close

Вход

Забыли?

вход по аккаунту

?

SIMULTANEOUS MONITORING OF RED AND NEAR-INFRARED NONMETAL ATOMIC EMISSIONS IN MICROWAVE AND INDUCTIVELY COUPLED PLASMAS WITH A PHOTODIODE ARRAY

код для вставкиСкачать
INFORMATION TO USERS
This reproduction was made from a copy ofa manuscript sent to us for publication
and microfilming. While the most advanced technology has been used to pho­
tograph and reproduce this manuscript, the quality of the reproduction is heavily
dependent upon the quality of the material submitted. Pages in any manuscript
may have indistinct print. In all cases the best available copy has been filmed.
The following explanation of techniques is provided to help clarify notations which
may appear on this reproduction.
1. Manuscripts may not always be complete. When it is not possible to obtain
missing pages, a note appears to indicate this.
2. When copyrighted materials are removed from the manuscript, a note ap­
pears to indicate this.
3. Oversize materials (maps, drawings, and charts) are photographed by sec­
tioning the original, beginning at the upper left hand comer and continu­
ing from left to right in equal sections with small overlaps. Each oversize
page is also filmed as one exposure and is available, for an additional
charge, as a standard 35mm slide or in black and white paper format. *
4. Most photographs reproduce acceptably on positive microfilm or micro­
fiche but lack clarity on xerographic copies made from the microfilm. For
an additional charge, all photographs are available in black and white
standard 35mm slide format.*
*For more information about black and white slides or enlarged paper reproductions,
please contact the Dissertations Customer Services Department
University
Mkatnbns
Tnternntinnfll
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
R eproduced with perm ission o f the copyright owner. F urther reproduction prohibited w itho ut perm ission.
8604790
Keane, John Michael
SIMULTANEOUS MONITORING OF RED AND NEAR-INFRARED NONMETAL
ATOMIC EMISSIONS IN MICROWAVE AND INDUCTIVELY COUPLED
PLASMAS WITH A PHOTODIODE ARRAY
Ph.D.
Kansas State University
University
Microfilms
International
1985
300 N. Zeeb Road, Ann Arbor. Ml 48106
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
R eproduced w ith perm ission o f the copyright owner. Further reproduction prohibited w itho ut perm ission.
PLEASE NOTE:
In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark v
1.
Glossy photographs or p ages_____
2.
Colored illustrations, paper or print_______
3.
Photographs with dark background_____
4.
Illustrations are poor copy_______
5.
Pages with black marks, not original copy______
6.
Print shows through as there is text on both sides of p a g e _______
7.
Indistinct, broken or small print on several pages
8.
Print exceeds margin requirements______
9.
Tightly bound copy with print lost in spine_______
10.
.
Computer printout pages with indistinct print_______
11. Page(s)____________ lacking when material received, and not available from school or
author.
seem to be missing in numbering only as text follows.
12.
Page(s)
13.
Two pages numbered
14.
Curling and wrinkled pages
. Text follows.
15. Dissertation contains pages with print at a slant, filmed as received
16.
Other
University
Microfilms
International
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
R eproduced w ith perm ission o f the copyright owner. Further reproduction prohibited w itho ut perm ission.
SIMULTANEOUS MONITORING OF RED AND NEAR-INFRARED
NONMETAL ATOMIC EMISSIONS
IN MICROWAVE AND
INDUCTIVELY COUPLED PLASMAS WITH A PHOTODIODE ARRAY
by
John Michael Keane
B.A., C o l l e g e o f Che H o l y
Worcester, Massachusetts,
Cross
1981
A DOCTORAL DISSERTATION
submitted
in
partial
requirements
fulfillment
for
the
of
the
degree
DOCTOR OF PHILOSOPHY
Department
Kansas
of
State
Manhattan,
Chemistry
University
Kansas
66506
1 985
Approved
by:
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
For
my p a r e n t s ,
John
and
Barbara
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
T AB LE
LI S T
OF FI GURES
LI S T
OF TABLES
CHAPTER
OF
CONTENTS
..................................................................................................................
1v
.....................................................................................................................
ix
1
GENERAL I NTRODUCTI ON TO THE DI SSERTATI ON
REFERENCES
CHAPTER
.......................................
.....................................................................................................................
1
10
2
RED AND NEAR I NFRARED PHOTODI ODE ARRAX SPECTROGRAPH FOR
THE SI MULTANEOUS
DETERMI NATI ON OF C,
N,
AND 0
I NTRODUCTI ON
............................................................................................................
1u
EXPERI MENTAL
............................................................................................................
17
RESULTS AND DI SCUSSI ON
C,
H,
I CP
N,
and 0
Line
Hel ium
CHAPTER
( I CP
Selection
.................................................................................
Emissions)
21
.....................................................
30
......................................................................................
3^
..............................................................................
40
..................................................................................................................
45
MI?
REFERENCES
Excitation
3
RED AND NEAR I NFRARED I CP
I,
H,
EMI SSI ON SPECTRA OF F,
CL,
BR,
AND 3 USI NG A PHOTODI ODE ARRAX
I NTRODUCTI ON
............................................................................................................
47
EXPERI MENTAL
............................................................................................................
43
RESULTS AND DI SCUSSI ON
Iodine
.......................................................................................................................
..............................................................................
60
.....................................................................................................................
68
.......................................................................................................................
73
Chlorine
3romine
Sulfur
43
REFERENCES
and
Fluorine
..................................................................................................................
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
31
CHAPTER 4
SI MULTANEOUS
MULTI ELEMENTAL
ANALYSI S
USI NG A RED/ NEAR- I NFRARED
OF
GC EFFLUENT
PHOTODI ODE
ARRAY
ATOMI C EMI SSI ON SPECTROGRAPH
I NTRODUCTI ON
...............................................................................................................
33
EXPERI MENTAL
MIP A p p a r a t u s
and
Procedure
.......................................................
35
I CP
and
Procedure
.......................................................
90
...........................................................................................
94
..............................................................................................
117
CONCLUSI ON
.................................................................................................................
140
REFERENCES
.................................................................................................................
141
Apparatus
RESULTS AND DI SCUSSI ON
GC- MI ?
Results
GC- 1 CP R e s u l t s
CHAPTER 5
ORGANI C EMPI RI CAL FORMULA DETERMI NATI ONS
IN GC EFFLUENT
USI NG A RED/ NEAR- I NFRARED PHOTODI ODE ARRAY
ATOMIC EMI SSI ON SPECTROGRAPH
I NTRODUCTI ON
...........................................................................................................
145
EXPERI MENTAL
Procedure
and A p p a r a t u s
........................................................................
146
RESULTS AND DI SCUSSI ON
He l i u m Mi c r o wa v e
Argon
Inductively
Induced
Coupled
Plasma
Plasma
( M I P ) ....................................
(ICP)
..............................
REFERENCES
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
150
154
160
CHAPTER o
GENERAL SUMMARY OF DI SSERTATI ON RESULTS
SUMMARY ...........................................................................................................................
163
CHAPTER 7
FUTURE DI RECTI ONS
.....................................................................................................
I 65
APPENDI X A
PHOTODI ODE ARRAY CLASS EXPERI MENT
............................................................
170
APPENDI X B
Software
Listing
......................................
199
................................................................................................................
25 9
..............................................................................................................................................
260
ACKNOWLEDGEMENT
VI TA
for
thePhotodiode
Array
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
L I S T OF FIGURES
Figure
II.
1
11.2
Page
Photodiode
Emissions
Photodiode
Array
in
Photodiode
Carbon,
in
the
CF^I
Photodiode
Iodine,
from
of
nm
Photodiode
CF^I
and Oxygen At omi c
Atomized
C2C I F 5
Chlorine,
from
in
Sulfur,
Bromine,
Atomized
I CP
and
in
in
the
of
Excited
from
nm
...........
Excited
Fluorine,
and
650 - 9 5 0
of
C3r2^2
and
from
6 5 0 - 9 5 0 nm
I CP
53
Excited
Emissions
Region
...........
62
Excited
and Carbon E m i s s i o n s
SF5
nm............. ........................................
Array Spectrum
Fluorine,
51
Region
I CP
Carbon
the
U2
and Carbon E m i s s i o n s
a n d SFg
C2C I F 5
Region
Photodiode
I CP
650 - 950
of
Array Spectrum
Atomized
the
nm ....................................
S p e c t r u m of
Array Spectrum
Fluorine,
29
Excited
..................................................................................................
Chlorine,
Photodiode
MIP
Region
Fluorine,
23
At omi c
nm .....................................
650-950
the
nm . . . .
Excited
650-950
Array Spectrum
Atomized
650-950
and Carbon E m i s s i o n s
in
Sulfur,
650-950
I CP
I CP
a nd Oxy g e n
Nitrogen,
Region
Ar gon
Region
of
Spectrum
Fluorine,
Atomized
III.5
the
1P h o t o d i o d e A r r a y
Iodine,
III.a
Region
Array
111.
111.3
the
of
Nitrogen,
Hydrogen,
Emissions
in
Spectrum
Hydrogen,
Emissions
111.2
Spectrum
Background
Carbon,
11.3
Array
Carbon
of
I CP
Excited
Emissions
Region
67
650 - 9 5 0
from
nm
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
70
•/
Lise
of r i g u r e a
I I I .6
(cont.)
Fhotodiode
Sulfur
SFg
I V .1
A r r a y S p e c t r um o f
and
in
the
Thermal
IV.3
Detector
Response
of
of
350
....................................
W Helium
i n t he Region
Array Spectrum
Photodiode Array
and
the
Spectrum
Carbon
Region
Photodiode
of
MI P
Emissions
6 50 - 9 5 0
from
R e g i o n 65 0 - 9 5 0
of
MI P
from
Atomized
of
MI P
Excited
of
CC1 n
the
in
from
Array
and
Carbon
MI P
Emissions
Region
CS 2
10 4
R e g i o n 65 0 - 9 5 0
Chlorine
101
Excited
( CH^ £ c 0 i n t h e
Spectrum
...........
nm
nm
Array Spectrum
93
Excited
H y d r o g e n a nd Oxyge n E m i s s i o n s
Photodiode
96
........................................................................................
( C 2 Hg ) 2 0 i n t h e
Atomized
650 - 9 5 0
nm
...........
107
....................................
109
Excited
from
nm
Atomized
P h o t o d i o d e A r r a y S p e c t r u m o f MI P E x c i t e d
Carbon,
Hydr ogen and F l u o r i n e
Atomized
IV.3
Spectrum
Mixture
75
During
H y d r o g e n a nd Ox y g e n E m i s s i o n s
Carbon,
IV.7
nm
Photodiode
in
IV. 6
Component
Plasma Background
Atomized
IV.5
7
950
Sulfur
........................................
Conductivity
Carbon,
I V. 4
Atomized
nm
Mi c r o wa v e
-
from
650 - 9 5 0
Pnotoaiode Array
650
Emissions
Excited
Region
Elution
IV.2
Fluorine
I CP
C 5 H5 F i n
Photodiode
Carbon,
Atomized
the
Region
Array Spectru m o f
Hydr ogen
and N i t r o g e n
CH-^CN i n
the
Region
Emissions
from
650-950
MI P
nm
...............
112
Excited
Emissions
65 0 - 9 5 0
from
nm .................
114
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(cont. )
List of Figures
IV.9
Photodiode
Carbon,
C^H^Br
Photodiode
the
Region
I V.
12
CS2
I V . 13
CH^OH
she
I V.
11
I V . 15
nm
of
and Hydrogen
Array
I CP
nm
........................................
121
Excited
Atomized
I CP
Excited
Emissions
Region
Spectrum
122
from
of
from
...............
I CP
nm
from
650-950
of
I CP
nm
and
Carbon
Emissions
Atomized
CH 2 C 1 2 i n
the
Segion
650-950
Hydrogen,
Atomized
C - h ^F
Photodiode
Iodine,
Atomized
and
in
the
C5 H 5 I
I CP
Fluorine
Region
Array Spectrum
Carbon,
of
of
the
nm
...........
130
Excited
650-950
nm
from
...............
132
Excited
and Hydrogen E m i s s i o n s
in
126
from
Emissions
I CP
...........
Excited
Hydrogen,
Array Spectrum
120
Excited
Chlorine,
Photodiode
116
kirf A r g o n
650-950
6 50 - 9 5 0
the
nm .......
950
Emissions
of
Emissions
in
-
......................................................
Region
Spectrum
C^H^S
from
Background Emissi ons
Array Spectrum
Photodiode
Carbon,
I V . 16
Excited
650
1. 75
Oxyge n
the
Region
Carbon,
Atomized
in
Carbon
Photodiode
Sulfur,
and
Array
and
in
of
Array Spectrum
Photodiode
Sulfur
Region
Plasma
650 - 9 5 0
Hydrogen,
Atomized
the
Spectrum
Coupled
IV. 11 P h o t o d i o d e
Car bon,
in
Array
Inductively
in
MI P
Hydrogen and Br omi ne E m i s s i o n s
Atomized
I V . 10
Array Spectrumof
R e g i 0 n 6 5 0 - 9 50
from
nm ...............
135
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(cont.)
List of Figures
17.17
Photodiode
Bromine,
Spectrum
Hydr ogen,
Atomized
17.18
Array
CgH^Br
of
I CP
Excited
and Carbon E m i s s i o n s
in
the
Region
from
650-950
nm ............. 1 3 7
P h o t o d i o d e A r r a y S p e c t r u m o f I CP E x c i t e d
Oxyge n,
Carbon,Hydrogen,
and
f r o m A t o m i z e d C2 H5 NO2
0 5 0 - 9 5 0
nm
1
Saturation
Effect
2
Properly
3
Fixed
4
Tungsten
5
Corrected
6
Single
the
Nitrogen
Emissions
Region
.............................................................................................
139
Appendix
of
7
9
Pattern
Spectrum
Cobalt
Standard
Doubl e
Cobalt
Standard
of
Standard
Cobalt
Corrected
Doubl e
Current
of
Graphically
11
Mercury
Tungsten
g/ mm,
10
Hg E m i s s i o n s :
...........................................
La mp
Emissions
...
178
179
181
Spectrum
.................................................................................
Be a m A b s o r b a n c e
133
Spectrum
.................................................................................
Be a m A b s o r b a n c e
1 32
Spectrum
.................................................................................
Superimposed
( Hg )
............................................................
Emissions
C h r o mi u m S t a n d a r d
10
600
176
.......................................................................
Be a m T r a n s m i s s i o n
Doubl e
the
Iris
Beam T r a n s m i s s i o n
Corrected
of
12
Da r k
176
La mp F i l a m e n t
" Software
of
8
Adjusted
....................................................................................
183
Spectra
Solution
Solution
.......................................
Spectra
135
..................
136
...........................................................................
139
P e n La mp E m i s s i o n s :
urn s l i t
300
g / mm,
10 urn s l i t
......................................
191
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
7i i i
List of Figures
(cont.]
'3
Hg
E m i s s i o n s : 3 0 0 g / mm,
14
Hg
E m i s s i o n s : 300
reduced
......................................
192
a p e r t u r e .........................................................................................
193
g/ mm,
200
200
um s l i t
um s l i t ,
15
Hg
e m i s s i o n s : 150
g/ mm,
10
um s l i t
16
Hg
e m i s s i o n s : 150
g / mm,
10
um s l i t ,
glass
filter
......................................
195
..................................................................................................
196
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
LIST
OF TABLES
Page
TABLE
1 1 . 1.
I C?
Apparatus
Condi t i o n s
1 1 . 2.
111.1
650
950
in
I CP
650
-
950
-
Table
At omi c
-
At omi c
650
17.1
-
At omi c
650
111.7
20
of
-
49
At omi c
Ar
Lines
(25
Fluorine
I CP
650
-
MIP
Apparatus
Conditions
............................................................................
Ratios
the
I CP
Ar
I CP
Emissions
nm i n
Ar
I CP
55
from
............................................................................
Emissions
I CP
Array
...................................................................
Emissions
52
forSome
Photodiode
63
from
............................................................................
Emissions
nm i n
I CP
from
um s l i t )
nm i n Ar
3romine
950
and
nm i n Ar
Sulfur
Ar
Emissions
Chlorine
950
Nonmetals
Experimental
Selectivity
950
24
.............................................................................................................
and
nm i n
950
..............................................
32
Iodine
950
nm
I CP
................................................
Apparatus
At omi c
650
111.6
Ar
from
Spectrograpn
111.5
in
for
Secondary
111.4
nm
Atomic Emi s s i on Lines
650
111.3
and E x p e r i m e n t a l
.............................................................................................................
-
Conditions
111.2
18
Nu mb e r e d Ar gon E m i s s i o n L i n e s
from
11.4
Experimental
.............................................................................................................
MIP A p p a r a t u s
Conditions
11.3
and
64
from
............................................................................
71
from
............................................................................
75
and E x p e r i m e n t a l
.............................................................................................................
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
36
X
List of Tables
IV.2
Samples
Hel ium
IV.3
(com. )
Injected
MIP
I V.
u
V. 1
V. 2
Samples
I CP
7.4
100 W
into
and
the
1.75
kW I CP
.................................
Calculated
Empirical
i n He MIP
Formulas
Empirical
Brominated
Hydrocarbons
Calculated
Empirical
i n Ar g o n I C?
Nitrogen
for
Empirical
Formulas
Empirical
for
.....................................
for
i n Ar gon
Formulas
Co mp o u n d s
151
153
Alcohol
.................................................................................
Formulas
147
for
i n He MI P
Formulas
Hydrocarbons
Containing
93
Alcohol
..........................................................................................
Calculated
Calculated
92
Experimental
..........................................................................................................
Calculated
39
and E x p e r i m e n t a l
Injected
Chlorinated
V. o
and
Condi t i o n s
Series
V. 5
350
.............................................................................................................
Apparatus
Series
V.3
the
..........................................................................................................
I CP A p p a r a t u s
Conditions
into
3rominated
I CP
155
and
...............................
156
for
in
Ar gon
I C?
.................
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
158
CHAPTER 1
GENERAL
INTRODUCTION TO THE DISSERTATION
1
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
INTRODUCTION
Tae
introduction
microwave
atomic
and
investigated.
systems
Mo s t
of
region
channel
photomultiplier
I CP o r
of
the
coupling
nonmetals
u tiliz e
the
chromatography
argon
for
plasma
molecular
This
chromatographic
as
plasma
a
detector
gas
(1).
