t i a l
lengths
are
Figure
also
3.15.
line
wa s
a nd
comapred
3 . 1 6 shows t h e
t h e FET a m p l i f i e r
noise
of th e
in F igure
space.
computer o p t im iz a ti o n .
noise
networks,
COMPACT, w a s u s e d
1 4 GHz.
of each
at m illim eter
after
synthesized
b r o a d b a n d FET a m p l i f i e r
The l i n e
set
the
b e f o r e and
The c a l c u l a t e d
figure
and
measure
3.17.
The a m p l i f i e r
has
and
responses
are
a nominal
g a in of
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
92
37.2 A
Input
Matching
Network
50 A
Output
Matching
2 3 .2 A
>50A
Network
Mj
Mo
— FET Model | All phases at 14 GHz j
Gs = 0 dB/octave
Gs = 3.0 dB/octave
Gr = .19 dB
Gr = .10 dB
Rip = .10 dB
Rip = .10 dB
(o)
50A:
•50A
z o.
^02
Z 03
Z 04
Z 05
Z 06
Z 08 Z 0 9
(b)
Figure
3.14.
Synthesized
networks
for
b r o a d band m a t c h i n g
7 to
14 GHz l o w n o i s e
a mp l i f i e r .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced
with permission
of the copyright owner.
If—
Further reproduction
prohibited without permission.
Initial
Design
ohms
mm
O p tim iz ed ohms
Result
mm
Z 01
65.7
3.57
Zq2
Z03
1 2 0 .0
5 .6 0
65.7
2.40
1 2 0 .0
6 .9 0
Z08
I
51.3
3.57
Z 04 Z05
85.1 71.4
3.57 3.57
Z06
42.3
3.57
Z07
47.7
3.57
1 0 0 .0
5.00
Z 09
27.0
3-57
51.3
3.46
85.1
4.16
71.4
2.11
6 3 .7
3.06
4 7 .7
5 .4 9
100.0
5-90
27.0
1.44
Rg , R[_ • 5 0 o h m s
C3-6
C-j , C 2 : 1 0 p f
Figure
3.15.
7 to
:
14 GHz b r o a d b a n d
NE 1 3 7 0 0 0 . 5
microns
2 0 Pf
low n o i s e
gate
length
FET a m p l i f i e r
MESFET.
configuration
using
VO
CO
94
9 .0
8.0
7.0
CO
-a— "
-a
6.0
“ 4 .0
A
3.0
2.0
Predicted i ni ti al r e s p o n s e
°
Ini ti al response
a
Opt i mi z e d response
— S -|2 * 0
Act ual
meter
( S) Para­
1.0
6 .0
7.0
8 .0
90
100
11 0
FREQUENCY
Figure
3.16.
Calculated
low-noise
gain
12-0
-
response
13 0
1 4 .0
GHz
of
7 to
14 GHz
FET a m p l i f i e r .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
1 5 .0
95
i
co
TJ
1----------- 1----------- 1----------- 1------------ 1----------- r
3.0
LLI
LU CC
a
3 20
—
LU
3 0)
O <
LU
(0
o
Initial
10
response
Optimized
6.0
7.0
8.0
X
_L
9 .0
1 0 .0
result
X
11.0
FREQUENCY
Figure
3.17.
Calculated
responses
noise
of
7 to
figure
X
1 2.0
-
13.0
14.0
GHz
and n o i s e
14 GHz l o w - n o i s e
measure
FET
amp 1 i f i e r .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
15.0
96
7 . 0 dB w i t h
less
than
the gain
2.1
Figure
dB a c r o s s
3.18
is
m icrostrip layouts
substrates.
flatness
on t h e
0.5 microns d evice
circuit
silica
substrates.
the
am plifier
capacitor
stubs.
RF b y - p a s s
pf
connect
and 10 p f
the measured
noise
the
band.
thn 1 .3 : 1
at
described
the sin g le
using
a gain
(the
input
and
fused
included
in
t h r o u g h 1000 pf
to
the
5 m ils gold
shorted
capacitors
circuitry
using
respectively.
predicted
than
wa s
-
frequency
shunt
were
t h e ATC 1 1 1 20
Figure
3 . 2 0 shows
and n o i s e
low-noise a m p lifie r.
flatness
2 . 5 dB o v e r
o f + 0 . 3 dB,
the
from 8 :1
7 to
at
The
and a
1 4 GHz
7 GHz t o
better
1 4 GHz .
and
The same a p p r o a c h
wa s a p p l i e d
silica
15-m il-thick
t h e FET b y u s i n g
VSWR' s r a n g e
results
the measured
photo of
circuitry
the singe-ended
less
frequency
The
on t h e
capacitors
capacitance
and
fused
1 4 GHz.
and o u t p u t
film m ic ro strip
a n d DC b l o c k i n g
wa s 6 . 6 dB w i t h
figure
to
the m icro strip
performance of
gain
thin
The b i a s
feed-through
in
the
m odule and a p p l i e d
to
included
the
input
f r o m N i p p o n E l e c t r i c Company
realizations
ribbons
the
figure
7 to
The m o d u l e was c o n s t r u c t e d
with
output
of
and n o i s e
band o f
15 m i l - t h i c k
3 . 1 9 shows
e n d e d FET a m p l i f i e r .
dB,
frequency
a photograph
Figure
NE 1 3 7 0 0 Ga As FET)
the
+ 0.4
to
of
the
above a m p l i f i e r
predicted
to
performance
broadband
the m onolithic
in C h ap ter
demonstrates
are
low-noise
circuitry
that
w e ll matched.
am plifier
that
w ill
design
be
4.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CORNELL
Figure
3.18.
I n p u t and o u t p u t m i c r o s t r i p
on 1 5- mi 1 - t h i c k
fusted
layout
silica
substrates.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
98
Figure
3.19.
Single-ended
low-noise
mo dul e o f
7 to
14 GHz
FET a m p l i f i e r .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
99
N O I S E FIGURE - dB
N
q
in
CO
m
CD
O
•P
0
• o
N
2 O
X
0
(/>
01
<_>
c
(0
e
1
>
o
z
< <4
so
45-
0)
Q.
LU
“O
Z>
4->
O
LU
GC
U.
<D
U
•p”
*o
<U
5-
Q.
*o
•9
C
C0
T3
QJ
S3
S-
0)
•n
4*r—
»—
CL
l/>
E
<0
0)
<0
E
0>
J=
0>
to
*r-
o
I— C
O
0)
O
CO
o
o
ID
ap
o
in
-
o
o
co
n i v o
9
CM
o
r-
o
cvj
0)
s3
a>
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TOO
3.5.
Broadband Low-noise Balanced A m plifier
Broadband
input
am plifiers c h a ra c te ristic a lly
a n d o u t p u t VSWRs.
am plifiers
using
difficulty
in producing
is
because of
gain
using
to s ig n ific a n tly
of th e module.
noise
isolators
However,
significant
figure
the
am plifier
is
a very
am plifier
modules
parallel
between th e
couples,
as
shown
at
frequencies,
w ill
am plifier,
be s i m i l a r l y
through
again
dumped
reflected
the coupler
into
balanced
in
the
has
isolator
by
ports
can
the ov erall
balanaced
in
and o u t p u t
3.21.
pair
are
a signal
from t h e
the
arranged
in
3 dB
individual
p e r f e c t l y matched
i n t h e 0 ° arm o f
the
corresponding
9 0 ° ar m o f
the coupler
am plifier.
a reflection,
90° and t h e
been g i v e n
Two
quadrature
the
not
type
industry.
of
If
50 o h m s RF t e r m i n a t i o n .
am plifier
ripples
is
am plifier.
from i t s
0° or
This
it
and o u t p u t
broadband
approach
then
after
of
case,
same p e r f o r m a n c e a r e
balanced
a signal
have phased
input
the
problem,
be r e f l e c t e d
and
at
in Figure
in
certain
the
such g a in
input
to
between g a in s ta g e s c a u sin g
reduce
the
the
am plifiers
can le a d
gain f la tn e s s .
In sing le-en d ed
popular
of
realizations
which m ight degrade
of
above
for m ultistage
required
the
loss
and g a i n
To s o l v e
coupler
the
variations.
broadband
produce
"single-ended"
th e mismatches
and p h a s e
possible
Therefore,
have poor
the
w ill
On t r a v e l l i n g
signals
reflected
w ill
power
is
The t h e o r y of
by Kurokawa
, and
it
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced
with permission
of the copyright owner.
■90°+ 0°
-9 0
Ga As F E T
Further reproduction
!/ p
O
HH
Mi
HH
Mj
O
M0
Hh
L a n g e C o u p le r
L a n g e C o u p le r
_o
Rj : 5 0 ohms
prohibited without permission.
Figure
3.21.
Schematic
diagram of
balanced
amplifier.
°/,'P
102
m a y be s h o wn t h a t
the
input
a n d o u t p u t VSWR' s a r e
p r e d o m i n a t e l y d e p e n d e n t on t h o s e o f
the
two a m p l i f i e r s a r e m atc h ed
To improve t h e
am plifiers,
the
input
broadband
f 51
1 1 was
investigated.
coupler
will
m onolithic
the
is
be d e s c r i b e d
of
of
substrates
e a c h Lange c o u p l e r
precision
measured
am plifier
Although
was
the
the gain
input
7 to
to
on t h e 1.5-mil t h i c k
by a t h i n
Figure
of th e
1 4 GHz f r e q u e n c y
and o u t p u t
t h e maxi mum v a l u e o f
the lo ss
of
am plifier
The b a l a n c e d
circuitry.
performance
Figure
balanced
and n o i s e d e g r a d e a b o u t
r e s p e c t i v e l y owing
of
bias
50 o h ms RF t e r m i n a t i o n .
across
3 . 2 2 shows
two s i n g l e - e n d e d
fabricated
term inated
g a in and n o i s e
Figure
th e wideband
internal
t h e Lange
balanced module.
and a m a t c h i n g c i r c u i t r y .
w ith an
of
6 with the
two Lange c o u p l e r s ,
a m p l i f i e r m o d u l e was a l s o
single-ended
Lange c o u p l e r
design
technique.
of th e
the photograph
am plifiers
interdigitated
in Chapter
providing
characteristics.
a n d o u t p u t VSWR o f
power c o m b i n i n g
which c o n s i s t
their
The d e t a i l e d
m icrostrip layouts
3.23
in
the coupler,
One p o r t
film ,
3.24 shows
the
balanced
band.
0 . 6 dB a n d
the coupler,
wa s s i g n i f i c a n t l y
of
improved
0.3
b u t VSWR' s
yielding
1.3:1.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
103
-H ■
3
25
111 .J1
CORNELL
Figure
3.
2.
Microstrip
balanced
layouts
amplifier
o f wi d e b a n d
(7 t o
14 GHz ) .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
104
Figure
3.23.
Phot ograph o f wi deband b a l a n c e d
amplifier
(7 to
14 GHz) .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
105
NOISE FIGURE-dB
CO
CM
T-
fO
CD
~0
HO
/
to
0)
u
c
fd
E
S-
O
<♦SCD
Q.
CD
tn
•r*
O
c
c
10
10
C7>
*o
0)
t.
:
amplifier.
x>
CD
CD
ba l a nc e d
=3
i/i
fO
CM
00
(s .
a p
<D
in
-
ni
't
v o
CO
CM
TCD
CD
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER 4
A NEW FABRICATION TECHNIQUE OF LOW NOISE
Ga As MESFET FOR MMI C' s
4,1
Introduction
C urrently,
the
are
increasingly
the
10:1 or
resolution
4:1
employing
reduction
in the
conventional
high r e s o l u t i o n
in
mid-UV c o n t a c t
inexpensive
this
Chapter
procedures
w ill
broadband
of
is
0.5
the
which
a
projection
seen
to
be an
lithography
to
printing.
to achieve
0.8 m icrons.
a relatively
simple
and
t o E-Beam l i t h o g r a p h y .
a r t Mi d - UV c o n t a c t
smaller
than
0.8 microns
design c o n s id e r a t io n s mentioned
a system atic design
This
Now a
i s d e v e lo p e d which use a s i n g l e
to achieve
of C ornell
use
1 . 2 5 ym by u s i n g
provides
a state
technique
be g i v e n .
Chapter
printing
From t h e
2,
range of
stepper
techniques
and a c h ie v e d
4 5 0 nm)
t e c h n o l o g y compared
process
futures.
-
( 2 8 0 - 3 5 0 nm)
the
chapter,
lithography
resist
0.8
of c o n v e n tio n a l o p t i c a l
a resolution
In
factors,
UV ( 360 -
Mi d - UV l i t h o g r a p h y
extention
th e wafer
range of
near
exposure
in
a n d Mi d - UV p r o c e s s
ion-im planted
l o w n o i s e Ga As MESFET
new t e c h n o l o g y w a s
l o w n o i s e MMI C' s w h i c h w i l l
also
applied
be p r e s e n t e d
to
in
5.
106
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
107
4.2
The C h a r a c t e r i z a t i o n
4.2.1
Mi d- UV C o n t a c t L i t h o g r a p h y
To o b t a i n
contact
surface
yield
in
to
and
resolution,
bowing o f
resolution
a lo t of
technologies
work,
Figure
best
over
the
effort
is
nature
wafer
Therefore,
the
A warped
affect
area
the
a n d a l s o may
industry
has
been
o n d e v l e o p i n g a ne w p r i n t i n g
and s y s t e m s
to
improve
the
resolution.
a K a r l S u s s M J B / 3 UV300 a l i g n e r
4 . 1 was u s e d
of
critical.
t h e mask m i g h t
a large
alignment e r r o r s .
devoted
this
the
b e tw e e n t h e mask and w a f e r
wafer
lead
o f Mi d - UV P h o t o r e s i s t
to achieve
the
figure
as
In
shown i n
sizes
less
than
0.8 m icrons.
T h e K a r l S u s s Mi d- UV a l i g n e r
watt
in
super
the
pressure
wavelength
standard
filter
range
this
is
aligner.
equipment
the
to p of
microns
of
is
2 8 0 - 3 5 0 nm.
reflective
the wavelength
The
typically
using
very
with
20 mW p e r
lines
as
square
as
the o t h e r .
It
wh e n o n e
is
radiation
refractive
in
as mesaured
optics
0 . 5 y m,
layer
possible
a l i g n m e n t o n t h e UV300 a l i g n e r
the
b y a OAI
centim eter
vacuum c o n t a c t mod e^9 1 ^.
im portant
as
component
reducing
small
a 350
The o p t i c a l
as w e ll
intensity
The d i f f r a c t i o n
to p rin t
condition,
accuracy
out
of
of
UV s p e c t r u m .
300 p r o b e ,
equipped
m e r c u r y lamp which d e l i v e r s
column which c o n s i s t s
elem ents,
is
to
in
for
enables
under
the
ideal
Alignment
is
patterned
on
achieve + 0.2
the
m a n u a l mode
operation.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
108
Figure
4.1.
Photograph
S u b mi c r o n
Research
S u b mi c r o n
of
Karl
Suss
Mask A l i g n e r
and R e s o u r c e
Structures
MJB/ 3 UV300
in
the
Facility
National
for
( NRRFSS) .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
109
4.2.2
The C h a r a c t e r i z a t i o n
The s u c c e s s f u l
process
requires
interactions
new r e s i s t
implementaiton
optim ization
between
m aterial
variables.
the
resolution,
etch
off
( 3)
for
profile
examined.
of
by s c a n n i n g
convolved
param eters,
associated
of
with
process
any
respect
to
and c o n s t r a s t ,
(4)
the gate
the
five
(2)
defect density,
and
definition
is
resolution
and l i f t ­
was o n l y
discussed
above e x p e r i m e n t s
electron-m icroscopic
very
and
wa s
studies
of
profiles.
of
problems
associated
length
rqo
q a
'
So i t
reduction
a s AZ 1 3 5 0 J ,
with
exposure
has
as
w ill
the
Since
it
resist
does
in
absorbance
no
traditional
quickly
the change
this
a higher
range.
near
of
From a n a b s o r b a n c e
i
resist
material
suitability
J shows t h a t
3 1 3 nm d u r i n g
light
the
such
exposure.
1350J1
the
control,
Since
The a n a l y s i s
resists
of
the
sensitivity
o f mid-UV r e s i s t
positive
nm)
tool
the c a p a b ilitie s
linew idth
Examination
nm).
the complex,
and
t h e FET p r o c e s s i n g ,
accomplished
resist
a lithographic
new e x p o s u r e
( 1)
resistance.
critical
of
technology are evaluated
m a j o r c r i t e r i a ^ 2 ^:
( 5)
of
properties
In g e n e ra l,
lithographic
o f AZ4110 P h o t o r e s i s t
bleaching
to
a shorter
spectrum
does not
the
near
i n mi d - UV
occurs,
be mor e h e a v i l y e x p o s e d
resist/w afer
in d i s s o l u t i o n
rate
reveals
interface.
with depth
wave
o f AZ
bleach
at
UV ( 3 5 0 - 4 0 0
(280-350
the
than
surface
the
The r e s u l t i n g
into
the
resist
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
110
w i l l p r o d u c e a t a p e r e d p r o f i l e which w i l l s e r i o u s l y
a f f e c t the r e s o l u t i o n .
However, t h e low e r a b s o r b a n c e o f
a p h o t o r e s i s t a l l o w s t h e w a l l s t o be more v e r t i c a l a f t e r
developm ent.
A ls o , d i f f r a c t i o n lim it e d the t h e o r e t i c a l
r e s o l u t i o n o f c o n t a c t p r i n t i n g as d e t e r m i n e d b y ^ ^ :
(4.1)
2 b .
min = 3 / A ( s + d '/ 2 )
= 2 . 1 2 v'Td
w her e 2bm^n
^g
V s -► 0
(4.2)
g rat in g p e r io d , A i s the wavelength of
t h e e x p o s i n g r a d i a t i o n , d i s the p h o t o r e s i s t t h i c k n e s s ,
and S i s t h e gap width m a i n t a i n e d betw een th e mask and
p h otoresist surface.
T h e re fo r e , with the r ed u ctio n o f
w a v e l e n g t h from near UV t o mid-UV, t h e A Z 1 3 5 0 J used
p r e v io u s ly for gate def i n it io n
must be r e p l a c e d by a
mid-UV s e n s i t i v e r e s i t .
showed t h e lowe r
absorbance, l e s s
H ofer^^
than 0 . 4 , o f a 1 Mm f i l m o f AZ2 4 0 0 in
both mid-UV and near-UV l i g h t r a n g e s .
A Z 4 1 1 0 from American H o e c h s t Co.
AZ 2400 , being s u i t a b l e
A new r e s i s t
i s very s im ila r to
f o r mid-UV l i t h o g r a p h y , but i t
c u r r e n t l y n o t w i d e l y used i n i n d u s t r y .
is
S i n c e AZ41.10 has
c o n s i d e r a b l y lower a b s o r b a n c e v a l u e s f o r t h e mid-UV l i g h t
r an ge than A Z 1 3 5 0 J ,
i t was adopted t o e v a l u a t e i t s
s u i t a b i l i t y f o r C o r n e l l i o n - i m p l a n t e d l o w - n o i s e GaAs
MESFET and broadband l o w - n o i s e MMIC's.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
m
Resolution
effect
of
' S t a n d i n g Waves'
tre a tm e n t of
also
spin
of
in
the
t h e AZ4000 s e r i e s
speed
after
soft
the exposure
developing
tim e,
processing
Figure
as
profile
80°C f o r
under
intensity
chlorobenzene
for
been
s h o wn i n T a b l e
4.1.
3 m inutes,
the post
The p o s t b a k e c a u s e s
w alls,
leaving
undercutting
proper
can
be a l l o w e d
process
and s p r e a d
profiles
"induction
in
the
and
following
the optim al
the Karl Suss
tem perature
have
exposure
then
the
out
the
developed
for
exposed
over
the
been a c h i e v e d
resist
gate
at
resist
Excellent
e f f e c t " f 941 .
use of
bake
due to
profile
"lift-off"
.
On t h e o t h e r
resist
and
s m o o t h wall, s u r f a c e s .
resist
the
20 m i n u t e s ,
diffuse
versus
a n d e x p o s u r e t i m e w a s 16 s e c o n d s
9
o f 20 mW/cm .
A fter soaking into
about
to
the
run
of
The p r e b a k e
for
photocompound
shows
20 m i n u t e s .
have
90°C was a p p l i e d
1 minute.
wa s
tem perature
f o r AZ4110 f r o m u s i n g
20 m i n u t e s
a light
baking
systems.
effect
4.2
80°C f o r
s h o w s t h e SEM m i c r o g r a p h
MJ B/ 3 UV300 p r i n t i n g
was
This
the
by t h e
o f mid-UV r e s i s t s
bake a t
time,
wall
Figure
many e x p e r i m e n t s
steps
4.3
photoresist
on r e s i s t
evalution.
By v a r y i n g
the
by d e c r e a s i n g
a post exposure b ak e^® ^ .
considered
thickness
the
c a n a l s o be im p ro v ed
profile
The b o tto m
hand,
resulting
resist
could
Figure
4.4
shows
from a s h o r t e r
not
an
inappropriate
exposure
develop co m p letely .
tim e.
This
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
112
4.4
4 .0
3.6
3 .2
<
2.8
2 .4
Z
2.0
0.8
0 4
3000
4000
5000
SPIN
Figure
4.2.
Thickness
versus
at
of
spin
80°C,
6000
SPEED
7000
-
RP M
AZ4000 s e r i e s
speed
after
8000
photoresist
a soft
prebake
20 m i n u t e s .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
113
Table 4.1
Mi d - U V R e s i s t E v a l u a t i o n
P r o c e s s Flow
Step
D escription
Apply
1.0
pm AZ 4 1 1 0 p o s i t i v e
on S . I .
Ga As s u b s t r a t e s
Prebake
80°C,
Expose
K a r l S u s s MJB 3 UV 3 0 0 ,
20 m i n u t e s
exposure
with
resist
time
10 s e c
to
varied
20 s e c
x = 3 1 0 nm a n d P = 20
mW/cm^
Chlorbenzene
3-6 m inutes
Soak
Postbake
90°C,
Image D evelop
AZ400K
20 m i n u t e s
(1:4)
developer
for
SEM
(
1 to
at
high
contrast
room t e m p e r a t u r e
3 minutes
Evaluation
of
resist
profiles
optional)
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
114
Figure
4.3.
SEM p h o t o g r a p h
photoresist
s h o ws
( AZ 4 1 1 0 )
the
optimal
profiles
resulting
f r o m mi d- UV p h o t o l i t h o g r a p h y .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
115
I
Figure
4.4.
SEM p h o t o g r a p h
photoresist
s ho ws
( AZ4 1 1 0 )
an
inappropriate
profile
resulting
f r o m mi d- UV p h o t o l i t h o g r a p h y .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
116
causes
the metal
to
build
The u n w a n t e d
'wing
formed a f t e r
the metal
have
been o b s e rv e d
Figure
4.6.
performance.
the
used
next
4.3
a s shown
during
to
these
4 . 5 will,
The m e t a l
'wing
evalution
as can
to
further
plague
the
The a b o v e o p t i m a l
tips
in
be a v o i d e d
realiability
which w i l l
tips'
be s e e n
should
processing
be
and
parameters
be d e s c r i b e d
in
section.
Device P ro c essin g
Introduction
The
fabrication
ME S F E T ' s
involve
These l e v e l s ,
process
state
are
of
four
Cornell
first
three
level
their
in Table
mid-UV c o n t a c t
Resource F a c i l i t y
levels
for
ion-im planted
s e p a r a te major
along w ith
listed
art
of
S u s s MJ B/ 3 UV300 A l i g n e r
at
4.2.
Each
electroplated
the gold
layer
UV p h o t o r e s i s t
s y s t e m wa s a p p l i e d
the c o n fig u ra tio n
l o w n o i s e MESFET.
the
Karl
Research
and
(NRRFFS).
a MESFET.
bonding
pads
The
The
for
RF
o f A Z 4 1 1 0 o r AZ 4 3 3 0 m i d to
each
of C o r n e l l
The d e t a i l e d
was d o n e by
using
Submicron S t r u c t u r e s
The s i n g l e
shows
level
the N ational
define
levels.
and p a t t e r n i n g
lithography
electrically
low n o i s e
processing
funciton
measurements.
4.7
the opening.
in Figure
wing
increase
i n FET p r o c e s s i n g
4.3.1
last
the
remain
Therefore,
i n FET p r o c e s s i n g
w alls of
deposition.
This w ill
processing.
were
tips'
up t h e
level.
3008
processing
Figure
ion-implanted
steps
will
be
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
117
LM E TA L'
AZ4110
METAL
Figure
4 . 5.
An i n a p p r o p r i a t e
photoresist
unwant ed
WING T I P S
cross-sectional
profile
forming
the
"wi ng t i p s " .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
118
Figure
4.6.
SEM p h o t o g r aph o f
due t o
an
p r o f i 1e o f
met a l
i napp r o p r i a t e
the
gate
"wi ng t i p s "
cross-sectional
1 ine openi ng.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
119
Tj - Pt - Au
GA TE
DRAIN
SOURCE
iiiiiiiiiiiiiiimmiiiii
0 . 3 um
ONLY
L EC
S. I .
UNDOPED
Ga As S U B S T R A T E
( 3 7 0
Figure
AuGe/Ni - Ag - Au
OHMI C
4.7.
pm)
Configuration
of
Cornell
3 0 0 8 GaAs MESFET.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
120
described
in
the
following
sections.
Table
4.2
Device P ro c essin g Levels
Level
Patterning
Function
1) Mesa
etch
electrical
2)
Ohmic
lift-off
ohmic c o n t a c t
3)
Gate
etch
recessed Schottky
4)
Plating
electroplate
4.3.2
methanol
ion-im planted
and p u t
the dehydration
clean
wafer
in pure
on t h e w a f e r
in
bake of
nitrogen
for
surface
lithography,
so
the
wafer
should
be
removed
filter
paper
the
and
then
10 m i n u t e s a t
pads
i n TCE, a c e t o n e ,
blow d r i e d
is
excess
at
speed of
very
photoresist
by s l i d i n g
the
it
for
20 m i n u t e s
blown
is
rpm.
spun
A
contact
from back
of
substrate
over
f e w d r o p s o f AZ t h i n n e r .
80°C f o r
After
is
resist
6000
important
with
110°C.
110°C,
a n d AZ4110 p o s i t i v e
soaked with
baked a t
cleaned
an oven to bake a t
30 s e c o n d s
smooth b a c k s i d e
is
is
and d e i o n i z e d w a t e r ,
nitrogen
wafer
electroplated
Me s a D e f i n i t i o n
The
pure
and l i f t - o f f
isolation
and
ready
to
the
The
remove
beads.
The smoo th and
flat
surface
of
resist
is
very
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
121
critical
called
for
contact
printing,
a bead which
spinning
quality
should
of
exposure
a fine
bake a t
line
80°C,
at
strip
the
and e x p o s e d
for
dried
r e a d y f o r mesa p a t t e r n i n g .
process
patterning.
of
After
removal
of
the
K a r l S u s s UV300 a l i g n e r
light
intensity
of
pattern,
the
contrast
developer
m inute.