Their
and a s i n g l e
laid
the
which,
the
with
P,
atomic
cyanogen
cyanogen
I,
Li 7 a n d
a
single
subsequent
has
permitted
for
were
element
the
several
first
se le c tiv e
system
wa s
photomultiplier
to
gas
based
on
detector
from
a final
later
in
helium
atomized
Carbon
tn«
emissions
was
and
also
and
subsequent
organic
compounds,
was
thus
tjv-visible
were
plasmas
Nitrogen
fragmentation
product.
emissions
band
for
detected
region.
monitored
to
Other
detect
I,
a n d F.
effects
fragmentation.
fragments
as
band
McCormack,
matrix
Cooke
analyzers.
upon
carbon
molecular
Cl,
been
with
mixtures
original
foundation
plasma
5,
and
channel
added
ultraviolet
and
the
and
excitation
sen sitiv e,
emission
via
have
involved
spectrum
organic
Tong,
atomic
yielded
enabled
atmospheric
helium
separation
( MI P )
of
multichannel
reaction
has
in to
emissions.
wor k
to
Both
nave
emission
McCormack,
MI P
(ICP)
and/or
experiments
analysis
(1-27).
argon
compounds
detector.
induced
e 1em ent- s e i e c t i v e
plasmas
nonmetals.
on
atomic
of
microwave
of
based
tnese
visible
organic
coupled
determination
pressure
The
v o la tile
inductively
emission
reduced
of
not
Tong,
and
related
They
present
to
Cooke
compound
observed
in
the
gave
band
original
insight
into
s ta b i li ty
emissions
compound
and
from
potential
percent
molecular
structure.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
This
type
of
recombination
elucidation.
system
in
for
McCormack,
simple
response
Mo
from
one
to
for
and
to
Lisk
Tong,
insecticide
residue
From
emission
the
dependent
a low
MI ? .
carbon
of
of
and
energetic
molecular
bromine,
visible
atomic
variation
in
different
response
nm
a reduced
factor
by t h e
iodine
at
nm
206
the
of
the
analysis
sensitive,
the
substituting
pressure
found
wa s
improved
by
i r.
ana
response
( 3 ) and
wa s
bonding
reported
of
plasma.
"differences
atmospheric
sensitivity
of
line
argon
sulfur
also
phosphorus
for
that
nature
They
that
emission
pressure
(e.g.
to
organophosphorus
UV
concluded
length).
in
identical
determine
atom."
MI P ( 4 )
increase
the
for
the
argon
253*565
emission.
GC e f f l u e n t s
nighiy
an
previous
argon
A ten-fold
nm p h o s p h o r u s
of
use
experim ental
elemental
253.565
they
chain
their
pressure
3ache
to
affected
to
detection
sensitivity
Cooke
observations,
attached
to
found
present
apparatus
from
on
selective
and
an
was m o n i t o r e d
groups
but
optim ize
in
structural
attempted
element
to
for
next.
used
are
GC- MI ?
analysis,
variations
The
response
of
Cooke
made
(2).
their
and
same
was
the
McCormack,
phosphorus
the
eliminate
use
elemental
attempt
c o mp o u n d
3ac he
Tong,
organic
factor
compounds.
conditions
prevented
band
Lisk
by
iodine,
of
lines
these
were
selective
argon
system.
emissions,
emissions
their
replacing
helium
chlorine,
fluorine
extended
plasma
At omic
could
phosphorus,
seen
in
gases
emission
now
elements
emission
be
and
were
the
with
lines,
monitored
sulfur
used
region
detection
for
the
more
instead
to
detect
(5-7).
UV a n d
analysis.
130-700
of
nm
3
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Me
whe n
fluorinated
organ i:s
indication
that
advantageous
were
the
when
introduced.
more
energetic
monitoring
This
helium
atomic
was
the
plasma
emissions
first
would
for
be
nonmetal
detection.
Mo y e
(8 ) reported
p 1 2 2 2 3. (. i n p i s e s
of
purs
several
nonmetals.
unstable
and
the
need
the
for
temperatures
plasma
a
He
lines
and
to
different
3 containing
dictated
which
sulfur
ease
with
discharge
These
which
is
a
differences
in
and
of
that
used,
can
the
for
plasma
This
was
illustrates
withstand
De a ns
operated
sulfur
using
bands
c ompounds .
led
ma y
the
high
important
from
class
of
should
the
be
and
ma y l e a d
compounds
that
the
varied
for
the
a
to
which
c o mp o u n d
used
conclusion
by
Ar
ultraviolet
found
fragmented
factor
pressure
emissions
the
to
be
They
S
feature
observations
reduced
various
(9).
Thus,
spectral
spectra
sensitivity
decomposed.
different
compound
a most
was
ths
argon-helium
plasmas.
molecular
sensitivities
pressure
isprovsh
rapidly
determine
relative
a low
He
torch
We s t ,
visible
determination.
pure
tube
by
of
Ar } w h i c h
plasma
attained
plasmas
use
Wh e n
Da g n a i l , P r a t t ,
and
the
for
that
the
" Th e
microwave
considerable
are
otherwise
similar."
These
to
achieve
results
mo r e
compounds.
MI ?
this
there
is
W argon
the
have
the
need f o r
fragmentation
dissertation,
pressure
a n d a 1750
Although
MI P ,
complete
In
atmmospheric
illustrate
use
in
the
powered
excitation
of
of
higher
form
of
plasmas
organic
power
a 350
and
W He -
I CP.
argon
been
and
the
investigated
higher
few
I CP
is
a more
reports
on
its
powerful
use
for
plasma
than
determination
4
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
the
of
nonmetals.
I CP- OES
Wi n d s o r
for
monitored
as
well
unable
(26).
3r,
as
et
They
used
with
F but
(28)
0,
needed
and
did
with
perform
vacuum
carbon,
"alpha"
sulfur,
emission,
were
analyze
S,
extension
not
I
to
determine
of
C,
3r , Cl
experiments
in
t h e VUV r e g i o n
air
analysis
both
S.
I CP
of
the
Cl ,
Heine
excited
The
is
GC
selected
N or 0 (27).
and
from
to
fluorine
cover
elemental
UV e m i s s i o n s
remove
but
and
C,
of
to
iodine,
of
VUV l i n e s
pumping
and
of
They
or
allowed
vacuum
compounds.
bromine,
Their
could
application
chlorine,
UV l i n e s
s till
tne
organic
of
oxygen,
(27).
observe
of
lines
emissions
they
along
to
I CP
( NI P )
evaluated
hydrogen
same
the
infrared
nm
nitrogen,
the
( 26)
analysis
emission
656.2
detect
al.
and
the
to
and
Dent on
elemental
UV a t o m i c
effluent
near
and
M
apparatus
quite
optical
compl ex
path
is
important.
Northway
excitation
in
this
not
of
followed.
The
( 3*0
use
of
to
the
a
organic
(35)
Windsor
simultaneous
not
researchers
I C?
in
wa s
the
NI R
o f C,
This
H,
f ir s t
GC- I CP
(30),
and
this
carbon
is
(5').
(33)
soon
the
results
for
oxygen
and Fry.
element
(36)
used
the
Cl ,
and I
emissions
the
fluorine
GC d e t e c t o r
one
background
region.
by 3 r o w n
and o n l y
IC?
exclusion
experiments,
selective
enabled
report
atmospheric
sulfur
explore
to
Th e s p e c t r a l
nitrogen
reported
and De n t o n
detection
compounds.
as
of
and
then
we r e
the
oxygen.
simple
( 3 2 ),
these
performed
a time.
atomic
NI R o b s e r v a t i o n
and n i t r o g e n
al30
of
chlorine
ma n y
( 2 9 ) . were
relatively
Ai t hough
encouraged
at
is
necessary.
and
Fry
NI R l i n e s
region
bromine
wa s
and
This
wa s
measured
GC- I CP d e t e c t o r
calculation
from
of
worx
for
atomized
empirical
5
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
formulas
only
ones e
e l e m e n t s . They did no t o b s e r v e any M or 0 a t o m i c e m i s s i o n s
in the
region
of
unknown
from
The
-
190
current
goai
near-UV
a met hod
detection
many
Dagnall,
of
in
all
and
band
carbon
which
tne
Vest,
molecular
between
compounds
containing
nm.
of
for
spectroscopy.
ratios
300
development
m u itie 1emental
and
organic
and
is
capable
important
f ie ia
of
Whi t ehead
emissions
chlorine,
of
simultaneous
nonmetals
is
an a ly tic a l
(37)
to
atomic
monitored
calculate
phosphorus,
the
visible
elemental
bromine,
and
iodine.
McLean,
GC-MI?
detector
elemental
that
Stanton,
ratios
molecular
of
nitrogen
used
the
wa s
torch
contained
containing
element
ratios
suggested
and
used
the
low
use
of
would
gas
be
to
to
helium
and
the
increased.
prevent
analysis
apply
the
Hydrogen/ Carbon
pressure
Penke t h p r e p a r e d
elements
carbon
from
of
of
MI P
so
spectral
Oxygen
carbon
a
determination
have
and
or
deposition
compounds
since
hydrogen
data
ionization
formulas.
a large
used
The
artificial
interest
multichannel
of
an
n-heptane
UV-visible
flame
of
empirical
first
be m i n i m i z e d
chromatograms.
and
authors
woul d
lines
and
all
computed
the
a
the
which
N.
compound f o r
simultaneous
Ma n y
They
were
Thi3 excluded
Stanton,
almost
were
determ ination
a scavenger
and
0
photomultiplier
ratios
as
specific
reference
the
atomic
wails.
both
Mc L e a n ,
(13).
Penketh
band e m i s s i o n s
selectivity
on
for
and
wa s
constructed
used
calculation
using
GC- MI P
to
channel
to
They
enable
elements.
calculate
c o mmo n
the
a n d H/ C
(FID).
spectrometer
of
as
a single
detector
number
most
and
mixture
approach
elemental
has
6
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
been
che
use
of
a photomultiplier
multichannel
channel
have
reported
plasma
tne
the
seems
of
attempt
to
using
0
array.
system
and
hydrogen.
The
was
region
of
detector.
atomic
based
on
atomic
spectrum
A low r e s o l u t i o n
intense
were
to
nonresonant
of
effects
within
work
( MI R)
this
is
of
a
the
650
emissions
atomic
and
an
of
red
in
nm
emissions
of
limited
this
for
C,
H,
a photodiode
spectral
array
range
of
of
carbon
dissertation
and
1024 c h a n n e l
- 950
as
potential
determination
described
a
the
free
course
chlorine
reported
dispersion,
the
reduce
(44).
red/near-infrared
monitoring
occur
result
and
been
spectrometer
use
spectrograph
Reasonably
a
exclusive
addressed
ionic
indicated
the
been
in
results.
and
simultaneous
in
have
in
fluorine
limited
undertaken
disparity
very
effects
greatly
optical
the
matrix
been
can
matrix
grating
not
single
authors
nitrogen
near-infrared
problems
with
the
S o me
have
recently
(45)
excessive
simultaneously
As
of
atomic
Fry
a dispersive
emission
found
of
complex
and p r e v e n t e d
the
problem
reading"
scanning
(42).
others
for
"direct
rapid
interferences
presence
monitoring
project
study
potential
and
vignetting
the
while
The
a
described
d e r i v a t i z a t i 0 n has
however,
and
been
responsible
intensities
simultaneously
M, a n d
also
results
The
Brown,
UV-visible
although
met hod.
be
minimizing
Kugnes,
for
to
ma n y
Chemical
size,
the
literature.
emission
( 4 3 ).
has
favorable
about
Several
in
(38-41),
spectrometer
enthusiastic
the
analyzer
based
near
infrared
photodiode
array
photodiode
array
this
dissertation
spectral
of
most
"wi ndow" .
nonmetals
region.
begun
in
this
laboratory,
the
7
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
near
infrared
spectral
determination
region
of
is
nonmetals.
infrared
atomic
emissions
spectral
region
into
incurring
becoming
a
excessive
the
development
of
infrared
photodiode
emission
lines.
interferences,
hydrogen,
helium
and
MI P a n d
argon
Investigation
fluorine,
Chapter
chiorine,
4
analysis
is
of
a
wer e
of
I CP
plasma
Chapter
empirical
near
the
5
elution
to
a large
without
in
are
both
the
reported
for
"on-the-fly"
and
pressure
2.
on
photodiode
demonstrate
The
3).
elemental
separated
4 ).
of
(Chapter
qualitative
(Chapter
carbon,
MIR e m i s s i o n s
sulfur
compound,
to
potential
of
in Chapter
compounds
eluting
nonmetal
atmospheric
I CP e x c i t e d
iodine,
red/near-
observe
intensities
organic
a
gas
array
the
capability
use
of
higher
investigated.
a
from
peak
resolution
emission
simultaneous
studies,
Results
in Chapter
of
near
% rsport
resolution,
interface
also
formulas
c ompounds .
I CP
for
from
met hod
and
each
high
wa s
MI P
of
and
developed
emission
a variety
low
power
of
for
measuring
spectra
collected
unknown
plasmas
are
organic
compared
5.
Appendix
analytical
concerns
MI P
wa s
I CP
each
collected
powe r
In
For
and
oxygen
on
of
format
spectral
MIR
bromine,
mixtures
spectra
of
continued
report
chromatograph.
the
wa s
low
spectrograph
relative
the
detector
zhe
for
and
ion
a computerized
and
red
compression
3 o f* t i l l s
degree
nitrogen,
small
of
used
interference.
array
The
optical
relatively
spectral
c o mmo n l y
simplicity
enables
C h 2 p t s r 2 2 n d 3, p p s n d i x
on
The
mo r e
the
A is
a report
chemistry
and
development
on
the
use
spectroscopy
of
a
unique
of
photodiode
education.
photodiode
array
arrays
Appendix
in
A
laboratory
g
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
in
'J V - V 1 5
Instrumental
aoieouiar
Analysis
spectrophotom etry
for
undergraduate
students.
9
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
BEFEBEHCES
1)
McCormack,
37,
14 7 0
A.J.iTong,
-
S. C. ;
Cooke,
W. D.
A U l • H-E. 2 • • 1 9 6 5 ,
1476.
2)
3a c h e , C . A,
L i s k , D. J .
A n a l . Ch e m. ,
1965,
11»
1 477
3)
Ba c he ,
. A.
L i s k , D. J .
A n a l . Ch e m. ,
1966,
38,
783
4)
3 a c h e , C . A.
L i s k , D. J .
A n a l . Ch e m. ,
1966,
33 ,
1757
5)
B a c h e , C . A.
L i s k , D. J .
A n a l . Ch e m. ,
1967,
39,
736
6;
B a c h e , C. A. ;
J.
Off.
Anal.
Ch e m. ,
Ch r o m,
1968,
6 ,
-
1246
Li s k ,
B a c h e , C . A.
3)
Mo ye , H. A.
10)
D a g n a l i , R. M. ;
60,
Dagnali,
25
C h e m.
Prate,
-
734.
-
-
1753.
739.
19 6 7 ,
5£
39 ,
1967,
1 4 U1 -
301
-
304.
1 445 .
5.J.;
West,
T.S.; De a n s ,
D. R.
Ta l a n t a ,
3.J.;
West,
T.S.; Deans ,
D. R.
T_a_l a n_t a ,
" 1013•
West,
-
R. M. ;
Ga s
306 .
Pratt,
U - 1009
D a g n a l i , S . M. ;
1972,
12)
Anal.
J_6 , 7 97
1970,
11)
L i s k , D. J . J .
D a g n a l i , B. M. ;
1969,
As s .
'
14 8 0 .
1250.
7)
9)
D. J .
-
T.S.;
W h i t e h e a d , P.
Ana l .
C h £ m.
Ac t a ,
35.
Whitehead,
P.
P.
3 o c . A n a l . £ h _ e m. ,
1972,
£,
20 1 - 2 0 4 .
13)
McLe an,
98,
14)
432
Dagnali,
1973,
15)
W. R. ;
-
Stanton,
Skogerboe,
Penketh,
G. E.
An a_l y _s_t,
1 9 7 3,
442.
R. M. ;
6,
D. L . ;
Johnson,
D. J. ;
West,
T. S.
An a l .
Chem. ,
Sp e c t r o s .
L_e_t_t.
37-95.
R. K. ;
Coleman,
G. N.
1976,
4^3_,
6 1 1 A—
621 A.
16)
Beenakker,
,
C. I . M.
S p e c t r o c h i m. Ac t a , P_a_r_t 3 ,
1976,
21 1. • 4 8 3 '
486 .
10
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
HEFEEENCES
17)
3eenakker,
C. I . M.
(cont.)
Sp e c t r ochlm.
Ac t a ,
Part
B,
1977,
. 3.23,
173“
1 37 .
13 )
Va n
Dalen,
de
A n a l . Chi m.
19)
Qu i mb y , 3 . D . ;
Ch e m. ,
20)
3,
22)
X. ;
1981,
Estes,
3 6 B,
3 . A. ;
de
Galan,
L.
1*19.
5J. ,
M. F . ;
Ud e n , P. C. ;
Barnes,
R. M. A n a l .
U d e n , P. C. ;
Barnes,
R. M. A_na_i.
375-380.
H. ;
Fuwa,
X. S p e c t r o c h i m .
H. ;
Fuwa,
X.
A cta, Par t
119-127.
Haraguchi,
1981,
P. A. ;
2112-2118.
Haraguchi,
3 6 B,
9_4,
Coulander,
M. F . ;
Delaney,
1979,
Tanabe,
3,
23)
50,
Q u i m b y , 3. D. ;
Tanabe,
1977,
Delaney,
1978,
Ch e m. ,
21)
Acta,
Lezenne
S p e c t r o c h i m.
Acta,
Part
633-639.
Uden,
P. C. ;
Barnes,
R. M.
An a i .
Chem. ,
1 98 1,
53.,
Uden,
P. C. ;
Barnes,
R. M.
Anal.
Chem. ,
1 9 8 1,
5 3.,
1336-1340.
24)
Estes,
S. A. ;
1329-1337.
2 5 ) Va n
dalen,
AO CcL|
26)
Windsor,
27)
Windsor,
H.P.J.;
1982,
D.L.;
D. L . ;
Kwee,
1_42,
3. G. ;
de
Galan,
L.
Anal.
Ch_i m.
159-171 .
Denton,
M . 3 . Ap p 1 .
Sp e c . ,
Denton,
M. B.
Ch r q ma t o g r . 3 c i . ,
J.
1978,
32., 3 6 6 - 3 7 1 .
1 9 7 9 , 1. 7,
492-496 .
23)
H e i n e , D. R. ;
34,
3abis,
U. S. ;
Denton,
M. 3 . A p p 1 .
3£_££. , 1 9 8 0 ,
595-598.