It
for
wafer
then
The
beads,
the
and e x p o s e d
the
a pre­
a N i k o n UV
40 s e c o n d s w i t h
wafer
to
and
is
etch
then
away t h e
finally
blow
bead rem oval w i l l
for
before
is
the
next
put
in
16 s e c o n d s w i t h
exposure of
i n AZ400K
a devleoping
follows
in
wafer
After
developed
with
edges,
after
i n FET p r o c e s s i n g
20 mW/cm .
is
for
30 s e c o n d s
the wafer
each le v e ls
put
Then th e
square
to
printing
then
outer
be a p p l i e d
the
the
wafer
resist,
edges while
Therefore,
(1:3)
of
thicker
wafer
improve
o
12 mW/cm .
i n AZ400K
the
pattern.
aligner
in te n s ity of
developed
built
be remo ve d t o
400 c o n v e n t i o n a l
a light
is
and
(1:4)
time of
a
t h e mesa
high
about
post exposure
bake a t
etch
to
1
100°C
15 m i n u t e s .
Now, u s e
mesa.
a wet c h e m ic a l
A H F : H 2 0 : H 20
(1:1:10)
solution
bro ad ly sloped o v e rc u t edges w hile
(80:4:4)
Hence,
w ill
result
in a s t e e p l y
H3 P 0 4 : H 2C>2 : H 20
The p h o s p h o r i c
etch
(1:1:25)
gives
good s t e p c o v e r a g e o f
solution
near
is
w ill
form the
give very
an H C l ' . ^ C ^ t ^ O
sloped e d g e ^ * ^ .
used
a s mes a e t c h ^ 1 0 1 ^.
45° s l o p e
ohmic and g a t e
that
offer
m etallization.
The
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
122
mesa w i l l
of
the
under
active
d own t o
layer.
stirred
checked
shown
with
for
rate
is
the
through
be l e s s
the
30 8 / s e c
isolation
islands
com pleted,
about
removal
than
the
5 PA a t
photoresist
The f i n a l
c a n be
50
is
and baked
mesa p a t t e r n
to
is
4.8(a).
Ohmic C o n t a c t F o r m a t i o n
o f ohmic c o n t a c t
t h e mesa d e f i n i t i o n
treatm ent
used
exposure,
the
m inutes
to
except
facilitate
wafer
and t h e n
for
is
1 m inute
wa s j s u t
(4:2:200)
8)
, and'was
It
was t h e n
stopped
1000 8 AuGe-Ni
in
lift-off
is
is
5
followed
for
in
was d o n e
the
of
for
developer
for
(1:15)
and
10 s e c o n d s
for
( 50
10 s e c o n d s .
immediately loaded
ohmic m e t a l l i z a t i o n ,
1 2 % / 1 0 % ) , 1 0 0 0 8 Ag a n d
condition
soak
ohmic l e v e l
This
(1:4)
to
The ohmic m e t a l l i z a t i o n
nitrogen
Evaporate
( 88%,
the p re ssu re
ohmic c o n t a c t
i n AZ400K
b y NH4 OH: H20
blown d r y
i n an e v a p o r a t o r .
This
After
nitrogen.
by a q u i c k e t c h
4:1.
sim ilar
the chlorobenzene
a n d 30 s e c o n d s .
diluted
is
in chlorobenzene
blown d r y i n
preceded
form ation
lift-off.
soaked
immediately w ith developing
under
is
The e l e c t r i c a l
next lev el.
Th e p r o c e s s
about
complete
a c e t o n e and t h e w a f e r c l e a n e d
in Figure
4.3.3
The e t c h i n g
c u r r e n t must
When t h e e t c h i n g
prepare
ensure
a d j a c e n t mesa
The l e a k a g e
stripped
4000 8 t o
condition.
by p r o b i n g
resist=
V.
etch
P
c
achieved
<
5 x 10
2 0 0 0 8 o f Au
_7
by s w i r l i n g
Torr.
The
in a c e to n e
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
123
0
Figure
4.8.
(a)
Mesa e t c h e d
pattern;
6
(i n i
( b)
o hmi c
me t a l 1 i z a t i o n .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
124
(and s q u i r t i n g
furnace
at
if
necessary).
a peak
temperature
m i n u t e 10 s e c o n d s .
produced s p e c if ic
1 x 10
f t * c m^ .
m etallization
4.3.4
contact
Figure
the
in
the
attack
In
addition
required
the
the
at
height
very
than
t h e ohmic
of
in
thickness.
for
critical
to
a perfectly
to
4.11
used
in
in
allow
the
a
solvent
process.
the
An e m p i r i c a l
thickness
of
gate
pattern
4.9
is
0.9
is
150%
ym m e e t i n g
level
performance,
Figure
alignment
a special
used
to achieve
4.10 shows a photograph
f r o m a Ga As w a f e r .
the gate
work.
allow
t h e AZ4110 r e s i s t
Since
shown i n F i g u r e
this
to
layer.
a thickness
t o microwave
shows
to provide
be e v a p o r a t e d w h i l e
lift-off.
aligned
profile
the overhang above th e
Therefore,
micron a lig n m e n ts .
procedure
overhang
the
the l i f t - o f f
the metal
6 0 0 0 r pm r e s u l t s
Figure
during
requires
t h e mi n i mu m p h o t o r e s i s t
a l i g n m e n t mark a s
of
sufficient
of metal
break
requirement
+0.2
less
s u r f a c e m u s t be s u f f i c i e n t
the
metal
narrow g a te s
photoresist
v a l u e f o r
the
of
have
thickness
retaining
is
of
1
consistently
illustrated
evaporated metal layer
semiconductor
the
4.8(b)
forming gas fo r
has
resistances
in
w ith mesa.
photoresist
to
spun
system
contacts
Schottky Gate D e f in itio n
break
of
alloy
450°C i n
This metal
The f a b r i c a t i o n
of
Place
recess
After
and l i f t - o f f
alloying
the
ohmic
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
125
2 pm
H k
•
1
\ff//f/ / /// / / f f f r /■A*///////////A
t
,
\
k
\ — Gate
Me s a
level
Le v e l
------------ O h m i c L e v e l
Figure
4 .9.
A l i g n m e n t ma r ks
lithographic
used
in
the
gate
process
of
Cornell
3008
GaAs MESFET.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
126
Figure
4.10.
A perfectly
aligned
pattern
from a
GaAs w a f e r .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
127
3 0 0 nm
UV BEAM
AZ4110
Mi d- UV ( 3 0 0 mn)
beam e x p o s u r e
-------------------F
H
-------------------
2 Z Z 5 3 ______________
Y777777,
chiorobenzene
V /////A
development
M
M
recess
...
A
soak
etch
*
ts^W W
gate
7ZZZZA.
- r J 7 7 /Z &
/ ..............
*V
ZZ22Z3
• • . •
Figure
4.11.
/
^
/
Ga t e
'
•
,
.
deposi tion
•
JZ Z• &
Z
•. *.
recess
me t a l
and
„
liftoff
liftoff
procedure.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
128
contacts,
with
the
wafer
is cleaned,
t h e mesa f o r m a t i o n
soaked
the
developing
m inute
a n d 50 s e c o n d s
74°F.
Note t h a t
environment
under
overetching,
step
is
until
achieved.
profile
Following
form ation,
was
the
evaporated
Torr.
the
4000 8 which
is
gate
after
recess
thickness
of
25
To a v o i d
a
current
a n d a good
etched.
used
in
ohmic
o f g a t e m e t a l was c h o s e n
lift
the
in
and s q u i r t i n g
acetone,
source-drain
tracer.
f o rm e d on r e c e s s e d
is
also
if
saturation
pattern
a 9000
by
necessary.
current
4.13(a)
channel.
Figure
70° t o
with
accomplished
Figure
th e wafer
t o be
low n o i s e
sw irling
tilting
etched,
procedure
Lift-off
m icrograph
rate
by
s h o w SEM
recess
thickness.
gate
etched
then
( 400 8 / 4 0 0 8 / 3 2 0 0 8)
7
v a c u u m c o n d i t i o n s o f P c < 5 x 10
good enough f o r
by c u r v e
is
saturation
(b)
8 resist
checked
to
condition.
and
gate
a p p l i c a t i o n s f^-03 ] an( j e a s i i y
The f i n a l
t e m p e r a t u r e of
m etallization
under
The t o t a l
(a)
1.
subject
etching
drain-source
same l o a d i n g
gate
is
as
is
was p e r f o r m e d a t 10 s e c o n d s
4.12
a uniform
wafer
approxim ately
recess
uniformly s t i r r e d
Figure
AZ4110 r e s i s t
time
with the
specified
of
(1:4)
just
and blown d r y
an e n v i r o n m e n t
The c h a n n e l
d ip etching
the
m icrographs
under
Then t h e
3 m inutes,
i n AZ400K
(4:2:200)
the
for
the developing
change.
NH^OHjI^C^rF^o
8/sec
procedures.
in to chlorobenzene
followed
baked and e x p o s e d
shows
can
be
an 0 . 7 5
4.13(b)
show t h e g a t e
is
pm
a SEM
line
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
129
IHM
Figure
4.12.
(a)
A uniform gate
GaAs o b t a i n e d
(b)
recess
after
in
by NH4 0 H : H2 0 2 : D I : : 4 : 2 : 2 0 0
SEM m i c r o g r a p h o f
profile
etched
gate
AZ4110
recess
photoresist
etched.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
130
DRAIN
Figure
4.13.
SEM m i c r o g r a p h
of
(a)
0.75
pm g a t e
(b)
gate
line
Cornell
3 0 0 8 MESFET
on r e c e s s e d
over
channel;
t h e mes a e d g e .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
131
over
t h e mesa e d g e .
t h e mesa
is
4.3.5
seen
An e n t i r e
in Figure
Gold P l a t i n g
(> 3 jam)
the
is
mask,
so
offer
a 3.4
After
a Schottky gate
previous
procedure.
AZ4110 w i t h
seconds,
for
the
not
further
minutes
process.
pattern
assurance
deposition.
of
is
form ation
After
developed
it
ground
s p u n on
the
plane.
top surface
resist
16
i n AZ400K
of
resist
might cause
(3:1)
remain
in
the
Although
it
was
be u s e d
for
surface.
was ba ke d a t
loading
is
thicker
ground
a
is
exposing
tre a tm e n t might
Then t h e
of
involves
be d e v e l o p e d
plating.
before
4000 rpm.
in the
T h e T i / A u ( 2 0 0 8 / 8 0 0 8)
plating
speed of
to
as
trace
( AZ4110)
immediately
chosen
remove b e a d s
a clean metal
resist
is
again
should
gold
a s h o rt 0 ^ plasma
just
a gold p la tin g
is
pm.
O therw ise,
after
The t h i c k e r
The b o t to m
1.0
and
the wafer
plating
no v i s i b l e
areas.
The b o t t o m
to
The r e s i s t
problem"
used,
Gold
plating
so t h a t
exposed
for
spinning
and e xposed
50 s e c o n d s .
"peeling
at
a thickness of
the
com pletely
essential
definition,
photoresist
bonding
interconnection.
pm t h i c k n e s s
baked,
two l e v e l
facilitate
AZ 4 3 3 0 m i d - U V p h o t o r e s i s t
cleaned,
across
4.14.
Au p a d s
a low r e s i s t a n c e
photoresist
feed-line
Formation
The e l e c t r o p l a t e d
provide
PI g a t e
plane
for
110°C f o r
ground
evaporated
plane
as
a
AZ 4 3 3 0 r e s i s t
at
30
spinning
is
speed
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
132
10 (J'V. ■—
Figure
4.14.
Photograph of
across
gate
feed-line
t h e mes a.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
133
of
4000 rpm, and
m inutes.
a 3.4
is
The t o p
followed
resist
pm t h i c k n e s s .
AZ400K
(3:1)
bake a t
electroplating
exposing
the wafer
20 m i n u t e s
to
just
improve t h e
achieve
a good e l e c t r o p l a t i n g ,
a current density
be k e p t
at
a constant
uniformly s ti r r e d
When p l a t i n g
developed
to
plane
plane,
Au a n d T i ,
and
the
the g a te
Device
4.4.1
4.16
the
in
The p o s t e x p o s u r e
the
hardness
and
for
7 . 5 m A / 3 . 5 cm .
plating
tem perature
done,
the wafer
plating
20
To
solution
at
After
is
50°C u n d e r
flood
mask l a y e r ,
etching
off
407 and
bottom r e s i s t
rinsed
Figure
view of
50 s e c o n d o n
was d e v e l o p i n g
the
by A u r o s t r i p
ion-im planted
4.15.
4.4
is
exposed.
respectively,
3008
for
preceeds
of
30
condition.
remove t h e
ground
acetone,
80°C f o r
3 pm Au wa s i m m e d i a t e l y e l e c t r o p l a t e d
with
the
at
a p l a t i n g mask w i t h
resist
m inutes
should
is
approxim ately 1 m inute.
100°C f o r
adhesion.
prebake
( AZ4 3 3 0 )
After
K a r l S u s s UV300 a l i g n e r ,
the
by m e t h a n o l .
is
the
exposed
leaving
the
ground
b u f f e r HF
then
sprayed
with
The c o m p l e t e C o r n e l l
l o w n o i s e MESFET i s
shown i n F i g u r e
is
showing
a SEM m i c r o g r a p h
feed-line
area
and
after
the
gold
a close-up
plating.
Performance
DC C h a r a c t e r i s t i c s
From t h e S c h o t t k y g a t e d e f i n i t i o n ,
observed
full
channel
current
of
an
the
first
im planted wafer
with
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
1 34
Figure
4.15.
Cornell
gold
3 0 0 8 GaAs MESFET a f t e r
plating.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
135
Figure 4 . 1 6 .
SEM m i c r o g r a p h
of
the
gate
s h o ws
feed
area
the
close-up
after
gold
view
plating.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
136
peak c o n c e n t r a t i o n
2.1
x l O 1 ^ c m- ^ wa s 8 3 0 mA/mm.
etching
d o wn t h e c h a n n e l
current
of
2 4 0 mA/mm t o
to
a zero gate
3 0 0 mA/ mm,
the
bias
gate
channel
m etallization
wa s e v a p o r a t e d w i t h T i / P t / A u .
The d r a i n - s o u r c e
saturation
dropped
owing t o
final
current,
the
built-in
voltage
I-V c h a r a c t e r i s t i c s
shown i n F i g u r e
wa s
I Dgs, th e n
36 mS f o r
4.17
.
of
of
3 0 0 pm g a t e
width
n o i s e MESFET's.
G e n e r a l l y low
current
current
wa s
The p i n c h o f f
shows
pinchoff
pinch
the
breakdown.
applied
to
voltage
for
is
the
gm, i n
1 2 0 mS/ mm.
very
I Dgs
The
im portant fo r
low
n o i s e MESFET a r e o p e r a t e d
bias
3.5V,
was - 1 . 5 V
a higher
characteristics
In order
just
The
At a d r a i n
t h e DC
~ 25.
voltage
typical
or
10 ~ 20% I Dg g ^ 4 6 , 5 4 ^»
o f 1 0 mA a n d d r a i n
transconductance
higher
of
the Schottky g ate.
The t r a n s c o n d u c t a n c e ,
near
a drain
1 3 0 ~ 2 2 0 mA/mm
t h e c o m p l e t e d MESFET i s
transconductance
at
to
A fter
to avoid
starting
to -2.5V , with
I DSS*
for
Figure
4.18
a gate-drain
d e v ic e damage,
point
a
the
b i a s was
of
breakdown y i e l d i n g
R
wa s
a v a lu e o f -14V.
The m e a s u r e d d r a i n
for
the
which
gate
drain
is
the
voltage
ohms.
This
drain
series
resistance
conductance,
linear
with
source
GQ .
to
I Dg v a r y i n g
indicates
o
The "on
drain
~ 500
a or
2 ms
resistance",
R^g,
resistance
between
0 and
at
zero
1 mA, w a s 14
a low combined c h a n n e l ,
source,
and
resistance.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure
4.17.
Typical
I-V c h a r a c t e r i s t i c s
of
Cornell
0.75
ion-implanted
low n o i s e
ym g a t e
MESFETs
v d s ■ 3 . 5 V; ( b )
(a)
length
I^ss
= 40 mA,
I d s s » 60 ma , Vd s = 3 . 5 V.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
138
Figure
4.18.
Gate-drain
characteristics
3008 i o n - i m p l a n t e d
of
low-noise
Cornell
GaAs
MESFETs.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
139
The s o u r c e
resistance
resistance,
between
and s o u r c e and
performance
small
is
is
a very
the change
applied
drain
forward b ias
defined
edge o f
as d e s c rib e d
by m o n i t o r i n g
externally
the
to
Figure
R , is
O
ohmic c o n t a c t
important
in gate
10 and
test
test
20
pm.
pattern
are
between
the
peak c o n c e n t r a t i o n
for
of
the
376
x 10
This
spacings of
resistance
4.20
17
is
3
.
specific
contact
resistance,
6 x 10
the
gate
other
travels
end,
network.
different
for
signal
along
applied
be c o n s i d e r e d
value of
is
the
—7
a photograph
a DC g a t e m e t a l l i z a t i o n
2
ft*cm .
feed
end o f
to
the
as a d i s t r i b u t e d
circuit
f r o m t h e DC v a l u e m e a s u r e d
4.21
the
gate m eta lliz a tio n
in a lumped e q u i v a l e n t
Figure
to
to
The c a l c u a l t e d
the g a te m e t a l l i z a t i o n
the g a te must
The e f f e t i v e
resistance
other.
input
with
very s im i la r
from P l e s s y Co.
the
of
has a sh eet
results
p , was
3,
from
The n - l a y e r
cm
2,
as a f u n c t i o n
measured
Since
line
t h e ohmic s p e c i f i c
in Figure
ft/D .
AVDg/ A I GS
transm ission
the co n ta c t
2.1
a
ft.
two probed p a d s .
of
was m e a s u r e d
The r a t i o
The m ea s u r e d c o n t a c t
spacing
Ra
It
noise
cu rre n t while m aintaining
pattern
plotted
for
layer
v o l t a g e w i t h an
a photograph of
the
resistance
2.
c u r r e n t on g a t e .
is
feedback
depletion
factor
in Chapter
r e s i s t a n c e measurement with
5,
the gate
be Rs w h i c h wa s 3 . 2
4.19
the p a r a s i ti c
is,
therefore,
from one end
of
resistance.
the
test
to
the
pattern
T h e DC g a t e
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
140
Figure 4 . 1 9 .
Photograph of
pattern
for
the
measurements.
pads
transmission
o h mi c
specific
The s p a c i n g
are 2 , 3 , 5 , 1 0 , 2 0
line
test
resistance
bet ween
the
microns.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
141
220-
200 -
180
6 .0 x 10 7 jf l- cm
160
RES ISTA N C E
I 140
120
100-
80
9c = 4 0 x ^ i
60
= 3 7 6 fi/a
40
20
10
2L
Figure
4.20.
Contact
jj m
resistances
transmission
20
15
DISTANCE
line
me a s u r e d
test
from t h e
pattern.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
142
Figure
4.21.
Photograph
pattern
of
gate
and f a t
resistance
test
FET p a t t e r n .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
143
m etallization
Mm g a t e
as
r e s i s t a n c e was m e a s u r e d
26.8
ft b y u s i n g
probe r e s i s ta n c e
resitance
for
a
=
r
*
four-point
ir-gate can
be c a l c u l a t e d
expression,
the
_
in Section
l3
Mm.
4.5
the
height,
Rg, a re
for
a
tt
gate,
.
the gate
length,
and
Mma n d
of g o ld , h is
and W i s
the
measured g a te
p retty close.
t o microwave
gs
Mm, L = 0 . 7 5
resistivity
the th e o re tic a l
the g a te -so u rc e
to C
n = 0.36
specific
L is
resistances,
proportional
resistance
(4.4)
x 10 6 f t - c m,
Therefore,
important
gate
ft
PAu i s
is
t *i e s a me
From F u k u i ' s ^ 2 9 ^
hL J
gate width.
9s
Rm an(3 n a r e
n2
the gate metal
C
by^30^
as
= 1.04
W= 300
Rg i *
2.3.4.
theoretical
9 "
=
gate
(4.3)
be c o m p u t e d
p Au
to elim inate
1.12 ft
as
where
pm x 1 5 0
R *i
definitions
n
probes
Then t h e e f f e c t i v e
= 1 / 3 R^ a n d n = 4 .
Rg, can
a 0.75
n2
=
where
errors.
for
capacitance.
performance
C
gs
since
was m e a s u r e d
It
is
MAG i s
by u s i n g
very
inversely
a n HP
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
144
4 2 7 5 A LCR M e t e r
at
a f r e q u e n c y of
c a p a c i t a n c e v a l u e was f o u n d
with
the
average
characteristics
is
shown
4.4.2
value
of
be a ro u n d
0.28 pF.
of Cornell
in Table
to
10 MHz.
The
0.24
The summary of
pF,
DC
3 0 0 8 i o n - i m p l a n t e d Ga As MESFET
Microwave P erfo rm a n c e s
thinned
down t o
evaporated
thickness
were com pleted,
th e wafer
and t h e
b a c k s i d e m e t a l C r / A u was
by t h e V e e c o
thermal
evaporator
of
200 8 a n d 8 0 0 8 ,
with
respectively.
the wafer
good d e v i c e s
ready for c h a ra c te riz a tio n .
were mounted
and bonded on t h e c h i p c a r r i e r s
test
fixture.
techniques
parameter
noise
scribed
Following
described
are l i s t e d
as w ell
as
in Tables
inductances
the
high
4.4
and
and s e l e c t e d
The d e v i c e s
and put
into
s a me m e a s u r e m e n t
3.3
2 to
gain
the
After
into devices,
in Sections
was m e a s u r e d f r o m
bias
was
4-5 mil
evaporation,
wire
0.32
4.3.
When t h e DC t e s t s
the
-
and
3.2,
18 GHz u n d e r
bias
4.5.
already extracted
the St h e low
condition.
The e f f e c t
of
These
bond
form m ea su red S -
param eters.
T h e mi ni mum n o i s e
source
reflection,
desired
frequency
r
figure,
3
, were
on'
band 6 t o
F
. . and optim al
min
a ls o measured
12 GHz .
across
The d e t a i l e d
noise
the
noise
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.
145
Table
4.3.
S u mma r y o f C o r n e l l
3 0 0 8 MESFET
DC C h a r a c t e r i s t i c s
( Lg = 0 . 7 5
Test
Test Condition
I DSS
VDS
9m
VDS
VDS
= 3.5V,
= 3.5V,
= 3 . 5V ,
(at
Mm a n d W = 3 0 0 pm)
25°C)
OV
VGS
I DS
I DSS
1 0 mA
I DS
Test Results
40 - 65 mA
36 mS
25 mS
Rd s ( o n )
V
= 3.5V,,
= OV
DS
' VGS :
1 4 SI
V Go)
v
5 0 0 SI
V
p
v
I GS
V
= -5V
GS
DS = 3 . 5 V ,
DS
= 3.5V,
T
DS
I DSS
<
5 0 0 MA
-1.5
(2mS)
to
-2.5V
< 10 MA
-
v b gd
14V
1 . 1 2 S2
Rg
3 . 2 S2
Rs
c gs
I DS
f
= 10 MHz
0.24-0.32
pF
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
146
l
GaAs
FET
under
low
m
ai
m
'U
M
dp
m
r*H
3008
Cornell
of
S-parameters
source
rh
CN
m
01
<c
<
e
o
1—i
•
4-)
o
c
*0
c
HJ
U]
•H
ll
CO
T5
4-1
•rH
■o
c
o
o
oi
10
•tH
XJ
a>
to
• rl
0
c
C
r—i
1
r“i
•
rr—i
1
o
CM
<c
o
CM
CO
CM
1
o
•
r—i
•
cn
CO
CO
•
in
r•
r—i
m
CO
•
o
vo
1
o
o
o
o
•
o
r-*
•
P-*
VO
•
in
vo
•
vo
•
CM
vo
•
•
<T»
VO
r•
CO
in
•
n-
r-
in
VO
t—i
r-
CM
as
vo
as
vo
oo
o
o
o
o
o
o
o
o
z
r*
•
o
r•
•
00
r-
o
CM
•
m
•
r—i
00
•
as
CO
o
o
vo
•
r—i
•
m
CO
<N
i—1
01
o
s
<u
o
c
(0
4J
o
D
•o
c
o
z
<
•
•
•
in
•
r—i
•
•
•
i—i
•
in
•
in
r —i
00
vo
•
CM
r**
CM
•
O
VO
vo
CM
•
CM
•
r—i
r—i
in
•
r—i
vo
•
r—i
CM
r—i
vo
O
CO
r-
O
r—i
r-
as
o
o
o
o
o
o
o
o
•
o
ID
rH
r—i
•
VO
CM
r—i
00
•
r —1
CM
r•
*—i
VO
•
r—i
OS
•
r—i
•
Os
O
r—i
as
•
CO
•r*4
>
c
o
•H
is
01
'O
D
r-l
o
c
•H
01
'O
M
>
in
•
co
•
O
>H
*rH
s
r-H
(M
01
u
-o
c
0
S’
CO
r—i
in
•
r—i
00
CO
•
rH
o
r—i
•
r—i
15
MH
0
CM
•
o
CO
•
4J
o
<u
IM
UH
<u
o
CN
<
1
z
•
CM
VO
r-i
•
as
r-
00
•
vo
as
00
o
00
•
in
ro
r—i
1
H
i—t
01
0)
x:
Eh
o
!5S
s
4.4.