29)
Northway,
30)
Northway,
S.J.;
S.J.;
Fry,
R. C.
Brown,
Appl. Spec. ,
R . M. ;
Fry,
R. C.
1 9 8 0 , 34..
332-337 .
App l . S p e c . ,
1 9 8 0 , 3.1,
338-348.
1 1
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
REFERENCES
31)
Fry,
R. C. ;
Che m. ,
Northway,
1980,
52,
S.J.;
1716 -
32)
Hughes,
5.K.;
Fry,
R . C.
33)
Hughes,
3.K.;
Fry,
R. C.
3**) B r o w n ,
35)
R . M. ,
Brown,
Jr.;
R . M. ,
1 981 , 5 3 ,
Jr.;
Brown,
R. M. ;
Hughes,
S. K.
An a l .
1722.
Anal.
C h e m. ,
Appl.
R. C.
1981,
Spec. ,
1981,
A n a l . Chem. ,
Northway,
53,
S.J.;
1111
_35,
Fry,
493
53,
1981,
-
R. C.
1117.
“ 4 97 .
532-533.
Anal.
C h e m. ,
93^-93 6 .
36)
Windsor,
D. L. ;
37)
Dagnali,
R. M. ;
44,
Fry,
(cont.i
Denton,
West,
M. 3. A n a l . C h e m . ,
T. S. ;
Whitehead,
1979,
P.
5
Anal.
, 1116-1119.
Chem. ,
1972,
2074-2073.
33)
3renner,
K.5.
39)
Bonnekessel,
J.
J.;
Chromatogr.,
Klier,
1978,
M.
Anal.
167,
3 6 5 - 3 S O.
Ch i m. A c t a ,
1978,
J_0 3 ,
29-42.
40)
Slatkavitz,
K. J. ;
Chr omat ogr .,
41)
0u,
Q. 7. ;
Part
42)
3,
Zerezghi,
Sc i . ,
1983,
383,
419-425.
M. ;
1984,
Delaney,
35,
396
Mulligan,
22,
3. R.
M. F . ;
383,
5. K. ;
-
Hoey,
L,. C . ;
3arnes,
R. M.
£.
277-237.
Zeng,
44)
Hughes,
30 2 ,
G. C. ;
Koirtyohann,
45)
1984,
P. C. ;
Wa n g ,
43)
1983,
Uden,
K. W. ;
K. J. ;
iu,
W. L.
Caruso,
S p e c t r o c h i m.
J . A.
J.
Acta,
Ch r o m a t o g r .
343-352.
Anal.
Warren,
Che m. ,
F. V. ,
1983,
Jr.
55_,
374-376 .
S p e c t r o c h i m. A c t a ,
P a r_t 3 ,
399-406.
Brown,
R. M. ,
Jr.;
Fry,
R. C.
A££_l .
Sp_e£. ,
400.
12
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
1981,
CHAPTER 2
RED AND HEAR-INFRARED PHOTODIODE ARRAY SPECTROGRAPH
FOR THE SIMULTANEOUS DETERMINATION OF
CARBON,
HYDROGEN,
NITROGEN,
AND OXYGEN
13
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
INTRODUCTION
Samples
metallurgy
The
pertaining
often
contain
corresponding
spectra
out
pnotocuoae
need
for
extreme
minimize
to
a
covered
by
length
up"
and
the
of
resolving
spatial
cooling
cover
include:
a.)
water
source
spectroscopy
metallic
primarily
to
Another
(accompanied
which
512
or
arises
between:
resolving
the
are
sort
a. )
conflicting
only
1024
to
UV
about
"window'’
chip.
me t
with
mm
25
for
to
desire
array
channels
the
power
simultaneously
a
poor
long
by
Photodiode
wa s
studies
unity
This
exposure
an
or
90°
in
"dividing
gain
additional
arrays
are
in
often
times,
2 to
t wo
or
4-fold
actually
or
wa s
wher e
most
it
dissolved
orientation
UV w a v e l e n g t h
arrays
to
of
use
image
in
for
in atomic
where
the
in
(4-9).
UV r e g i o n
loss
not
simultaneously.
elements
costly
has
studies
photodiode
leads
as
diagnostic
detector
the
arrays
spectroscopy
range
a single
sensitivity
occur.
a few
a concern
one
involving
of
to
spectral
b. )
photodiode
emission
not
of
and
limitation
is
atomic
large
profiling
linear
limited
powe r
( 1* 3 )
emissions
and
only
ultraviolet
where
distilled
arrays
complex
photodiode
be
atomic
too
and
or
metals.
visible
multielement
cannot
self-scanned,
been
Examples
or
geology
excited
and
b. )
small
needs
have
therefore
necessary
range
as
spectrum.
in
high
and
such
easily
be f a r
dispersion
re la tiv e ly
photodiode
use
can
A craae-off
spectral
typically
detectors
plasmas
t wo
of
ultraviolet
arrays.
these
entire
The
hot
disciplines
number
interference,
the
day
a large
ultraviolet
large
Unfortunately,
present
in
spectral
have
applied
air-path
emission
witn
to
most
detector
intensifiers
resolution).
sensitive
to
red
14
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
and
near-infrared
lao
included
(ICP)
( MI R)
qualitative
atomic
nitrogen,
emissions
and
oxygen
channel
photodiode
observed
as
number
of
c o mp o u n d
the
of
upper
states
few
of
only
at
red
dispersion
vignetting
useful
wavelength
range
from
Th e
spectra
300
-
region
to
the
be
540 made
vignetted
system
energy
microwave
to
of
nm,
only
and
have
tne
75
small
Second,
energetic.
are
( MI P)
the
Onl y
appreciably
temperatures,
minimized
the
use
of
the dilemma
of
However,
a
size).
Ebert
the
design
limited
T h e 25 mm p h o t o d i o d e
about
organic
relatively
permitted
(window
of
First,
appear.
simplicity
range
wa s
0).
plasma
lines
should
is
states
induced
spectrum
(10):
unusually
excited
1024-
wi ndow
nm.
Mearly
array
corresponding
2/3
of
the
its
wa s
to
a
array
by v i g n e t t i n g .
of
C,
M,
out
sulfur
and
0
could
a separate
hydrogen.
in yet
Ebert system
limitation
are
a n 3 mm p h y s i c a l
7 1 5 nm f o r
for
atoms
N,
plasma
in a p u r i f i e d
chemist
this
hydrogen,
a
simple
factors
C, H,
cnaracteristic
blocked
375
perhaps
a spectrograph.
masked
wa s
or
coupled
r e g i o n by
occurring
synthetic
10, s p e c t r a l
problem
as
important
a
sp ectral
NI R
from
carbon,
A remarkably
a n d MIR s p e c t r a l
unavoidably
length
t wo
o p t i c s and
vs.
range
(10).
report
inductively
r e d and
to
high
reference
reso lu tio n
the
nonmetallic
I CP a n d
a few
In
low
of
nonmetals
the
simultaneously
H,
these
populated
so
C and
from
of
interest
just
preliminary
of
in
result
A
detection
array
elements
(e.g.
a
radiation.
wa s i m p o s e d
recorded
exposure
A
another
of
be
had
third
region
be
exposure
(375
reference
by u s i n g
to
simultaneously
a storage
10.
~
ma d e
in
would
950
the
have
n m) w i t h
An a d d i t i o n a l
oscilloscope
15
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
as
che
only
means
subtraction
The
of
data
the
present
length,
and
MI R r e g i o n o f
employed
to
the
lower
a single
been
overlays
for
rapid
coupled
are
C,
covering
been added.
the
H,
this
form
explored
25
M,
of
both
for
in
and
focal
elim inate
the
red
compress
nm i n t e r v a l ,
master
analysis
and
the
of
are
and
a
reference
transparent
Considerations
microwave
is
format
and 0 e m i s s i o n s
Xerox
and
grating
mm l i n e a r
300
qualitative
in
to
ruled
Labeled
identification.
and i n t e r f e r e n c e - f r e e
elements
the
made
a short
length
even f u r t h e r
array.
in
use of
A coarsely
9 5 0 nm i n t o
prepared
line
array
was
( 1 0 ).
spectrograph
full
dispersion
has
on t h e
spectrum.
-
current
a report
the
exposure
system
have
these
of
photodiode
spectra
selection
the
f r o m 550
studied
data
use
atomic
1024S
computer
is
Mo p r o v i s i o n
dark
Czerny-Turner
a Reticon
in
pattern
chapter
allow
spectrum
acquisition.
fixed
crossed
vignetting
entire
of
for
line
involving
inductively
plasmas.
Io
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
EXPERIMENTAL
A p p a r a t u s and P r o c e d u r e .
The
I CP
source,
photodiode
array
spectrograph,
external
optics,
conditions
are
listed
Table
butane
air
was
and
sample
argon
performed
injected
carrier
followed
signal-averaged
and
each
spectral
identification
overlays
ma y
w ithout
in
the
u n known
of
smali-aperture
medium
or
C,
H,
here
I C?
a
from
A helium
I I . 2.
MIP s y s t e m
Ga s
threaded,
the
as
and
the
and
of
mixture
into
subtractions
ten
corrected
on h a r d
of
tne
were
spectra.
disk,
plotted,
lens
visually
0
are
in
tne
to
less
is
induced
and e x p e r i m e n t a l
injected
tangential-fiow,
particular
plasma
( MI P )
the
3ollo-Kamara
if
favor
I CP
a
wa s
of
dismantling
tne
of
optic
study
a
the
other
unit.
also
studied.
are
described
in Table
"inner"
helium
parameters
into
time
fiber
-
was
in
exposure,
in
facilitate
without
incn
inspected
as
exposure
The
x 11
chemistry.
discarded
to
lab
a 67
line
performed
in s y n th e tic
with
low
q u a l i t a t i v e
thereby
mirror.
this
8-1/2
Rapid
as
rapid
spectra
convenience
in
for
Th e
optic
or
can se rv e
spectra.
wa s o b t a i n e d
coupled
were
plots
overlays
interest
fiber
a
microwave
samples
of
labeled
u nknown
location
normally
sample
current
stored
be o b t a i n e d
external
remote
experiments
The
can
simply
Dark
M,
iarge-aperture
employed
continuously
m a g n ific a tio n .
c ompounds
spectrum
and
reference
Although each spectrum
similar
directly
of
hand-held
of
gas
labeled.
plate”
aid
operating
The
were
subsequent
be
determinations
purified
spectra
line
"master
experimental
signai-averaging
transparencies
resolution
and
Czerny-Turner
I I . 1.
stream.
by
The
Xerox
in
detector,
Codding
MI P
flow
torch
17
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
of
a
(11).
T able
Inductively
I I . 1.
I CP A p p a r a t u s
Coupled
Plasma
and
35
Sampl e
Fl ows
Fl ows
Observation
Re mo t e
( L/ mi n)
Zone
Optical
ixternal
Irder
(L/min)
Couple
Optics
filter
Spectrograph
C o n d itio n s
P l a s m a - T h e r m ( K r e s s o n , NJ) 27 MHz
I CP 2 5 0 0 w i t h A P C S - 3 a u t o p o w e r
control,
AMNP S - 1 a u t o m a t c h i n g
netw ork , and "stock" q u a r t ztorch
l o c a t e d r e m o t e l y (3 m) f r o m t h e
spectrograph.
1 .<4 kW,
a . F . Powe r
Ar gon
E xperim en tal
W,
incident;
reflected.
plasma;
auxiliary:
sample c a r r i e r :
butane:
compressed
13
2
0.2
0.001
air:
0.025
A 0 . 6 mm v e r t i c a l l y i s o l a t e d
centered
between the top
t u r n s of t he r . f . l oad c o i l .
zone
two
A 3 n q u a r t z f i b e r o p t i c ( O. o mm
diameter,
single
strand
with
black
te f lo n cladding) between
t h e I CP a n d t h e s p e c t r o g r a p h .
A 6.6
cm f o c a l
length,
6
cm
diameter
quartz
lens
doublet
p l a c e d 21 c m f r o m t h e I C P t o
f o c u s a h a l f s i z e d ( 1/ 2. 2 ) image
of t h e p l a s m a o n t o one end of t h e
f i b e r o p t i c ( l o c a t e d 9 cm f r o m
t h e l e n s s y s t e m ) . The r e m o t e e n d
optic
was
of
the
3
® fiber
p o s itio n e d
~ 1 mm f r o m
the
e n t r a n c e s l i t of t h e p h o t o d i o d e
a r r a y s p e c t r o g r a p h , No c o u p l i n g
o p t i c wa s e m p l o y e d b e t w e e n t h e
s l i t and t h i s end of t h e f i b e r
Ho y a #25 ( r e m o v e s 2 nd o r d e r b l u e
a n d 3 r d o r d e r UV e m i s s i o n s t h a t
o th e r w i s e s e v e r e l y c ompl ic at e the
s t o r d e r r e d - NI R s p e c t r u m )
J a r r e l l - A s h Mo n o s p e c 27
focal
length,
f / 3-8
Czerny-Turner
trip le
spectrograph).
(0.275 m
crossed
grating
13
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Gratings
Entrance
Exit
Mo u n t e d
Ail:
Slit
g/ mm
g / mm
^3 -
g/ mm
15 0
in
with
blaze.
(the
in
500
nm
' 3 “
one used
th is study)
urn
none ( r e p l a c e d w i t h
array detector).
Detector
photodiode
R e t i c o n 1024S p h o t o d i o d e a r r a y ,
( E . G . 4 G.
Reticon,
Sunnyvale,
CA. ) 1 0 2 4 c h a n n e l s , 2 5 0 0 X 25 urn
e a c h . A s p e c t r a t i o 100:1 ( s l i t ­
l ik e channels).
Evaluation
Data
. 600
#2 . 300
10
Slit
50X50
order
R eticon
1024SA
modif ic ati ons (see
Circuit
System
with
minor
r e f e r e n c e 12).
1.
Analog Devi ces
( N o r w o o d , MA)
ADC J 1 1 3 1 a n a l o g
to
d ig ita l
c o n v e r t e r (14 b i t ,
12 u s ) .
The
i n t e r f a c e h a s b e e n d e s c r i b e d by
Hughes (12).
2. D i g i t a l E q u i p m e n t C o r p o r a t i o n
(M aynard,
MA)
PDP11/34A
minicomputer,
2 5 6 K RAM, V T 5 5
t e r m i n a l , and Da t a S y s t e m s De s i g n
DS D 8 8 Q ( S a n J o s e , CA)
30 M - b y t e
Winchester hard disc operating
with
this
experiment
at
first
l e v e l p r i o r i t y u n d e r TSX+ ( 3 4 H
Computers,
I n c . , N a s h v i l l e , TN) .
3.
Houston I n s t r u m e n t s
(Austin,
TX) H i - P l o t DMP p l o t t e r a n d
Epson
(Epson
America,
Inc.,
T o r r a n c e , CA) MX100 p r i n t e r .
Array
Exposure
Evaluation
Spectrum
T i me
Circuit
Repetition
67
ms
lock
185
kHz
Interval
Every o t h e r
oc c u r s once
spectrum stored.
e v e r y 1 3 5 ms .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
This
Table I I . 2. MIP Apparatus and Experimental Conditions
( s a me a s T a b l e I I . 1 e x c e p t a s n o t e d b e l o w )
Mi c r owa ve
Generator
M o d e l MPG 4 M , K i v a I n s t r u m e n t s
I n c . ( R o c k v i l l e , MD) , 2 4 5 0 MHz
120 w a t t s .
Mi c r o wa v e
Cavity
C y l i n d r i c a l TM 0 1 0 O e e n a k k e r , ,
d i m e n s i o n s : 9 3 * 5 mm d i a m e t e r , 2
cm d e p t h ,
l a b - c o n s t r u c t e d from
aluminum, water cooled.
Tuner
T r ip le
stub,
Model
5 3 —1 5 N
Microlab/FXR ( L i v i n g s t o n , N.J.).
Torch
3ollo-Kamara - Codding design
( 1 1 ),
threaded
tangential
flow
(obtained
from
J. M.
Babbitt,
D ept, of Chem., U n i v e r s i t y of
S o u t h C a r o l i n a , C h a r l e s t o n , SC) .
Ga s
flows
Sample
( L/ mi n)
flows
External
(L/min)
Optic
H e l i urn:
pro p e n e :
compressed
inner
outer
0.15
2.5
0.001
air:
Plano-convex ( f ;-8
o cm d i a m e t e r ,
l o c a t e d 1 6 cm f r o m
s lit
to produce a
t h e p l a s m a on t h e s
0. 005
c m; f 2 “ 6
'
q uartz
lens
the entrance
1: 1
i mage of
lit.
20
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
RESULTS & DISCUSSION
•
background
continuum
tne
Figure
emissions
in
background
detector
the
region
intensity
saturation
conditions.
This
is
background
emissions
I I . 1
in
lim it
illu s tr a te s
550
the
occurring
the
nm.
is
only
present
weaker
in
950
figure
under
considerably
-
the
argon
The
IC?
plasma
about
21
of
experimental
than
I CP
ultraviolet
continuum
and
visible
region.
For
convenient
numbers
are
from
only
rank,
1 -
for
I I . 3
number,
intensities
as
a
Wh e n
are
from
used
in
transparency
resolution
in
of
of
reference
only
with
s a me
line
of j u s t
(omitting
the
Under
the
sufficiently
weaker,
are
and
found
actual
intense
a total
over
the
rapid
emission
is
"dispersion"
that
as
the
can
be
spectral
features).
to
of
this
produce
only
entire
are
given
51
Table
Net
in Table
satu ratio n .
a
the
argon
overlay.
prepared
be
this
plotted
useful
of F i g u r e
9 argon
n m.
argon
by t r a n s p a r e n t
saturation,
950
low
in
Another
and a x e s
-
Xerox
of
plotted
background
650
a
hand-held,
spectrum
experiment,
channel
region
as
I I . 3,
spectrum
"pointers",
of
intensity,
identification
labels,
conditions
to
channel
useful
for
identification
the
assignments
stoichiometry.
lines
with
is
requirement
X-axis
Ar
assigned
13.
II.1
I CP
been
numerical
or
photodiode
overlay
The
for
weight,
numbered
of
Figure
region.
xeroxing
atomic
The
have
no r e l a t i o n s h i p
combination
subsequent
overlay
and b e a r
the
lines
I I . 1.
reference
any
the
argon
Figure
percentage
Wavelengths
lines
in
convenience
atomic
relative
51
reference,
I I .1
lines
are
ma n y
are
but
emission
Du e
21
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
to
lines
line
FIGURE I I . 1.
Photodiode Array
Background E m i s s i o n s
S p e c t r u m of Ar gon
I CP
in the
R e g i o n 6 5 0 ~ 9 5 0 nm.
A l l l i n e s a r e a r g o n e m i s s i o n s and a r e n u m b e r e d
f o r c o n v e n i e n t r e f e r e n c e . W a v e l e n g t h s of t h e s e
l i n e s a r e l i s t e d i n T a b l e I I . 3. T h e I - a x i s h a s
been a r b i t r a r i l y
terminated
here at r e l a t i v e
intensity
3000,
whereas
detector
saturation
o c c u r s a t 14,400.
22
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
3I
•L
tn
3
-r.
3
-3
X
li
•c--*
3
-Li
3
3
-<M
e
c
3C7
•o 9
a?
LI"
—U“>
. LI
—CM
LS
;-c^
’-n
I3
*0008
*QQQ£
*0009
*ooos
*ooofi
U IS N 3 1 N I
:oooe
*0002
*0001
23
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
I3
—in
3
Table II.3*
Numbe re d Argon Emission Lines from 6 5 0 - 9 5 0 nm in Ar IC P
(sac. ■
detector saturated)
Wavel engt h
1
65 3 • o ' ^
1. 1
2
660.435
1 .3
3
666
. 402.
1. 6
4
667.728
1.5
5
669.385
1. 0
6
671 . 920
1. 2
7
I
675•283
12
3
637.129
12
9
693•767
10
696.543
97
11
703 . 0 2 6
14
i2
7 0 6 . 726
7 0 6 . 873
31
13
7 1 0 . 750
2. 6
14
712.530
1.8
15
7 1 4 . 704
9.3
l6
715.383
2.3
I 7
720.699
5.o
ia
727 . 294
19
7 31 • 171
4. 2
20
735.332
6. 6
21
7 3 7 . 21 2
738.398
* bracketed
lines
are
( n m)
Relative
(% d e t e c t o r
Nu mb e r
unresolved
Intensity
saturation)
4. 4
24
>
with
this
100
(
spectrograph.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
T able
Nu mb e r
I I . 3.
Argon
E m ission s
Wavel engt h
( nm)
in
(i
ICP
(cont.)
Relative
detector
Intensity
saturation)
22
741.221
3.5
23
742.524
2.3
2U
743.533
4.9
25
750.387
751.465
> 100
26
762.386
763.510
>
10C
( s a t .)
27
772.376
772.421
>
100
( s a t .)
23
739.108
29
794.313
>
100
(s a t .)
30
800.616
8 0 1 . 479
>
100
( s a t .)
31
8 1 0 . 369
> 100
( s a t .)
32
326.452
38
33
340.321
342.467
> 100
34
352.144
58
35
360.578
1. 4
36
362.047
0 . 90
37
366.794
38
876.172
1. 2
39
879.91 3
0.39
-
834.039
384.082
884.997
387.434
1. 1
2. 4
311.531
43
( s a t .)
(sat.)
12
25
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
T able
Mumbe r
44
-
46
I I . 3.
Argon E a l s s l o n s
Wavelength
( n m)
906 . 677
9 0 7 . 3 3 1*
907 . 5 4 2
in
I CP
(cont.)
Relative
(% d e t e c t o r
I n t e n s i ty
saturation)
1 .3
47
912.296
67
48
919.468
49
922.450
50
929.158
0.90
51
935.422
2.9
2.3
28
26
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
broadening
account
and
for
optical
resolution
about
350
channels.
Even
with
grating
spectrograph,
and
detector
channels
available
other
for
than
the
of
60S
of
51
argon
lines
photodiode
array
1024
poor
approximately
3ackground.
of
dispersion
670
the
of
this
interference-free
array
analysis
spectrum
overall
Special
nitrogen
atomic
elements
the
original
unusually
(representing
atomic
background
as
the
these
length)
involving
remain
elements
argon.
absence
these
the
of
r e d a n d MIR s p e c t r u m
C o n t a mi n a t i o n
absence
(34J)
effects,
has
of
result
emissions
oxygen
Figure
been
of
note
746.3
emissions
I I . 1.
rendered
three
at
The
3houid
at
taken
of
and
321.6
nm a n d
777.2
nm
in
contamination
insignificant
important
be
in
the
I CP
level
from
I CP
study
this
parameters
tne
listed
bel ow:
1 .)
viewing
the
plasma
in
the load
a t mo s p h e r i c e.ntrainment is e xcluded
2 .)
t h e m i n i m i z e d e r o s i o n r a t e of t o r c h w a l l s i n h e r e n t w i t h
an
argon
ICP
(this
minimizes
elemental
oxygen
c o n t a m i n a t i o n from a t o m i z e d q u a r t z (SiC^)),
and
3 .)
the r e l a t i v e l y
l a r g e s a mp l e s i z e and h i gh a n a l y t e
concentrations
norm ally a s so c ia te d with purified
samples
of
interest
in s y n t h e t i c
chemistry.
This
o v e r s h a d o w s r e s i d u a l N and 0 c o n t a m i n a t i o n
in the
w e l d e r ' s g r a d e a r g o n s u p p l y a n d r e s u l t s i n t h e u s e of
s u f f i c i e n t l y s h o r t e x p o s u r e t i m e s to keep e m i s s i o n from
t he c o n t a m i n a n t s below the d e t e c t i o n l i m i t .
sample
Induced
Background.
spectrum
(650
and
A comparison
air.
continuum
introduced.
therefore
-
950
nm)
background
For
of
of
level
Figure
an
a "must"
and
is
wh e n
analysis,
readily
sample
I I . 1 and
increases
quantitative
I I . 2 s hows
atomized
Figures
coil
zone wnere
by t h e t o r c h w a l l ,
the
mixture
sample
background
using
excited
of
I I . 2 shows
the
performed
I CP
butane
that
the
mixture
is
correction
is
the
array
27
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
to
FIGURE I I . 2 .
P h o t o d i o d e A r r a y S p e c t r u m o f ICP E x c i t e d C a r b o n ,
H y d r o g e n , N i t r o g e n , a n d Ox y ge n A t o m i c E m i s s i o n s
i n t h e R e g i o n 6 50 - 9 5 0 nm. T h e e m i s s i o n l i n e s
are numbered for
convenient reference,
and
w a v e l e n g t h s a r e l i s t e d i n T a b l e I I . 4. S e v e r a l
i n t e r f e r i n g Ar e m i s s i o n l i n e s a r e a l 3 0 l a b e l e d i n
this
figure.
The Y - a x i s
has been a r b i t r a r i l y
terminated
here
at
relative
intensity
30C0,
wher eas d e t e c t o r s a t u r a t i o n o c c u r s a t 14,400.
23
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
'(47 (STRONG))
-«
’ OOOh
iiISN31N[
® 2Jfi 2*2i
•S"
‘0005
29
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
monitor
che
continiiun
Subtraction
intensity
of
at
the
intensity.
chapter
Ail
have
are
accurate
even
I I . 1 and
is
the
the
in
to
sample
for
methods
sample
for
most
in
line
in
of
the
attempts
the
successful
to
for
the
tables
of
this
correction
the
background
background
comparison
lines
of
upon
Figures
increase.
As
an
nm a p p r o x i m a t e l y
This
general
trend
the
region
under
in
spectral
have
is
methods.
9 2 2.4
(Figure
"stripping"
I I . 1)
therefore
sample
line
so
spectrum
I I . 2)
total
and
employ
argon
(Figure
tne
sample.
argon
the
analytical
intensities
the
line.
Analyte
further
" Ar ^ g " a t
adding
net
continuum
argon
upon
from
introduction
a
subtracting
particularly
rise
designated
spectrum
the
corrected.
sample
analytical
level
given
mixture,
that
Preliminary
each
simultaneously,
the
intensity
yields
intensities
transient
line
observed
3 tudy.
center
exposed
for
beside
continuum
background
I I . 2 shows
example,
doubles
line
addition
introducing
average
line
been
channels
in
the
emission
sizes
from
not
injected
the
been
in
this
s tudy.
C,
H,
?J,
0 (ICP Emissions).
I CP e x c i t e d ,
red
0
-
from
550
mixture
of
mixture
wa s
a n d .VIS a t o m i c
950
n m.
butane
used
for
containing
a
Xerox
overlay
C,
H,
N,
would
The
and
spectrum
single
Figure
air
spectrum
given
set
transparency
be
and 0 in
emission
convenience
a full
used
the
to
of
spectrum
is
in
in generating
labeled
overlay.
of
from
earlier
qualitatively
formula
I I . 2 shows
In
C,
of
the
Table
C,
H,
M,
complete
H,
1:25
I I . 1.
a master
M,
and
sample
This
reference
and 0 l i n e s
practice,
evaluate
a single
the
the
compound o f
the
in
master
presence
of
interest
to
30
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
a synthetic
cnsai3t
(ratner
first
be
separated
me a n s
of
purification.
In
along
Figure
with
atomic
I I . 2,
nitrogen,
and
the
subscripts
(e.g.
not
The
to
the
subscripts
have
range
C 1 _ 5 ).
(e.g.
The
net
normalized
atomic
ten
lines
are
lines
been
relative
in
terms
only
from
atomic
intensities
original
as a p e r c e n t a g e
oxygen.
of
the
observed
For
lines
as
not
in
Table
ratio.
(e.g.
and
are
and t he
H 1 £)
I I . 4 have
compound
Relative
detector
Table
stoichiometry.
resolved
a pair
number
in
purposes
or
of
convenient
listing
number,
individual
the
are
otner
identification
to
listed
wouii
or
twenty-seven
I I . 2 are
mixture
reference
carbon
identification
together
are
are
atomic
in Figure
butane:air
atomic
assigned
rank,
and
Wavel engths
of
for
lumped
of
of
Mixtures
distillation,
correspond
stoichiometry
expressed
mixture)3.
hydrogen,
been
which
intensity,
cases,
lines
of
have
M^)
subscripts
related
I n some
lines
a
chromatography,
thirteen
two l i n e s
reference,
I I . 4.
by
than
or
a
been
formula
intensities
saturation
limit.
13.
a
Upon r e q u e s t , t h e a u t h o r s w i l l m a i l l a b e l e d t r a n s p a r e n t
m a s t e r o v e r l a y s ( c o p i e d from e n l a r g e m e n t s of F i g u r e s I I . 1 and
I I . 2) t o a n y i n t e r e s t e d r e a d e r .
T r a n s p a r e n t o v e r l a y s of " l a b e l s ,
'pointers',
and a x e s onl y" from F i g u r e s I I . 1 and I I . 2 ( w i t h o u t
t h e a c t u a l s p e c t r a ) w i l l a l s o be m a i l e d u p o n r e q u e s t . T h e i n k
c o l o r o f l a b e l 3 a n d s p e c t r a on t h e o v e r l a y s w i l l be b l a c k .
In
order
to
avoid
confusion
in lin e
id e n tific a tio n ,
it
is
r e c o m m e n d e d t h a t unknown s p e c t r a be p l o t t e d i n r e d or some ink
c o i o r o t h e r t h a n b l a c k . Unk n o wn s p e c t r a s h o u l d be p l o t t e d w i t h
e x a c t l y t h e sa me X - a x i s " d i s p e r s i o n " as t h e t r a n s p a r e n t m a s t e r
o v e r l a y . S o me i n i t i a l " t r i a l a n d e r r o r ” i n v e s t e d i n m a t c n i n g t n e
X - a x i s d i s p e r s i o n of a c o m p u t e r p l o t t i n g r o u t i n e to t h a t of the
t r a n s p a r e n t o v e r l a y s w i l l q u i c k l y r e s u l t i n a p e r m a n e n t s e t of
p l o t t i n g c o o r d i n a t e s u s e f u l f o r a i l s u b s e q u e n t unknown s p e c t r a
g e n e r a t e d w i t h a g i v e n p h o t o d i o d e a r r a y s p e c t r o g r a p h and d a t a
sys tem.
31
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
T able
II.4a
Atomic E mi s s i o n Li nes
for Nonmetals
(obs.
;
* obscured
by:
int.
from
650
« interfered
-
950
nm
with
by:
)
in
Ar
Hydrogen
Sy mb o l
Relative Intensity
{% d e t e c t o r s a t u r a t i o n
W a v e l e n g t h ( n m)
( ICP)
,2
656.273
65 6 . 2 8 5
x 102 )
( MI P )
* 650
*
560
Oxygen
' 1-3
777.194
777.417
777.539
°4-6
344.625
34 4 . 6 3 6
344.676
7- 1 0
* 240
*1 2 0 0
< 70 ; o b s . Ar 33
926.267
926.277
926.594
92 6 . 601
* 400
22
43
Carbon
1- 5
711.147
711.313
711.519
711 . 6 9 9
711 . 9 6 7
333.515
u7 - 9
906.143
906.247
907.828
<100;
*
3 0 0 ; i n t . N 24
i n t . A r 44_45
908.351
909.483
520;
Cl 2
91 1 . 1 80
<100;
n
940.573
* 260;
bracketed
lines
are
*
1 30
C10 , 1 1
W1 3
i n t . Ar 14
unresolved
int.Ar,
47
91
51
*
this
i n t .M
* 1 40
o b s . A r 47
with
70
1 1 0
spectrograph.
32
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
T able
I I . 4.
Nonm etal
E m issio n
in
Ar
ICP
(cont.)
Nitrogen
Sy mb o l
Waveiength(am)
d
Relative Intensity
detector saturation
( ICP)
x
( MI P )
11
742.369
6;
*2
744.230
10;
*3
7 4 6 . 33 1
22
45
*4,5
313.485
3 1 8 . 300
17
60
* 5-8
321 . 071
321.632
3 2 2 . 312
27
1 30
*9
324.237
10
'3 1 0
356.774
31 U
359.400
3
i n t . A r 35
12
M12
3 6 2 . 924
11
i n t . Ar 35
23
*1 2A
3 6 5 . 587
2
o b s . Ar 37
4
363.027
3 6 8 . 340
36 3.616
46;
o b s . A r 37
-s
130
M1 3 - 1 5
M1 6 - 1 9
370 . 326
371 . 171
371 . 3 3 4
372.891
*20
902 . 392
i nt.Ar2 3
i n t . A r 24
i n t . Ar 32
25
46
7
39
9 0 4 . 533
9 04 . 947
9 0 4 . 989
i n t . C7 - 9
*24
906 . 0 4 7
o b s . C7 - 9
M2 5 , 26
933.630
9 3 9 . 279
21-23
1 0 ^)
10;
int . i
13
53
33
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
I C?
Line
Selection.
multielement
and
650
-
moat
determination
of
nm " w i n d o w "
of
950
spectrograph
The
are
highlighted
asterisk
(•)
lines
straightforward
is
sample
iines
to
in Table
the
H lines
at
2
from
"656
other
For
lines
for
and 0 w i t h
particular
I CP
H , N,
need
and
not
of
column
the
array
with
choice
from
most
resolution
photodiode
0,
vary
the
simultaneous
the
intensity
excited
and
two
Lack
one
useful
of
an
I C?
purified
I CP
excited
This
lines
of
are
within
Either
line
quantitative
A number
line
is
of
carbon
analysis
is
readily
free
are
free
used
the
of
for
I I . 2 and
two
of
this
the
only
unresolved
pair
major
either
Table
region
"819
interference
qualitative
the
ma y
be
are
746.5
M^ a t
other
of
( ^ 4,5
readily
that
from
lines
groups
I I . 4 show
nm a n d N g _ g a t
interference
individual
of
group
in
N4 ^ a t
between
additional
useful
useful
a
medium
I CP e x c i t e d
due
to
low
resolution
this
nitrogen
be
with
Figure
nitrogen
with
intense
ordinarily
pair
study
that
or
the
and
employed
"322
nm
nm.
elements.
same
Ng _ g )
for
the
element
does
no
qualitative
analysis.
quantitatively
or
under
groups:
all
resolution
(nitrogen)
the
and
unresolved
of
argon
region
I I . 4 show
analysis.
lines
h a r m.
the
I I . 2 and T a b l e
Mitrogen.
IC?
is
M,
the
A summary
elements
3.
These
in
n m.
quantitative
not
in
I C?
follows:
useful
or
H,
this
and
A. Hy d r o g e n . F i g u r e
Hj
C,
I I . 4.
next.
useful
group
the
spectral
N1 3 - 1 5
for
both
or
high
M lines
” 368
qualitative
resolution
which are
interference
system.
at
occur
Of s p e c i a l
nm
and
which
from
note
would
quantitative
system.
The
34
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
N1 3 - 1 =
best
group
is
overlapped
spectrograph
0ni y
useful
presence
already
as
of
been
last
a
f t C I*. .
* *.*. C
line
A r^
in
formula
as
a
in
this
low
resolution
application,
qualitatively
(onpe
the
ii
Mj
M-r 2 —15
confirming
and
array
W
the
iihes
N 5 - 3
i3
have
(
t .
4-
u u l
A «3
obvious
*. *.
C C
to
the
the
is
04-5
resolved
spectrograph.
checx
0 1_ 3
group
useful
for
percentage
in
unknown
being
of
choice
obscured
by
The
at
the
07-13
777.2
4.
^ u*
for
analyzed.
is
Sr o u P aC
925
qualitatively
confirming
c o mp o u n d
the
I CP
the
principal
is a bit
0 7-_ t 3
in
can
the
serve
presence
2 , .3
is
emission
high
S^oup
07.13
the
low
unusually
Th e
by
present
n m.
quantitative
oxygen
(once
*
c ompounds .
group
not
I
i 3 che
01-3
nm o x y g e n
is
a
f t i U U ^
in organic
which
a c o mp o u n d
an
A ^ ft «
particularly
unless
of
in
present
f r o m n e a r b y Ar 4 g , b u t t h e g r o u p i n t e n s i t y
not
final
oxygen
844.6
photodiode
therefore
^
oxygen
comparison
analysis
W ^
emission
nm i s r e s o l v e d
low
check
cne
In
interference.
elemental
dispersion
I I . 2).
compound
The w e l l - k n o w n
3trong
with
found.)
spectral
measuring
Ar ^
Figure
a
N in
w A ^
all
(see
by
group
of
has
been l o c a t e d . )
0.
carbon
11
£i£^on.
warrants
the
the
most
group of c a r b o n l i n e s
study
in
this
monochromator
and
Of
is
lab
(14).
certainly
p a rtial
overlap
determination
resolution
at
photodiode
included
consideration.
a t 9 0 9 nm w a s q u i t e
This
for
with
elements
careful
based
useful
909
four
on
group
array
is
high
also
qualitative
Ar ^ 7
nm i s
a
not
means
in
this
The
useful
intense
in
scanning
Figure
identification.
that
recommended
q u a n tita tiv e
using
C7 -
i n an e a r l i e r
reso lu tio n
evident
study,
the
I CP
I I.2
However ,
carbon
and
spectrograph.