Ta bl e
z
C5
I
•—
II
Common
l
i
1
1
O
VO
cn
<u
14
En
O
00
00
o
o
O
O
o
CO
o
as
r**
•
o
O
t? 1
as
N
•
X
o
CM
•
o
•
•
vo
o
o
•
00
•
•
o
CM
r—i
r—i
•
r —i
o
vo
•
vo
—1
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<0
1
<
a
in
oo
o
o
CO
i—l
i—i
<H
c
it
CO
'U
M
1-1
0
o
>
o
<14
0
■d<
01
u
<11
4J
<11
s
<0
u
<TJ
04
1
cn
<D
o
44
D
0
cn
c
o
E
e
O
U
r-*
•
<0
<11
T3
O
i—1
+J
O
c
<
>
CO
c
0
•H
4J
•H
VO
r-
o
o
cn
vo
00
vo
O
00
vo
vo
vo
•
•
•
•
■
in
in
00
•
r**
vo
•
t—i
•
o
vo
vo
vo
in
ro
o
in
o
in
o
CN
in
•
o
pH
•
in
VO
pH
rro
r—i
01
CD
(c£
S’
00
CN
O
o
00
vo
o
o
•
•
•
fli
o
VO
00
•
•
CD
2
<
r**
in
rH
00
ro
CN
CN
i—i
CD
ro
S
CN
o
'O
c
•rt
<n
i-i
•H
>—i
•
ro
ro
rH
cn
00
i—1
in
•
m
o
»—i
CN
O
rH
00
•
•
in
vo
•
•
CN
CN
1—1
H
pH
t—i
•
vo
CN
in
•
**
00
r**
•
rH
•
i—
TO
C
Q
15
cn
4-1
in
CO
ItJ
•H
jQ
V
ai
144
144
<11
at
sz
*h
CN
•
•—i
CN
cn
<44
0
c
in
•
m
cn
C
0
u
•H
«5
cn
•
o
CN
O
U1
<0
O
CN
r -
•
ro
CD
2
c
<0
4->
ii
r-*
si
o
vo
•
rCO
i
o
O
•rH
C
ro
CN
CD
c
•H
cd
CN
<N
cn
<#>
in
ri
pH
pH
.650
<
•
n-
.083
W
<
'U
M
ro
o
CD
2
rH
•
CN
•
in
vo
CO
CO
ro
•
r -|
•
O
t—i
VO
CN
pH
pH
pH
•H
I
1
<
•
o
r*
61. 5
Eh
W
&4
•
vo
1. 29
Z3
2
o
pH
-141.1
C
cn
•
cd
i—i
r—1
cn
CD
Eh
O
VO
o
CTi
•
r^*
00
•
rH
ON
00
•
00
r•
in
r•
r*
•
o
o
O
O
O
O
o
o
o
o
o
o
o
o
•
CN
f“"1
r-H
s!
in
ro
CN
.71
Vj
0)
40
„
w
w
66.4
•
.c
cn
■rH
JC
-54
147
<n
r—i
A
<0
EH
t
cr
<n
N
44
EG
fe
CD
•
CN
•
H1
•
•
VO
00
•
o
r—1
•
16. 00
rr
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
148
param eters of
4 . 2 2 shows
Fm i n '
the
plotting
are
of
listed
a noise
figure
dB w e r e o b t a i n e d ,
contours
plotted
4.23.
at
of
4.6.
noise
Gn f , v e r s u s
constant
frequency.
G enerally,
the optim al
Ga A s MESFET w i t h a d r a i n
bias well
minimum n o i s e
into
figure
At
gain
of
g a i n and n o i s e
t h e same f r e q u e n c y w e r e c a l c u l a t e d
y -plane
Figure
figure,
2 . 9 6 and an a s s o c i a t e
and t h e
on an a d m i t t a n c e
a drain
in Table
the optim al
anc^ t h e a s s o c i a t e 9 a i n ,
1 2 GHz ,
7.7
the device
and
a s shown i n F i g u r e
noise
cu rren t of
saturation.
and a s s o c i a t e d
figure
10
is
obtained
~ 20% o f
in
I DSS a n d
The d e p e n d e n c e o f
the
g a i n on t h e d r a i n
t
bias
c u r r e n t wa s a l s o
4.24.
It
achieved
shows t h a t
at
associated
a drain
gain
Figure
bound w i r e
MESFET.
current
increased
inductor
parameter
available
S~param eter,
low n o i s e
to
and
with
the d ra in
current.
equivalent
and h i g h
:*'s a u n i l a t e r a l
= 0 dB.
circuit
without
the
by t h e
sim ulated
values
in
maxi mum s t a b l e
the
gain,
g a in were computed
4 .2 6 and
bias co nditions
approximation
4.26,
the
i o n - i m p l a n t e d Ga As
until
in F igures
From F i g u r e
the
was o b t a i n e d
the measured
transducer
gain
3008
elements
and p l o t t e d
wa s
and
circuit
circuit
figure
15% I DSg '
The power g a i n s ,
gain
shown i n F i g u r e
of
of Cornell
wa s c l o s e
GHz r a n g e .
Ga (max)
the
Th e e q u i v a l e n t
of
as
t h e mi n i mu m n o i s e
4 . 2 5 shows
optim ization
^max
investigated
to
4.27
S-
2-18
maxi mum
from
the
under
respectively.
the
frequency
an e x t r a p o l a t i o n
where
of
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Tabl e 4 . 6
Noise Param eters
vds
Freq.
of
-3.5V ,
F
^on
C ornell
I ds
.
mm
3 0 0 8 GaAs MESFET
= 10 m k
Rn
Yo n
(GHz)
Ma g.
Ang.
(dB)
6
.68
58
1.72
49
0 . 2 4 6 - j O . 529
8
.63
71
2.14
41
0 . 3 5 5 - j O . 652
10
.60
82
2.58
39
0 . 4 1 9 - j O . 779
12
.58
91
2.96
38
0.491-j0.889
( ohms )
*on *
O p t i m a l No i s e S o u r c e R e f l e c t i o n
w
Optimal Noise Source Admittance
(mhos)
C oefficient
F m i n : Mi ni mum N o i s e F i g u r e
V
Equvalent Noise R e sista n c e
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
150
13
CORNELL 3 0 0 8
12
10
GNF
Z 6
25
3.0 z
O4
- 2.5
• mi n
2.0
1.5
5 .0
6.0
7.0
8.0
10.0
9.0
F R E Q U E NCY -
Figure
4.22.
Op t i ma l
noise
associate
at
and
bias
Ij
gain
figure
(G^)
conditions
11.0
12.0
13.0
GHz
of
( NFml- n ) and
versus
frequency
= 3.5V
= 10 mA.
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.
3
151
f * 1 2 GHz
Yds = 3 .5 V
ljjs“ 10mA
■j q
2.0
5.0
NOISE
FIGURE
0
^ 4.!
-2 0
-.5
vailable'
.Gain
-
Figure
4.23.
Noise
figure
Cornell
1.0
and a v a i l a b l e
3 0 0 8 GaAs MESFET a t
gain
contours
on
12 GHz.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
152
15
f = 10GHz
14
V ds = 3 5 v
13
ldss= 58 m A
12
oQh
111
I
ASSOCIATED
GAIN
10
9
8
z
o
A
0)
N. F.
7
3m
A
6
O
c
5
9^ *m
4
Q.
00
_L
15
10
Figure
4.24.
Noise
vs.
I
JL
1
20
25
30
35
DRA I N CURRENT - mA
figure
(N.F.)
drain
current
MESFET a t
10 GHz.
and a s s o c i a t e d
f or Cornell
40
gain
45
(Gn f )
3 0 0 8 GaAs
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
153
* C o r n e l l 3 0 0 8 Ga As MESFET *
d9
vW V '
G
ds
S
Rg
Ri
1 .86
si
=
4.5
SI
R = 3.2
s
si
= 5.0
SI
R = 329
0
SI
Rd
Figure
=
4.25.
Equivalent
low n o i s e
of
c gs
c gd
Cds
=
.32
pF
= .019
pF
= .093
pF
= 2 4 . 8 mS
T
circuit
= 3.6
of
pSec
Cornell
3008
GaAs MESFET u n d e r t h e
V. _ = 3 . 5
ds
bonding wire
ion-implanted
bias
conditions
V and
I . = 10 mA.
The e f f e c t
ds
i n d u c t a n c e i s not i n c l u d e d .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
of
154
22
20
"
GAI N
MSG
V
MAG
15
F R E Q U E NCY
Figure
4.26.
Po we r g a i n s
versus
for
frequency
a Cornell
under
20
GHz
3 0 0 8 GaAs
low n o i s e
MESFET
bias
conditions.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
155
22
Vd s = 4 . 0 V
20
Id s = 4 5 m A
~ 75% Idss
MSG
14
MAG
-
10
5
4
3
2
6
7
8 9 10
FREQU ENCY
Figure
4.27.
Power g a i n s
versus
for
frequency
-
a Cornell
under
12
15
20
GHz
3 0 0 8 GaAs MESFET
high gai n
bias
conditions.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
156
t h e MAG c u r v e
to
0 dB g a i n
yields
an f
n ia X
value
of
46
GHz.
The above m e a s u r e d n o i s e
were
used f o r
MMIC' s
the
in Chapter
design
p a r a m e t e r s and S - p a r a m e t e r s
of Cornell
broad
band low n o i s e
5.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER 5
DESIGN AND FABRICTION OF GaAs MONOLITHIC
BROADBAND MICROWAVE LOW NOISE AMPLI FI ER
5.1
Introduction
The a d v a n c e s
microwave
integrated
practical.
commercial,
low n o i s e
^ ^ _ 108]
more a t t r a c t i v e
and cons um er
modules
broadband
survelliance
for
p a p e rs [114,115]
c o n s i c| e r
broadband m o n o lith ic
In
this
design
chapter,
and
w ill
technique
described
in Chapter
UV c o n t a c t
w ill
also
lithography
be a p p l i e d
fabrication.
procedure
wil.1
gain
to
3.
technique
A system atic
at
ma n y
V e r y few
in
m onolithic
by u s i n g
described
broadband
in
band
monolithic-
The s t a t e
design
be p r e s e n t e d
narrow
fabrication.
be d e s i g n e d
this
Recent
and low n o i s e
a 6 - 1 2 GHz b r o a d b a n d
am plifier
the
signal
system s.
flat
low-noise
a variety
counterm easure,
radar
both
of
applications,
electronic
and m u l t i b a n d
for
and shown goo d r e s u l t s
p a p e r s t l 0 9 - 1 1 3 ] ^ a v e S h 0wn t h e s m a l l
broadband
and
system s.
the p o te n tia l
am plifiers
p0r
.
h a v e made m o n o l i t h i c
now b e i n g d e v e l o p e d
have dem o n strated
m onolithic
X -b and
circuits
MMI C' s a r e
of m il it a r y ,
papers
i n Ga As t e c h n o l o g y
the
and
the
of
a r t mid-
in Chapter
4
l o w n o i s e MMIC
fabrication
follow ing
sections.
157
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
158
5.2
M o n o l i t h i c Broadband Low-Noise A m p l i f i e r
5.2.1,
Design
C i r c u i t Design
The b r o a d b a n d m o n o l i t h i c low n o i s e a m p l i f i e r
was
based on C o r n e l l
operating
over
dimension of
figure
GHz.
of
0.75
m o d e l was
Vim by 300
as
shown
obtained
in Figures
by u s i n g
noise source
band o f
in Figure
6 to
port
of
1 2 GHz.
was
then
the
Z
5.2.
on t h e
The
noise
program t o
until
the
measured v a lu e s
, across
The
network
input
is
of
the d e sire d
n o i s e model
synthesized
the
6 to
network,
type
0 . 3 dB g a i n
wa s s y n t h e s i z e d
shown
to
a t 12
have been
t h e n o i s e model
the device over
slope,
as
and
noise
0 dB g a i n
By c a s c a d i n g
active
5.1
for
matching
the
of
7 . 7 dB
and p l o t t e d
admittance
4th o rd e r
form at.
of
is
5.3(a).
optimum s o u rc e
ripple
gain
a computer
impedances,
An i n p u t m a t c h i n g
input
4.4.2,
impedances were c l o s e
frequency
the
ym, a n d a mi n i mu m n o i s e
the element values
sim ulated
shown
T h e s e FETs h a v e a g a t e
s h o wn i n S e c i t o n
Smith C h a rts
optim al
X-band.
S - p a r a m e t e r and n o i s e p a r a m e t e r s
as
optim ize
3 0 0 8 i o n - i m p l a n t e d GaAs MESFET' s
2 . 9 dB w i t h a n a s s o c i a t e d
The
measured
the
design
device,
in Figure
reduction
5.3(a).
synthesized
to
and
the
2.13,
A
with
0 . 1 5 dB g a i n
transm ission
input matching
a modified
to
1 2 GHz b a n d .
(e) in Figure
in a d i s t r i b u t e d
this
figure
to provide
line
network w ith
o u t p u t model can
be d e r i v e d
An o u t p u t m a t c h i n g n e t w o r k
provide
the
broadband
g a in match
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
159
THOMAS HO
TIT L E
CORNELL 3 0 0 8 FET
|SM1TH CH A RT FORM B 2 -B S P R l » 4 6 ) | E A T E L C C T R IC C O M E A N T . FIN E BROOK. N .J . O l | M
P R IN T E P IN U S a
IMPEDANCE OR ADMITTANCE COORDINATES
AAOlALLV SCALED PARAMETERS
14
I t II •
fOMAO lOAO
Figure
5.1.
and
Cornell
GaAs MESFET u n d e r
3008
l ow n o i s e
ion-impl anted
bias
condition.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
160
CORNELL
120
110°
100
3008 FET
90
80
70
60
50
130
40
1 40 '
30
150
20
160
10
170
2.0
180
10
170'
20
160‘
30
150
40
140
50
130
-100°
-90° -80
70'
S 12 and S 21 o f
Cornell
3008
120°
Figure
5.2.
-110°
i m p l a n t e d GaAs MESFET u n d e r
noise
bias
60
ionl ow
condition.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
161
FET Model
43. in
Input
Matching
Network
23.8n>
Output
Matching
Network
M0
>|89.m
|—
crrao
Mj
•son
All phases at 12 GHz
Gs = 3.0 dB/octave
Gr = 0.12 dB
Rip = 0.1 dB
Gs = 0 dB
Gr = 0.3 dB
Rip = O.I5dB
(a)
so n
son
Zoi
Z02 Z03
(b)
Figure
5.3.
Synthesized
for 6 to
noise
broadband matchi ng
12 GHz m o n o l i t h i c
GaAs
networks
l ow-
amplifier.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
162
for
the output
type
( d)
dB g a i n
gain
are
in Figure
0.1
w ill
program,
band o f
synthesis,
there
6 to
is
element v a lu e s.
process,
practical
range
transm ission
for
lines
The c o n f i g u r a t i o n
of
Ga A s FET a m p l i f i e r
of each
m illim eter
and l i n e
"COMPACT"
in fre e
also
for
the
during
the o ptim ization
RF b y - p a s s
a more
The l o s s e s
of
the
in the o p tim iz a tio n .
5.4.
line
was s e t
been chosen
stubs
at
impedances
5.4.
and S im u la te d
used
The l i n e
optimized
in Figure
are
to
broadband m o n o lith ic
The f i n a l
Two s h u n t
network
the matching
transm ission
A m i c r o s t r i p medium h a s
capacitors
of
shown i n F i g u r e
C ircu it R ealization
m onolithic am p lifier.
During
the optim al
a computer-
in the desired
included
listed
element
was u s e d t o
fabrication.
space.
are
figure
control
distributed
lengths
5.2.2
is
network,
c a n be c o n s t r a i n e d
easy
are
3 dB/octave
5.4.
However,
elem ent values
and
( b) , a n d d e t a i l e d
1 2 GHz .
little
t o have an 0 .1 2
t o p o l o g y and r e s u l t s
synthesized
t h e g a i n and n o i s e
frequency
ripple
5.3(a)
final
matching network,
also chosen
be shown o n F i g u r e
aided o p tim iz a tio n
length
was
synthesized
in Figure
Based on t h e
network
4th order
dB g a i n
The f i n a l
presented
optim ize
The
2.14,
reduction,
slope.
values
port.
to
Performance
realize
the
a n d t w o MIM
in t h i s
design.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced
with permission
of the copyright owner.
'01
CORNELL 3 0 0 8
Ga As F E T
z 03
•04
-06
■02
Further reproduction
±
*05
Jb
Cl
10 PF
I
C2
10 PFjl
+ V(ds
o " vgs
prohibited without permission.
ohms
mm
Rg
Zqi
z 02
z 03
50
40
3-26
80
80
3.184 3.13
L osses:
Figure
5. 4 .
6 to
12 GHz m o n o l i t h i c
z 04
ZQ5
80
3-104
80
40
2.104 3 .5 6 6
4 0 ft
8 0 ft
broadband
z 06
rL
50
I F re e s p a c e |
0 .2 2 /w av elen g th
0 - 6 /w a v e le n g th
low-noise
amplifier
configuration
163
164
Figure
5 . 5 shows t h e a r t w o r k
l o w - n o i s e MMIC r e a l i z a t i o n s
circuitry.
lines,
a m onolithic
substrate.
A transm ission
included
in
transm ission
relatively
designed
40 a n d
for
to
be 1 . 8
gain
x 2.2
response
Figure
5.6.
a gain
ripple
band.
The c a l c u l t e d
across
the
full
get
absolute
fabrication
of
noise
0.22 dB/wavelength
and
respectively,
The l e n g t h
the
noise
has
of
and y i e l d
figure
a nominal
the
figure
6 to
is
a
was
The
are
given
gain of
in
5.7 with
1 2 GHz f r e q u e n c y
less
than
3 . 4 dB
Analysis
t h e MMIC p r o c e s s i n g ,
accuracy of
varying
from
was o p t i m i z e d ,
it
is
very d i f f i c u l t
these
components during
batch
to
should
The e l e m e n t s w h i c h
MMIC p e r f o r m a n c e m u s t
circuit
LEC u n d o p e d Ga As
bandwidth.
component v a r i a t i o n s
the d esig n .
realize
80 ohm l i n e s ,
0 . 2 dB a c r o s s
S ensitivity
During
of
to
T h e Ga As c h i p s i z e
and
band
bias
are easier
x 0.2 m illim e te r.
The a m p l i f i e r
of
internal
realizable
s m a l l GaAs c h i p .
calculated
5.2.3
also
broad
impedance of th e
loss
40 a n d
are
the
this
2 0 0 pm t h i c k
the design.
lines
for
80 o h m s ,
f o rm a t on a
0 .6 dB/wavelength
are
with
The c h a r a c t e r i s t i c
transm ission
in
layout
batch,
so the
the
be a v o i d e d .
into
very s e n s itiv e
Therefore,
a sensitivity
analysis
IC
tolerance
be a l s o c o n s i d e r e d
are
to
to
the
after
was
also
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced
with permission
of the copyright owner.
TO IOOO PF
BIAS FEEDTHROUGH
TO 1000 PF
BIAS FEEDTHROUGH
WRAP-AROUND GROUNDING
— 0 . 7 MILS GOLD WIRES
SOURCE
METAL-INSULATOR-METAL
CAPACITORS
/ GATE
AIRBRIDGE
SHORTED SHUNT
STUB
Further reproduction
TRANSMISSION LINE
SEGMENT
/7 V
/
SHORTED SHUNT
STUB
BONDING
PADS
AIRBRIDGE
RF INPUT
OPEN SHUNT
STUB
DRAIN
6-12 LNAMP
T. HO
RF OUTPUT
LEC UNDOPED GaAs WAFER
prohibited without permission.
■' BACKSIDE METAL
i/Au GOLD PLATED
CHIP CARRIER
Figure
5.5.
The a r t w o r k
layout
Realizations
with
for
Cornell
internal
bias
broadband
low-noise
circuitry.
MMIC ( AMP38) .
166
GA IN
CQ
T>
GAIN
I
12
FREQUENCY
Figure
5.6.
Calculated
gain
GHz
GaAs m o n o l i t h i c
and n o i s e
amplifier
figure.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
167
applied
to evaluate
param eters
of
thickness
t h e MMIC p e r f o r m a n c e
th e FET's
subjected
transconductance,
and t h e w i d t h o f
to
the
gm, s u b s t r a t e
the m ic ro strip lin e s .
Those
p a r a m e t e r s d o m i n a t e MMIC p r o c e s s i n g .
Figure
the
5.7
shows
transconductance
that
gain
varies
transconductance
thickness
variations
gain
at
the
been
It
also
as seen
both
indicates
to
from any tuned
feedback.
affecting
the gain
in Figure
Substrate
performance
5.8.
are
The v a r i a t i o n
i n o n l y + 0 . 2 dB
frequency ends
the
noise
figure
also
c a n be n e g l e c t e d .
shown t h a t
sensitive
to
the
optim al design
5.3
expected
a b o v e p a r a m e t e r s was
variations
has
a b o u t + 0 . 7 dB a s
as
shown i n
5.9.
The c h a n g e o f
in
is
w i d t h o f + 10% r e s u l t s
degradation
Figure
b y + 10%.
intentional
significant,
of m icro strip
varies
which
without
as
gain varies
approxim ately p ro p o rtio n a lly
am plifier
not
that
this
for
the
investigated.
Fr o m t h e
broadband
variation
of
subjected
l o w - n o i s e MMIC i s
the components,
and
is
it
less
an
fabrication.
T e c h n o l o g y f o r MMI C ' s
In
fabrication
and
The s m a l l
above a n a l y s i s ,
Overlay C apacitor
the design
to changes
o f GaAs M M I C ' s ,
the
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
168
9
8
7
+ 10 %
6
•a
5
-10
4
3
2
1
5 .0
Figure
6 .0
5.7.
7 .0
Ga i n
8 .0
10.0
11.0
FREQUENCY -
GHz
sensitivity
9 .0
to
12.0
transconductance,
13.0
gm>
variation.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
169
9
8
7
6
-
10%
+ 10 %
5
- 4
3
2
1
5.0
Fi gure 5 . 8.
6 .0
7.0
9 .0
10.0
FREQUENCY -
8.0
11.0
GHz
12.0
13.0
Gain s e n s i t i v i t y t o su b s t r a t e th ickn ess
v a r i a t i o n o f LEC GaAs S . I . wafer.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
170
-
T3
10%
+ 10 %
- 4
5.0
6.0
7.0
Figure
5.9.
Ga i n
9 .0
10.0
FREQUENCY -
8.0
sensitivity
of microstrip
to width
11.0
GHz
12.0
13.0
variation
1ines.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
171
m etal-insulator-m etal
desirable
circuit
area
(MIM) o v e r l a y c a p a c i t o r
c o m p o n e n t f o r DC b i a s
applications
for
a given cap acitan ce
considerations
geometry,
the
for
point,
the edge of
total
of m etals
the
and d i e l e c t r i c
plate
film s,
with
the
5.10.
An a i r b r i d g e
the
is
often
thin
a shorted
i n work
used
to
m etallization
lower m e t a l l i z a t i o n .
is
in
used
At
this
and p rem a tu re
capacitor,
decreasing
yield.
are
integrity
the
ability
to m aintain
and e l e c t r i c
deposition.
the
Design
include
fabrication
Two i m p o r t a n t c o n s i d e r a t i o n s
m etals
(2pf-20pf).
the upper c o n ta c t
the d i e l e c t r i c
b r e a k d o w n may r e s u l t
the
tuning
a much s m a l l e r
the overlay capacitor
in Figure
the problem of
crossing
value
and
a
GaAs I C t e c h n o l o g y .
presented
avoid
requires
com patibility of
The s t r u c t u r e o f
is
it
bypass
an o v e r l a y c a p a c i t o r
properties
and t h e o v e r a l l
existing
because
line
is
Ti/Pt/Au
for
the e le ctro d e
their
physical
conductivity during d i e l e c t r i c
was u s e d f o r
gate m e ta lliz a tio n
of
l o w n o i s e MESFETs a n d T i / A u o r C r / A u a r e a v a i l a b l e
possible
microwave c i r u c i t m e t a l l i z a t i o n s .
Ti/Pt/Au
can m a in ta in
conductivity
after
its
a high
physical
w h ile Cr/Au might
degrade
tem perature.
dielectric
polyim ide.
The
It
requires
U sually,
integrity
temperature
high
used
and h ig h
treatm ent
in perform ance a t
film
in
temperature
as
o n Ga As
same
this
work was
curing,
250°C
~
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
172
Air B rid g e
Dielectric
Upper Metal
Electrode
L ow er Metal
E lectrode
Micostrip
T i /A u
Figure
5.10.
Overlay c a p a c i t o r
with a i r b r i d g e .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
173
300°C.
gate
Thus, only T i/P t/A u
and ground
processing
plane
level
so
have
it
is
suitable.
Therefore,
been d e s i g n e d
deposits
for
the
t h e same
the T i/P t/A u m etal
at the
same t i m e .
Sputtered
polyim ide can
capacitors.
SiC>2 a n d T a 2C>5 , p l a s m a S i 3N4 a n d s p u n
be u s e d
easy
to
thus
The a p p l i c a t i o n
are
excellent.
From E q .
is
for
the
this
sim plifying
film
it
the
yields.
(2.12),
suffers
at
DuPont
(PI-2555
it
is
very
t h e Ga As I C p r o c e s s i n g .
photoresist
from a p i n h o l e problem
to control
5.11.
thickness
the
versus
2 7 0 ° C wa s
Pl2555:Thinner m ixtures of
a s shown i n F i g u r e
a re most popular
work b e c a u s e
we know t h e
The t h i c k n e s s
film
the overlay
u n i f o r m i t y and r e p r o d u c i b i l i t y
But
very im portant
capacitance.
curing
t h e moment.
needs only stan d ard
and t h e
which d e c r e a s e s
film
at
was c h o s e n
apply,
equipment,
in
S *3N 4 ^nd S i 0 2 d i e l e c t r i c s
i n MMIC f a b r i c a t i o n
polyimide)
as d i e l e c t r i c s
1:1
spinned
and
The d i e l e c t r i c
and c a p a c i t a n c e
speed
under
2:1,
film
w e r e m e a s u r e d w i t h a TENCOR s t e p p r o f i l i n g
yield
dielectric
accuracy of
investigated
1:0,
of
the
after
several
by w e i g h t ,
thicknesses
machine.
compromise
between
per
unit
(C/A), the
thickness
of
p o l y i m i d e was c h o s e n
The f a b r i c a t i o n
of
a spun p o l y i m i d e o v e r l a y
to
As a
area
b e 5000
8.
capacitor
is
com patible
w i t h Ga As I C f a b r i c t i o n
processes
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
174
THICKNESS
14.0
6 .4
12.0
6 .0
10.0
5 .6
8.0
5 .2
6-0
KA
6.8
-
<
1 6 .0
THI CKNES S
e
7.2
4 .8
4 .4
4 .0
P I 2 5 5 5 J A Z T H IN N E R
. BY W E IG H T
2.8
2 .4
TCHO
2.0
3000
4000
5000
6000
7000
8000
9000
S P E E D - RP M
Figure
5.11.
Thickness
versus
for
of
spin
polyimide
speed
after
( Du p o n t
curing
PI-2555)
at
270°C
60 m i n u t e s .
R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.
and
has
been i n c o r p o r a t e d
electrodes
the
tem perature.
by t h e d i l u t e d
dielectric
film
of
problems
should
in fu rth e r
dielectric
is
of
5.12.
O therw ise,
to
gold
at
the
comparable
the
is
those of
were
T h i s wa s t h e n
that
capacitor
the
5.10.
is
is
An
shown i n
about
3.5
3Mm.
breakdown v o l t a g e s ,
t e c h n i q u e .
area
top of
the a irb rid g e
and c u r v e
no
might cause
in F igure
1 0 MHz,
is
The
the o u tsid e
s a me t i m e
top metal
a low f r e q u e n c y ,
to
in
it
and y i e l d s
were
using probes
with
tracers.
m icrowave f r e q u e n c i e s were measured
measurement
pattern
The t o p e l e c t r o d e s
overlay
The h e i g h t o f
t h e HP4275A LCR m e t e r
resist
and d e v e l o p e d
improve a d h e s io n .
a finished
Capacitances,
to
developer.
E x t r a T i m e t a l on t h e
Mm, a n d t h i c k n e s s o f
at
remains
were formed a s d i s p l a y e d
SEM p i c t u r e
measured
(1:9)
processing.
needed
from p l a t e d
airbridges
Table
systems
The d i e l e c t r i c
AZ6Q6
film
pattern.
ev aporated Ti/Au.