35
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
low
In order
the
carbon
:o
minimize
emissions,
according
to
the
The
steps
to
follow
are
relatively
alternate
line
in
analyte
selection
and,
optimum
to
circumvent
the
entire
be
the
aid
line
of
of
in
after
ma a e
carbon
presence
the
certain
selecting
Varied
exposing
spectrum
of
sample.
interference.
accomplished
because
rest
inspection
to
the
of
atomic
the
necessary,
the
3 hould
composition
a preliminary
if
easily
array
the
with
selection
be m a d e t o r e v e a l
lines
is
line
elemental
First,
should
interference
I CP
selecting
simple.
elements
photodiode
final
qualitative
unknown s p e c t r u m
interfering
the
spectral
is
the
acquired
3imultaneously.
The
most
determination
to
moderate
emissions
the
this
1.14:1,
prominent
3r
333-5
C: C1 s e l e c t i v i t y
of
for
333-515
interference
resolving
nm,
q u an titativ e
n m,
from
but
this
bromine
respectively.
ratios
power
n m,
at
yielded
or a b s e n c e
of
containing
a
photodiode
Cl
bromine
respectively,
are
nm b e c o m e s
content
the
"interference-free"
and
If
Cg a t
and 333- 327
exposing
754.7
presence
If
line
the
carbon
is
and
subject
chlorine
Measurement
C5 w a v e l e n g t h
values
of
only
of
with
0.57:1
and
r e s p e c t i vely.
After
and
I CP
probably
333. **70
and
degree
is
spectral
at
C :3 r
obvious
of
these
both
the
only
C,
H, N,
preliminary
the
choice
will
made
in
I CP
be t h e
a
check
chlorine
be
elements
unambi guous
This
and
should
absent,
a compound.
array,
the
to
ii.nes
Cg
for
at
730.3
all
the
compound.
emission
measuring
case
other
determine
unknown
excited
for
for
the
at
carbon
compounds
a n d 0.
inspection
of
the
spectrum
of
an
atomized
36
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
compound
next
reveals
atomic
the
carbon
potential
for
with
carbon
this
present
in
line
minor
the
presence
940.6
(e.g.
line,
N^ ,
however
both
measuring
the
3r
as
l- 1 g
Wit h
centers
are
measured
the
if
atoms,
0. 7$
the
and
ma y
be
Actually,
the
presence
even f u r t h e r
atoms
of
long
as
an
exceeds
in
carbon
the
nitrogen
at
and
M at
This
the
content
this
occurs
number
is
1.3
least
be
If
Saj or
and Cj g at
choice
will
be u s e d
of
the
t wo i i n e
and
the
C: N
n mj
was
Thi3
number
of
means
C and N
be l e s s
than
stoichiometry.
measure
the
therefore
the
(940.573
wavelength
because
side
140:1.
to
for
qualitatively
n m,
formula
nitrogen
the
other
analysis,
of
of
to
occur.
the
channel
system
this
to
wavelength
an e q u a l
determining
of
have
or
s till
of
carbon
be
A
interference-free
N2 5 2 6
low
interval
to
n m.
26^ exists
absent,
in carbon measurement
C1 3 n a y
the
that
contains
ability
3r
is
quantitative
stuay
error
both
aOSence
one
Br .
^ 3
on t h e
center
neglected
compound f o r m u l a .
to
formula
the
problem
an
of
I I . 2 shows
the
enhanced.
normally
presence
by
present
relative
re veals
found,
regard
a compound
this
( N25
N would
for
N are
at
and
choice
the
at
nitrogen
3r
for
9 40 .6
unambiguous
separated
ratio
that
both
C ■> g
is
a ''shoulder"
selectivity
in
from
eaiorine,
nitrogen
Figure
discriminated
is
bum n o b
5 - 3 ^» then
in
and
carbon.
emission.
f urCacr
4(5t
determination
If
consider
compound f o r m u l a
nm b e c o m e s
carbon
bromine
interference
pr 6 i u i z n ^ r y i n s p e C C i o n
N lines
too
of
will
number
atoms
with
carbon
in
usually
be
of
carbon
i n an o r g a n i c
confidence
compound e x c e e d s
the
as
nitrogen
content.
If
322
nm
(interference
content
free
N5 - 3
i3
extensive,
group).
The
N can
k nown
be a s s e s s e d
at
C:M s e l e c t i v i t y
37
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ratio
for
C1 ^
predetermined
generate
a small
content.
In
most
of
free
all
of
first
cases
is
resolution
the
case
for
ail
Sulfur
out
their
iess
abundant
6: 1
elements
percentage
3r
is
N,
to
array
because
is
is
use
present
to
I
of
the
C ^
an
net
to
the
carbon
formula,
the small
Cgl i n e
at
argon
only
these
the
will
N,
are
and
0.
with
normally
nm
a s Cl
is
in
much
a
be
Measurement
a t 9 40 .6
present
source
interference
carbon.
As l o n g
nm i s
be t h e
I C?
H,
elements
C: I
as
C,
a
the
833*5
This
N
is
In
and s h o u l d
the
a weak
second
yielded
absent
and
greater
choice
( when
problem.
both
t h e Cg
interference
mor e
from
the
spectrograph.
line
spectrograph.
5-fold
with
and
aren't
present,
order
present.
compounds t h a n
a
in
the
wavelength
N are
in
and
C: S
be
carbon
contain
resuit
for
for
that
nitrogen)
array
low
and
moderate
about
as
is
and
respectively.
s houl dnot
chlorine
photodiode
Cl
S,
t h a n C,
subject
it
8:1,
value
mentioned
k nown
is
in
subtracted
point
atomic
(including
organic
ratios
and
present)
Wh e n
are
most
this
earlier
intensity
selectivity
nm
also
to
unnecessary.
at
photodiode
nm)
prominent
determinations
iodine
in
less
b o t h Br
compounds
and
C1 3 .
the
the
caroon
low
of
and
interference
and
vaiues
small
applied
Ng _ 3 » 3 2 2
an a c c u r a t e
M is
when
be
be c o m p u t e r
yield
9^ 0.6
then
(from
where
the
only
for
to
reminded
halogens,
choice
oft h e
be
with
consideration
M content
will
will
interference
nm c a n
correction
reader
absence
for
This
correction
The
9 40.6
value
C13 e m i s s i o n .
the
at
Th e
selective
interference.
and t he
with
a
line
is
for
C^
low
A comparison
resolution
still
carbon
of
emissions
preferred
than
C5 w h e n
relative
33
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
line
intensities
Cl
at
the
ratio
of
In
s nows
that
carbon
Cl
to
this
the
C1 3 w a v e l e n g t h
C is
case,
the
first
carbon
is
to monitor
as
75^.7
n m.
Using
line
center
for
9 ^ 0.6
at
The
analysis
dealing
is
with
in
a
the
UV- 7I 3
carbon
high
of
of
the
Cl
ratio
content
(6:1
the
for
desired
and
net
such
and
the
the
compound
(C13 )
line
a
C1 3
relative
ma y
then
be
automatically
carbon
emission
of
samples
the
of
I CP
the
effect
the
of
scheme
instrument
plaguing
using
emission
observed
carbon
that
in
correction
metal
the
in
present
should
near-infrared
study
and
organic
also
work
in terference
region
tubes
The m a g n i t u a e
most
in
determinations
photomultiplier
occurring
halogen
quantitative
manufacturers
spectrum.
in
method
for
a
of
the
c o mp o u n d
well
on
with
and
for
carbon
photodiode
detector.
qualitative
compound,
the
(once
of
unknown
interference
ratios
suggest
cor
and
the
practice
compl ex
concentration
array
from
wavelength
c o mmo n
determinations
when
to
u n k n o wn .
dual
the
ice
determination
spectrograph),
is
region
removing
this
result
selectivity
formulas
in
The
spectral
variety
value
wavelength
a
only
i n t e r f e r en c e - f r e e Cl
carbon
above
intensity
a quantitative
the
the
total
significant
measured
nm
computed
of
the
C: C1 s e l e c t i v i t y
of Cl e m i s s i o n
intensity
in
Cl on an
intensity
subtracted.
is
step
this
value
at
of
large.
of
predetermined
fraction
the
01-5
shoulder
Cj 1 e m i s s io n
the
primary
combination
with
Cg
a
identification
can
and
be
C 1 3
on t h e
used
of
high
for
in
an
wavelength side
unambiguous
scissions
semiquantitative
carbon
have
check
of
been
unknown
o f Ar - 3
confirmation
spotted).
carbon
line
<0
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
I n
ratios
with
those
of
qualitative
Helium
C,
H,
this
of
are
and 0 e m i 3 3 i ons
550-950
n m.
that
the
gas
background
rare
only
t wo
elimination
of
helium
of
argon
the
best
comparison
of
additional
N lines
useful
the
I I . 2 by Ar 3 3 b u t
Figure
extending
the
Ar 4 g i s
carbon
that
with
in
halogens,
carbon
and
in
tne
absent
from
are
the
of
the
most
the
are
seen
the
argon
at
344.6
this
in
this
emissions
selection
lines
of
I I . 2,
are
I I . 3).
a number
in
In
region,
(Figure
that
of
plasma.
in Figure
show
the
simplicity
a wider
MI P
in
between
principal
by A r ^
helium
by
plasma
helium
enables
I I .3 will
of
heiium
lines
the
detector
dynamic
are
aiso
MI P
intense
in
obscured
the
(O^.')
analysis
further
and
nm w e r e
interference
oxygen
the
yet
with
illustrate
I CP
A
of
are
MI P.
range
even
weaker
C1 0 n
free
These
are
the
II.4
extreme
example,
I I . 2 and
exceeds
cor
in
Table
microwave
the
obscured
oxygen
dynamic
I I . 3) .
!Q i i n e s
are
is
lines
For
were
helium
I I . 3 ).
bright
Figure
unambi guous
of
difference
interference
obscured
of
I C?
emission
M'lines
lines
helium
emissions
line
Figures
in
The
too
event
I I . 3 and
the
an a r g o n
( N ^ - 15) which
actually
(see
allow
absence
along
A striking
N, and 0 e m i s s i o n s .
nitrogen
mor e
or
uniikely
present
from
and
H,
the
all
shou.d
presence
Figure
spectrum
o f C,
in
£xci t a t i on.
region,
fact,
the
even
nitrogen
procedure
formula.
MI P
N,
same
compound,
and
c ompound
I I . 4,
confirmation
an unknown
sulfur,
Table
when
helium
are
the
saturation
range
more
in Figure
useful
01 - 3
group
lim it
extension,
useful
plasma
here
(as
the
for
is
in
G7 -
because
spectrum.
lines
for
carbon
in
this
40
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
regicr.
FIGURE
II.3.
P h o t o d i o d e A r r a y S p e c t r u m of
Carbon, H y d r o g e n , N i t r o ge n,
Emissions in the Region 650 of t h e n u mb e r e d e m i s s i o n l i n e s
I I . 4. M o t e t h e s i m p l i c i t y o f
emissions
in comparison
to
F i g u r e I I . 2). The T - a x i s ha s
r e la tiv e
in te n sity
4000,
s a t u r a t i o n o c c u r s at 14,400.
H e l i u m MI P E x c i t e d
and O x y g e n A t o m i c
950 nm. W a v e l e n g t h s
are i i s t e d in Taole
helium background
argon
(earlier
in
been t e r m i n a t e d at
whereas
detector
41
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(13-15)
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
of
the
MI P
(Figure
spectrum.
I I . 2),
(Figure
but
I I . 3).
Residual
N and
Sources
air
in
well
entrainment
erosion.
in the
the
interference-free
in
the
elim inates
the
e a rlie r
Figure
I I . 3 is
the
from
50
sam p i e
while
the
is
system
simpler,
reduce
can
be
Alterations
promising
erosion
lines
the
to
and
mechanical
vacuum
M emissions
"tees")
can
"scrubbing"
the
plasma
air
now
be
methods,
and
intensity
supply,
residual
atmospheric
quartz
torch
intensity
legitimate
elemental
due t o c o n t a m i n a t i o n
This
torch
rapidly
of
beccme
before
or
was
not
the
and
in
dead
removed.
plasma
from
supply
reduces
gases
helium
the
volume
of
a
of
in
plasma
analysis.
conditions
Pumping
gas
necessary
nitrogen
operating
entrainment.
of
contamination.
and
contamination
entrained
use
IC?
well.
the
plasma.
oxygen
p u mp s u b s t a n t i a l l y
since
carbon
0 emission
steps
effect
for
oxygen
atmospheric
between
"cleanup"
design
minimize
as
gas
is
helium
MI ?
Even t h o u g h t h e r a r e gas s p e c t r u m
useful
torch
the
IIP
helium
lines,
N and
remainder
the
of
torch,
from
contamination
very
in
of
chemical
the
the
I I . 3 derives
w i t h t h e a r g o n I CP.
to
the
the
mentioned
residual
plasma
in
sen sitiv e
sulfur
supply
of
» of
to
the
the
vicinity
background spectrum
MI ?
and
S o me
due
include:
problem
order
nitrogen,
C o n t a mi n a t i o n .
in Figure
of
Ar 4 ^
more
Approximately
observed
by
for
purged
in
obscured
provides
contamination
not
were
halogens,
At mo s p h e r i c
of
content
and
from
lines
0
are
This
determ inations
interferences
They
appear
torch
gas
with
wail
transfer
a
small,
b a c k g r o u n d 0 and
spaces
(such
In
combination
of
higher
purity
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
as
with
than
the
0
current
"weider's
contribution
from
grade"
this
snould
eventually
minimize
the
source.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
N and
REFERENCES
1)
Horlick,
2)
Betty ,
3)
S a l i n , E . D. ;
H o r l i c k , G.
Franklin,
Baber,
C.;
31 3,
539.
4)
Coddi ng,
G. ;
K. R. ;
Acta,
E . G.
Horlick,
M. ;
19 76,
Appl .
G.
Spec.,
Appl .
Anal.
Spec.,
Che m. ,
Koirtyohann,
25,
1973,
1978,
32,
1980,
S . R.
1490.
31.
52,
1573.
5p e c _t r oc h_i m.
5)
Ed mu n d s , I . E . ;
H o r l i c k , G.
Appl.
Spec. ,
1977,
_3J_* 5 3 6 .
6)
Blades,
H o r l i c k , G.
Appl.
Spec. ,
1980,
3JL1 6 9 6 .
7)
M. W. ;
Kawaguchi,
Acta,
H. ; I t o , T. ;
1980,
353,
Ota,
K. ;
Mizuike,
A.
S p e c t r o c h im
199.
3)
B l a d e s , M. W. ;
Horlick,
G. S p e c t r o c h i m . A c t a ,
1981,
36 B , 361.
9)
B l a d e s , M. W. ;
Horlick,
G. S p e c t r o c h i m . A c t a ,
1981,
3 6 B, 331.
10)
Hughes,
1981,
11)
3ollo
-
1981,
12)
Hughes ,
13 )
MI T
35,
S.K.; 3 r o w n ,
3. ,
Jr.; Fry,
R. C .
A£ p _ l .
§pe_c.
396.
Ka ma r a ,
36B,
3.M.,
A. ;
Codding,
E. G.
S p e c t r o c h i m.
Act a
973.
Ph. D.
Wavelength
Dissertation,
Table,
John
Kansas
Wiley
State
4
University,
Sons,Inc.,
1983
Mew
Yor k
_35*
u 93
1950.
14)
Hughes,
S . K . ; F r y , R. C.
( T h i s w o r k w i l l be p u b l i s h e d
No v e mb e r i s s u e )
Appl.
in
S p e c . ,1 9 8 1 ,
ANALYTICAL CHEMISTRY, 1 9 8 5 ,
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
5 7,
CHAPTER 3
RED AND NEAR INFRARED ICP EMISS IO N SPECTRA OF
FLUORINE,
CHLORINE,
BROMINE,
USING A PHOTODIODE
IODINE,
AND SULFUR
ARRAY
46
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
INTRODUCTION
Preliminary
1024-channel
detect
• _
* -•«.-
_
±
u
i
4 iC
a
of
-4
the
-
C
a
compress
format
limited
and
for
v
recorded
grating
of
C,
H,
photomultiplier
used
detect
The
sulfur
present
elements
that
c ompounds
fluorine,
knowledge,
not
been
emission
photodiode
by
the
be
array
interference
wa s
and
i 3
of
‘
0
950
oxygen
-
£» >
—
•
£>
w
exposure
nm
array
atomic
and
dispersion
-
in
(ICP)
\
r
ms
reported
as
of
into
chip
by
lines
the
samples
of
«.
using
enough
to
the
mm
(1).
for
25
Despite
were
found,
simultaneous
interest
in
only
A diode
undertaken
photodiode
using
detector
but
array
also
single
wa s
also
no m u l t i e l e m e n t
elements
investigated,
are
region
and
extend
a
in
the
and
of
number
volatile
spectograph
iodine
Tables
the
to
detected
emissions
reported.
and
and 3 have
( 6).
bromine,
detector
3r,
but
element,
simultaneously
these
ICP,
(5*5).
a single
was
F , Cl,
in the
systems
a n d MIR a t o m i c
lines
i
v
interference-free
N,
red-NIR
previously
the
photodiode
performed
chlorine,
red
67
t
a
simultaneously
nitrogen,
i- i
650
emissions
study
can
^
single
region
characterized
were
c
descriaed
i.1).
channel
determinations
*.
lower
selection
MI R a t o m i c
been p r e v i o u s l y
to
to
1024S
line
a
to
~
/
have
plasma
hydrogen,
^
in
spectral
chemistry
and
coupled
carbon,
resolution,
determination
Re d
inductively
Reticon
a scheme
spectrograph
i
were
optical
synthetic
a
entire
a
laboratory
/'vrraN
» i e
ruled
the
of
or
this
array
nonmetals
-4
a
u
elements
coarsely
from
photodiode
microwave
emissions
these
reports
I CP
excited
presented
650
include
sulfur.
in the
of
organic
to
iodine
-
950
variable
here
nm.
line
of
To
our
I CP
have
atomic
for
the
Spectral
selection
a7
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
scheme
is
interest
outlined
to
for
synthetic
minimizing
organic
spectral
overlap
in
samples
of
chemists.
EXPERIMENTAL
Apparatus
and P r o c e d u r e .
The
I CP
source,
spectrograph
the
experimental
chapter
of
(listed
in Table
stream.