Figure
The b o t t o m
be e t c h e d c o m p l e t e l y s o t h a t
the d i e l e c t r i c
of d i e l e c t r ic
formed
work.
by AZ1350J o r AZ4110 p h o t o r e s i s t ,
and e tc h e d
trace
this
use T i/Pt/A u m e t a l l i z a t i o n
high cu rin g
defined
in
Q factors
by t h e
at
impedance
The m e a s u r e d r e s u l t s
s o me l a b o r a t o r i e s
are
listed
in
5.1.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
176
Figure
5.12.
SEM p i c t u r e
capacitor
dielectric
of a f i n i s h e d
by u s i n g
film.
Ni k o n C o n t a c t
overlay
polyimide
(Fabricated
as
by
Aligner).
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced
with permission
Table
5.1.
Comparison of Measured R e s u l t s
Using D i f f e r e n t D i e l e c t r i c s
of the copyright owner.
the L aboratories
D ielectric
of Overlay C a p a c ito rs
i n MMIC' s B e t w e e n
in In d u stry .
Sputtered
Plasma
Sputtered
Spun
T a 2°5
S i 3N4
sio2
Polyim ide
R a y t h e o n [116]
Westinghouse Westinghouse
[117]
[117]
Cornell
Further reproduction
1400 8
>2 500 8
2500 8
5000 8
D ielectric
Constant
21.0
7.06
4.24
3.7
C/A(PF/mm2 )
1200
250
Y ield for
5pf or lOpf
capacitors
> 90%
>95%
>95%
>75%
>100 v o l t s
>100 v o l t s
>100 v o l t s
28.5
30.5
32
Breakdown
voltage
Q a t GHz
>
100 v o l t s
* -k it -k
(+ 10%)
150
(+ 3%)
63
(+ 4%)
177
prohibited without permission.
Thickness
178
5.4
F a b r i c a t i o n T e c h n i q u e o f B r o a d b a n d L o w - N o i s e MMICs
5.4.1
Ga As I C P r o c e s s i n g O v e r v i e w
The f a b r i c a t i o n
MMIC' s i n v o l v e
These
levels,
process
state
are
of a rt
six
o f C o r n e l l AMP38 b r o a d b a n d l o w n o i s e
separate
along with
listed
their
in T able
mid-UV c o n t a c t
S u s s M J B / 3 UV300 A l i g n e r
Resource F a c il it y
for
major p ro ce ssin g
at
function
5.2.
and p a t t e r n i n g
Each l e v e l wa s d o n e by
lithography
using
the
the N ational Research
Submicron S t r u c t u r e s
Table
Levels
Patterning
Function
Mesa
etch
electrical
2)
Ohmic
lift-off
ohmic c o n t a c t
3)
Gate &
etch
Ground P la n e
4)
n
5)
Bottom
plating
airbridge spacer,
m i c r o s t r i p and
c a p ac ito r top
metal
6)
Top p l a t i n g
electroplate
The f i r s t
the
and l i f t
levels
bottom e l e c t r o d e
of
electrically
isolation
r e c e s s e d S c h o t t k y and
c a p a c i t o r bottom
electrodes
capacitor
W V n ti
three
and
( NR R F S S ) .
1)
r
Karl
5.2
Ga As I C P r o c e s s
Level
levels.
dielectric
t o g e t h e r form a i r ­
bridges, capacitor
t o p m e t a l and
m icrostrip lines
define
the c a p a c ito r.
The
t h e MESFET a n d
fourth
level
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
179
defines
the d i e l e c t r ic
The f i f t h
of
level
capacitor
level
is
Figure
defined
for
the
the overlay c a p a c ito r.
airbridge
and m i c r o s t r i p l i n e s .
the
fabrication
film
spacer,
The l a s t
e l e c t r o p l a t e d Au f o r MMI Cs .
The c o m p l e t e d
f l o w c h a r t o f C o r n e l l Amp38 MMIC i s
shown i n
Ma s k D e s i g n a n d F a b r i c a t i o n
T h e E - Be a m m a s k s e t
has
been designed
APPLI CON c o m p u t e r - a i d e d d e s i g n
a digital
generation
by t h e C a m b r i d g e EBMF- 2 e l e c t r o n
lithograph
systems.
Figure
am plifier.
a taper
gate
and
shaped
to reduce
5.14.
transm ission
ground.
Figure
C o r n e l l AMP38 MMIC l a y o u t .
level
1.8
are
listed
x 2 . 2 mm.
conditions
chosen
the
to
of
in Table
be a m
the
revised
into
effects.
as
one
The
seen
in
allow easy i n te r c o n n e c ts
lines
and a i r b r i d g e s
The c o l o r
To c o m p r o m i z e
pattern
FET388, o f
junction
5.15 p re s e n ts
5.3.
for
been m odified
Both m o d i f i c a t i o n s
the m ic ro strip
the
b ro ad b a n d low n o i s e
have been
so u rce pads have a l s o
to
language
3 0 0 8 GaAs MESFET f o r
Th e t w o d r a i n p a d s
with
shorted
"DIP"
5 . 1 4 s h o w s t h e CAD p a t t e r n ,
m odified Cornell
Figure
tap in
using
s y s t e m s a t C o r n e l l NRRFSS
generating
is
plating
5.13.
5.4.2
of
top metal
the complete
codes for
each
T h e IC c h i p l a y o u t
the
t h e GaAs s u b s t r a t e ,
losses
the wafer
and
size
thermal
thickness
wa s
b e 200 Pm.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
180
Ion-Implanted
Wafer Preparation
Air-Bridge
Mesa Etch
Au Plating
Source-Drain
Metallization
Thin
Substrate
Channel Etch
Gate Recess
B ack-side
Metallization
Gate Definition
Scribe
Ground Plane
Dielectric
for
Overlay Capacitor
DC Test
Top Metal for
Capacitor 8 RF
Circuitry
RF Test
Figure
5.13.
Fabrication
broadband
flow chart
low-noise
of Cornell
MMIC' s.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
181
</)
<0
CJ3
<
00
O
O
CO
d>
c
&o
o
“O
CO
00
00
o
>>
03
O
low-noise
o
broadband
“O
o
E
H-
MMIC
d>
c
o
u
Q.
U.
<
LO
d)
S-
3
CT>
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
MESFET
o
for
<
Fi gure
5.15.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
( AMP3 8 ) .
Ap p l i c o n
CAD
l a y o ut
of
Co r n e l l
broadband
low-noise
MMIC
182
183
Table
5.3
T h e C o l o r C o d e s o f AMP38 a n d FET3 8 8
A p p l i c o n CAD C h e c k - p l o t
Level
Color
Function
1.
Black
Me s a
2.
Blue
Ohmic
3.
Green
G a t e and Ground P l a n e
4.
Violet
D ielectric
5.
Orange
Bottom P l a t i n g
6.
Br own
Top P l a t i n g
The f i r s t
plates,
four
and l a s t
(supplied
levels
are
two l e v e l s
made o f c h ro mi u m mask
are
by Tau L a b o r a t o r i e s ) .
3000 8 was u s e d
as
th e e-beam
Keton
(1:1)
for
C r-4 chromium e t c h a n t
should
oe c h e c k e d
m icroscope
the
8,
iron
to
reflected
the
oxide p la te s ,
was s p u t t e r e d
signal.
about
very o fte n
avoid
up t o
in
a very
improve
plates
a thickness
After
a solution
the
exposure,
of Methyl
and t h e n e t c h e d
in
Each s t e p
a h i g h power
cuttings.
thin
of
exposure,
40 s e c o n d s .
under
under
After
PMMA w i t h
30 s e c o n d s ,
for
oxide
resist.
t h e c h r o m i u m m a s k wa s d e v e l o p e d
Isobutyl
iron
gold
Before exposing
film ,
intensity
the
gold
about
of
film
400
the
on
iron
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
184
oxide
plate
should
plate
wa s d e v e l o p e d
and e t c h i n g
in
are
very
in
mask s e t
in
the
im portant
for
pattern
included
plot
etchant
in
t h e mask s e t .
requirem ents
m icrostrip
MMI Cs.
for
of
a special
To a v o i d
aligning
5.16.
resistance
each l e v e l
Test
are
separate
also
check-
are given
in
respectively.
sequence
The w a f e r s
MESFET
of
used
Figure
for
as
x 10
17
this
-3
formed
is
AuGe-Ni/Ag/Au w ith a t h i c k n e s s
respectively.
After
l ow n o i s e
devices
with
have
a peak
.
G a t e and Ground
by wet c h e m i c a l e t c h i n g ,
ohmic c o n t a c t
the
MMIC f a b r i c a t i o n
discrete
cm
and
5.17 g iv es
broadband
( M e s a s , Ohmic C o n t a c t ,
When m e s a i s
source-drain
2.1
lines.
of C o r n e ll
same s p e c i f i c a t i o n s
concentration
Ga As MMIC c o m b i n e s t h e p r o c e s s i n g
MESFETs , o v e r l a y c a p a c i t o r s
transm ission
fabrication
8,
level.
The d e t a i l e d
for
the d e t a i l s
Ga As MMIC P r o c e s s i n g
The f a b r i c a t i o n
A.
with
in Figure
and g a t e
and e -be a m j o b f i l e s
above
The a l i g n m e n t marks
as d e p ic te d
ohmic c o n t a c t
described
35 s e c o n d s .
levels
by l e v e l ,
A p p e n d i x A a n d A p p e n d i x B,
the
Then t h e mask
processing each
for
5.4.3
six
for
section.
level
was d e s i g n e d
first.
same s o l u t i o n
has
last
the m isalignment of
mask s e t
the
iron oxide
The f i n a l
as d escrib ed
be s t r i p p e d
patterned
of
deposition
the
and e v a p o r a t e d
1000 8 ,
and
Plane)
1000 8 a n d
lift-off,
by
2000
the
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced
with permission
□
LEVEL
MESA
of the copyright owner.
LEVEL
1
'
2.
O H M IC
LEVEL
tT f 3
□ □
on
Further reproduction
□□ □□ □□
□□ □□ □□
□□
□□
3.
GATE &
G R O U N D PLA N E
LEVEL
H j3
4.
D IE L E C T R IC
□
□□ □□
□□ □□
L EVEL
prohibited without permission.
BOTTOM
P L A T IN G
□□
□□
LEVEL
TOP
P L A T IN G
Figure
5.16
A l i g n e r mar ks
low n o i s e
design
of
AMP38 m o n o l i t h i c
broadband mi crowave
amplifier.
185
186
n implant
I I \
I \
y / / / / /7 -; / ? ; / / / / / j ? j / / / / / ? " / / / / / . / .
(a)
S. I . Gg As
AuGe/Ni ohmic c o n t a c t
S
D /
m T
i
_______________
(b)
Ti/Pt/Au g a t e
/
ground metal
\
..............
ET T tT V t U M V I
(c)
Po 1y i m i d e
S G D
(d)
■
S G D
(iiiimjiiimur
H I-
-ft
(e)
t r a n sm i ss i o n
l i ne
fX m i
(f)
■Ll i ' l lI Y l i l l i m n lTHi
- t. j »
.................
Figure
5.17.
ai rbri dge
/
The f a b r i c a t i o n
m i c r o w a v e GaAs
- —
>_
. Kt.
\
sequence
of
IC by u s i n g
—
■• • • •.V
(
the m o n o li t h ic
ion-implanted
1a y e r .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
187
so u rce-d rain metal
of
450°C f o r
contact
plane
to
are
layer,
alloyed
t h e GaAs.
and t h e g a t e
to achieve
The g a t e m e t a l l i z a t i o n ,
8/3200 8,
is
evaporated
(a)-(c)
t h e MESFET.
Figure
broadband
Figures
channel
shows t h e
of
mesa and g a t e
sequence
of
4.3,
Chapter
4.
t h e c o m p l e t e MESFET f o r
5 . 2 0 show a g a t e
line
process.
th e above
in S ectio n
l o w n o i s e MMIC w i t h a g a t e
5 .1 9 and
400 8 / 4 0 0
by a l i f t o f f
procedures
5.18 p r e s e n ts
recessed
channel
fabrication
been d e s c r i b e d
and gr o u n d
is
Ti/Pt/A u,
and d e f i n e d
The d e t a i l e d
have
the ohmic
the d e s ire d
current.
5.17
forms
Then t h e S c h o t t k y g a t e
patterned,
processing
a peak tem perature
1 m i n u t e a nd 10 s e c o n d s
u s i n g a wet e t c h i n g
Figures
at
on c h a n n e l
le n g th of
feed
over
line
0.65
across
t h e mesa edge
pm.
the
in
MMI Cs .
B.
D ielectric
Level
When c o m p l e t e MESFET i s
and
spun w ith
see F igure
the
5.11)
diluted
w ith a spinned
cure
at
130°C f o r
patterned
with
t h e AZ4110 o f
exposure,
the
dielectric
AZ6 0 6
The d i e l e c t r i c
stripping
the
resist
speed of
30 m i n u t e s ,
is
is
pattern
w ill
for
the
film
After
was
After
and e tc h e d
about
50
c ome o u t
by
mask w i t h a c e t o n e .
(2:1,
55 0 0 r p m .
developed
developer
cleaned
polymide
1 Pm t h i c k n e s s .
pattern
(1:9)
seconds.
the wafer
DuPont P I - 2 5 5 5
a partial
by t h e d i l u t e d
done,
The f i n a l
curing
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure
5.18.
A complete
broadband
a gate
GaAs MESFET on a
low n o i s e
length
MMIC w i t h
of 0.65
pm.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
189
Figure
5.19.
Mi c r o g r a ph o f
t h e me s a
gate
feedline
across
i n MMIC.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
190
Figure
5.20.
SEM m i c r o g r a p h
over
showi ng
t h e me s a e d g e
a gate
line
i n MMIC.
R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.
191
is
done a t
250°C f o r
dielectric
is
50 m i n u t e s .
then measured
b y a TENCOR s t e p
machine,
an a p p r o x i m a t e o f
complete
polymide d i e l e c t r i c
MESFET i s
located
at
seen
in Figure
C.
Bottom P l a t i n g
m inutes,
and
80°C f o r
50 s e c o n d s ,
devleoped
shows
ground
the ground
(capacitor
top m etal,
the
plane.
bar
as
for
spacer)
the wafer a t
110°C f o r
the
about
3.8
pm.
Following
40 m i n u t e s ,
the
bead
is
of
in S e tio n
is
loading
for
a thickness
and r e a d y i n g
in
of
the
of
the
by
exposure of
AZ400K
bottom
resist
30 m i n u t e s
just
deposition.
ch ip for
the
diluted
The
200 8 a n d
10
3 0 0 0 r pm
removed
After
50 s e c o n d s .
110°C f o r
speed
4.3.
developed
about
baked a t
with
respectively,
5.21
with
wafer
immediately before
evaporated
on t h e
profiling
to
baking
described
the
( A Z 4 3 3 0 ) wa s
close
applied
thickness
procedure
(1:3)
Level
t h e AZ 4 3 3 0 i s
prebake a t
the
center
Figure
field
and a i r b r i d g e
cleaning
and a r e s i s t
5000 8 .
of
5.21.
m icrostrip
After
The t h i c k n e s s
Ti/Au
is
then
800 8 ,
the
top
plating
level.
D.
Top P l a t i n g
and
Level
airbridge
T h e AZ 4 3 3 0 i s
and
a
resist
(capacitor
top m etal,
m icrostrip
interconnections)
applied
thickness
of
again
about
with
2.8
speed
pm.
of
After
5000
baked
rpm,
at
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
192
I
Figure
5.21.
Photograph
f i l m on t h e
of
polyimide
plane
after
dielectric
curved
at
250°C.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
193
80°C f o r
is
40 m i n u t e s
exposed
AZ400K
for
(1:3)
and rem o v in g
50 s e c o n d s ,
developed
same e l e c t r o p l a t i n g
the
airbridges,
was p l a t e d
structure
and
( b)
bridges
m etal
air
3 . 0 pm t h i c k ,
the
t h e RF b y p a s s
bridge
m onolithic
is
about
broadband
o n a GaAs w a f e r
is
5.17
in Section
4.3,
and m i c r o s t r i p
(e).
the
lines
low -loss
Figures
view of
the
5.22
(a)
air
and th e
top
The h e i g h t o f
T h e c o m p l e t e C o r n e l l AMP38
low n o s i e
presented
are
diluted
Following
overlay ca p ac ito rs.
b e t w e e n e a c h MMIC c h i p s
1.8
the
the m ic ro strip lin e s
4 pm.
top r e s is t
forming a s tro n g
t o p view and s i d e
interconnecting
of
top metal
the
in
45 s e c o n d s .
procedure d escribed
a s shown i n F i g u r e
give
bead,
and d e v e l o p e d
about
capacitor
up t o
the
am plifier
in F ig u re
before
5.23.
200 p m , a n d t h e
scribing
The s p a c i n g
final
size
is
5.5
P e r f o r m a n c e o f Ga As M o n o l i t h i c B r o a d b a n d Low
chip
x 2 . 2mm.
Noise A m plifier
When t h e Ga As I C p r o c e s s i n g
was
t h i n n e d down t o
been chosen
for
backside metal
wafer
colour
8 m il which
this
photograph
into
The h e i g h t
in Figure
of
the
of
2.4.
the wafer
thickness
that
After
s h o wn
Figure
the device
the a i r b r i d e s
is
air
5.25
in
the
the
shows
bridges
about
has
the
(500 8 ) / A u ( 7 5 0 0 8 ) ,
IC c h i p f or m a s
c l o s e - u p SEM m i c r o g r a p h
MMI Cs .
is
b r o a d b a n d Ga As MMICs.
wa s e v a p o r a t e d C r
was s c r i b e d
was c o m p l e t e d ,
4 p m.
the
in
Th e
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure
5.22.
(a)
RF b y - p a s s
overlay
broadband
low n o i s e
bridge
interconnect
line
to
and
t o p me t a l
capacitor
MMI C s .
of
(b)
in
Air­
the m i c r o s t r i p
RF b y - p a s s
overlay
capacitor.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
195
Figure
5.23.
Photograph o f
monolithic
amplifier
Cornell
broadband
array
AMP38
low n o i s e
on a GaAs w a f e r .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure
5.24.
Color micrograph
l ow n o i s e
size
is
of
MMIC a f t e r
Cornell
broadband
scribing.
Chi p
2. 2mm x 1. 8mm x 0. 2mm w i t h
ion-imp!anted
GaAs MESFET,
= 0.65
pm,
Wg = 3 0 0 pm.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
197
(a)
8 0 pm
Figure
5.25.
SEM m i c r o g r a p h
of
i n MMIC.
Top v i e w ;
side
(a)
device's
airbridge
(b)
tilting
view.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
198
final
dime
chip size
is
only 1.8
x 2 . 2 mm, a n d c o m p a r e s
a s shown i n F i g u r e
5.26.
After
separate
cleaning
the
m easurem ents were a p p l i e d ,
microwave m easurem ents.
characteristics
Figure
of C ornell
current,
about
the
IC c h i p
5 . 2 7 shows a I- V
The t r a n s c o n d u c t a n c e ,
the d rain -so u rc e
I D S S ' w a s 64 mA.
After
t h e c h i p wa s m o u n t e d o n
t h e common g r o u n d w i r e s w e r e b o n d e d
m aintain
good g r o u n d i n g
The
bounded
lines
the
to
be a p p l i e d
using
the
low n o i s e
bias
with
to
bias T ee's.
am plifier
to
of
internal
connect
the
the
chip
in Figure
the
50 ohms
substrates
bias,
ca p ac ita n c e of
on a t e s t
The
presents
bias can
without
a m onolithic
fixture.
under
condition
The
5.30.
and
The g a i n was
and t h e
desired
o f VDg = 3 . 5 V a n d I Dg = 12mA.
predicted
noise
frequency
performances
are
5 . 6 dB w i t h a g a i n
figure
band o f
less
=
1000 p f were
capacitors.
5.29
(e
two
feedthrough lin e s
Figure
to
th e c h i p were a l s o
aluminum o x i d e
t h e RF b y - p a s s
directly
pictured
The m i c r o w a v e m e a s u r e m e n t w e r e p e r f o r m e d
measured
dB,
up t h e
lines
connect
thick
as
ports
gold wires
10 m i l
To b u i l d
feedthrough
used
and o u t p u t
by 0 . 7 m i l
of
9.8).
input
gm,
saturation
a chip c a rr ie r ,
5.28.
for
0 . 6 5 pm g a t e l e n g t h MESFET o n
36 m S , a n d
a very
a
t h e DC
and s e l e c t e d
a n i o n - i m p l a n t e d GaAs MMIC.
was s t i l l
chips,
to
than
6 - 1 2 GHz .
shown
in Figure
flatness
3 . 8 dB o v e r
a
of
+ 0.5
the
Th e r e s u l t s
of
the
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure
5.26.
Phot ogr aph s howi ng C o r n e l l
monolithic
chip
on t h e
broadband
face
of
6-12
low-noise
GHz
amplifier
a d i me .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
200
Figure
5.27.
I-V c h a r a c t e r i s t i c s
of Cornell
0.65
MESFET on
ym g a t e
ion-imp!anted
length
GaAs MMIC.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
201
Figure
5.28.
Photograph
l ow n o i s e
of
Cornell
MMIC c h i p
and b o n d i n g
broadband
after
on a c h i p
scribing
carrier.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure
5.29.
Br o a d b a n d m o n o l i t h i c
amp!ifier
low n o i s e
mo dul e on a t e s t
fixture.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
203
9
DS = 3.5 V
= 12 mA
DS
8
7
GAIN
6
NOISE
GAI N
5
4
3
2
M e a s u r e d r e s u lt
1
—
7
6
Figure
5.30.
9
F R E Q U E N CY -
of
a 6 to
monolithic
C a l c u l a t e d re s u lt -
12
8
The m e a s u r e d and p r e d i c t e d
-
13
GHz
performances
12 GHz b r o a d b a n d GaAs
l ow n o i s e
amplifier.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE-dB
N. F.
204
above a m p lifie r
predicted
design
demonstrates
performances
techniques
that
are w ell
developed
in
th e measured
matched.
this
work
and
Therefore,
is
the
applicable.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER 6
MONOLITHIC BROADBAND POWER COMBINERS
6 . 1.
Introduction
Due t o t h e e l e c t r i c a l and th er m al l i m i t a t i o n o f t h e
s i n g l e s o l i d s t a t e d e v i c e , power c o m b i n a t i o n t e c h n i q u e s
a r e f r e q u e n t l y u s e d t o i n c r e a s e t h e o u t p u t power o f t h e
s o l i d s t a t e power a m p l i f i e r t o meet t h e s p e c i f i c s y s t e m
requirem ent.
T h e s e c o m b i n a t i o n t e c h n i q u e s can be a l s o
a p p l i e d t o a broadband low n o i s e a m p l i f i e r t o form a
b a l a n c e d a m p l i f i e r , which has been d e s c r i b e d i n Chapter
3 , t o improve t h e i n p u t and o u t p u t VSWRs o f t h e
a m p li f i e r .
In t h e power co m bi n in g s c h e m e , one o f t h e most
important b u i l d i n g
b l o c k s i s t h e q u a d r a tu r e c o u p l e r .
has t h e u n iq u e p r o p e r t y t h a t i t s
matched even when i t s
It
i n p u t impedance rem ains
two s p l i t power arm are no t
p ro p erly te r m in a te d , provided the r e f l e c t i o n c o e f f i c i e n t s
in both arm a r e e q u a l in a m p l i t u d e and p h a s e .
This
f e a t u r e i s p a r t i c u l a r l y a d v a n t a g e o u s when c o m b in in g wide
band a m p l i f i e r s whose i n p u t and o u t p u t VSWRs g e n e r a l l y
are rather p o o r .
T h e s e two b a s i c t y p e s o f p l a n a r m i c r o s t r i p
q u a d r a t u r e c o u p l e r s , th e branch l i n e c o u p l e r
i n t e r d ig i tated c o u p l e r ^ .
[119] and
The branch l i n e m i c r o s t r i p
205
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
206
coupler
offers
lim ited
in
the
good l o s s
bandwidth
interdigitated
show e x c e l l e n t
and
broadband
isolation
coupler.
and
is
considered
fabrication
cf
the
this
chapter.
6.2
Design
were
The u s e o f
silica)
instead
alumina
or
given
type
greater
than
alum ina.
in
used
allows
at
industry
for
broadband
the design
and
v i a MIC
be p r e s e n t e d
7 - 1 4 GHz H y b r i d
substrates
in
Broadband
of
the
finger
silica
is
producibility
and d e c r e a s e d
significant.
Therefore,
substrate
been c h o s en
in
loss
fused
for
is
in
(e.g.,
loss.
width
to
of
3.0
realized
terms of
thought
silica
fused
reduction
2.5
same c o u p l e r
offered
(e.g.,
substrates
significant
the
on f u s e d
The a d v a n t a g e
interdigitated
of
coupler
Lange c o u p l e r s
and w i l l
of
in
the
work,
no s a c r i f i c e
thickness,
that
has
this
high d i e l e c t r i c
thicknesses
3-dB c o u p l e r
that
Lange Coupler
sapphire)
substrate
very popular
low -dielectric
of
to
is
and e x t r e m e l y wide
Since only
and R e a l i z a t i o n
Interdigitated
substrate
is
interdigitated
a n d MMIC t e c h n i q u e s
it
The i n t e r d i g i t a t e d
application.
application
but
compared
DC a n d RF i s o l a t i o n ,
bandwidth c a p a b i l i t y ,
the
characteristics,
in
For
a
t h e Lange
times
on
improved
to
be
( er = 3 . 7 8 )
fabricating
this
broadband
coupler.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
207
Early
descriptions
coupler
did
not
Most o f
the
couplers
constructed.
design
provide
Recent
equations
and
A computer-aided
developed
included
program.
This
dispersion,
dielectric
into
G reen's
work,
publications^^® '
theory
above
bondwire
on t h e
function.
which must
6.1
theory,
the
conductor
The
be e v e n ,
coupler,
width
(W) a n d
using
the
an o p t i m i z e d
"LANGE" p r o g r a m .
Lange c o u p l e r
are
W, w a s
5 m il,
spacing,
length
w a s 1.72 m i l .
lines
yields
J
e v e n mode
for
listed
conductor
through
is
(Z
at
effects
the
use of
spacing
of
this
a 3-dB
( S ) , have
the
been
broadband
application
The
dimension
final
6.1.
0.8 m il,
119
in
four.
The d i m e n s i o n o f
imoedance
*•
) of
and
strips
(Z
and
oo
u for
by
of
The s t r i p
the
E v e n - o d d mode a n a l y s i s
an o dd -m ode
impedance
strip
in Figure
S,
taking
b a s e d on n u m e r i c a l
configuration
coupler.
been
and odd-mode c h a r g e
wa s s e t
shows t h e
couplers.
been
discontinuity
is
the
design
number o f c o n d u c t o r
Lange
calculated
and h a s
the coupler
and
even-
and
*^ 1 present
thickness,
interdigitated
strip
inform ation.
" L A N G E " h a s
The a n a l y s i s
to compute
quadrature
interdigitated
program
conductor
losses,
Figure
for
program a n a ly z e s
finite
distribution
and d e s i g n
"COMPACT" c o u p u t e r - a i d e d
consideration.
technique
interdigitated
design
design
the
the
were e m p i r i c a l l y designed
b a s e d on t h e
into
of
the
wi d ' c h ,
coupling
for
coupled
) of
20.4
.1 a n d an
this
coupler.