Each
15
gas
57
ms
have
directly
were
apparatus
halogens
into
the
introduced
collected
in
and
I I I . 1.
containing
fed
array
been d e s c r i b e d
in
in Table
continuously
eacn
s sampling
listed
were
was
photodiode
Differences
samples
III.1)
sample
of
are
optic,
procedure
(1).
conditions
A variety
each
fiber
and e x p e r i m e n t a l
previous
exposures
external
for
and
sulfur
argon
sample
for
“ 15 s .
co-addition
Ten
curing
interval.
RESULTS & DISCUSSION
Iodine.
and
For
MIR
emission
comparison
identical
Chapter
this
Figure
spectrum
intensities
A
have
listing
been
saturation
(x
and
injected.
amount
10^ ) ,
The s t r o n g e s t
in F igure
lines
is
Th e
iodine
1 1 1 .1 . To o u r
argon
and
of
complete
background
atomic
in
for
in
iodine
Table
terms
of
c o mp o u n d
wavelengths
are
emissions
from
knowledge,
ICP-excited
trifluoromethyl
resolution
given
reported
normalized
the
atomized
an
dispersion
Thirty-five
region.
snows
from
purposes,
optical
2.
III.1
red
be
are
of
found
in
observed
in
I I I . 2.
Relative
percent
detector
stoichiometry
reference
Table
iodide.
spectrum
ma y
formula
from
red
7.
I I I . 2 are
a n d MI R i o d i n e
labeled
lines
48
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
have
T able
I I I . 1.
ICP Apparatus and Experiaental Conditions
( s a me a s C h a p t e r 2, e x c e p t w h e r e n o t e d b e l o w )
R. F.
P o we r
Sampl e
Fl ows
1 . 7 5 *W,
25 W,
(L/min)
a) sf5
: 0.022
b ) « r 2F2
: 0.016
c ) C2 F 5 C1
: 0.036
d)
CF 3 I
: 0.016
e)
3 F6
C 2 F 5 C1
: 0.016
: 0.032
f ) SFg
CF 31
Entrance
Slit
incident
reflected
25
: 0.016
: 0.016
um
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE III.1.
P h o t o d i o d e A r r a y S p e c t r u m of ICP E x c i t e d Iodine,
Fluorine, and Carbon Emissions from Atomiz ed C F 3 I
in the R e g i o n 650 - 950 nm. T h e e m i s s i o n l i n e s a r e
numbered for convenient r e f e r e n c e ,
with iodine
e m i s s i o n w a v e l e n g t h s l i s t e d i n T a b l e I I I . 2. S e v e r a l
i n t e r f e r i n g C a n d Ar e m i s s i o n l i n e s h a v e a l s o b e e n
labeled
in t h i s
figure.
The I - a x i s
has
been
a r b i t r a r i l y terminated at r e l a t i v e i n te n s it y 10000,
wh e r e a s d e t e c t o r s a t u r a t i o n o c c u r s at 14,400.
50
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
MVfcltNGlll (nm)
M
M
ul
51
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table III.2. a
Atoalc Iodine Eoissions from 650 - 950 na in Ar ICP
(obs.
Symbol
-
obscured
by:
Wavel ength
;
int.
-
interfered
(j
( n m)
355.549
5.9
lz
658.527
3.5
:3
661.966
6. 1
■‘•6
712.005
712.205
12
714.206
4.5;
722.730
723.678
723.784
42
740.206
741.050
741.120
741.648
16
M 4
746.399
27
X1 5
755.41 3
6 . 1
1 16
770.020
3.5
:i7
304.374
M3
316.933
7.9
: 19
322.257
2.3
; 20
824.005
1 21
339.330
^22
348 . 6 1 1
*2 3
366.495
X24
370.080
*7-9
*10-13
z25- 27
by:
;
obs.
Ar
obs.
Ar t 5
14
; obs.
Ar
„
; obs.
A r 23
obs.
Ar 3 3
22
52
12
<61
6.7;
35
; o b s . Ar
5.3
385.324
385.380
385.750
)
Relative Intensity
detector saturation x
•1
4. 5
with
59
52
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.
TABLE I I I . 2 .
Symbol
yavelength
Relative Intensity
(I detector saturation x
( nm)
I 28
339.384
20
* I 29
902.240
38
^30
905.333
250
1
V 1'I91
912.303
no
31,32
I 33
I
34,35
a
(cont.)
bracketed
lines
3. 2;
933.505
34
942.671
942.715
15
are
unresolved
; int.
with
this
int.
C? ( a
Ar
^9
spectrograph
53
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
1J 2 ;
not
been
previously
reported
from
convenient
reference,
the
argon
inductively
coupled
piasma.
For
have
been
which
are
assigned
correspond
for
iodine
rank,
lines
have
been
(e.g.
labelled
(e.g.
the
listed
in
only
number,
together
or
the
C7
3) .
tables
of F i g u r e
subscripts
I I I . 2.
bear
(e.g.
carbon
number
(e.g.
117 )
relationship
In
and
s o me
the
or
have
subscripts
to
cases,
subscripts
35)
1^4
lines
III.:
The s u b s c r i p t s
no
resolved,
pair
and
lines
stoichiometry.
a
identification
and
and
not
as
argon
number
in Table
111.1 are
A few
with
listing
pur poses
atomic
lumped
Ar g 1
s ame
to
in Figure
I 7 - 9 ).
iodine
identification
identification
intensity,
the
in
a
group
also
been
the
figure
These
argon
and
carbon
lines
are
not
this
paper,
but
ma y
found
with
the
of
identification
number
subscripts
The
iodine
emission
in
the
oe
tables
of
reference
1
by
strongest
at
905.833
nm.
This
the
906.113
and
906.247
the
best
line
spectrometer,
iodine
but
use
it
selectivity
wavelength),
organic
with
favors
carbon
compounds
is
and
unfortunately
nm c a r b o n
not
Although
ratio
is
with
is
determination
spectrograpn.
diode
to
line
observed
a
medium
likely
this
to
low
Table
iodine
tend
be
( 20:1
to
Figure
( C7 3 ) .
or
useful
mo r e
this
part
I 3Q would
be
reso lu tio n
for
quantitative
photodiode
that
array
the
I :C
spectrograph
abundant
obscure
m
high
in d icates
for
I I I . ’ is
overlapped
dispersion
I I I . 3
considerably
will
lines
in
the
than
I 30
and
iodine
line
on
in
a
array.
It
should
be n o t e d
that
the
red
and n e a r - i n f r a r e d
emission
54
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table
I I I . 3.
T a b l e of S e l e c t i v i t y R a t i o s for S o m e S e c o n d a r y L i n e s 3
and the Photodiode Array Spectrograph (25 ua slit)
Element:Interference
4
I30
:29
x2 3
^23
25~27
M 4
c 7 ,a
s 3 3-3 5
3-15
s2 3 ~ 2 6
s 29-32
N3
M3
1 14
±34,35
x7 — 9
E13
■=>8 - 1 0
^2 2
4
4
4
4
4
4
*
it
0.3
(N
I)
(I
(1
C)
S)
0. 1
6
15
60
3
1 .3
1. 4
0.5
0.9
m
i0
C i 25
s 8-1 0
B r Ug
12
5 r 46
3 r 3 3 . 34
3 r 33 . 3 4
x28
C6
25
s 8 - l0
fa - 1 0
°20
S4 1
4
1 .2
C)
S)
N)
5)
S)
N)
30
s 20
±6
-6
±1 3
L 13
±1 3
W1 3
6-3
3 r 3 3 , 34
c6
Selectivity
(I
(I
(I
(I
(I
(I
20
c ^ 14 - 1 7
CiiS
L i ia
ci.
s4,
4
Calculated
C118
2
2
Cl ,
I 7-9
0 .8
Cl - 2 2
-1 3
c 134
0 . 75
1. 5
0.5
3 ” 33 . 3 4
C 1 18
C 1 3U
S 40 , 41
^34,35
M2 5 , 26
0 . 6
3
1. 1
6
6
8
1 40
(Cl
(Cl
( Cl
(Cl
( Cl
(Cl
S)
N)
3r)
C)
S)
3r )
(3r
( 3r
(3r
I)
C)
Cl )
(S
(S
(S
(3
(S
Cl )
I)
Cl )
C)
Cl )
(C
(c
(C
(C
(C
(C
3r )
Cl)
Cl )
3)
I)
M)
Ratio
i t h e x c e p t i o n of t h o s e d e s i g n a t e d w i t h an a s t e r i s k ,
the caoie
c o n t a i n s onl y s e c o n d a r y l i n e s which a re g e n e r a l l y not used in
q u a n tita tiv e
analysis,
b u t may be u s e f u l f o r q u a l i t a t i v e
confira aticn.
The p r i a a r y l i n e s of i o d i n e , c h l o r i n e , b r o m i n e ,
nitrogen,
hydr oge n, and oxygen used in q u a n t i t a t i v e a n a l y s t
(e.g.
I 17,
Cl 1 a 3 ^ 4 6 ’
N 9«
H1,2>
and
°1~3^
are
free
0
i n t e r f e r e n c e a n a t h e r e f o r e do n o j a p p e a r i n t h i s t a b l e . C a r b o n
d a t a from C h a p t e r 2 have been i n c l u d e d h e r e ( w i t h p e r m i s s i o n ) f or
convenience.
55
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
3
pe ct r a
Most
of
of
nonmetais
the
previous
appear
primary
study
in
qualitative
fcr
at
nm
and
A r 30
line
but
is
nm.
Calculation
I 39
wavelength
setting
Other
of
the
(Table
less
and
(363
383
group,
this
see
(see
an 1 : 3
n m)
eliminates
iodine
12 3
I 29
and
used
tne
the
two
is
best
system
free
nm.
also
resolved
ratio
for
are
at
this
I <7
all
from
the
the
from
^ 2,3 ~ 35 s r 0 u P a ^
by t h e
30:1
of
lines
from
resolved
of
fcr
listing
well
is
of
I I I . 3.
I 17
I 29
the
com pilation
resolution
nm.
in
and do n o t
reasonably
of
335
ratio
determinations
nm.
2),
Ar
” 904
902.240
spectrograph
include
These
lines
are
respectively.
of
Table
for
l £3
for
this
15:1
has
nm
and
866.495
nm
overlapped
by
consideration
in
the
Although
favors iodine
lin e is
For
only
determination,
0.1:1,
performing
367
I 2 5 - 57
the
for
1:3
the
and
A r 37
by
Ar 3 7
Obscuration
dispersion
at
been c a l c u l a t e d
I I I . 3) *
overlaps.
w i t h a low
I ?3 at
S2 3 _2 5 and 3 2 g _ 32 g r o up s
ratio
d ire c tly
from
iodine
I I I . 2} ,
(see
(6 : 1)
also
low
free
a
that
selectivity
Chapter
spectrograph
(366.794
ac
selectivity
selectivity
this
as
normally
in Table
111. 1 show
lines
Figure
ratio
well
simple.
I I I . 3 ).
useful
n m,
nm
selectivity
I:N
carbon
a value
a n d t h e 1 2 5 - 2 17 8 r 0 u P
M1 3 - 1 5
largely
overlapped
I:S
yieids
is
at902.240
weakly
as
interference
are
301.479
relatively
paper
Exceptions
andi s
at
this
are
lines
using
I29
I C?
secondary
and
interference
emissions,
slit
sulfur
determination
304.374
intense
for
I I I . 2 and F i g u r e
iodine
nonmetal
in
which
confirmation.
of
argon
completely
I I I . 3
ratio s
lines
Table
the
lines
( 1) are
Table
s e le c tiv ity
primary
in
quantitative
spectrograph.
56
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE I I I . 2 .
P h o t o d i o d e A r r a y S p e c t r u m o f I CP E x c i t e d I o d i n e ,
S u l f u r , F l u o r i n e , and C arbon E m is s i o n s from
A t o m i z e d C F ^ i a n d SFg i n t h e R e g i o n 6 5 0 - 9 5 0 nm.
The e m i s s i o n l i n e s a r e n u m b e r e d f o r c o n v e n i e n t
reference,
with
iodine
and
sulfur
emission
wavelengths
listed
in T ables
I I I . 2 and
I I I . 7,
r e s p e c t i v e l y . S e v e r a l i n t e r f e r i n g C a n d Ar e m i s s i o n
l i n e s h a v e a l s o b e e n l a b e l e d i n t h i s f i g u r e . T h e Ta x i s has been a r o i t r a r i l y t e r m i n a t e d at r e l a t i v e
i n t e n s i t y 1 0 0 0 0 , whereas d e t e c t o r s a t u r a t i o n occurs
at 14,400.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
jn
»
^
fO4 . k?v
-L3
H
NT
CO
tn
3
»C
3
LH
*C^
3
- ld
3
<0
-o
E
c
QSr-.
un“
-r*
©+
•>
cn+<
'OOOOt
*0S£8
'OOSi
0529
0S£E
'OOOS
’OOSS
A1EN31NI
53
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Another
Figure
(Table
is
This
line
perform
iodine
is
overlapped
can
reasonably
be
nn
( I :N) of
1. 2:1
This
nitrogen
interference
absence
quantitative
of
at
inspection
nitrogen
analysis
with
the
of
in
at
746.399
resolved
(see
from
Chapter
iodine
woul d
other
the
a low
seen
well
by N 3 aC 7 9 6 . 8 3 1
a preliminary
the
(1 1 4)
ratio
I I I . 3 ).
confirm
for
of
III.l.
Ar 2 5 b u t
to
line
channel
ma k e
it
principal
sample
resolution
2)
before
an
in
nearby
with
a
center
necessary
M lines
using
photodiode
to
I , 4
array
spectrograph.*
at
Other
we a k
911.391
and
iodine
9 12.803
I I I . 2 ).
With
obscured
by A r 4 7 a t
not
iines
be
further
( I 17
and
lines
a
low
labeled
resolution
system,
912.296
are
by Ar
(not
explored
12g )
nm
overlapped
n m.
since
Use o f
several
available
for
emission
in
Figures
I ^ -j
these
primary
32
are
iodine
are
I -.
J 1t J£
I X 1 .1
and
directly
lines
need
interference-free
analysis.
♦ T h e s e r e s u l t s i n d i c a t e t h a t a m i n o r q u a l i f i c a t i o n s h o u l d oe
m a d e c o n c e r n i n g a s t a t e m e n t i n t h e p r e v i o u s p a p e r a b o u t u s i n g X3
( 7 9 6 . 3 3 1 n m) f o r i n t e r f e r e n c e - f r e e n i t r o g e n d e t e r m i n a t i o n i n a
iow
reso lu tio n
s p e c t r o g r a p h (1).
At
the
time
of t h a t
publication,
t h e I CP e x c i t e d r e d a n d NI R a t o m i c s p e c t r u m o f
i o d i n e wa s u n k n o w n . I n v i e w o f t h e r e s u l t s o f t h e p r e s e n t p a p e r ,
i t a p p e a r s t h a t i n t e r f e r e n c e f r o m i o d i n e m u s t be t a k e n i n t o
c o n s i d e r a t i o n w h e n t h e M3 l i n e i s u s e d f o r n i t r o g e n d e t e r m i n a t i o n
i n t h e p r e s e n c e o f i o d i n e . At t h e
c h a n n e l c e n t e r , o u r new d a t a
show t h a t
t h e Mi l s e l e c t i v i t y r a t i o
i s o n l y 0.3:1
for this
s p e c t r o g r a p h ( T a b l e I I I . 3) .
F o r t u n a t e l y , t h e n u mb e r of c ompounds
c o n t a i n i n g b o t h n i t r o g e n and i o d i n e i s s m a l l .
The r a r e o c c a s i o n s
w h e r e t h e y b o t h o c c u r i n a c o m p o u n d f o r m u l a w i l l be r e a d i l y
s i g n a l l e d by t h e
a p p e a r a n c e of o t h e r
p r i n c i p a l l i n e s of b o t h
elements.
i n t h i s c a s e , a s i m p l e r e m e d y e x i s t s by s w i t c h i n g
from
M3 t o N 4 5
( s e e C h a p t e r 2)
in order to
avoid iodine overlap.
T n i s m i n o r p r o c e d u r a l u p d a t e a l l o w s us t o r e i t e r a t e o u r o r i g i n a l
claim
of i n t e r f e r e n c e - f r e e
nitrogen determination
in a iow
r e s o lu tio n photodiode array spectrograph.
(end footnot e)
59
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure
13^.35
I I I .’
Pa i r
a:
However,
compounds
For
ratio
the
the
9 4 2 . 7 nm t o
resp ectiv ely .
selectivity
shows
be p a r t l y
I 34
to
be
^5 >
determination
the
than
of
of
and
this
the
I :C
spectrograph.
in
most
desirable
no
the
b y Ar 5 1 a n d C 1 3 .
carbon
£e33
where
129
emission
in d icates
for
60:1
£34,35
or
1 17
than
I I I . 3
abundance
use
nm)
overlapped
Table
better
overwhelming
makes
(933.505
1^3
carbon
organic
for
iodine
interference
occurs.
On e f i n a l
nm ( s e e
Figure
overlapped
for
and
to
ma y
spectral
quite
17 - 9
other
paragraphs
in
Figure
(724
and
n m) .
tde
secondary
often
lines
An I : S
lines
of
useful
interference
of
one
the
qualitative
sample
(once
be n o t e d
the
that
is
I 7-9
at
this
I
group
is
of
is
selectivity
photodiode
be
for
to
I I I . 2 shows
not
useful
iodine
iodine
III.1).
by 3 g _ 10
observed
group
group of
array
iodine
for
sort
ratio
discussed
another,
confirmation
principal
3: 1
spectrograpn.
in
quantitative
or
"723
of
preceding
analysis
but
they
the
1 17 and
This
due
can
be
presence
of
I 2g l i n e s
have
been s p o t t e d ) .
Chlorine
spectrum
650
-
of
950
emissions
lines
figure.
given
are
from
The
I I I . 3 ana
atomized
nm
( 1 ),
and
is
i ll u s tr a te d
atomic
two
complete
of
in
a number
fluorine
chlorine
I I I . 4.
Table
Cl ,
weak
wavelengtns
in
Th e
ICP-excited
chloropentafluoroethane
strongest
in Table
listed
and F l u o r i n e .
ail
Ci
Fluorine
Figure
of
in
I I I . 3•
previously
emissions
emissions
lines
are
observed
emissions
the
can
region
shown
reported
be
seen
this
in
from
T h irty -fiv e
labelled
in
emission
in
carbon
in
Figure
region
Figure
I I I . 5.
60
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.
the
are
III.3
FIGURE I I I . 3.
P h o t o d i o d e A r r a y S p e c t r u m o f ICP E x c i t e d C h l o r i n e ,
F l u o r i n e , a n d C a r b o n E m i s s i o n s f r o m A t o m i z e d C2 C I F 5
i n t h e R e g i o n 650 ~ 950 nm. Th e e m i s s i o n l i n e s a r e
r:
numbered for convenient r e f e r e n c e , with ch lo rin e
and f l u o r i n e e m i s s i o n w a v e l e n g t h s l i s t e d i n T a b l e s
I I I . 4 a n d I I I . 5, r e s p e c t i v e l y .
Several in te rfe rin
C a n d Ar e m i s s i o n l i n e s h a v e a l s o b e e n l a b e l e d i
this figure.
The ' f - a x i s
has been a r b i t r a r i l y
t e r m i n a t e d a t r e l a t i v e i n t e n s i t y 1 0 0 0 C, w h e r e a s
d e t e c t o r s a t u r a t i o n o c c u r s a t 14,400.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
,
c cif5
m
0
,—in
01
CM.
CO x
NT +
CM
o"
«M
in
CM
_!P
OOSZ.
!00S
A1SN31NI
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
to
Table I I I .4.
Atomic Chlorine Emissions from 6 5 0
(obs.
l y mb o l
-
obscured
by:
Wavelength
;
int.
-
(}
( nm)
950
2
interfered
with
by:
725.605
Cl 2
741.412
Cl3
754.709
Cl 4
767.246
< 3.6;
ci5
771 . 760
3.9;
Clfi
774.498
r1
“Ij
776.913
4. 4
'- 1 6
782.139
4.7
d 9
737.324
3. 1
C1
303.443
308.557
308.651
303.769
4.2;
25
5.6;
obs.
A r 22
obs.
Ar £ 6
26
o b s . A r 27
21
obs . A r ^ i
819.439
821.203
21
W-L 1 4 - 1 7
822.045
322.176
C 1 13
3 3 3 . 327
17
Cl 1 9
837.597
36
C 1 20
342.327
17
C 1 21
857.527
12
CI 22
353.599
28
C 1 23
363.630
4.7;
c i 2U
891.290
5.8
c l 25
394.801
)
Relative Intensity
detector saturation
CI1
10-13
nm i_n Ar ICP
;
int.
^*3
; o b s . Ar ^ 3
00s .
Ar ^ y
16
63
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE I I I . 4
Symbol
Wavelength
(cont.)
(J
( nm)
Relative Intensity
detector saturation
.
20,27
903•396
904.543
15
; obs.
906.966
907 . 317
14
;
o b s . C„
° *2 8 , 2 9
C i 30
912.112
64
;
o b s . A r 4j
Cl
919.167
919.749
6.9;
obs.
Ar
C 1 33
928 . 3 8 2
3.6;
obs.
A r 50
c i 3U
939 . 381
9.2
C i 35
945.206
5.6
Cl
31 , 3 2
9
„
43
Table II I.5.
Atonic Fluorine Emissions fron 650 * 950
(obs.
3 ymb o l
■» o b s c u r e d
by:
Wa v e l e n g t h
;
int.
635.602
3,4
690.246
690.982
p
with
by:
)
Relative Intensity
( i detec t o r s a t u r a t ion x
( n m)
633•426
2
» interfered
nm in Ar ICP
,
0 8
64
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
10^
Th e
the
oest
Cl - s
and
reasonably
resolved
known
lines
from
resolved
Ar gg.
spectral
photodiode
C 1 ^g
emission,
at
358.560
it
(see
ratio
preliminary
check
Figure
I I I . 4).
at
the
indicates
be u s e d
by
utility
this
only
of
by
lines,
0 . 5:1
the
be u s e d ,
the
center
Bot h
Cl-
are
subject
Cl,
is
with
the
that
for
at
from
low
CI3
is
well
ail
other
dispersion
for
this
725.605
minor
overlapped
is
overlapped
Table
is
is
not
extension
is
333.515
, y group
spectrograph
and C l 25
interference.
at
Cl:5
If
in
a
the
qualitative
high
at
" 821
*
chlorine
n m,
which
1.4:1,
see
preferred.
nm ( s e e
but
have
S 20
the
at
at
also
determination
ratios
by
Cl 22
1. 3 : 1.
for
nm)
The
present
line
CL^ 3 e m i s s i o n
by S g _ 1Q w i t h
n m.
1 1 1 . 3.
center
sulfur
carbon,
nm
(754.709
(C1 : N s e l e c t i v i t y
Cl,g
respectively,
Cl ^
I I I . 3)
a secondary
the
the
912.296
chlorine
of
than
channel
group
Selectivity
at
to
free
are
reasonably
at
range
but
line
presence
and 0 . 9 : 1 ,
channel
Cg
line
3r 33 54.
are
t h e C1, 4
N5 - 3
I I I . 3 shows
overlapped
lines
n m.
Arny
that
as
dynamic
the
1) can
Figure
is
From
C l 22
Similarly,
by
by
(Figure
concentrations.
ref.
33 7 . 5 97
C l^
intense
obscured
or
also
C e t e r a i n a t i on
and
even
nm
Cl , 2 c o u l d
overlapped
Ar^,
mo r e
identification
is
754.70 9 and
chlorine
nm i s
is
selectivity
sample,
chlorine
spe c t r o g r a p h .
353.599
nm
from
These
912.122
but
emission
at
interference
array
at
quantitative
emissions
01,9
well
for
also
for
C 1 : Br
been
and
at
nm
is
2).
Th e
hindered
not
Chapter
is
the
833.4
a n d C 1: C
calculated
slit
at
nm
3r
of
only
the
Cl, 3
setting.
3?4,80l
Figure
a C1 : S
by
3 33.327
nm
(Figure
I I I . 3)
III.4 indicates
selectivity
ratio
of
65
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
that
10: 1
FIGURE III.4. Photodiode Array Spectrum of ICP Excited Chlorine,
Sulfur, Fluorine,
and C a r b o n E m i s s i o n s from
A t o m i z e d C g C l F g and SFg
in the R e g i o n 650 - 950
nm. T h e e m i s s i o n l i n e s a r e n u m b e r e d f o r c o n v e n i e n t
reference,
w i t h c h l o r i n e and s u l f u r e m i s s i o n
wavelengths
listed
in Tables
I I I . 4 and
I I I . 7,
r e s p e c t i v e l y . S e v e r a l i n t e r f e r i n g C a n d Ar e m i s s i o n
i i n e s h a v e a l s o b e e n l a b e l e d i n t h i s f i g u r e . The i a x is has been a r b i t r a r i l y t e r m i n a t e d at r e l a t i v e
i n t e n s i t y 1 0 0 0 0 , whereas d e t e c t o r s a t u r a t i o n occurs
at 14,400.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
c 2c i f 5
q -k
0000!
*0SZ8
'00SZ,
’0S29
n
'000S
'0S££
'OOS2
A1ISN31NI
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
for
the
nm)
with
center
C11 channel
a
12:1
for
performed
CC1 3
and
with
Figure
iying
selectivity
lines
shows
states
in
of
this
the
emissions
the
region
Taoie
327.244
n m,
background
achieved
emission.
either
3 r u jj n -
is
the
line
choice
resolution
the
free
3r
the
can
Cl
be
iines
of
e V) ,
Ar
I C?
a
of
the
in
fluorine
weak
Successful
45
high
atomic
and,
useful
helium
yields
for
for
microwave
a mu c h
better
ICP-excited
and
unknown
at
spectral
quantitative
by
in
the
are
and
can
this
S82-522
interference
in
listed
in
for
the
compounds .
region,
strong
nm o r
observed
used
organic
atomic
introduced.
are
be
determination
Br
is
bromine
array
emission
obscured
3 r 44
of
strong
3r
atomic
(3,9).
lines
are
of
unusually
probably
Use
shows
atomic
from
for
are
the
iines
inherently
photodiode
these
mostly
n m.
of
of
Du e t o
are
of
emission
by
intense
using
spectrograph.
wh e n d i b r o m o d i f l u o r o m e t h a n e
determination
is
channel
determination
(>_1 4. 7
they
III.5
54 a t o m i c
most
I CP
spectrum
Figure
Ma n y
quantitative
( 3 5 6 . •*c 0
C1 2 5
array
emission
only.
place
emission
covered
I I I . 6.
Th e
in
which r e s u l t
Approximately
weak
systems,
( MI ? )
3 r o mi ne.
the
interference-free
element
argon
identification
atomic
the
6 9 0 . 2 4 6 nm.
qualitative
fluorine
chlorine
two
array
plasma
at
photodiode
but
pnotodiode
induced
ratio
by 5 r ^ 3
preferred.
6 3 5 . 6 0 2 nm a n d
iines
overlapped
is
resolution
these
are
excited
Ci 2 5
qualitative
I I I .3
at
emission
low
and
C l 19)
fluorine
~ 1: 3 r
this
Quantitative
center.
3^32
Ar 3 2
of
3r
B r^
at
and
determination
13
at
? ^ a3313
can
be
83 9 . 7 6 2
probably
with
instrument.
68
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
a
iow
FIGURE
III.5. Photodiode Array Spectrum of ICP Excited Bromine,
Fluorine, and Carbon Emissions from A to mi ze d CBrg F 2
in the R e g i o n 650 - 950 nm. Th e e m i s s i o n l i n e s a r e
numbered for convenient r e f e r e n c e ,
with bromine
emission wavelengths l i s t e d in Table I I I . 6. Several
i n t e r f e r i n g C a n d Ar e m i s s i o n i i n e s h a v e a l s o b e e n
labeled
in
this
figure.
The Y - a x i s
has
been
a r b i t r a r i l y t e r m i n a t e d a t r e l a t i v e i n t e n s i t y 1 0 C0 0 ,
wh e r e a s d e t e c t o r s a t u r a t i o n o c c u r s a t 14,400.
59
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Li.-!
•ooooi
•QOS^l
'OSZS
OOOS
"OSZ.E
A1ISN31NI
OOSZ
OSZT
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table II I. 6.
Atonic Bromine Emissions
(obs.
5ymb o l
-
obscured
by:
Wa v e l e n g t h
from 650
; int.
~ 9 5 0 nm i_n Ar ICP
» interfered
wi t h
by:
Relative Intensity
(% d e t e c t o r s a t u r a t i o n
( nm)
654 . 457
654 . 3 0 9
0.3
3r3
655.980
2.7
3r ^
653 . 21 7
7.3
3r5
663 . 1 62
6. 1
3r .
o, /
663.228
669 . 21 3
4.5
3 r 3 - 10
677.943
673.677
679.005
17
3r 11
700.519
32
3r
711.163
71 1 . 353
2.2;
obs.
716.210
1. 8 ;
o' os . Ar 1 5
718.434
1. 5
3 r 16
726.045
7.9;
3 r 17
734.351
3P13
742.589
3 r 19
751.296
23
3 r 20
780.302
35
3r
1 ,2
12,13
3r 14
3 r 15
3r
21 , 2 2
3 r 2 3 ~2 5
3 r 26
)
35
5.8;
792.531
793.368
9.1;
796.684
796 . 7 0 3
797.850
18
798.994
13
Ar
13
o b s . Ar t 3
; obs.
Ar 2 0
obs.
A r £3
; o b s . A r 25
o b s . Ar
29
71
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE I I I . 6 .
Symbol
ar
27,28
Wavel ength
8 0 2 . 635
302.654
( nm)
(co a t.)
(i
Relative Intensitydetector saturation
3 r 29
313-152
< 32
3r
315.375
3 1 5 . 400
12
3 r 32
327 . 244
1 90
3r
333•470
334.370
66
3 0 , 31
3 3 , 34
obs .
3.9;
A r 30
; obs . Ar j ,
;
i n t . Ar
31
; o b s . Ar 32
; in t.
C5
3 r 35
333.404
< 1 0
; o b s . Ar 3 3
3 r 36
344.655
< 43
; o b s . A r 33
3 r 37
347.745
56
3 r 33 , 3 9
355.773
35 6 . 6 2 8
10
3 r 40
862.533
3r
4 1
36 3 . 3 6 6
35
3 r 42
369.353
20
3 r 43
3 7 9 . 347
3r
381.996
382.522
1 10
339.762
1 60
44,45
3 r 46
6.7;
7.3
393-240
1 .9
3 r 48
394.939
1. 5
Br ^g
396.400
21
3 r 50 ~5 2
916.606
917.363
917.316
50
3 r 53
926.542
67
3 r 54
932.036
15
3 r 47
i n t . A r 36
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
3r 4g
is
nearly
interferences
f r o m Ar
with
is
12g (339.344
given
of
completely
730.302
n m,
and
qualitative
extending
other
of
confirmation
the
Br
dynami c
an e x c e p t i o n a l l y
The
for
3r
strong
iines
large
range
which
determination
lines
with
be
at
from
with
resolution
photodiode
and
at
ratios
2: 1
are
low
(3r:C
for
this
many
333.570
3r:Cl)
instrument.
other
of
25:1
intense,
but
can
3 r 2 Q a5:
be
used
for
useful
compounds
resolution
3 r ^
for
that
contain
a good
choice
interference-free
spectrometer,
333.327
system.
The
channel
34
need
be
C1 -j 3 a t
array
3 r 33 3 4
ratio
especially
nm w o u l d
nm a n d
the
overlap
3r.
834
a high
no
minor
7 0 0 . 5 1 9 n m,
lines
include
of
less
at
would
interference
the
at
Br^
These
to
for
are
center.
are
n m.
percentage
3 r 3 - , 34
Cg
and
there
selectivity
channel
are
347.745
and
a potential
Br j j g
interference
3 r ^y at
3 r ^2
A Br:I
the
3r
as
but
exists.
I I I . 3 for
the
free
intense
emission,
n m)
in Table
Some
as
noc
de
lines
occurs
selectivity
center
used
for
nm
but
are
because
both
there
quantitative
3r
determination.
Sulfur.
spectrum
n m.
of
Figure
atomized
Forty-three
3Fg
are
labelled
Figure
given
in
in
scanning
Figure
wavelength
of
atomic
Table
I I I . 7.
study
monochromator
as
the
complete
ICP-excited
range
sulfur
The
from
occur
strongest
group of s u l f u r l i n e s
an e a r l i e r
I I I .6
the
emission
650
and
of
-
950
their
these
are
111.6.
The i n t e n s e
useful
in
lines
wavelengths
in
I I I . 6 s hows
in
(5).
a "shoulder"
this
This
on
lab
based
group
the
low
is
a t 921 nm w a s q u i t e
on a h i g h
also
partly
wavelength
resolution
evident
side
73
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
of
in
Ar q q
FIGURE
III.6. Photodiode Array Spectrum of ICP Excited Sulfur and
Fluorine Emissions from Atomiz ed SFg in the Region
650 - 950 nm. T h e e m i s s i o n l i n e s a r e n u m b e r e d f o r
convenient
reference,
with
sulfur
emission
wavelengths
lis te d
in
Table
I I I . 7.
Several
i n t e r f e r i n g Ar e m i s s i o n l i n e s h a v e a l s o
been
labeled
in t h i s
figure.
The i - a x i s
has
been
a r b i t r a r i l y t e r m i n a t e d at r e l a t i v e i n t e n s i t y ' 0 0 0 0 ,
wher eas d e t e c t o r s a t u r a t i o n o c c u r s a t 14,400.
74
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
AHSN31NI
75
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
T able
I I I . 7.
Atonic Sulfur Emissions from 650 (obs.
S y mb o l
3 i ~3
5
4-7
3 3 - 10
» obscured
by:
Wavelength
;
inc.
950 nm in Ar I CP
» interfered
3. 2;
674.358
674.379
675.710
676.071
44
724.306
724.477
724.906
17
742.4 1 1
3 12
S
by:
int.
; int.
Ar1
Ar
7
i
5. 9;
int.
Ar 2 3
744.340
3.4 ;
int.
Ar2 u
767.960
7 6 8 . 61 3
6. 4
3 15
769.673
3. 2
S
792.395
792.884
793.163
796.743
5.0
13. 1- 4
’ 6-19
)
Relative Intensity
(% d e t e c t o r s a t u r a t i o n x
( nm)
653.641
653•6 o7
653.357
3 11
with
s 20
353.560
S 21
36 1.715
2.3;
obs.
Ar ^ g
s 22
363-313
366.342
1. 2 ;
obs.
Ar ^ ^
S
2 3*26
867.065
867. 961
368.045
3 *3 ;
obs.
Ar
^27,28
869.401
369.471
3. 2;
int.
Ar
18
76
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE I I I . 7 .
Symbol
Wa v e l e n g t h
(cont.)
(j
( nm)
Relative Intensity
detector saturation x
8 8 7 . 453
3
29-32
33- 35
335
37,33
a a o ' 0 ^ 0
15
883.247
388.423
903-592
903.532
903.673
i
nt
.
A
r
40-43
9. 1
921.291
150
9 22.311
923.749
110
; int.
A r 4g
; o b s . Ar
49
S 39
938 . 294
3 a0
941.346
<
Su i
9 4 2 . 1 93
< 15
943.711
943.700
<
42,43
;
3 . 9;
obs.
Ar5 1
9. 5
7. 7
77
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
and
as
false
Du e
to
"broadening"
severe
tne
interference
resolution
photodiode
useful
qualitative
for
of
array
hi gh wavelength
from
Ar q 9
with
spectrograph,
confirmation
the
and
(once
side
other
of
Ar 4 3 .
present
low
are
only
have
been
3^7
33
3 lines
spotted).
The
best
with this
724
nm
this
choices
the
S2
photodiode
consideration
guidelines
to
line
q
array
to
33-10
group
are
given
given
If
I
are
both
group
of
in
qualitative
and
study,
sulfur
Table
present
of
these
ail
the
which
the
most
these
lines
in
careful
in terferen ce.
of
at
elements
to
7 2 4 nm i s p a r t l y o v e r l a p p e d
(Figure
of
3: 1
the
required
elements
I I I . 4 ) and more
I I I . 2).
I I I . 3 as
is
g r o u p of l i n e s
requires
sp e ctral
emissions,
inspection
Of
determination
A
few
use
for
bel ow.
(Figure
sulfur
n m.
sulfur
group at
nm C1 -j e m i s s i o n
nm 1 7 . 9
353.560
in s e l e c t i n g
The S g _ i g s u l f u r
723.7
at
minimize
follow
3 determination
are
quantitative
s p e c t r o g r a p h a p p e a r t o be t h e S g - 1 9
and
725.605
for
are
For
S : C1
and
this
and
before
absent,
spectrograph
S:I
0.3:1,
spectrum
severely
selectivity
3q_iq
is
Sg_ig
used
can
the
and
the
Prior
whether
for
be
by
ratios
respectively.
to de te rm in e
by t n e
used
Cl
analysis.
without
correction.