The
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
208
5 0 ohm s
mils
^ 0 . 7 m ils
go ld w ire
0-032
H w |K - s
pm rm rm
£ r — 3 .7 8
< rm
rm
\
Fused S ilic a
6.1.
3 - dB
interdigitated
15-mil-thick
^
T=t
'
Figure
\
fused
Lange c o u p l e r
silica
on
substrate.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
209
coupler
wa s f a b r i c a t e d
substrate
by u s i n g
conductor
is
5 Mm.
0.7 mil gold
wires
6.2.
Figure
port
as
were
of
results
band o f
shows
agreement with
been used
are
as
that
the
Interdigitated
in
the
the
described
same
wa s 0 . 3 dB o v e r
in
and
the
return
loss
a VSWR < 1 . 2 5 o v e r
6.5.
The a b o v e
result
is
prediction.
for
and d i r e c t
hybrid coupler.
Isolation
the measured
successfully
b o n d e d by
shown i n F i g u r e
coupled
the
in Figure
Design and F a b r i c a t i o n
6.3.1
loss
theoretical
gold
interdigitated
at
resulting
shown
of
6.3.
for
14 GHz .
19 d B ,
silica
were
as
also presented
insertion
b a l a n c e d FET a m p l i f i e r
6.3
in F igure
frequency
7 to
bandwidth
performance
3-dB
shows t h e c o u p l i n g
in excess of
s a me
packaged
given
The a v e r a g e
frequency
fingers
interconnection
of
fused
The t h i c k n e s s
The c o u p l i n g
as a fu n c tio n
figure.
has
is
6.4
The m ea s u red
the
wet e t c h i n g .
A photograph
c o u p l e r module
on 1 5 - m i l - t h i c k
7 to
in c lo s e
This
coupler
1 4 GHz b r o a d b a n d
in Chapter
3.
o f GaAs M o n o l i t h i c B r o a d b a n d
Lange C o u p ler
Introduction
As m o n o l i t h i c m i c r o w a v e
technology
circuit
advances,
need
for
e le m en t which can d i v i d e
becomes e v i d e n t .
coupler
the
integrated
is
A planar
an i m p o r t a n t
passive
(MMIC)
distributed
a n d c o m b i n e R.F s i g n a l s
m onolithic
passive
circuit
interdigitated
element
3-dB
f o r MMIC
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
I
Figure
6.2.
Photograph
on f u s e d
of
3 - dB La ng e c o u p l e r
silica.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
211
W 'i
CORNELL
Figure
6.3.
Photograph of
interdigitated
a p a c k a g e d 3- dB
La n g e c o u p l e r m o d u l e .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
212
ON 15- MI LS- THI CK
FUSED SI LI CA
-1
-
CO-2
THEORETICAL
*o
DI RECT
-3
CL
3
0-4
O
COUPLED
ME AS URE D
-5
-6
_L
6.0
Figure
7.0
6.4.
8.0
_L
-L.
9.0
10.0
11.0
FREQUENCY -
12.0
GHz
Coupling
as
and d i r e c t
digitated
a function
ports
o f the
of
JL
13.0
14.0
frequency
four-line
at
15.0
coupled
inter­
coupler.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
213
LU
i
NOI JLVIOSI
substrate.
silica
Fi gure
6.5.
8 P -
f used
CM
Measured
isolation
and
VSWR
O
of
interdigitated
Lange
coupl er
on
V . S . u>
W. R .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
214
applications
such
discrim inators,
useful
am plifiers,
and p h a s e s h i f t e r s .
It
a passive
isolator
to
provide
S t r i p or waveguide f e r r i t e
suitable
for
substrate
is
m onolithic
isolators
integration
a lso containing
the
approach
onto
low-noise
am plifier
coupled
integrate
o n a s i n g l e GaAs c h i p a n d d o e s
for
that
performance w ill
6.3.2
described
purpose.
Ga As M o n o l i t h i c C o u p l e r
A four-line
schem atically
features
airbridges
coupling
strips,
to
it
improve
to
input
s e c t i o n wa s
fabrication
and
section.
Design
m ic r o s tir p coupler
6.6.
interconnect
allowing
The
possible
following
3-dB i n t e r d i g i t a t e d
shown i n F i g u r e
is
in t h i s
in the
s i n g l e GaAs
two lo w - n o is e
The d e s i g n ,
be d e s c r i b e d
are not
the
by 3- dB L a n g e c o u p l e r s
The Lange c o u p l e r
designed
utilizing
input
am plifier.
am plifier
is
especially
an a c c e p t a b l e
balanced
VSWR.
m ixers,
i n l o w - n o i s e Ga As FET a m p l i f i e r s w h i c h o f t e n
require
VSWR.
as balanced
The s t r u c t u r e
the
appropriate
t o be f u l l y
comparable with
m o n o l i t h i c Ga As I C p r o c e s s i n g .
T h e Ga As s u b s t r a t e
chosen
to
be
fabricated
r 1221
lines
.
2 0 0 Mm.
A sim ilar
t o be u s e d ,
region.
substrate,
thus
this
has
coupler
been rep o rted
a llo w s wider
the conductor
thickness
was
w h i c h wa s
also
however,
reducing
A substrate
of
coupler,
on 1 0 0 -M m -thick GaAs,
The t h i c k e r
coupling
thickness
of
loss
in the
2 0 0 Mm o f f e r s
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
215
5 0 ohms
AIR-BRIDGE
III III
2900
12.5
11-5 2 0 0 pm
m
H w ||- s
r '
arm rrm rrm rrm tmm
C r - 12 9
G a As
s.
3
F i g u r e 6. >.
1
C o n f i g u r a t i o n o f 3- dB i n t e r d i g i t a t e d
La n g e
c o u p l e r on 2 0 0 - u m - t h i c k GaAs s u b s t r a t e .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
216
a good com prom ise b etw een a c h i e v i n g low c o n d u c t o r
m icro strip ,
p ath
for
w hile
p roviding
a proper
th e m o n o lith ic F E T 's.
ap p licatio n s,
to decrease
For
1 0 0 ym t h i c k n e s s
the
in
therm al r e s i s ta n c e
th e h ig h power
c a n be c o n s i d e r e d
therm al r e s i s t a n c e
loss
in o rder
and im prove power
d issip atio n .
The p a r t i c u l a r
cen ter-b an d
i.e .
frequency of
6 - 1 2 GHz.
2 . 9 mm o f
1 2 .5
also
em ployed
the
be
to analyze
the o p tim iz a tio n
6 .6 .
in o rd e r
6 .3 .3
is
to
c ircu it
about th re e
reduce
the
of
p e rfo rm an ce and
d im ensions
conductor
tim es
of
p r o g r a m was
dim ensions a re
(t)
6 GHz,
co n ductors w ith
the co u p le r
The f i n a l
the
conductor
p rio r
listed
in
was c h o s e n
sk in d ep th
at
to
6
lo ss.
GaAs C o u p l e r P r o c e s s i n g O v e r v i e w
The f a b r i c a t i o n
in terd ig itated
m ajor
of
The t h i c k n e s s
3 ym, w h i c h
GHz,
the
of
thus c o n s is te d
T h e "LANGE" c o m p u t e r - a i d e d
fab ricatio n .
F igure
section
ym-w ide i n t e r d i g i t a t e d
ym s p a c e s .
to
9 GHz a n d a b a n d w i d t h
The c o u p l i n g
11 .5
perform
Lange c o u p l e r d e s ig n c h o s e n had a
Lange c o u p le r s
p ro cessin g
fu n ctio n ,
are
of C o r n e ll
lev els.
listed
involve
These
in T a b le
b y c o n v e n t i o n a l UV ( 4 0 0 nm)
b r o a d b a n d GaAs m o n o l i t h i c
lev els,
6 .1 .
4:1 p r o j e c t i o n
NRRFFS.
lev el d efines
sep arate
along w ith
Each l e v e l
p ro jectio n
t h e C annon FPA-141
The f i r s t
th ree
was done
lith o g rap h y
alig n er
th eir
u sing
a t C o rn e ll's
the coupler
m ain
p attern
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
217
and
is
level
e l e c t r o p l a t e d Au f o r
defines
electro p lated
the
th e
airb rid g e
Au f o r
the
c irc u it.
spacers
a ir
The s e c o n d
and l a s t
level
is
b rid g es.
T able
6.1
T h e C o l o r C o d e s o f LACOP APPLICON
CAD C h e c k - p l o t
Level
C olor
1
B lue
c o u p l e r m ain p a t t e r n
2
Green
a ir
bridge
3
Red
a ir
b rid g e p la tin g
F unction
D a v i d Mann o p t i c a l m a s k s e t
APPLICON c o m p u t e r - a i d e d
gives
t h e CAD p a t t e r n
co lo r
codes
The c o u p l e r
6 .3 .4
for
system
for
each le v e l
ch ip siz e
was
spacer
was d e s i g n e d
a t NRRFFS.
using
F igure
6.7
b r o a d b a n d GaAs c o u p l e r .
are
3 .2
also
listed
the
The
in T able
6 .1 .
x 1 . 3 mm.
GaAs C o u p l e r F a b r i c a t i o n
F igure
C o rn ell
w afers
6 .8 g iv es
broadband
used
for
the
fab ricatio n
in terd ig itated
th is
co u p ler
are
process
sequence of
Lange c o u p l e r .
1 5 -m il-th ick
The
LEC u n d o p e d
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fi gur e
6.7.
App l i c o n
CAD p l o t s
of
interdigitated
Lange
coupler.
218
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
219
Ti/A u
(a)
G aA s S. I .
T/m mm
— A Z 13 7 5
(b)
(c)
AZ1375
(d)
(e)
(f)
( g)
Ti/Au
rnmrnmm
i
A Z 1375
1 PI
H I I I I I 11 I | | | I n | 11 I | | | 1 1 "| I 1 1 —Ti/Au
Figure 6.8.
Fabrication
monolithic
process
s e q u e n c e o f GaAs
interdigitated
La n ge c o u p l e r ,
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
220
Ga A s s u b s t r a t e .
In order
tran sm issio n
lin es
plane
be form ed f i r s t
should
When w a f e r
evaporated
as
3000 rpm,
th ick n ess of
is
(1:9)
of
for
given
it
the
7 .5 ,
6.8(b)
describ ed
in C hapter
2 .8
shown i n F i g u r e
Spun and
the
baked
at
before
loading
speed of
same s e t t i n g
for
90°C f o r
about
pm.
the
at
the
AZ606
comes o u t
as
110°C f o r
20
procedure
is
plated
for
ag ain ,
the
airb rid g e
30 m i n u t e s
d ep o sitio n .
Ti
up t o
th e w afer
opening,
ju st
the
im m ediately
is
resist
30 s e c o n d s .
A fter
the a ir b r id g e
in
is
d ilu ted
then
as
exposed a t
th e w afer
is
is
spun w ith
to p s u r f a c e o f T i/A u a g a in
The t o p
is
airb rid g e
(200 8 ) / A u ( 8 0 0 8)
and th en d e v e lo p e d
20 m i n u t e s ,
The
A fter
in d ilu te d
a n d t h e A Z1 375 p h o t o r e s i s t
and,
speed
6 .8 (c).
1 00 °C f o r
6 .8 (e).
the w afer
alig n er
baked a t
sa me s e t t i n g
3 0 0 0 rpm o n t h e
shown i n F i g u r e
(1:9)
for
ev ap o rated ,
3 .1
th e m ain p a t t e r n
A fter developing
was baked a t
is
40 m i n u t e s .
same e l e c t r o p l a t e d
4,
6 .8 (a).
a spinned
The p a t t e r n
t h e AZ 1375 r e s i s t
the
resist
then
A fter
is developed
and th e n
Use o f
opening.
plane.
by Cannon p r o j e c t i o n
th e wafer
bottom g ro u n d
(200 8 ) / A u ( 8 0 0 8)
p h o t o r e s i s t was a b o u t
a b o u t 30 s e c o n d s .
exposed
the
shown i n F i g u r e
Ti
ground
m in u tes.
then
as
was baked a t 80°C f o r
in Figure
pm a s
a irb rid g e,
t h e AZ1375 p h o t o r e s i s t a t
w a f e r was e x p o s e d
se ttin g
the
cleaned,
a p latin g
was s p u n w i t h
of
under
to have c o m p le te ly p la te d
is
the
AZ606
baked a t
plated
up t o
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
221
2.8
ym a s d e p i c t e d
resist
lay ers,
to
6 .8
(f) .
e t c h i n g Ti/A u m e ta l
down t h e w a f e r
evaporated
in F ig u re
to
200 ym, t h e
form gro u n d
The p h o to g ra p h o f
plane
as
It
airb rid g es
in terco n n ect
give
the coupling
at
of
and
transm ission
the
under
the
6 .3 .5
the c o u p le r.
b rid g e,
given
in F ig u re
the
F igures
6 .8 (g ).
6 .9 .
6 .1 0 and
airb rid g es
The a i r b r i d g e
is
plated
form a s t r o n g
at
to
6.11
th e m iddle
about
6 ym h i g h
co m p letely even
low -loss
stru ctu re.
GaAs C o u p l e r P e r f o r m a n c e
As t h e d e p o s i t i o n
w a f e r was s c r i b e d
m easurem ents.
in F igure
th ick
alum ina
GaAs c h i p
6.1 2 .
on t h e
m e t a l was d o n e ,
form and
has
r e a d y f o r m icrow ave
in
the
50 ft l i n e s
on i n p u t
the coupler
the
on t h e
and o u t p u t
p arts
test
to
sid e
the
fix tu re
1 0 -m ilof
the
5 0 - ft SMA
T h e c h i p was m o u n t e d o n a m o v a b l e c e n t e r
b rass w ith
3 m icrons
#0-80NC s c r e w s
w ires
It
su b strate
w h i c h w a s mad e f r o m
plated,
back s i d e
in to ch ip
to connect
connector.
of
The c o u p l e r was t e s t e d
shown
gold
in F ig u re
th e m id d le and bo th e n d s
l i n e s were
to
and t h i n n i n g
m e t a l T i/A u was
seen
strip s.
t h e SEM m i c r o g r a p h s o f
p o rtio n
rem oving th e
th e com plete m o n o lith ic
c o u p l e r o n GaAs i s
th ree
film s,
back s id e
in terd ig itated
shows
A fter
as
shown
were bonded as
fix tu re
th ick .
a nickel
The
in F ig u re
a connection
and c h i p .
rib
b a s e and t h e n
was f i x e d
6 .1 2 .
in
by t w o
0.7 m il gold
betw een
The l o s s e s
rib
the
the
5 0 -ft l i n e s
test
fix tu re
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
F i g u r e 6 . 3.
Compl et e m o n o l i t h i c
c o u p l e r on GaAs .
interdigitated
Ch i p s i z e
is
3 . 2 mm x 1 . 3 mm x 0 . 2 mm.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
223
Figure 6.10.
Photograph
strips
s howi ng t h e c o u p l i n g
i n t e r c o n n e c t e d by a i r
bri dge.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
224
Figure 6.11.
SEM m i c r o g r a p h
height
s h o wi n g a 6 - y m-
air bridge
broadband
of monolithic
interdigitated
La n g e
coupler.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
225
F
v:
Figure 6.12.
Photograph of the t e s t
for testing
fixture
GaAs m o n o l i t h i c
interdigitated
coupler.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
226
were c a l i b r a t e d
resu lts
to d eterm in e
F igure
direct
and l a t e r
port
resu lts
are
m easured
6 .1 3 shows
tru e
of
a lso presented
is
return
lo ss
band.
w ith
The
iso latio n
was
b etter
the
frequency
the
agreem ent w ith
given
in
loss
the
iso latio n
was
6-12
and
in F igure
19 dB a n d t h e
resu ltin g
6 to
the
was 9 0 ° + 3 ° o v e r
than
The
in sertio n
frequency are
and
The t h e o r e t i c a l
t h e same f i g u r e .
of
17 dB ,
band o f
th e coupled
The v a r i a t i o n
was b e t t e r
than
at
The a v e r a g e
0 . 6 dB a n d p h a s e d i f f e r e n c e
GHz f r e q u e n c y
in
th e m easured
perform ance.
frequency.
clo se
p red ictio n .
from
cou p ler
the co u p lin g
as a fu n ctio n
perform ance
th eo retical
the
su b tracted
return
6.1 4 .
loss
a VSWR < 1 . 3 2 o v e r
1 2 GHz.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
227
On
2oo-pm -thick
G a A s S. I.
-1
OQ
-2
TJ
THEORETIAL
COUPLING
DIRECT
COUPLED
MEASURED
-5
-6
J ________ I________ I________ L
7
8
9
FREQUENCY -
Figure 6.13.
JL
J ________ L
10
11
12
GHz
Coupli ng as a f u n c t i o n o f f r e q u e n c y
c o u p l e d and d i r e c t
monolithic
13
ports
interdigitated
at
o f t h e GaAs
coupler.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
22 8
On 2 0 0 - p m - t h i c k
GaAs
(0-10
—1 - 1 5
-25
Z -30
ISOLATION
-l
-40
GHz
FREQUENCY
Fi g u r e 6 . 1 4 .
Me a s u r e d i s o l a t i o n
versus
a nd r e t u r n
loss
f r e q u e n c y o f GaAs m o n o l i t h i c
interdigitated
coupler.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER 7
CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH
In
th is
research
c h a racterizatio n ,
w ork,
a system atic
and f a b r i c a t i o n
of
b r o a d b a n d GaAs m o n o l i t h i c
low n o i s e
perform ed.
g a i n was
flatn ess
3 .8
The a m p l i f i e r
o f + 0 . 5 dB, and
dB o v e r
above
the
in
a 6 to
dem onstrates
th is
thesis
work i s
has
been
5 . 6 dB w i t h a g a i n
noise
th at
1 2 GHz
am p lifier
f i g u r e was l e s s
same f r e q u e n c y b a n d .
am p lifier
d eveloped
the
desig n ,
The r e s u l t s
the d esign
ap p licab le
than
of
the
tech n iq u es
to
broadband
l o w n o i s e GaAs MMIC.
A state
of
a r t m id- UV
process has
been d ev elo p ed
4000 s e r i e s
p h o to resist
shown t o
provide
sm all
length
as
The d e v i c e
sim ple
MESFET h a s
th is
was f a b r i c a t e d
resu ltin g
transconductance
concluded
th at
w ill
subm icron g a te
process
and
on th e
of
techniques
perm it
has
been
been
A subm icron
fabricated
as
p rin tin g .
io n -im p lan ted
wafer
w ith
x 1 0 1 7 cm- 3 a n d a
1 2 0 mS/mm.
It
is
thus
o f mid-UV c o n t a c t
fab ricatio n
stru ctu res
t h e AZ
inexpensive
m id - U V c o n t a c t
a p e a k c o n c e n t r a t i o n o f NQ = 2 . 1
lith o g rap h y
T his
t o E-Beam l i t h o g r a p h y .
pm u s i n g
the
photo lith o g rap h y
C o r n e l l by u s i n g
system .
io n -im p lan ted
0.65
at
a relativ ely
te c h n o lo g y com pared
gate
( 3 0 0 nm)
of
su fficien tly
sm all
f o r MMIC a p p l i c a t i o n s .
229
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
230
To i n c l u d e
M M IC 's,
the
bias
circu itry
in to
b ro a d b a n d low n o i s e
m e ta l-in su la to r-m e ta l ov erlay cap acito r
technology
u sing
p o l y im id e was a l s o d e v e l o p e d .
found t h a t
it
su itab le
cap acito rs
and
T he
input
is
is
fab ricated
a novel fa b ric a tio n
th at
it
su itab le
F u rth er
suggested
1)
as
To i m p r o v e
work
poor
I / O V S W R 's , a
Lange c o u p le r
has
been
The r e s u l t s
shows
f o r MMIC a p p l i c a t i o n .
in
the area
of
th is
thesis
are
fo llo w s:
tech n iq u e"1
rep lace
"w rap-around grounding
1 to
im prove
= 21)
MIM o v e r l a y
packing
Use o f
[95]
reliab ility
(er = 7.06)
d ielectric
cap acito r
d en sity
to
and
film
a n d T a 2C>5
technology
further
in crease
for
the
i n GaA s M M I C ' s .
q u a r t z mask t o
im prove
o f m id - U V c o n t a c t
fu rth er
the
t h e p r e s e n t g r o u n d i n g bond w i r e s .
d e v e l o p m e n t o f S i 3 N4
(e r
3)
the
stru ctu re.
ri23i
2)
showed t h e
o n LEC u n d o p e d GaAs s u b s t r a t e
developm ent of
to
am p lifier
in terd ig itated
w ith
is
f o r RF b y - p a s s o r DC b l o c k i n g
low n o i s e
a n d o u t p u t V S W R 's .
su ccessfu lly
is
c o m p a t i b l e w i t h GaA s MMIC p r o c e s s i n g .
broadband
GaAs m o n o l i t h i c
It
red u cito n
of
the
lith o g rap h y
the
g ate
reso lu tio n
for
length
to
a
0 . 5 Mm.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
231
4)
developm ent o f
"V ia H ole"
te c h n o lo g y and
resistiv e
technology
for
film
50 S2 t e r m i n a t i o n
and
p r e c i s i o n RF
th e grounding of
m o n o lith ic Lange C o u p ler
balan ced
the
type a m p l i f i e r
t h e GaAs
t o m ak e m o n o l i t h i c
p o ssib le.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
232
APPENDIX A
E-BEAM SOFTWARE FOR CORNELL LOW NOISE M M IC 's
The f o l l o w i n g
p attern
lev els
for
jo b files
needed
to
expose
m id - U V c o n t a c t m a s k s
the
6-
a re given
below ,
Level
Filenam e
1.
M e sa
TCHL1.J0B
e x p o s e s mesa p a t t e r n
2.
O hm ic
TCHL2.JOB
e x p o s e s ohm ic p a t t e r n
3.
G ate
TCHL3.J0B
exposes g ate
&
Ground P la n e
4.
D ielectric
F unction
ground p lan e
TCHL5.J0B
and
p attern s
exposes d i e l e c t r ic
p attern
5.
Bottom p l a t i n g
TCHL6.J0B
exposes
air-b rid g e
spacers,
m icro strip
and c a p a c i t o r
to p m etal
pattern s
Top P l a t i n g
TCHL7.JOB
exposes e le c tro p la te d
p attern s
which
in clu d in g
m icro strip
cap acito r
air-b rid g es,
lin es
and
to p m etal
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
233
TCHL2. J OB: 1
TCH1. J OB:1
' EXF'CTSE T C H O H AS K 1
? 6 /lI/8 4
T C H O MASK 1
?N E G A T I V E A 2 1 3 5 0 J PROCESS
MOV F C
JOY
? 1 2 . 8 NA
CLK 1 1 E 6
KEY 3
MOV FM
JOY
r F O C U S t R E A D Y TO E X P O S E
f T U R N DOWN C H A N N E L P L A T E
KEY 3
TIM
ABS
MOV 5 7 4 4
FON
S P O UO
MAP R E L UO
EXI -2 .4 0 0 2 .0 0 0
EXN 4 4
• : %DL1 : A M P 3 8 L 1
MOV - . 6 0 0 - . 6 0 0
EXN 4 5
/ : %H L 1 J O P T M L l
MOV - 1 . 2 0 0 - 1 . 1 0 0
EXI -1 .2 0 0 9.000
EXN 6 2
X X D L 1 JF E T 3 8 L 1
MOV - 1 . 2 0 0 - 1 . 6 0 0
EXI -1 .2 0 0 10.000
EXN 6 2
DL1 J O P T M L l
MOV 0 - 1 . 2 0 0
EXI - 8 .4
9.2
EXN 2 2
X X D L l:ln fili
MOV 3 . 0 0 - 2 . 5 0
y .y .D L i: g r i d l i
MOV F C
JOY
TIM
TCHL1. JOB:
TCHL2. J OB:
! E X P O S E T CHO MAS K 2
J6 / 1 1 / 8 4
T CHO MAS K 2
J P O S I T I V E PMMA P R O C E S S
MOV F C
JOY
i 16NA
CLK 1 1 E 6
KEY 3
MOV FM
JOY
i F O C U S > R E A D Y TO E X P O S E
r T U R N DOUN C H A N N E L P L A T E
KEY 3
TIM
A BS
MOV 5 7 4 4
FON
S PO UO
MAP R E L WO
EXI - 2 . 4 0 0 2 .0 0 0
EXN 4 4
: i %DLl JA M P 3 8 L 2 .
MOV - . 6 0 0 - . 6 0 0
EXN 4 5
ZZDL1:0PTML2
MOV - 1 . 2 0 0 - 1 . 1 0 0
EXI -1 .2 0 0 9 .0 0 0
EXN 6 2
XXDLlJFET38L2
MOV - 1 . 2 0 0 - 1 . 6 0 0
EXI - 1 . 2 0 0 1 0 .0 0 0
EXN 6 2
Z / . D L 1 ‘. 0 P T M L 2
MOV 0 - 1 . 2 0 0
EXI - 8 . 4
9.2
EXN 2 2
XXDLlt LNF1L2
MOV 3 . 0 0 - 2 . 5 0
MOV F C
JOY
TIM
Mes a l e v e l e x p o s u r e , and
Ohmi c l e v e l e x p o s u r e
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
234
TCHL3. JOB : 2
' E X P O S E T CHO MASK 3
? 6 / l l / 8 A T CHO MASK 3
^ P O S I T I V E PMMA P R O C E S S
MOV F C
JOY
J l . C NA 2 N D S A T
CLK 1 6 2 5 0 0
KEY 3
MOV FM
J OY
; f o c u s » ready to ex p o s e
i TURN d o w n c h a n n e l p l a t e
KE Y 3
MOV F C
JOY
TIM
CLK 1 1 E 6
• : SET 1 6 NA F I R S T
KEY 4
MOV AP
JOY
KE Y 3
MOV FM
JOY
rRESET O R IG IN ?
KEY 2
TI M
; R E A D Y TO E X P O S E
KEY 1
FCN
MOV 0 0
EXI - 2 . 4 0 0 2 .0 0 0
EXN 4 4
ABS
MOV 5 7 4 4
F ON
SPO UO
MAP R E L WO
EXI - 2 . 4 0 0 2 . 0 0 0
EXN 4 4
XXD L1: AMP38L3
MOV - . 6 0 0 - . 6 0 0
E XN 4 5
y .V .l i L 1 J0 P T M L 3
MOV - . 6 0 0 - . 6 0 0
EXN 4 5
XXDLl:0PTML6
MOV - 1 . 2 0 0 - 1 . 1 0 0
EXI - 1 .2 0 0 9 .0 0 0
EX N 6 2
%%DL1:FET38L3
MOV - 1 . 2 0 0 - 1 . 6 0 0
EXI - 1 . 2 0 0
10.000
EXN 6 2
/. X D L 1 : 0 P T M L 3
MOV - 1 . 2 0 0 - 1 . 6 0 0
EXI -1 .2 0 0
10.000
EXN 6 2
y.y. d l i ; o p t m i - 6
MOV 0 - 1 . 2 0 0
EXI - 8 . 4 9 .2
EXN 2 2
■/.'/.D LI J L N F 1 L 3
TCHL3. J 0B:
Ga t e and g r ound
SAT
y .7 .D L I J A M P 3 8 L 4
MOV F C
TIM
EOF
plane
levels
exposure
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
235
TCHL6 . J 0 B: !
TCHL5. J O B : 1
! E X P O S E T C H O MASK 5
i 6/11/84
T C H O MASK 5
« N E G A T I V E A Z 1 3 5 0 J PROCESS
MOV F C
JOY
> 1 6 NA
CLK 1 1E6
KEY 3
MOV FM
JOY
> F O C U S > R E A D Y TO E X P O S E
> T U R N DOWN C H A N N E L P L A T E
KEY 3
TIM
ADS
MOV 5 7 4 4
FON
S P O WO
MAP R E L WO
EXI - 2 . 4 0 0 2 .0 0 0
EXN 4 4
XXDLlJAMP38L5
MOV - . 6 0 0
-.600
EXN 4 5
XXDL1J0PTML7
MOV - 1 . 2 0 0 - 1 . 1 0 0
EXI -1 .2 0 0 9 .0 0 0
EXN 6 2
MOV - 1 . 2 0 0 - 1 . 6 0 0
EXI - 1 . 2 0 0
10.000
EXN 6 2
XXDL1J0PTML7
MOV 0 - 1 . 2 0 0
EXI - 8 . 4
9.2
EXN 2 2
MOV FC
JOY
TIM
TCHL5. J OB:
TCHL6. J OB:
' E X P O S E TCHO MASK 6
> 6 / 1 1 / 8 4 T CH O MAS K 6
^ P O S I T I V E PMMA P R O C E S S
MOV F C
JOY
i 16NA
CLK 1 1 E6
KEY 3
MOV FM
JOY
i F O C U S > R E A D Y TO E X P O S E
•5 T OR N DOWN C H A N N E L P L A T E
KEY 3
TIM
ABS
MOV 5 7 4 4
FON
S P O WO
MAP R E L WO
EXI - 2 .4 0 0 2 .0 0 0
EXN 4 4
XXDL1JAMP38L6
MOV - . 6 0 0 - . 6 0 0
EXN 4 5
XXDLlJ0PTML4
MOV - 1 . 2 0 0 - 1 , 1 0 0
EXI -1 .2 0 0 9 .0 0 0
EXN 6 2
X X D L 1 JF E T 3 8 L 6
MOV - 1 . 2 0 0 - 1 . 6 0 0
EXI - 1 . 2 0 0 1 0 .0 0 0
EXN 6 2
y.ZD Ll J0PTML4
MOV 0 - 1 . 2 0 0
EXI - 8 . 4
9.2
EXN 2 2
y .y .U L l J L N F 1 L 5
MOV 3 . 0 0 - 2 . 5 0
MOV F C
J OY
TIM
D i e l e c t r i c l e v e l e x p o s u r e , and
Bo t t o m p l a t i n g l e v e l e x p o s u r e
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
236
TCHL7.JOB:1
1 E X P O S E T C H O MASK 7
6/11/84
T CHO MASK 7 6
f P O S I T I V E PMMA P R O C E S S
MOV F C
JOT
; 16NA
CLK 1 1 E6
KEY 3
MOV F M
JOY
f F O C U S f R E A D Y TO E X P O S E
f TURN d o w n c h a n n e l
plate
KEY 3
TI M
ABS
MOV 5 7 4 4
FON
S P O WO
MAP R E L UO
EXI -2 .4 0 0 2 .0 0 0
EXN 4 4
%%DL1 J A M P 3 8 L 7
MOV - . 6 0 0 - . 6 0 0
EXN 4 5
%%DL1J0PTML5
MOV - 1 . 2 0 0 - 1 . 1 0 0
EXI -1 .2 0 0 9 .0 0 0
EXN 6 2
ZliDLl JFET38L6
MOV - 1 . 2 0 0 - 1 . 6 0 0
EXI - 1 .2 0 0
10.000
EXN 6 2
XXDL1J0PTML5
MOV 0 - 1 . 2 0 0
EXI - 8 . 4 9 .2
EXN 2 2
x x d l i :l n f il s
MOV 3 . 0 0 - 2 . 5 0
MOV F C
JOY
TIM
TCHL7. J OB:
Top p l a t i n g
level
exposure
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
237
APPENDIX B
APPLICON CAD CHECK-PLOTS OF SEPARATE LEVEL
FOR AMP3 8 BROADBAND LOW-NOISE MMIC's
F ilenam e
F u n ctio n
1.
AMP3801
Mesa
2.
AMP3802
Ohmic
3.
AMP3803
G ate
4.
AMP3804
D ielectric
5.
AMP3805
Bottom P l a t i n g
6.
AMP3 806
Top P l a t i n g
T h e CAD c h e c k - p l o t s
given
in F ig u res B .l
of th e
above
& Ground P la n e
filen am es
w ill
be
- B .6.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
238
o
00
CO
a .
L1AJ H U
HO
+->
0
CL
1
u
Q)
-C
(J
Q
C
o
o
o
Q_
C L.
<
CO
<u
i-
=i
a>
•r*
U.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fi gur e
B. 2.
APPLICON
m
CAD c h e c k - p l o t
- n -
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fi gur e
B. 3.
APPLICON
CAD c h e c k - p l o t
of
AMP3803.
240
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fi gur e
B. 4.
APPLICON
CAD
check=plot
of
AMP3804.
241
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
m
m
as
o
Fi gur e
B. 5.
APPLICON
T T TT]
m
CAD c h e c k - p l o t
of
AMP3805.
242
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fi gur e
B. 6.
APPLICON
CAD
D=D
check-plot
of
AMP3806.
243
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
244
APPENDIX C
MICROSTRIP ENGINEERING DESIGN-AIDED DATA
FOR SEMI-INSULATING GaAsAND FUSED S I L I C A SUBSTRATES
Based on
lin e s
given
in S ectio n
d esig n -aid ed
and f u s e d
listed
the d esig n
d ata
silica
compared
in
th e
the
have
free
W is
relativ e
for
The t a b l e s
sem i-in su latin g
been c a lc u la te d
and C .2 r e s p e c t i v e l y .
Z , slow -w ave f a c t o r
tran sm issio n
the
2, e n g in e e rin g
a t DC, 1 2 GHz a n d 18 GHz.
Frequency
calcu lated
The r e s u l t s
include
and
and
are
listed
ch aracteristic
(= ~ ~ r ) v e r s u s t h e
>/ee f f
w h e r e Xg i s g u i d e d w a v e l e n g t h
lin es
^a / ^ 0
space w avelength.
F igure C .l
in m ils ,
2 .4 o f C h a p te r
a b o v e d a t a was a l s o
w idth of m ic r o s tr ip
a n d Xq i s
the m ic r o s tr ip
su b strates
same t a b l e .
im pedance
of
of m ic ro strip lin e s
in T able C .l
dependence of
eq u atio n s
shows t h e c o n f i g u r a t i o n
lin e.
H is
the
the w idth of
d iele ctric
th ick n ess
conductor
co n stan t
of
of
strip
and F is
a m icro strip
the
su b strate
in m ils ,
er
frequency
in
is
GHz.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
245
Strip Conductor
GaAs S. I.
€ r - 12.9/3.78
Ground Plane
H : mils
W : mils
Z : ohms
o
F : GHz
Figure
C. l .
Configuration
transmission
of microstrip
line.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
246
Table
C. l .
Characteristic
factor
for
i m p e d a n c e ZQ, s l o w - n o i s e
Xg/ Ao v e r s u s
S.I.
microstrip
GaAs s u b s t r a t e
and t h i c k n e s s
line
wi dt h
with e r = 1 2. 9
H = 8 mi l s .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
247
Table
ERfHf
U L f DWf WHf F ( I )
fF
C. l
< 2 > f F < 3 > f NF =
ER=12 .9 0
H= 8 . 0 0 0
NF=1
F=
W=
.05
.10
.15
.20
.25
.30
.35
.40
.45
.50
.55
.60
.65
.70
.75
.80
.85
.90
.95
1.00
1.05
0.00
ZO
158.10
142.25
133.00
126.45
121.38
117.24
113.74
110.71
108.03
105.64
103.47
101.49
99.67
97.99
96.42
94.95
93.57
92.27
91.04
89.87
88.76
1.10
1.15
1,20
1.25
1.30
1 .35
1 . 40
1.45
1.50
1 . 55
1 .60
1.65
1.70
1.75
1.80
1 . 85
1 .90
1 .95
2.00
87.70
86.69
85.72
84.79
83.90
83.04
82.21
81.42
80.64
79.90
79.18
78.48
77.80
77.14
76.50
75.88
75.27
74.68
74.11
0.00
R.VEL.
.3685
.3672
.3663
.3656
.3651
.3646
.3642
.3638
.3634
.3631
.3628
.3625
.3622
.3619
.3616
.3614
.3611
.3608
.3606
.3604
.3601
.3599
.3597
.3595
.3592
.3590
.3588
.3586
.3584
.3582
.3580
.3579
.3577
.3575
.3573
.3571
.3569
.3568
.3566
.3564
105.04
102.88
100.91
99.10
97.42
95.86
94.39
93.02
91.72
90.49
89.33
88.22
i 2 • 00
R.VEL.
.3665
.3651
.3643
.3636
.3631
.3626
.3622
.3618
.3614
.3610
.3607
.3604
.3601
.3598
.3595
.3592
.3590
.3587
.3584
.3582
.3580
18.00
ZO
156.52
140.84
131.68
125.20
120.17
116.07
112.60
109.59
106.93
104.56
102.41
100.45
98.64
96.96
95.41
93.95
92.58
91.28
90.06
88.90
67.80
87.17
86.16
85.19
84.27
83.38
82.52
81.70
80.90
80.13
79.39
78.67
77.97
77.29
76.64
76.00
75.38
74.77
74.19
73.61
.3577
.3575
.3573
.3570
.3568
.3566
.3564
.3562
.3560
.3558
.3556
.3554
.3552
.3550
.3548
.3546
. 3544
.3542
. 3541
86.74
85.74
84.78
83.85
82.96
82.11
81.29
80.49
79.73
78.98
78.27
77.57
76.90
76.24
75.60
74.98
74 . 3 8
73.79
73.22
12.00
ZO
157.22
141.46
132.27
125.76
120.71
116.59
113.11
110.09
107.42
18.00
R.VEL.
.3649
.3635
.3626
.3620
.3614
♦3 6 1 0
.3605
.3601
.3598
.3594
.3591
.3587
.3584
.3581
.3578
.3575
.3573
.3570
.3567
.3565
.3562
.3560
.3557
.3555
.3553
.3550
.3548
.3546
.3544
.3542
.3539
.3537
.3535
.3533
.3531
.3529
.3527
.3525
.3524
.3522
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
248
Table
C. l
ER»Kf W L » D W r W H » F ( l ) » F
ER=12 . 9 0
continued
< 2 >» F < 3 ) » N F =
H= 8 . 0 0 0
NF = 1
F=
W=
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
3.60
3.65
3.70
3.75
3.80
3.85
3.90
3.95
4.00
0.00
ZO
73.55
73.00
72.47
71.95
71 . 4 4
70.94
70.45
69.98
69.51
69.05
68.60
6 8 . 16
67.73
67.31
66.90
66.49
66.09
65.70
65.31
64.93
64.56
64.20
63.83
63.48
63.13
6 2 . 79
62.45
62.12
61 . 7 9
61 . 4 7
61 . 1 5
60.83
60.52
60.22
59.92
59.62
59.33
59.04
58.76
58.47
0.00
R.VEL.
.3563
.3561
.3559
.3558
.3556
.3555
.3553
.3551
.3550
.3548
.3547
.3545
.3544
.3542
.3541
.3539
.3538
.3537
.3535
.3534
.3532
.3531
,3530
.3528
.3527
.3526
.3524
.3523
.3522
.3520
.3519
.3518
.3517
.3515
.3514
.3513
.3512
.3510
.3509
.3508
12.00
ZO
73.05
72.51
71.98
71.46
70.95
70.45
69.97
69.49
69.03
68.57
68.12
67.68
67.25
66»83
66.42
66.01
65.61
65.22
64.84
64.46
64.09
63.72
63 .3 6
63.01
62.66
62.32
61 . 9 8
61.65
61.32
61.00
60.68
60.37
60.06
59.76
59.46
59.16
58.87
58.58
58.30
58.02
12.00
R.VEL.
.3539
.3537
.3535
.3534
.3532
.3530
.3528
.3527
.3525
.3524
.3522
.3520
.3519
,3517
.3516
.3514
.3513
.3511
.3510
.3508
.3507
.3505
.3504
.3502
18.00
ZO
72.66
72.12
71.59
71.07
70.56
70.07
69.58
69.11
68.64
68.19
67.74
67.31
66.88
66.46
66.04
65.64
65.24
64.85
64.47
64.09
63,72
63.35
62.99
62.64
.3501
.3499
.3498
.3497
.3495
.3494
.3492
.3491
.3490
.3488
.3487
.3486
.3484
.3483
.3482
.3480
62.29
61.95
61.62
61.28
60.96
60.64
60.32
60.01
59.70
59.39
59.09
58.80
58.51
58.22
57.94
57.66
18.00
R.VEL.
.3520
.3518
.3516
.3514
.3513
.3511
.3509
.3507
.3506
.3504
.3502
.3501
.3499
.3497
.3496
.3494
.3493
.3491
.3489
.3488
.3486
.3485
.3483
.3482
.3480
.3479
.3477
.3476
.3474
.3473
.3471
.3470
.3469
.3467
.3466
.3464
.3463
.3461
.3460
.3459
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
249
Table C.l continued
ER»Hi
ER =
WL»DW»UH»F(1) f F < 2 ) r F ( 3 ) » N F =
1 2 ♦90
H=
8.000
12.00
ZO
57.74
57.47
57.20
56.93
56.67
56.40
56.15
55,89
55.64
55.39
55.15
54.91
54 . 6 7
54.43
54.20
53.96
53.74
53.51
53.28
53.06
52.84
52.63
52.41
52.20
51.99
51.78
51.57
51.37
51.16
50.96
50.76
50.57
50.37
50.18
4 9 . 99
49.80
4 9 . 61
49.42
49.24
R.VEL.
.3479
.3478
.3476
.3475
.3474
.3472
.3471
.3470
.3469
.3467
.3466
.3465
.3464
.3462
,3461
.3460
.3459
.3455
.3456
.3455
.3454
,3453
.3452
.3450
.3449
.3448
.3447
.3446
.3445
.3443
.3442
.3441
.3440
.3439
.3438
.3437
.3435
.3434
. 3433
CD
0,00
R.VEL.
.3507
.3505
.3504
♦3 5 0 3
.3502
.3501
.3499
.3498
.3497
.3496
.3495
.3493
.3492
.3491
.3490
.3489
,3488
.3487
.3485
.3484
,3483
.3482
.3481
,3480
.3479
.3478
.3477
.3475
.3474
.3473
.3472
.3471
.3470
.3469
.3468
.3467
.3466
,3465
.3464
o
o
0.00
ZO
58.20
57.92
57.65
57.39
57.12
56.86
56.60
56.35
56.10
55.85
55.60
55.36
55.12
54 .8 8
54.65
54.41
54.18
53.96
53.73
53.51
53.29
53.07
52.86
52.64
52.43
52.22
52.01
51.81
51 . 6 1
51 .4 0
51 . 2 1
51 . 0 1
50.81
50 .62
50.43
50,24
50.05
49.86
49 . 68
CM
F=
W=
4.05
4.10
4.15
4.20
4.25
4.30
4.35
4.40
4.45
4.50
4.55
4.60
4 .65
4.70
4.75
4.80
4.85
4.90
4.95
5.00
5.05
5.10
5.15
5.20
5.25
5,30
5.35
5.40
5.45
5»50
5.55
5.60
5.65
5.70
5.75
5.80
5.85
5.90
5. 95
o
©
NF = 1
ZO
57.38
57.11
56.84
56.57
56.31
56,05
55.79
55.54
55.29
55.04
54.80
54.56
54.32
54.08
53.85
53.62
53.39
o ♦ 16
52.94
52.72
52.50
52.28
52.06
51.85
51.64
51.43
51.23
51.02
50.82
50.62
50.42
50.23
50.03
49.84
49.65
49.46
49.27
49.09
48.90
18.00
R.VEL.
.3457
.3456
.3455
.3453
.3452
.3451
.3449
.3448
.3447
.3445
.3444
.3443
.3442
.3440
.3439
.3438
.3436
.3435
.3434
.3433
.3431
.3430
.3429
.3428
.3426
.3425
.3424
.3423
,3422
.3420
.3419
.3418
.3417
.3416
.3414
.3413
.3412
.3411
.3410
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
250
Table
C.l
continued
ERfHf W LrD W ,U H,F<l>,F<2> rF<3> ,N F =
ER=12 . 9 0
H= 8 , 0 0 0
NF = 1
F=
W=
6.05
6.10
6.15
6.20
6.25
6.30
6.35
6.40
6.45
6.50
6 • 55
6.60
6.65
6.70
6.75
6.80
6.85
6.90
6.95
7.00
7.05
7.10
7.15
7.20
7.25
7.30
7 .35
7.40
7.45
7.50
7.55
7.60
7.65
7.70
7.75
7.80
7.85
7.90
7.95
0.00
ZO
49.31
49.13
48.95
48.78
48.60
48.43
48.25
48.08
47.91
47.75
47.58
47.41
47.25
47.09
46.93
0.00
R.VEL.
.3461
.3460
.3459
.3458
.3457
.3456
.3455
.3454
.3453
.3452
.3451
.3450
.3449
.3448
.3447
46.77
46.61
46.45
46.29
46.14
45.99
45.83
45.68
45.53
45.38
45.23
45.09
.3446
.3445
.3444
.3443
.3442
.3441
.3440
.3439
.3438
.3437
.3436
.3435
.3434
.3433
.3432
.3431
.3430
.3429
.3429
.3428
.3427
.3426
.3425
,3424
44.94
44 , 8 0
44.65
44.51
44.37
44.23
44.09
43.95
43.81
43.68
43.54
43.41
12.00
ZO
48.88
48.70
48.52
48.34
48.17
47.99
47.82
47.65
47.48
47.32
47.15
46.99
46.82
46»66
46.50
46.34
46.18
46.02
45.87
45.71
45.56
45.41
45.26
45.11
44.96
44.81
44.67
44.52
44.38
44.23
44 . 0 9
43.95
43.81
43.67
43.53
43.40
43.26
43.13
42.99
12.00
R.VEL.
.3431
.3430
.3429
.3428
.3427
.3425
.3424
.3423
.3422
.3421
.3420
.3419
.3418
.3417
.3416
.3415
.3414
.3413
.3411
.3410
.3409
.3408
.3407
.3406
.3405
.3404
.3403
.3402
.3401
.3400
.3399
.3398
.3397
.3396
.3395
.3394
.3393
.3392
.3391
18.00
ZO
48.54
48.36
48.18
48.01
47.83
47.66
47.49
47.32
47.15
46.99
46.82
46.66
46.49
46.33
46.17
18.00
R.VEL.
.3407
.3406
.3405
.3404
.3403
.3402
.3401
.3399
.3398
.3397
.3396
.3395
.3394
.3393
.3392
46.01
45.85
45.70
45.54
45.39
45.24
45.08
44.93
44.79
44.64
44.49
44.34
44.20
44.06
43.91
43,77
43.63
43.49
43.35
43.22
43.08
42.95
42.81
42.68
.3391
.338?
.3388
.3387
.3386
.3385
.3384
♦3 3 8 3
.3382
.3381
♦3 3 8 0
.3379
.3378
.3377
.3376
.3374
.3373
.3372
.3371
.3370
.3369
.3368
.3367
.3366
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
251
Table
C.l
continued
ER » H » W L s> D U * W H » F < 1 ) f F < 2 > » F ( 3 ) »NF =
ER=12.90
H= 8 . 0 0 0
NF = 1
F=
0.00
W=
20
8.00
8.20
8.40
8.60
8.80
9.00
9.20
9.40
9.60
9.80
10.00
10.20
10.40
10.60
10.80
11 . 0 0
11 . 2 0
11 . 4 0
11 . 6 0
11 , 8 0
12.00
12.20
12.40
12.60
12.80
13.00
1 3. 20
13.40
13.60
13.80
14.00
14.20
1 4 . 40
14.60
14.80
15.00
1 5 . 20
1 5 . 40
1 5 . 60
15 . 8 0
1 6 . 00
43.27
42.75
42.24
41.74
41.26
40.79
40.33
39.88
39.44
39.01
38.60
38.19
37.80
37.41
37.03
36.66
36.29
35.94
35.59
35.25
34.92
34.59
34.27
33.96
33.65
33.35
33.05
3 2 . 76
32.48
32.20
31 . 9 2
31 . 6 5
31.39
31.13
30.87
30.62
30.38
3 0 . 14
29.90
29.66
29 .43
0.00
R.VEL.
.3423
.3419
.3416
.3412
.3408
.3405
.3401
.3398
.3395
.3391
.3388
.3385
.3381
.3378
.3375
.3372
.3369
. 66
-
<.3
.3360
.3357
.3354
.3352
.3349
.3346
.3343
.3341
.3338
.3335
.3333
.3330
.3328
.3325
.3323
.3320
.3318
.3315
.3313
.3311
.3308
.3306
12.00
12.00
R.VEL.
ZO
.3390
42.86
.3386
42.34
.3382
41 . 8 3
.3379
41.33
.3375
40.85
.3371
40.38
.3368
39.93
.3364
39.48
.3360
39.05
.3357
38.62
.3354
38.21
.3350
37.80
.3347
37.41
.3344
37.02
.3340
36.64
.3337
36.28
.3334
35.91
.3331
35.56
.3328
35.22
.3325
34.88
.3322
34.55
.3319
34.22
.3316
33.90
.3313
33.59
.
3310
33.29
.3307
32.99
.3304
32.69
.3302
32.40
.3299
32.12
.3296
31 . 8 4
.3293
31.57
.3291
31.30
.3288
31.04
,3286
30.78
.3283
30.53
.3281
30.28
.3278
30.04
.3276
29.80
.3273
29.56
.3271
29.33
2 9 . 10 . 3 2 6 8
18.00
ZO
42,54
42.02
41.52
41.03
40.55
40.08
39.62
39.18
38.75
38.32
37.91
37.51
37.12
36.73
36.36
35.99
35.63
35.28
34.93
34.60
34.27
33.95
33.63
33.32
33,02
32.72
32.43
32.14
31.86
31.58
31.31
31 . 0 5
30.79
30.53
30.28
30.03
29.79
29,55
29,31
29.08
28.85
18.00
R.VEL.
.3365
.3361
.3357
.3353
.3350
.3346
.3342
.3338
.3335
.3331
.3328
.3324
.3321
.3317
.3314
.3311
,3307
.3304
.3301
.3298
. 3295
.3292
.3289
.3286
.3283
.3280
.3277
.3275
.3272
.3269
.3266
.3264
.3261
.3258
.3256
.3253
.3251
.3248
.3246
.3243
.3241
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
252
Table C.l
continued
E R » H » W L » D U » W H » F ( 1 ) , F ( 2 > » F < 3 > , NF =
ER=12 •9 0
H= 8 . 0 0 0
NF = 1
F=
0.00
w=
ZO
29.43
28.87
28,34
27,82
27.32
26.84
26.38
25.94
25.51
25.09
24.69
24.30
23.93
23.56
23.21
22.87
22.54
16.00
16.50
17.00
17.50
18.00
18.50
19.00
19.50
20.00
20.50
21 . 0 0
21.50
22.00
22.50
23.00
23.50
24.00
24.50
25.00
25.50
26.00
26.50
27.00
27.50
28.00
28.50
29.00
29.50
30.00
30.50
31 . 0 0
31 . 5 0
32.00
32.50
33.00
33.50
34 . 0 0
34 . 5 0
35.00
35 . 5 0
36 . 0 0
22.22
21 . 9 1
21 . 6 0
21 , 3 1
2 1 ,0 2
20.75
20.48
2 0 .2 1
19.96
19.71
19.46
19.22
18.99
18 . 7 7
18.55
18.33
18.12
17 .92
17.72
17 . 5 2
17.33
17.14
16 . 9 6
16 . 7 8
r*
r\
0.00
u ri
» v c l
*
.3306
.3300
.3295
.3289
.3284
.3279
.3274
.3269
.3265
.3260
.3255
.3251
.3247
.3242
.3238
.3234
•3230
.3226
.3222
.3219
.3215
.3211
.3208
.3204
.3201
.3198
.3194
.3191
.3188
.3185
.3182
.3179
.3176
.3173
.3170
.3167
.3164
.3162
.3159
.3156
. 3154
12.00
•t n
L \J
29.10
28.54
28.01
27.50
27.01
26.53
26.07
25.63
25.21
24.79
24.40
24.01
23.64
23.28
22.93
22.59
22.27
21 . 9 5
21.64
21.34
21.05
20.77
20.49
20.22
19.96
19.71
19.46
19.22
18.99
18.76
18.53
18.32
18.10
17.90
17.69
17.49
17,30
17.11
16.93
16.75
16.57
12.00
R.VEL.
.3268
.3263
.3257
.3252
.3246
.3241
.3236
.3231
.3226
.3221
.3217
.3212
.3208
.3203
.3199
.3195
.3191
.3187
.3183
.3179
.3176
.3172
.3168
.3165
.3162
.3158
.3155
.3152
.3148
.3145
.3142
.3139
.3136
,3133
.3131
.3128
.3125
.3122
.3120
.3117
.3114
18.00
ZO
28.85
28.30
27.77
27.26
26.77
26,30
25.85
25.41
24.99
24.58
24.19
23.81
23.44
23.08
22.73
22.40
22.07
21 . 7 6
21.45
21 . 1 5
20,87
20.58
20.31
20.05
19.79
19.54
19.29
19.05
18.82
18.59
18.37
18.16
17.94
17.74
17.54
17.34
17.15
16.96
16.78
16.60
16.42
18.00
R.VEL.
.3241
.3235
.3229
.3224
.3218
.3213
.3208
.3203
.3198
.3193
.3189
.3184
.3180
.3176
.3171
.3167
.3163
.3159
.3155
.3152
.3148
.3144
.3141
.3137
.3134
.3131
.3127
.3124
.3121
.3118
.3115
.3112
.3109
.3106
.3103
.3100
.3098
.3095
.3092
.3090
.3087
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
253
Table
C. 2 .
Characteristic
wa v e f a c t o r
i mpedance
Ag/ Ao
versus
ZQ,
slow-
microstrip
line
wi dth f o r
fused
silica
with
er = 3.78
and t h i c k n e s s
substrate
H = 15 m i l s .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
254
Ta b l e C. 2
ERtHf WL»DWfWH»F(1) »F(2>
ER= 3 . 7 8
H=15. 00 0
NF = 1
F=
W=
.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
10.00
10.50
11 . 00
11.50
12.00
12.50
13.00
13.50
14.00
14.50
15.00
15.50
16.00
1 6 . 5C
17,00
17.50
18.00
18.50
19.00
19.50
20.00
fF <3 ) » NF =
18.00
18.00
12.00
12.00
0.00
0.00
R.VEL.
ZO
R.VEL.
ZO
R.VEL.
ZO
.6248
206.58
. 6265 2 0 5 . 3 0
. 6287 2 0 5 . 8 7
. 6 221
179.74
. 6 239 1 7 8 . 5 9
. 6261 1 7 9 . 1 0
. 6201
164.02
. 6219 1 6 2 . 9 4
. 6242 1 6 3 . 4 2
.6184
. 6203 1 5 1 . 8 2
152.86
. 6226 1 5 2 . 2 9
.6168
. 6188 1 4 3 . 2 0
. 6212 1 4 3 . 6 5
144.21
.6154
137.15
. 6174 13 6 . 1 6
. 6199 1 3 6 . 6 0
. 6 14 1
131.18
. 6187 1 3 0 . 6 4
. 6161 130 . 21
.6128
. 6149 1 2 5 . 0 6
126.01
. 6175 1 2 5 . 4 8
.6117
. 6138 1 2 0 . 5 2
121.47
. 6165 1 2 0 . 9 4
.6106
. 6127 1 1 6 . 4 7
117.40
. 6155 1 1 6 . 8 8
.6095
. 6117 112. 81
113.74
. 6145 1 1 3 . 2 2
.6085
. 6107 1 0 9 . 4 7
110.39
. 6136 1 0 9 . 8 8
.6075
. 6 098 106. 41
107.32
. 6127 1 0 6 . 8 1
, 6065
. 6089 103; 58
104.49
. 6118 1 0 3 . 9 8
.6056
. 6 080 1 0 0 . 9 5
101.85
. 6110 1 0 1 . 3 5
.6047
98.50
. 6071
98.89
99.39
. 6102
96.20
.6038
96.59
97.09
. 6094
. 6063
94.04
.6030
94.43
. 6055
94.92
. 6086
92.00
. 6021
92.39
. 6 046
92.88
. 6079
.6013
90.07
90.45
. 6039
90.94
. 6071
88.24
.6005
88.62
. 6031
89.11
. 6064
86.50
.5997
86.88
. 6023
87.36
. 6057
84.84
.5989
. 6016
85.70
. 6049
85.22
83.26
. 5 981
83.64
. 6008
84.11
. 6042
81 . 75
.5974
. 6001
82.59
. 6036
82.12
.5966
80.30
80.67
. 5994
81 . 14
. 6029
78.92
.5959
. 5987
79.75
. 6022
79.28
.5952
77.58
77,95
. 5 980
. 6015
78.41
.5945
76.30
. 5973
77.13
. 6009
76.66
.5938
75.07
75.89
75.43
. 5966
. 6003
73.88
. 5931
. 5960
74.70
. 5996
74.24
72.74
.5925
73.09
. 5953
73.55
. 5990
.5918
. 5947
71.64
71.98
72.44
. 5984
.5912
. 5941
70.57
71 . 3 6
. 5978
70.92
69.54
.5905
. 5934
70.33
. 5972
69.88
68.54
.5899
. 5 928
69.33
. 5967
68.88
.5893
67 . 58
68.35
. 5961
67.91
. 5923
. 58 87
66 .64
. 5955
66.98
. 5917
67.41
. 5911
65.73
. 5881
. 5950
66.07
66.50
. 5 87 5
64 . 85
6 5 . 19
. 5905
65.62
. 5944
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
255
T a b l e C. 2 c o n t i n u e d
ERr Hr WL » DW» WH» F ( 1 ) » F < 2 ) f F ( 3 ) f NF =
FR= 3 . 7 8
H = 1 5 . OOO
NF~1
F=
W=
2 0 .50
21.00
2 1 .50
22.00
2 2 .50
23.00
23.50
2 4 .00
24.50
2 5 .00
2 5.50
2 6 .00
26.50
27.00
2 7.50
28.00
28.50
29.00
2 9.50
30.00
30.50
3 1.00
31.50
32.00
32.50
3 3.00
3 3.50
3 4 .00
3 4.50
3 5.00
3 5.50
3 6 .00
3 6 .50
37.00
37.50
38.00
38.50
39.00
3 9.50
40.00
0.00
ZO
64.76
6 3 .92
6 3.11
6 2.32
6 1.56
60.81
60.08
5 9.38
58.69
58.01
57.36
5 6.72
56.09
55.48
5 4.89
54.31
53.74
5 3 .18
52.64
52.11
5 1.58
51»08
5 0 .58
5 0.09
49.61
49.14
4 8.68
48.23
47.79
4 7 .35
46.93
46.51
46.10
45.70
45.31
44.92
44.54
44.17
4 3.80
43.44
0,00
R.VEL.
.5939
.5934
.5929
.5924
.5919
.5914
.5909
.5904
.5900
.5895
.5891
.5886
.5882
.5877
.5873
,5869
.5865
.5861
,5857
.5853
.5849
.5845
.5841
.5837
.5834
.5830
.5826
.5823
.5819
.5816
.5812
.5809
.5805
.5802
.5799
.5796
,5792
.5789
.5786
.5783
12.00
ZO
6 4 .33
6 3 .50
6 2.69
6 1.90
6 1 .14
6 0.40
5 9 .67
5 8.97
58.28
57.61
5 6 .96
5 6 .32
5 5 .70
55 .09
5 4 .50
53 .92
5 3 .35
52 .80
52 .26
5 1 .73
5 1.21
5 0 .70
5 0 .20
4 9 .72
4 9 .24
4 8 .77
4 8 .32
4 7 .87
* 7 .43
4 7 .00
4 6 .58
4 6.16
4 5 .75
45 .35
4 4 .96
44 .58
4 4 .20
43 .83
43.46
43.10
12.00
R.V EL.
.5900
.5894
.5889
.5884
.5879
.5874
.5868
.5864
.5859
.5854
.5849
.5845
.5840
.5836
.5831
,5827
.5822
.5818
.5814
.5810
.5806
.5802
.5798
.5794
.5790
.5786
.5783
.5779
.5775
.5772
.5768
.5765
.5761
.5758
.5755
.5751
.5748
.5745
.5742
.5738
18.00
18.00
R. O EL .
ZO
64.00
.5870
63.17
.5864
62.37
.5859
61.58
.5853
60.82
.5848
60.08
.5843
59.36
.5838
58.66
.5833
.5828
57.97
.5823
57.30
.5818
56.65
.5813
56.02
55.40
.580?
.5804
54.79
54.20
.5800
.5795
53.62
53.06
.5791
.5786
52.51
51.97
.5782
.5778
51.44
50.93
.5774
.5770
50.42
.5766
49.93
.5762
49.44
.5758
48.97
.5754
48.50
48.05
.5750
.5747
47.60
.5743
47.16
.5739
46.73
.5736
46.31
.5732
45.90
.5729
45.49
.5725
45.10
.5722
44.71
44.32
.5719
43.95
.5715
43.58
.5712
.5709
43.21
42.86
.5706
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
256
T a b l e C. 2 c o n t i n u e d
ERr Hr WLf DW»WHf F<l ) »F<2> » F ( 3 ) » N F =
ER= 3 . 7 8
H = 1 5 . OOO
NF=1
F=
W=
40.50
41.00
41.50
42.00
42.50
43.00
43.50
44.00
44.50
45.00
45.50
46.00
46.50
47.00
47.50
48.00
48.50
49.00
49.50
50.00
50.50
51 . 0 0
51 . 5 0
52.00
52.50
53.00
53.50
54.00
54.50
55.00
55.50
56.00
56.50
57.00
57.50
58.00
58.50
59.00
59.50
60.00
0.00
ZO
43.09
42.74
42.39
42.06
41.73
41.40
41.08
40.77
40.46
40.15
39.85
39.55
39.26
38.98
38.69
38.42
38.14
37.87
37.61
37.34
37.09
36.83
36.58
36.33
36.09
35.85
35.61
35.38
35.15
34.92
34.69
34.47
34.25
34.04
33.82
33.61
33.41
33.20
33.00
32.80
0.00
12.00
R.VEL.
,5780
,5777
.5774
.5771
.5768
.5765
.5762
.5759
.5757
.5754
.5751
.5748
.5746
.5743
.5740
.5738
.5735
.5733
.5730
.5728
.5725
,5723
.5720
.5718
.5715
.5713
.5711
.5 7 0 8
.5706
.5704
.5702
.5699
.5697
.5695
.5 6 9 3
.5691
.5688
.5686
.5684
. 5682
ZO
42.75
42.41
42.07
41.73
41.40
41 . 0 8
40.76
40.45
4 0,14
39.83
39.54
39.24
3 8,95
3 8.67
3 8 ,3 9
38.11
37.84
37.57
37.31
3 7,05
36.79
3 6.54
3 6 .2 9
36.04
3 5 .8 0
3 5.56
35.32
35.09
34 . 8 6
34 . 6 4
34.41
34.19
3 3 .9 8
33.76
33 . 5 5
3 3.34
33.13
3 2.93
32.73
3 2.53
12.00
R.V EL.
.5735
.5732
.5729
.5726
.5723
.5720
.5717
.5714
.5711
.5709
.5706
.5703
.5700
.5698
.5695
.5692
.5690
.5687
.5684
.5682
.5679
.5677
.5674
.5672
.5670
.5667
.5665
.5662
.5660
.5658
.5656
.5653
.5651
.5649
.5647
.5644
.5642
.5640
♦5 6 3 8
.5636
18.00
ZO
42.51
42.16
41.82
41.49
41.16
40.84
40.52
40.21
39.91
39.60
39.31
39.02
38.73
38.44
38.16
37.89
37.62
37.35
37.09
36.83
36.57
36.32
36.08
35.83
35.59
35.35
35.12
34.89
34.66
34.43
34.21
33.99
33.78
33.56
33.35
33.15
32.94
32.74
32.54
32.34
18.00
R . VE L ,
.5702
♦5 6 9 9
.5696
.5693
.5690
.5687
.5684
.5681
.5678
.5676
.5673
.5670
.5667
.5664
.5662
.5659
.5657
.5654
.5651
.5649
.5646
.5644
.5641
.5639
.5 6 3 6
.5634
.5632
.5629
.5627
.5625
.5622
.5620
.5618
.5616
.5614
.5611
.5609
.5607
.5605
.5603
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
257
T a b l e C. 2 c o n t i n u e d
ER»H» UL»DUrUH»F(l) rF<2>' F(3>
fNF =
ER= 3 . 7 8
H= 15 *000
NF = 1
F=
U=
61.00
62.00
63.00
64.00
65.00
66.00
67.00
68.00
69.00
70.00
71 . 0 0
72.00
73.00
74.00
75.00
76.00
77.00
78.00
79.00
80.00
81.00
82.00
83.00
84.00
85.00
86.00
87.00
88.00
89.00
90.00
91.00
92.00
93.00
94.00
95.00
96 . 0 0
97.00
98.00
99.00
100.00
0.00
0.00
R.Y EL .
ZO
32.41
.5678
.5674
32.02
.5670
31.65
.5666
31.28
.5662
30.93
.5658
30.58
.5655
30.24
.5651
29.91
.5647
29.58
29.27
.5644
.5640
28.96
.5637
28.65
.5634
28.35
.5630
28.06
.5627
27.78
.5624
27.50
.5620
27.23
.5617
26.96
.5614
26.70
.5611
26.44
.5 6 0 8
26.19
.5 6 0 5
25.94
.5602
25.70
.5599
25.46
.5 5 9 6
25.23
.5594
25.00
.5591
24.77
.5588
24.55
.5 5 8 5
24.33
.5583
24.12
,5 5 8 0
23.91
.5578
23.71
.5575
23.50
.5572
23.31
.5570
23.11
.5568
22 . 9 2
.5565
22.73
.5563
22.55
.5560
22.36
.5 5 5 8
22.18
12.00
ZO
32.14
31.76
31 . 3 9
31.03
30.68
30.33
29.99
29.66
29.34
29.03
28.72
28.42
28.12
27.83
27.55
27.27
27.00
26.74
2 6.48
26.22
2 5.97
25.73
25.49
25.25
25.02
24.79
24.57
24.35
24.13
23.92
2 3.72
23.51
23.31
23.11
22.92
22.73
22.54
22.36
2 2.18
22.00
12.00
R. VEL.
.5632
.5628
.5624
.5620
.5616
.5612
.5608
♦5 6 0 5
.5601
.5598
.5594
.5591
.5587
.5584
.5581
.5577
♦5 5 7 4
.5571
.5568
.5565
.5562
,5559
.5556
.5553
.5550
.5548
.5545
.5542
.5540
.5537
.5534
.5532
.5529
.5527
.5524
.5522
.5520
.5517
.5515
.55 1 3
18.00
ZO
31.95
31.58
31.21
30.85
30.50
30.15
29.82
29.49
29.17
28.86
28.55
28.25
27.96
27.67
27.39
27.12
26.85
26.58
26.32
26.07
25.82
25.58
25.34
25.10
24.87
24.65
24.43
24.21
24.00
23.79
23.58
23.38
23.18
22.98
22.79
22.60
22.42
22.23
22.06
21.88
18.00
R.O EL.
,5599
.5595
.5591
.5587
.5583
.5579
.5576
.5572
.5568
.5565
.5561
.5558
.5555
.5551
.5548
.5545
.5542
.5539
.5536
.5533
.5530
.5527
.5524
.5521
.5519
,5516
.5513
.5511
.5508
.5505
.5503
.5500
.5498
.5495
.5493
.5491
.5488
.5486
.5484
.5482
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
258
REFERENCES
1.
R.A. P u c e l , "Design C o n s i d e r a t i o n s f o r M o n o l i t h i c
M i c r o w a v e C i r c u i t " , I EEE T r a n s . M i c r o w a v e T h e o r y
T e c h . , V o l . HTT-29 , p p . 5 1 3 - 5 3 4 ( J u n e 1 9 8 1 ) .
2.
R . S . P e n g e l l y , " Ga As M o n o l i t h i c M i c r o w a v e C i r c u i t s
f o r P h a s e d - a r r a y A p p l i c a t i o n s " , I EE P r o c . , V o l . ,
127, P t . F , N o . 4 , ' p p . 3 0 1 - 3 1 1 , ( Au g . 1 9 8 0 ) .
3.
D . H . Te mme , " F u r t h e r P r o j e c t i o n s o n t h e U s e o f
Microwave M o n o l i t h i c s " , Microwave J o u r . , pp. 22-24
(Feb. 1983) .
4.
R . S . P e n g e l l y , " Ga As MMIC L o w - N o i s e A m p l i f i e r s
D e sign f o r Radar and Com m unication A p p l i c a t i o n s " ,
M i c r o w a v e S y s t e m N e w s , MSN p p . 6 6 1 - 6 6 8 , ( J u l y 1 9 8 4 ) .
5.
J . Lange, " I n t e r d i g i t a t e d S t r i p l i n e Q uadrature
H y b r i d " , I EEE T r a n s . M i c r o w a v e T h e o r y a n d
T e c h n i q u e s , V o l . MTT-17, p p . 1 1 5 0 - 1 1 5 1 (Dec. 1 9 6 9 ) .
6.
H. M o r k o c , T . J . Dr u mmo n d , a n d M. O m u r i , " G a A s
ME S F E T ' s b y M o l e c u l a r Beam E p i t a x y " , I EEE T r a n s .
E l e c t r o n D e v i c e s , ED-29, p p . 2 2 2 - 2 2 4 , ( F e b . 1 9 8 2 ) .
7.
M. F e n g , V . K . E u , I . J . D ' H a e n e n s a n d M. B r a u n s t e i n ,
" L o w - N o i s e Ga As F i e l d - E f f e c t T r a n s i s t o r Made b y
M o l e c u l a r Beam E p i t a x y " , A p p l . P h y s . L e t t . , 4 1 p p .
6 3 3 - 6 3 5 ( O c t . 1982) .
8.
L . H . C a m n i t z , " D e s i g n a n d E l e c t r o n Beam F a b r i c a t i o n
o f H a l f M i c r o m e t e r Low N o i s e Ga As M E S F E T ' s " , M . S .
T h e s i s , C o r n e l l U n i v e r s i t y , I t h a c a , NY, (May 1 9 8 4 ) .
9.
R.D. F a i r m a n , R.T. C he n, J . R . O l i v e r , and D.R.
C h ' e n , "Growth o f High P u r i t y S e m i - I n s u l a t i n g Bulk
Ga As f o r I n t e g r a t e d - C i r c u i t A p p l i c a t i o n s " , I EEE
T r a n s . E l e c t r o n Dev. E D - 2 8 , p p . 1 3 5 - 1 4 0 , ( Fe b.
1981).
10.
H. M. H o b g o o d , G. W. E l d r i d g e , D . L . B a r r e t t , a n d R . N .
T h o m a s , " H i g h - P u r i t y S e m i - I n s u l a t i n g GaAs M a t e r i a l
f o r M o n o l i t h i c M i c r o w a v e I n t e g r a t e d C i r c u i t s " , I EEE
T r a n s . E l e c t r o n D ev., ED-28, p p . 140-149, (Feb.
1981).
11.
M. F e n g , V . K . E u , H. K a n b e r a n d R. H a c k e t t , " H i g h
P e r f o r m a n c e I o n - I m p l a n t e d Low N o i s e GaAs M E S F E T ' s ,
I EEE E l e c t r o n D e v . L e t t . , EDL-3 , ( 1 1 ) , ( N o v . 1 9 8 2 ) .
R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.
259
12.
M. F e n g , V . K . E n a n d H. K a n b e r , " O p t i m i z a t i o n o f
I o n - I m p l a n t e d Low N o i s e GaAs M e t a l - S e m i c o n d u c t o r
F i e ld E f f e c t T r a n s i s t o r s " , J . Appl. Phys. 5 6 ( 4 ),
p p . 1 1 7 1 - 1 1 7 6 (Aug. 1 9 8 4 ) .
15,
13.
H. F u k u i , " O p t i m a l N o i s e F i g u r e o f M i c r o w a v e Ga As
M E S F E T ' s " , I EEE T r a n s . E l e c t r o n D e v . ED-26, ( 7 ) , p p .
1032-1037,
( J u l y 1979) .
14.
R . W. H . E n g l e m a n n a n d C . A . L i e c h t i , " Gu n n D o m a i n
F o r m a t i o n i n t h e S a t u r a t e d C u r r e n t R e g i o n o f GaAs
MESFET 's, I E D M T e c h . D i g e s t , p p . 3 5 1 - 3 5 4 (Dec.
1976).
15.
C . H u a n g , A. H e r b i g , R. A n d e r s o n , " S u b - H a l f - M i c r o n
Ga As F E T s f o r A p p l i c a t i o n s t h r o u g h K - B a n d " , 1 9 8 1
MTT-S I n t e r n a t i o n a l M i c r o w a v e S y m p . D i g e s t , p p . 2 5 27 ( 1 9 8 1 ) .
16.
K. K a m e i , S . H o r i , H. K a w a s a k i , a n d T . C h i g a r a ,
" Q u a r t e r M i c r o n G a t e Low N o i s e G a A s F E T ' s O p e r a b l e
u p t o 30 G H z " , IEDM, D i g i t a l T e c h n o l o g y P a p e r s , p p .
102-105, (1980).
17.
P . W . C h y e a n d C . H u a n g , " Q u a r t e r - M i c r o n Low N o i s e
Ga As F E T ' s " , IEEE E l e c t r o n D e v . L e t t . , EDL-3, p p .
401-403 (Dec. 1 9 8 2 ) .
18.
K. O h a t a , H. I t o h , F . H a s e g a w a a n d Y. F u j i k i ,
" S u p e r - L o w - N o i s e Ga As ME S F E T ' s w i t h a D e e p - R e c e s s
S t r u c t u r e " , I EEE T r a n s . E l e c t r o n D e v . ED-27, p p .
1 0 2 9 -1 0 3 4 , (June 1980).
19.
K. O h a t a , T . N o z a k i , a n d N. K a w a m u r a , " I m p r o v e d
N o i s e P e r f o r m a n c e o f Ga As ME S F E T ' s w i t h S e l e c t i v e l y
I o n - I m p l a n t e d n + S o u r c e R e g i o n " , I EEE T r a n s .
E l e c t r o n D e v . , ED-24, p p . 1 1 2 9 - 1 1 3 0 ( A u g . 1 9 7 7 ) .
20.
G.K. R e e v e s and H.B . H a r r i s o n , " O b t a i n i n g t h e
S p e c i f i c C o n t a c t R e s i s t a n c e from T r a n s m i s s i o n L i n e
M o d e l M e a s u r e m e n t s " , I EEE E l e c t r o n i c D e v . L e t t . E D L 3 , p p . 1 1 1 - 1 1 3 (May 1 9 8 2 ) .
21.
H. F u k u i , J . V . D i L o r e n z o , B . S . H e w i t t , J . R . V e l e b i r ,
J r . , H. M. C o x , LoC. L u t h e r a n d J . A . S e m a n ,
" O p t i m i z a t i o n o f L o w - N o i s e Ga As M E S F E T ' s " , IEEE
T r a n s . E l e c t r o n D e v . ED-27, p p . 1 0 3 4 - 1 0 3 7 ( J u n e
1980) .
22.
N . C . N i e h a u s e t a l . , Ga As FET P r i n c i p l e s a n d
T e c h n o l o g y , ( A r t e c h H o u s e , 1982) p p . 2 7 9 - 3 0 6 .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
260
23.
H. M. M a c k s e y , e t a l . , " D e p e n d e n c e o f Ga As P o w e r MESFET
Microwave P e rfo rm a n c e on D evice and M a t e r i a l P a r a m e t e r s " ,
I EEE T r a n s . E l e c t r o n Dev.,ED-24, p p .
113-122 (Feb.
1977).
24.
D . A . A b b o t t , a n d J . A . T u r n e r , " S o me A s p e c t s o f Ga As
MESFET R e l i a b i l i t y " , I EEE T r a n s . M i c r o w a v e T h e o r y
T e c h . , MTT-24, p p . 3 1 7 - 3 2 1 ( J u n e 1 9 7 6 ) .
2.5.
N. B r a s l a u , " A l l o y e d O h m i c C o n t a c t s t o G a A s " ,
V a c . S c i . T e c h . , 19, p p . 8 0 3 - 8 0 7 ( 1 9 8 1 ) .
26.
M.C. D r i v e r e t a l . , " M o n o l i t h i c M ic r o w a v e A m p l i f i e r s
F o r m e d b y I o n - I m p l a n t a t i o n i n t o LEC G a l l i u m A r s e n i d e
S u b s t r a t e s " , I EEE T r a n s . E l e c . D e v . , ED-28, p p . 1 9 1 196 ( F e b . 1 9 8 1 ) .
27.
J.
W. R. W i s s e m a n e t a l . , " Ga As M i c r o w a v e D e v i c e s and
C i r c u i t s w ith Submicron E lectron-B eam
Define
F e a t u r e s " , P r o c . I E E E , 7 1 , ( 5) p p . 6 6 7 - 6 7 5 (May
1983) .
28.
P. W olf, "Microwave P r o p e r t i e s of S c h o t t k y B a r r i e r
F i e l d E f f e c t T r a n s i s t o r s " , IBM J . R e s . , p p . 1 2 5 - 1 4 1 ,
( Mar ch 1 9 70 ) .
29.
H. F u k u i , " D e t e r m i n a t i o n o f t h e B a s i c D e v i c e
P a r a m e t e r s o f a Ga As MESFET", B e l l S y s . T e c h .
58, p p .
7 7 1 - 7 9 7 ( Ma r c h 1 9 7 9 ) .
Jour.
30.
J . W h o l e y a n d M. O m o r i , "A Low N o i s e M i c r o w a v e FET
w i t h S e l f A l i g n e d C h a n n e l " , G a l l i u m A r s e n i d e and
R e l a t e d Compoounds ( S t . L o u i s ) , 1 9 7 8 , I n s t . P h y s .
Conf. 45, pp. 270-272 (1979).
31.
K . C . G u p t a , R. G a r g , a n d R. C h a d h a , C o m p u t e r - a i d e d
D e s i g n o f M ic r o w a v e C i r c u i t s , ( A r ce c h H o u s e , 1981)
pp. 207-227.
32.
H.G. D i l l , " D e s ig n in g I n d u c t o r s f o r T h in -F ilm
A p p l i c a t i o n " , E l e c t r o n i c D e s ig n , pp. 52-58 (Feb.
1964).
33.
C . S . A i t c h i s o n , R. D a v i e s , I . D . H i g g i n s , S . R.
L o n g l e y , B.H. Newton, J . F . W e l l s , and J . C . W i l l i a m s ,
" L u mp e d M i c r o w a v e C i r c u i t s " , D e s i g n E l e c t r o n i c s , p p .
30-39 (Oct. 1971).
34.
G.D . A l l e y , " I n t e r d i g i t a l C a p a c i t o r s and T h e i r
A p p l i c a t i o n t o Lu mp e d E l e m e n t M i c r o w a v e I n t e g r a t e d
C i r c u i t s " , I EEE T r a n s . M i c r o w a v e T h e o r y T e c h . , MTT18, p p . 1 0 2 8 - 1 0 3 3 ( D e c . 1 9 7 0 ) .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
35.
I . W o l f f a n d N. K n o p p i k , " R e c t a n g u l a r a n d C i r c u l a r
M i c r o s t r i p D i s k C a p a c i t o r s a n d R e s o n a t o r s " , I EEE
T r a n s . M i c r o w a v e T h e o r y T e c h . , MTT-22, p p . 8 5 7 - 8 6 4
( O c t. 1974) .
36.
E.O. Hammerstad, "E q u a tio n s fo r M i c r o s t r i p C i r c u i t
D e s i g n " , P r o c . E u r o p e a n M i c r o w a v e C o n f . Ha m b u r g
(Germany), pp. 268-272 (S e p t. 1975).
37.
I . J . B a h l a n d D . K . T r i v e d i , "A D e s i g n e r ' s G u i d e t o
M i c r o s t r i p L i n e " , M i c r o w a v e , p p . 1 7 4 - 1 8 2 (May 1 9 7 7 )
38.
C.P. H artw ig, e t a l ., "Frequency Dependent Behavior
o f M i c r o s t r i p " , G-MTT I n t . M i c r o w a v e S y m p . , D e t r o i t
M I , p p . 1 1 0 - 1 1 6 (May 1 9 6 8 ) .
39.
L . S . N a p o l i and J . J . H u g h e s , "High F r e q u e n c y
B e h a v i o r o f M i c r o s t r i p T r a n s m i s s i o n " , RCA R e v i e w ,
30, ( 2) p p .
268-276 (June 1969).
40.
W . J . G e t s i n g e r , " M i c r o s t r i p D i s p e r s i o n M o d e l " , I EEE
T r a n s . M i c r o w a v e T h e o r y T e c h . WPT- 21 ( 1 ) , p p . 3 4 - 3 9
( J a n . 1973) .
41.
R .P . Owens, " P r e d i c t e d F r e q u e n c y Dependence o f
M i c r o s t r i p C h a r a c t e r i s t i c Impedance Using the
Planar-W aveguide Model", E le c tro n L e t t . , 12, pp.
2 6 9 - 2 7 0 (May 1 9 7 6 ) .
42.
D.R. C h ' e n and F .H . E i s e n , " I o n I m p l a n t e d H i g h F r e q u e n c y H i g h S p e e d Ga As I n t e g r a t e d C i r c u i t s
Technology", J.
V a c . S c i . T e c h . , 16 ( 6 ) , p p . 2 0 5 4 2062 (N ov/Dec.
1979).
43.
A. H i g a s h i s a k i a n d T . M i z u t a , " 2 0 - G H z Ba n d
M o n o l i t h i c Ga As FET L o w - N o i s e A m p l i f i e r " , I EEE
Trans.
M i c r o w a v e T h e o r y a n d T e c h . , MTT-29, p p .
(Jan.
1981).
1-6
44.
C.A. L i e c h t i , "Microwave F i e l d - E f f e c t T r a n s i s t o r 1 9 7 6 " , I EEE T r a n s . M i c r o w a v e T h e o r y a n d T e c h . , MTT24 , pp. 279-300, (June 1 9 7 6 ).
45.
P. W olf, "Microwave P r o p e r t i e s of S c h o t t k y - B a r r i e r
F i e l d - E f f e c t T r a n s i s t o r s " , IBM J . R e s . D e v l o p . , 1 4 ,
p p . 1 2 5 - 1 4 1 ( Ma r c h 1 9 7 0 ) .
46.
R . A . P u c e l , D . J . M a s s e a n d C . F . Krumm, " N o i s e
Perform ance of Gallium A rsenide F ie ld - E f f e c t
T r a n s i s t o r s " , I EEE J . S o l i d - S t a t e C i r c u i t , S C - 1 1 ,
pp.
2 4 3 - 2 5 5 ( A p r i l 1976) .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission
262
47.
W. B a e c h t o l d , " N o i s e B e h a v i o r o f GaAs F i e l d E f f e c t
T r a n s i s t o r s w i t h S h o r t G a t e L e n g t h s " , I EEE T r a n s .
E l e c t r o n . D e v ., ED-19, pp. 674-680 (1972).
48.
W. C. P e t e r s e n , " A n a l y t i c a n d C o m p u t e r - A i d e d D e s i g n
T e c h n i q u e s f o r B i p o l a r a n d FET T r a n s i s t o r
A m p l i f i e r " , Ph.D. T h e s is , C o r n e ll U n i v e r s i t y , (Jan.
1976).
49.
P . I . R ic h a rd s , " R e s is to r-T ra n s m is s io n Line
C i r c u i t s " , P r o c . IRE, 3 6 , p p . 2 1 7- 22 0 (F e b .
1948).
50.
R.M. F a n o , " T h e o r e t i c a l L i m i t a t i o n s on t h e B r o a d b a n d
Matching o f A r b i t r a r y Im pedance", J o u r . F r a n k l i n
I n s t i t u t e , 249, pp. 57-83, (Jan. 1950), pp. 139-155
(Feb. 1950) .
51.
W. H. Ku a n d W. C . P e t e r s e n , " O p t i m u m G a i n - B a n d w i d t h
L im ita tio n s of T r a n s is to r A m p lifie rs as R e a c tiv e ly
C o n s t r a i n e d A c t i v e T w o - p o r t N e t w o r k " , I EEE T r a n s .
C i r c u i t s and System s, CAS-22, ( 6 ) , (June 1976).
52.
53.
CADSYN U s e r ' s M a n u a l , COMPACT E n g i n e e r i n g ,
(1981).
A. M a t s u m o t o , M i c r o w a v e F i l t e r s
(Academic P r e s s , 1 9 7 0 ).
Inc.
and C i r c u i t s ,
54.
G.E. Brehm, " V a r i a t i o n o f M ic r o w a v e " G a in and N o i s e
F i g u r e w i t h B i a s f o r Ga As F E T " , C o r n e l l U n i v . C o n f .
P r o c . , p p . 7 6 - 8 5 (1977) .
55.
G.D. V e n d e l i n , " F iv e B a s i c B i a s D e s i g n s
A m p l i f i e r s " , Microwaves (Feb. 1978).
56.
P. E s t a b r o o k , C.M. K r o w n e , E . J . C r e s c e n z i and R . E .
S t e g e n e s , "A Low N o i s e S i n g l e - e n d e d GaAs S c h o t t k y
FET A m p l i f i e r f o r a 1 4 GHz S a t e l l i t e C o m m u n i c a t i o n
A p p l i c a t i o n " , . I EEE MTT-S I n t . M i c r o w a v e Symp.
D ig e s t, pp. 129-131 (Ju ly 1978).
57.
S . A i h a r a a n d H. K a t o h , " 1 1 a n d 1 4 G H z - B a n d L o w N o i s e Ga As FET A m p l i f i e r s " , J a p a n NEC R e s e a r c h &
Development 44, pp. 16-22 (Ja n . 1977).
58.
W. H. C h i l d s , P . A . C a r l t o , R. E g r i , C . E . M a h l e , a n d
A . E . W i l l i a m s , "A 1 2 0 - M b i t s / S 1 4 GHz R e g e n e r a t i v e
R e c e i v e r f o r S p a c e c r a f t A p p l i c a t i o n s " , Comsat
T e c h n i c a l Re v. 11 ( 1 ) , p p . 1 0 3 - 1 2 9 , ( S p r i n g 1 9 8 1 ) .
for
Ga As FET
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
263
59.
D.A. Cowan, P . M e r c e r a nd A . B . B e l l , " L o w - N o i s e a n d
L i n e a r FET A m p l i f i e r s f o r S a t e l l i t e C o m m u n i c a t i o n s " ,
I EEE T r a n s . M i c r o w a v e T h e o r y a n d T e c h . , MTT-25, p p .
9 9 5 - 1 0 0 0 , (Dec. 1977) .
60.
W. H. K u , W. C. P e t e r s e n , A . F . P o d e l a n d B . R . K e n d a l l ,
" M i c r o w a v e O c t a v e - B a n d Ga As FET A m p l i f i e r s " , I EEE
MTT-S I n t . M i c r o w a v e S y m p . D i g e s t , p p . 6 9 - 7 2 ( 1 9 7 5 ) .
61.
N . A . S l a y m a k e r , R . A . S o a r e s , a n d J . A . T u r n e r , " Ga As
MESFET S m a l l - S i g n a l X - B a n d A m p l i f i e r s " , I EEE T r a n s .
M i c r o w a v e T h e o r y T e c h . , MTT-24, ( 6 ) , p p . 3 2 9 - 3 3 7 ,
(June 1976).
62.
M . G . W a k e r a n d E . J . C r e s c e n z i , J r . , "A 1 2 - 1 8 GHz
H i g h G a i n A m p l i f i e r D e s i g n U s i n g S u b m i c r o n G a t e Ga As
F i e l d E f f e c t T r a n s i s t o r s " , I EEE MTT-S I n t .
M i c r o w a v e Symp. D i g e s t , p p . 1 0 7 - 1 0 9 ( 1 9 7 8 ) .
63.
K . B . N i c l a s , W. T . W i l s e r , R . B . G o l d a n d W. R.
H i t c h e n s , "The M atc h e d F e e d b a c k A m p l i f i e r :
U l t r a w i d e - b a n d M i c r o w a v e A m p l i f i c a t i o n w i t h Ga As
M E S F E T ' s " , IEEE T r a n s . M i c r o w a v e T h e o r y a n d T e c h . ,
MTT-28, p p . 285-294 ( A p r i l 1 9 8 0 ) .
64.
A . F . P o d e l l , W. H. K u , a n d L . C . L i u , " S i m p l i f i e d
N o i s e M o d e l a n d D e s i g n o f B r o a d b a n d L o w - N o i s e MESFET
A m p l i f i e r s " , P r o c . 7 th B i e n n i u a l C o r n e l l Microwave
S e m i c o n d u c t o r a n d Co m p o u n d C o n f e r e n c e , p p . 4 2 9 - 4 4 3
(Aug. 1979 ) .
65.
Y. Wu a n d H. C a r l i n , " T h e D e s i g n o f Low N o i s e B r o a d B a n d M i c r o w a v e FET A m p l i f i e r s " , IEEE MTT-S I n t .
M i c r o w a v e S y m p . D i r e c t s , p p . 4 5 9 - 4 6 1 (May 1 9 8 3 ) .
66.
H. S t a t z , H . A . H a n s , a n d R . A . P u c e l , " N o i s e
C h a r a c t e r i s t i c s of Gallium A rsenide F i e l d - E f f e c t
T r a n s i s t o r " , I EEE T r a n s . E l e c t r o n . D e v . , ED-21 , p p .
549-562 (Sept.
1974).
67.
"IRE S t a n d a r d s on Meth ods o f M e a s u r i n g N o i s e i n
L i n e a r Two P o r t s , 1 9 5 9 " , P r o c . I EEE 48, p p . 60
(1960) .
68.
H. R o t h e a n d W. D a h l k e , " T h e o r y o f N o i s y F o u r
P o l e s " , P r o c . I R E , 44, p p . 8 1 1 - 8 1 8 ( J u n e 9 5 6 ) .
69.
H. F u k u i , " A v a i l a b l e P o w e r G a i n , N o i s e F i g u r e a n d
N o i s e M e a s u r e o f Two P o r t s a n d T h e i r G r a p h i c a l
R e p r e s e n t a t i o n " , I EEE T r a n s . C i r c u i t T h e o r y , C T - 1 3 ,
p p . 1 3 7 - 1 4 2 ( J u n e 1.966).
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
264
70.
R . P . M e y e r , "A Wave A p p r o a c h t o N o i s e P r o p e r t i e s o f
L i n e a r M i c r o w a v e D e v i c e s " , I EEE T r a n s . M i c r o w a v e
T h e o r y a n d T e c h . MTT-26, p p . 3 4 - 3 7 ( J a n . 1 9 7 8 ) .
71.
G.D. V e n d e l i n , D e s i g n o f A m p l i f i e r s and O s c i l l a t o r s
by t h e S - P a r a m e t e r M e t h o d , ( J o h n W i l e y a n d S o n s ,
1982) .
72.
H . J . C a r l i n , A . B . G i o r d a n o , N e t w o r k T h e o r y - An
I n tr o d u c ti o n t o R e c ip ro c a l and N o n re c ip ro c al
C i r c u i t s , ( P re n tic e -H a ll, 1969).
73.
H. F u k u i , " A v a i l a b l e P o w e r G a i n , N o i s e F i g u r e a n d
N o i s e M e a s u r e o f Two P o r t s a n d T h e i r G r a p h i c a l
R e p r e s e n t a t i o n s " , IEEE T r a n s . C i r c u i t r y T h e o r y , CT1 3 , p p . 137-142 (June 19 6 6 ).
74.
J . R o l l e t t , " S t a b i l i t y and Power G a in I n v a r i a n t s o f
L i n e a r T w o - P o r t " , I EEE T r a n s , c i r c u i t T h e o r y , CT-9,
p p . 2 9 - 3 2 ( Ma r c h 1 9 6 2 ) .
75.
G . B o d w a y , "Two P o r t P o w e r F l o w A n a l y s i s U s i n g
G e n e r a l i z e d S c a t t e r i n g P a r a m e t e r s " , Microwave J o u r .
1 0 , p p . 6 1 - 6 9 (May 1 9 6 9 ) .
76.
C . G l e d h i l l a n d M. A b u l e l a , " S c a t t e r i n g P a r a m e t e r
Approach to t h e Design of Narrow-band A m p lif ie r s
Employing C o n d i t io n a ll y S t a b l e A c tiv e E lem en ts",
I EEE T r a n s . M i c r o w a v e T h e o r y a n d T E c h . , MTT-22, pp.
43-48 (Ja n . 1974).
77.
H e w le tt P a c k a rd A p p l i c a t i o n N ote AN221A,"Automating
t h e H . P . 8410B M i c r o w a v e N e t w o r k A n a l y z e r " , ( 1 9 8 0 ) .
78.
H e w l e t t P a c k a r d O p e r a t i n g and Programming Manual of
11863D A c c u r a c y E n h a n c e m e n t P a c , R e v i s i o n B ( 1 9 7 7 ) .
79.
P. S m i t h , " 5 - p a r a m e t e r C h a r a c t e r i z a t i o n
F E T 's " , C o r n e l l U n i v e r s i t y , M.S. T h e s i s
of Microwave
(May 1 9 7 8 ) .
80.
O .P . J a i n e t a l . , "O pen-e nd and Edge E f f e c t s i n
M i c r o s t r i p T r a n s m i s s i o n L i n e s " , IEEE T r a n s . MTT, 2 ,
p p . 626 ( S e p t . 1 9 7 2 ) .
81.
E. W. S t r i d , " N o i s e M e a s u r e m e n t C h e c k l i s t E l i m i n a t e s
C o s t l y E r r o r s " , M i c r o w a v e S y s t e m News, p p . 8 8 - 1 0 7
(Dec. 1 9 8 1 ) .
82.
E . W. S t r i d , " M e a s u r e m e n t o f L o s s e s i n N o i s e M a t c h i n g N e t w o r k s " , I EEE T r a n s . M i c r o w a v e T h e o r y a n d
T e c h . , MTT—2 9 , p p . 2 4 7 - 2 5 2 ( M a r . 1 9 8 1 ) .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
265
83.
R.S. P e n g e l l y , "Microwave F i e l d - E f f e c t T r a n s i s t o r T h e o r y , D e s i g n and A p p l i c a t i o n s " , R e s e a r c h S t u d i e s
P r e s s , p p . 163 (1982) .
84.
J . T . D i j a k , "Com puter-A ided S y n t h e s i s and D esign of
M o n o l i t h i c M i c r o w a v e Ga As MESFET A m p l i f i e r s " , P h . D .
T h e s i s , C o r n e l l U n i v e r s i t y , I t h a c a , NY 1 4 8 5 3 .
85.
H .J. C a r l i n , " D is tr ib u te d C i r c u i t Design
T r a n s m i s s i o n L i n e E l e m e n t s , " P r o c . IEEE,
1059-1081 ( J u l y 1971) .
86.
W. C. P e t e r s e n , " A n a l y t i c a n d C o m p u t e r - A i d e d D e s i g n
T e c h n i q u e s f o r B i p o l a r a n d FET T r a n s i s t o r
A m p l i f i e r " , Ph.D. T h e s is , C o r n e ll U n i v e r s i t y (Jan.
1976).
87.
CADSYN U s e r ' s M a n u a l , COMPACT E n g i n e e r i n g ,
(1981) .
88.
Les B e s s e r , " S y n t h e s i z e A m p l i f i e r E x a c t l y : ,
M i c r o w a v e S y s t e m N e w s , MSN p p . 2 8 - 4 0 , ( O c t .
89.
90.
with
59, pp.
Inc.
1979).
S u p e r - C o m p a c t R e f e r e n c e M a n u a l , V e r s i o n 1 . 6 , Comsat
G eneral I n te g r a t e d System, In c . (Ju ly 1982).
K. K u r o k a w a , " D e s i g n T h e o r y o f B a l a n c e d T r a n s i s t o r
A m p l i f i e r s " , B e l l S y s . T e c h . J o u r . 44 (10) p p . 1 6 7 5 1798 ( O c t . 1 9 6 5 ) .
91.
E . C u l l m a n n a n d W. V a c h , " C o m p a r i s o n o f R e s o l u t i o n
f o r S t a n d a r d , M i d - , a n d De e p - UV P r i n t i n g " , SEMICON
EAST P r o c . , p p . 2 - 2 0 ( S e p t . 1 9 8 2 ) .
92.
L . F . Thompson a nd M . J . Bowden, " R e s i s t P r o c e s s i n g " ,
A m e r i c a n C h e m i c a l S o c i e t y S ymp. S e r i e s 2 1 9 , p p . 1 6 1 214 ( 1 9 8 3 ) .
93.
C . G . W i l l s o n , " O r g a n i c R e s i s t M a t e r i a l s - T h e o r y and
C h e m i s t r y " , A m e r i c a n Ch e m. S o c . S y mp . S e r i e s 2 1 9 ,
pp. 88-155 (1983).
94.
D . C . H o f e r , C . G . W i l l s o n a n d M. H a k e y ,
" C h a r a c t e r i z a t i o n o f t h e I n d u c t i o n E f f e c t a t MidU ltr a v io le t Exposure:
A p p l i c a t i o n t o AZ 2 4 0 0 a t 313
n m " , S P E 1 , 334, p p .
196-202 (1982).
95.
L . F . Thompson a nd M . J . Bowden, "The L i t h o g r a p h i c
Process:
T h e P h y s i c s " , ACS Symp. S e r i e s 2 1 9 , p p .
16-83 (1983) .
96.
M.C. D r i v e r , e t . a l . , " M o n o l i t h i c M ic r o w a v e
A m p l i f i e r s F o r m e d b y I o n - I m p l a n t a t i o n i n t o LEC
G a l l i u m A r s e n i d e S u b s t r a t e s " , I EEE T r a n s . E l e c .
Dev., ED-28, pp.
191-196 (Feb. 1981).
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
266
97.
S.M.
Sze,
VLSI T e c h n o l o g y ,
(McGraw-Hill,
1983).
98.
T. B a t c h e l d e r and J . P i a t t , "Bake E f f e c t s i n
Positive Photoresist",
Jour. Solid S ta te Tech.,
2 1 1 - 2 1 7 , ( Au g . 1 9 8 3 ) .
pp.
99.
M. H a t z a k i s , B . J . C a n a v e l l o a n d J . M . S h a w , " S i n g l e s t e p O p t i c a l L i f t - o f f P r o c e s s " , IBM J o u r . R e s e a r c h
and D e v e l o p m e n t, 2 4 , ( 4 ) , p p . 452-460 ( J u l y 1 9 8 0 ) .
100.
H. M. L e v y , " D e s i g n a n d F a b r i c a t i o n o f S u b m i c r o n GaAs
MESFET D i g i t a l C i r c u i t s " , P h . D . T h e s i s , C o r n e l l
U n iv e rs ity (Jan. 1982).
1 0 1 . Y. M o r i a n d N. W a t h a n b e , "A New E t c h i n g S o l u t i o n
S y s t e m , H ^ p o . - H - 0 - - H - O , f o r GaAs a n d I t s K i n e t i c s " ,
Jour.
E l e c t r o c n e m . S o c . , 125, p p . 1 5 1 0 - 1 5 1 4 ( 1 9 7 8 ) .
1 0 2 . M . C . D r i v e r , e t . a l . , "A D e e p UV ( 2 1 0 nm)
P h o t o l i t h o g r a p h y P r o c e s s f o r Ga As F E T s U s i n g D o u b l e
L a y e r P h o t o r e s i s t s " , I EEE Ga A s I C S y m p . T e c h .
D i g e s t , p p . 1 5 0 - 1 5 3 (Nov.
1982).
103.
J . A . T u r n e r e t a l . , Ga As FET P r i n c i p l e s a n d
T e c h n o l o g y , (A rte c h H o u se , 1982) p p . 1 5 1 - 1 7 5 .
104.
R.S. P e n g e l l y , "Microwave F i e l d - E f f e c t T r a n s i s t o r T h e o r y , Design and A p p l i c a t i o n s " , R e s e a rc h S t u d i e s
P r e s s , pp. 99-139, (1982).
105.
D.W. M a k i , R. E s f a n d i a r i , H. Y a m a s a k i , M. S i r a c u s a
a n d W . F . M a r x , "A M o n o l i t h i c L o w - N o i s e A m p l i f i e r " ,
P r o c . 8th B ie n n ia l C o r n e l l C o n f e re n c e , pp. 27-35
( Au g . 1 9 8 1 ) .
106.
L . C . T . L i u , D. W. M a k i , M. F e n g a n d M. S i r a c u s a ,
" S i n g l e a n d D u a l S t a g e M o n o l i t h i c Low N o i s e
A m p l i f i e r s " , T e c h . D i g e s t , 1 9 8 2 Ga As I C S y m p . ,
p p . 94-97 (Nov.
1982).
107.
S . H o r i , K. K a m e i , K. S h i b a t a , M. T a t e m a t s u , K.
M i s h i m a a n d S . O h a n o , " Ga As M o n o l i t h i c MICs f o r
D i r e c t B r o a d c a s e S a t e l l i t e R e c e i v e r s " , IEEE
M o n o l i t h i c C i r c u i t s Symp.
D igest of Papers, pp.
9 0 9 5 (May 1 9 8 3 ) .
108.
T . S u g i u r a , H. I t o h , T . T s u j i a n d K. H o n j o , " 1 2 GHz B a n d L o w - N o i s e Ga As M o n o l i t h i c A m p l i f i e r s " , IEEE
T r a n s . M i c r o w a v e T h e o r y a n d T e c h . MT T - 3 1 ( 1 2 ) ( D e c .
1983).
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
267
109.
A. M. P a v i o a n d S . D . M c C a r t e r , " N e t w o r k T h e o r y a n d
M o d e l i n g M e t h o d A i d s D e s i g n o f a 6 - 1 8 GHz M o n o l i t h i c
M u l t i - s t a g e Feedback A m p l i f i e r " , Microwave System s
News, p p. 7 8 - 9 3 ( De c . 1982) .
110.
P . N . R i g b y , e t a l . , " B r o a d b a n d M o n o l i t h i c Low N o i s e
F e e d b a c k A m p l i f i e r s " IEEE 1 9 8 3 M i c r o w a v e a n d
M i l l i m e t e r - w a v e M o n o l i t h i c C i r c u i t s Symp, D i g e s t o f
P a p e r s , p p . 7 1 - 7 5 (May 1 9 8 3 ) .
111.
K. H o n j o a n d T . S u g i u r a , " M i c r o w a v e B r o a d b a n d GaAs
M o n o l i t h i c A m p l i f i e r " , T r a n s , o f IECE o f J a p a n , 66
(5) (May 1 9 8 3 ) .
112.
S . M o g h e , T . A n d r a d e , H. S u n a n d C . H u a n g , "A
M a n u f a c t u r a b l e GaAs MMIC A m p l i f i e r w i t h 1 0 GHz
B a n d w i d t h " , I EEE 1.984 M i c r o w a v e a n d M i l l i m e t e r - w a v e
M o n o l i t h i c C i r c u i t s S y mp . D i g e s t o f P a p e r s , p p . 3 7 40 (May 1 9 8 4 ) .
113.
R . K e n n a n , T . A n d r a d e a n d C . H u a n g , "A M i n a t u r e 2 - 1 8
GHz M o n o l i t h i c GaAs D i s t r i b u t e d A m p l i f i e r " , IEEE
1984 M icr ow av e and M i l l i m e t e r - w a v e M o n o l i t h i c
C i r c u i t s S y m p . , D i g e s t o f P a p e r s , p p . 4 1 - 4 4 (May
1984).
114.
L . C . T . L i u a n d W. K u . " C o m p u t e r - A i d e d S y n t h e s i s o f
M o n l i t h i c Microwave I n t e g r a t e d C i r c u i t s (MMIC's)",
P ro c . 8th B ie n n ia l C o r n e ll C o n fe re n c e , pp. 282-295
(Aug. 1 9 8 1 ).
115.
L . C . T . L i u , D. W. M a k i , C . S t o r m e n t , M. S o k o l i c h a n d
W. K l a t s k i n , "An 8 - 1 8 GHz M o n o l i t h i c T w o - s t a g e Low
N o i s e A m p l i f i e r " , I EEE 1 9 8 4 M i c r o w a v e a n d
M i l l i m e t e r - w a v e M o n o l i t h i c C i r c u i t s S ym p., D i g e s t of
P a p e rs , pp.
4 9 - 5 1 , (May 1 9 8 4 ) .
116.
M. D u r s h l a y a n d J . L . V o r h a u s , "A T a n t a l u m - B a s e d
P r o c e s s f o r MMIC O n - C h i p T h i n - F i l m C o m p o n e n t s " ,
GaAs I C S y mp . P r o c . , p p . 1 4 6 - 1 4 9 , ( No v . 1 9 8 2 ) .
IEEE
117.
W e s t i n g h o u s e MMIC T e c h n i c a l R e p o r t
(1981).
118.
T . S . L a v e r g h e t t a , Handbook o f Microwave T e s t i n g ,
(Artech House, 1981).
119.
H a r l a n Howe , J r . , S t r i p l i n e
House, Inc. , 1974).
120.
W . P . Ou , " D e s i g n E q u a t i o n s f o r a n I n t e r d i g i t a t e d
D i r e c t i o n a l C o u p l e r " , I EEE T r a n s . M i c r o w a v e T h e o r y
T e c h . , MTT—2 2 , p p . 2 5 3 - 2 5 6 , ( F e b . 1 9 7 5 ) .
C ircu it Design,
(Artech
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
268
121.
D.D. P a o l i n o , " D e s i g n More A c c u r a t e I n t e r d i g i t a t e d
C o u p l e r s " , M i c r o w a v e s , 19, p p . 3 4 - 3 8 (May 1 9 7 6 ) .
1.22.
R . C . W a t e r m a n , J r . , e t a l . , "GaAs M o n o l i t h i c L a n g e
a n d W i l k i n s o n C o u p l e r s " , I EEE T r a n s . E l e c t r o n D e v . ,
Ed-28, ( 2 ) , p p . 2 1 2 - 2 1 6 ( F e b . 1 9 8 1 ) .
123.
S . M o g h e , T . A n d r a d e , G . D o l i c k y a n d C . H u a n g , "A
W i d e b a n d Two S t a g e M i n i a t u r e A m p l i f i e r " , GaAs IC
Symp. T e c h . D i g e s t o f P a p e r s , p p . 7 - 1 0 ( O c t . 1 9 8 3 ) .
124.
B . S . Y a r m a n a n d H . J . C a r l i n , "A S i m p l i f i e d R e a l
F re q u en c y Technique A pplied t o Broad-Band M u lt i s t a g e
M i c r o w a v e A m p l i f i e r s " , I EEE T r a n s . M i c r o w a v e T h e o r y
a n d T e c h n i q u e s , V o l . MTT-39 , N o . 1 2 , p p . 1 5 - 2 8 ( D e c .
1982).
125.
H . J . C a r l i n a n d J . J . K o m i a k , "A New M e t h o d o f B r o a d Band E q u a l i z a t i o n A p p l i e d t o M ic r ow a ve A m p l i f i e r s " ,
I EEE T r a n s . M i c r o w a v e T h e o r y a n d T e c h n i q u e s , V o l .
WPT-27, No . 2 ( F e b . 1 9 7 9 ) .
126.
D . C . Y o u l a , "New T h e o r y o f B r o a d b a n d M a t c h i n g " , I EEE
T r a n s , o n C i r c u i t T h e o r y , V o l . C T - 1 1 , No. 1 , p p .
3 0 - 5 0 (March 1 9 6 4 ) .
127.
H . J . C a r l i n , "A New A p p r o a c h t o G a i n - B a n d w i d t h
P r o b l e m s " , IEEE T r a n s , o n C i r c u i t s a n d S y s t e m s , V o l .
CAS—2 4 , N o . 4 , p p . 1 7 0 - 1 7 5 ( A p r i l 1 9 7 7 ) .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Документ
Категория
Без категории
Просмотров
0
Размер файла
7 369 Кб
Теги
sdewsdweddes
1/--страниц
Пожаловаться на содержимое документа