If
for
iodine
is
present,
3 g- 10 •
encountered
Sc good
is
with
this
alternative
S2g
at
present,
the
spectrograph
sulfur
358.560
nm ma y
most
must
emissions
are
be
serious
be
dealt
substituted
interference
with
available
directly.
to
avoid
be
closely
01
interference.
Figure
I I I . 4
shows
3 2 q,
at
353.560
nm,
to
73
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
overlapped
Che
10
by
channel
320
exhibits
should
be
reveals
analysis
more
used
the
if
is
and
still
to
that
should
emissions.
selectivity
used
be
to
ratio
evaluate
emission
content
at
of
In
and
the
the
the
compound
for
unlikely
at
interelement
correction
320 emission
could
The
3,
for
of
number
Cl,
of
and I
the
The
above
Clgn
in
their
(3:1)
ana
C 11 g e m i s s i o n
Cl,
quantitative
by
the
content
manufacturers
Cl
content
and
center
This
correction
b a s e d on m u l t i p l e
contribution
S,
Cl,
above
can
be
or
the
of
Cl
of
the
837.597
can
to
the
of
exit
known
(3:1)
yields
used
nm
S:Ci
next
the
net
be
total
sulfur
without
iodine
correction
that
are
extremely
scheme
at
major
and
for
include
correction
S: C
refined
iodine.
S^ q and
The
are
all
present
ch lo rin e-co rrected
for
c ompounds
to
and I
further
scheme
subject
emissions.
35-
the
7 5 4 . 7 0 9 nm ( C 1 - )
Cl
the
ratio
interelement
First,
from
that
interelement
are
an
employed
tubes.
formula
lines
of
and
spectrometers
interelement
organic
sulfur
respectively,
and
the
spectrograph.
a:
c o mp o u n d .
measurement
be
3
of
wavelength.
the
3g _ 1q
this
radio
sample.
S g _ 1Q c h a n n e l
event
formula,
magnitude
use
subtract
S g .^
the
both
measured
the
unknown
in
commonly
computed
The
for
inspection
by
emission
seiec:ivi:y
S : C1 s e l e c t i v i t y
contains
possible
3 : Cl
Tne
0.75:1
chlorine
photomultiplier
compound
( C1 1 g )
of
compound
similar
only
preliminary
ultravioiet-visible
slits
is
aa.
favorable
presence
a
353.599
center
a
Wh e n
method
C l2? a:
with
all
similar
small,
will
941.346
but
be
three
so
the
the
greater.
elements
the
need
be r a r e .
and
interferences
S:C1
a
correction,
will
a
sulfur
Alternatively,
Cl
in
selectivity
942.193
from
n m,
both C ^
ratios
79
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
at
the
oinannei
much l o r e
iine
for
aoandant
array
with
the
M, a n d 0 , t h e
The
1. 5: 1
in
organic
is
and
not
0. 5: 1 .
respectively.
compounds
t h a n S,
r ecommended
spectrograph.
or
020
the
Since
use
0 is
of
this
w i t h a low r e s o l u t i o n
S 3 _ -j q
will
give
a much
result.
As
form
are
3 determination
photodiode
better
center
of
figures
Xerox
overlays
qualitative
previous
of
photodiode
the
transparent
can
serve
as
present
array
identification
involving
w o r k ma y b e o b t a i n e d
overlays
labelled
study
by
writing
master
involving
to
reference
the elements
the
>- ,
in
.i t
the
authors.
spectra
F, C l ,
and S .
30
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
3r,
for
1,
REFERENCES
1)
Xeane, J.M.;
accepted
2)
Hughes,
35.
0
^
\
/
7
»
for
3
f
>> • w
-
F r y , R. C .
publication
S. X. ;
396
r* •/
• J I
3 r o w n , D. C . ;
Brown,
( Nov.
R. M. ,
Jr.;
Aaai.
C h e n .,
1 9 8 5,
1985).
Fry,
R. C.
App 1 .
Spec.,
1981,
400.
^
.t
• t
Ch e m. , 1 9 8 0 ,
w •
*
v
52,
i * *, / a
t * rt ^
«r
J f
17 1 6
4}
Hughes, 3 . X . ; Fry,
R. C.
5)
Hughes, 3 . X . ; Fr y,
R. C .
o)
3 i a d e s , M. W. ;
Hauser,
3
w
-
T .
» w • |
3
^
«
w
n
»* |
3
V
• U
» « • • • • !
11
^
1981,
5_3,
^
a a
•* w
|
^ 'X
w •
I
n
:
'
1722.
Anal.
?.
Ch e m. ,
1111
Ap p 1 .
S p e c . , 1981,
3J5, 4 93
Anal.
Ch_i m.
1984,
Acta,
- 1117.
“ 497 .
1 57 ,
16 3 '
169.
7)
Zaidel',
A. N. ;
Shreider,
Yo r k ,
3)
9)
W. R. ;
432
Xeane,
S.fa.
Tables
3 . M. ;
of
Raiskii,
Spectral
S . M. ;
Lines
Slavnyi,
7 . A. ;
(IFI/?lenum,
Ne w
1970 ) .
McLean,
98,
Prokof'er,
-
Stanton,
D. L . ;
Penketh,
G. E.
Ana l y s t ,
1973,
442.
J . M. ,
P h . D.
Dissertation,
been
submitted
Xansas
State
University,
1985.
( T h i s work has
publication.)
to
ANALYTICAL
CHEMISTRY
31
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
for
*
CHAPTER 4
SIMULTANEOUS MULTIELEMENTAL ANALYSIS OF GC EFFLUENT
USING A RED/NEAR-INFRARED PHOTODIODE ARRAY
ATOMIC EMISSION SPECTROGRAPH
32
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
INTRODUCTION
Microwave
used
for
element
nonmetals
or
ana
selective
(1-25).
helium
inductively
Mo s t
monochromators.
readers"
have
been
selected
lines
in
number
of
number
exit
multichannel
the
atom
simple.
with
a short
from
photodiode
wavelengths
selected
array
in
this
lines.
simultaneously
line
chemical
to
a
mixture
gas
emission
where
"direct
( 2 6 - 3 1 ).
limited
The
by a f i x e d
tubes.
were
argon
monitoring
spectrum
analyzers
based
These
mostly
a mixture
a low r e s o l u t i o n
included
and
of
on
neutral
this
focal
length
nm
with
region
were
the
only
of
fact"
not
be
studied
so
found
coarsely
record
the
exposure
1024
that
and
permitted
the
to
ruled
a
just
25
mm
All
a few
could
be
alternate
in
system
compounds
be
complete
of
than
of
atom
channels.
rather
However,
chromatograph,
neutral
was
increased,
wa s
monitoring
of
a
elements
thereby
interference.
of
to
monitored
number
was
use
brief
of
use
region
mount
one
red/near-infrared
simultaneous
exclusive
in
consisting
could
powered
atomic
however,
permitted
"after
spectral
interfaced
of
monitored
selection
minimize
was,
This
The
involving
photomultiplier
emission
spectrum
650-950
low
been
utilized.
nonmetals
The
eacn
simultaneously
region
spectrograph
of
involved
photom ultiplier
visible
were
(32,33).
spectrum
and
reports
number
relatively
grating
plasma
nave
detection
channel
for
determined
lines
array
emissions
reported
and
Preliminary
a larger
single
GC/plasma-emission
ion
photodiode
GC w o r k
multichannel
s l i t s
ultraviolet
and
and
the
elements
of
this
A few
plasmas
chromatographic
of
plasmas
coupled
order
to
wa s
not
present
individually.
33
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
in
a
This
onapcer
involves
red/near-infrared
(32,33)
to
a
multielemental
The
combined
power ,
and
organic
of
large
each
This
lines
in
the
atomic
red
is
excited
and
3.)
states
emission
in
a
the
the
simultaneous
to
1. )
short
mixture.
high
inherent
in
plasma
synthetic
increase
the
low
exposure
limited
occuring
near-infrared
spectrograph
aperture,
for:
aescrcoea
chemical
explored
compensates
2 .)
previously
permit
concentrations
detector,
and
to
spectrographic
i n a GC e x p e r i m e n t ,
nonmetailic
the
c o mp o u n d
applications
a photodiode
energy
atomic
of
analytical
intensity.
necessary
high
high
of
array
chromatograph
analysis
chemistry
spectral
(unity)
pnotodiode
gas
use
interfacing
the
gain
times
population
with
of
nonresonant
region.
34
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
EXPERIMENTAL
A.
Mi c r o wa v e
atmospheric
the
photodiode
(1).
conditions
from
along
the
the
present
A 550
thermal
model
MI ?
low
W) h a s
plasma
apparatus
been
and
in Table
and
red/near-
previously
experimental
been s u b s t i t u t e d
apparatus
( He - M I P )
resolution
have
here
powered,
I V. I .
A high
in the
table
conditions
used
in
study.
>f H e - MI ?
COW MAC
(34)
c ap illary
the
listed
chromatographic
wa s
conductivity
torch
in
2 are
(500
and
A me d i u m
induced
spectrograph
Differences
Chapter
Procedure.
microwave
optics,
array
MI ? g e n e r a t o r
with
and
helium
external
described
powered
Apparatus
pressure,
apparatus,
infrared
P l a s ma
placed
( T. C.)
quartz
chosen
MI ?
series
detector
chromatograph.
wa s
in
for
Th e
supplied
with
the
standard
the
student
Bolio-Kamara-Codding
several
torches
following
important
more
style
reasons
commonly
of
over
the
in
0C
used
experiments:
1. )
C o n v e n t i o n a l c a p i l l a r y MI ? t o r c h e s
of a bout 1 0 0 W mi c r o wa v e power i n p u t s ,
are
limited
2 .)
c orresponding 100W s p e c t r a are r e l a t i v e l y
fly"
detection
using
a red/near-infrared
spectrograph,
3 .)
(0?
c a r b o n d e p o s i t s f r o m o r g a n i c c ompounds
o r N2 ^ n e c e s s a r y w i t h a c a p i l l a r y MI P,
4. ) t h e s e
(either 0
and
to
a ma x i mu m
we a k w i t h " o n - t h e photodiode
array
ma k e
scavenging
s c a v e n g i n g g a s e s mask one of the i m p o r t a n t
o r N) f r o m d e t e r m i n a t i o n i n o r g a n i c c o m p o u n d
gases
elements
formulas,
5 . ) s e v e r e c a p i l l a r y t o r c h w a l l e r o s i o n by t h e h e l i u m p l a s m a
l e a d s to u n c o n t r o l l a b l e a t o m i c oxygen c o n t a m i n a t i o n from a t o m i z e d
quartz .
In
MI ?
sharp
torch
contrast,
design
the
permitted
3ollo-Kamara-Codding
the
type
of
high
tangential
microwave
35
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
flow
power
T able
IV.1
HIP Apparatus and Experimental Conditions
( w h e r e d i f f e r e n t f r o m C h a p t e r 2)
SEPARATION STAGE
Ga s
Go w- Ma c
Chromatograph
Sampl e
see
Injection
Solid
Carrier
Hel ium,
6 9 ~ 10 0
1/4-in.
copper
tubing
Me s h C h r o m o s o r b
?
20M
40 mL / mi n
10 0 - 1 6 5 ° C , 120 0 C n o m i n a l ;
t r a n s f e r l i n e , 30°C
Temperature
line
cm
x
1/8 in.
copper tubing;
the compounds
elute
directly
into
the
central
channel
He
gas
f l o w of t he
MI P
torch.
10
cheated)
LOW POWER PLASMA STAGE
( same as
below)
Chapter
2
except
as
I n t e r n a l l y tuned, double
C a r u s o a nd Ha a s ( 3 5 ) .
i un i n g
Ga s
Fl ows
(L/min)
OPTICAL STAGE ( s a m e a s C h a p t e r
Entrance
Order
mo d e l
IV.2
10? C a r b o w a x
Phase
Ga s
Transfer
x
50-100
Support
Stationary
Pl asma
Table
4 ft
Co i umn
student
Slit
Filter
H e l i urn:
2 except
as
inner
outer
0.15
noted
bel ow)
noted
stub,
2.5
25 um
Ho y a -A2 5 ( r e m o v e s
and
third order
radiation).
u n w a n t e d se con a
UV a n d
visible
Pwc * Q d i a d * \ r r 3 y
Exposure
T i me
as
67 ms
j
36
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
T able
IV .1 (cont)
B. Higb Power Microwave Induced Plasaa
( s a me a s P a r t A a b o v e , e x c e p t as n o t e d b e l o w)
Mi c r owa ve
Generator
P o we r
Ga s
Fl ows
(L/min)
M i c r o Mow Mo d e l
powe r o s c i l l a t o r ,
420B
2450
350 w a t t s
< 5 watts
forward
reflected
pi asma
coolant
0.15
4.0
Mi cr owave
MHz , 50 0 it
37
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
density
lines
^ > 3 5 0 W)
of
needed
nonmetals
in
experiment.
Us e
aerodynamic
isolation
minimal
carbon
scavenging
of
to
an
this
contamination
was
from
bright
of
the
flow
plasma
from
torch
wall
also
the
resulted
quartz
c ompounds .
eliminated,
torch
spectra*
GC/photodiode-array
from
organic
tnerefcre
quartz
nonresonant
"on-the-fly"
tangential
deposition
gases
produce
erosion
walls
ana
need
for
The
and
atomic
by t h e
in
oxygen
hot
plasma
wa s m i n i m i z e d .
The
IV.2.
compounds
?ost-column
accelerate
the
detector.
used
in
this
passed
through
plasma
line
the
and
by
the
channel
ma ke up
between
controiled
the
shorten
for
its
the
MI ?
the
iisted
helium
was
residence
large
maintained
are
Table
employed
time
vol ume
in
of
in
the
chromatographic
the
MI P
to
MI ?
torch
resolution
col umn.
compounds
central
and
into
c a rrie r
compensated
study
with
As
makeup
sample
This
inherent
the
injected
eluted
T. C.
of
heating
GC
the
detector
the
helium
the
from
MI ?
gas.
and
cape
chromatograph,
a ji d w e r e
torch
To
the
avoid
torch
which
and
then
they
introduced
accelerated
condensation,
was
heated
surrounded
first
the
into
towards
the
by
transfer
a
entire
the
variaotransfer
line.
A
0. 1
( ( C 2 K 5 j g C )»
ui,
carbon
tetrac h lo rid e
£ C ci 3 C N ) ,
1 : 1 : 1 : 1 :1 : 1 : 1
and
disulfide
( CC1 ^ ) ,
thermal
conductivity
the
automatic
collection
mixture
( CS 2 ) ,
acetone
fiuorobenzene
bromopentane
The
(v/v)
(CctiiiBr)
detector
of
wa3
diethyi
ether
( ( CH 3 ) 2 c 3 ^ > c a r b o n
( C 5 H5 F ) ,
injected
response
photodiode
of
was
array
acetonitriie
into
the
GC.
used to
trigger
emission
spectra
83
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
T able
IV.2
Samples Injected into the 350 V and 100 V Helium HIP
Co mp o u n d
Formul a
s s m s s s a s m s a s s s a s m s s s s s m a m s m a s s s m a s m s s s a s m
1.
diethyl
ether
CyH-i gO
2 .
carbon
3.
acetone
d.
carbon
5.
fiuorobenzene
C 5 H5 F
6.
acetonitrile
C2 H3 N
7.
bromopentane
CgH^Br
disulfide
CS 2
tetrachloride
CCI 4
39
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
whenever
a
?r eselectec
(signalling
;iie e l u t i o n
MI?).
the
Once
array
T. C.
emission
rapid
sequence.
and
photodiode
array
c ompound
For
ms
stored
from
were
The
favor
of
cavity
to
triple
the
plasma
array
image
cavity
tuning
helium
lines
2.
optic
I CP
couple
time
of
the
scale
of
used
A MI P
in
internally
of
Car u s o
quartz
the
Viewing
MI ?
twenty
for
each
wa s
replaced
described
position,
emission
Procedure
source,
external
previously
to
one
alter
the
sample
by
in
wa s
the
100
discarded
A
i r.
microwave
(35).
wa s
viewed
Chapter
slit
respect
focusing
67
A (Micro-
Beenakker
p l a 3 ma
background
2 was
Ha a s
torch
of
col umn.
injected
25 urn e n t r a n c e
and
not
of
and
wa s
respect
does
tuned
the
described
and
Chapter
with
wer e
of
A ( Ki v a ) a n d 350
100
optimized
in
i r.
current
exposure
with
the
volume
350
array
short
were
I CP A p p a r a t u s
The
is
The
tuner
onto
dark
automatically
photodiode
previously
spectrograph.
repeated
Ke-
collected
sequence
powers
flow,
optic
were
the
photodiode
This
resolution
stub,
tangential
twenty
samples
disk.
exceeded
GC.
modification
intermediate
1:1
stub
exceeded,
hard
each
wh e n
dual
design
Th e
ul
GC i n t o
next
retention
0.4
the
were
interval
operating
was
from
atomized
wa s
investigated.
increased
MI ? .
study,
chromatographic
Plasma
No w)
the
This
chromatographic
inherent
on
was
value
exposures
exposures
MI ?
duration.
a compound
from
These
eluting
this
of
:iireshoid
threshold
spectra
subtracted
T.C.
of
gas
to
2
the
flow
the
axiaiiy.
An
focused
a
photodiode
rates,
intensity
and
of
spectrum.
optic,
in
and
Chapter
remote
2.
fiber
Differences
90
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
in
chromatographic
listed
in
solely
Table
to
is
study.
the
favor
Longer
I CP
of
a
wa s
The
I V. 4 .
rather
than
exception
of
Argon
used
was
column
normal
I CP
transfer
s o me
lines
plasma
joined
and
fireball.
exceeded
entered
On c e
the
twenty
collected
spectral
the
user
light
( ’ 55
used
in
this
throughput
intensities
ms )
were
optic
2 are
was
access
emission
and
used
discarded
integration
times
would
of
larger
therefore
were
intensities
the
are
into
injections
u1 ) and
I CP
in
could
result.
as
both
GC a n d
the
sample
the
torch
( No
C.
exposures
region
and
post
of
a
of
650
950
with
tne
(0.5
ui).
Table
I V . 4) .
wa s
heated.
removed
I CP
column
13
response
c ompound
the
-
the
system
and
I CP
location
detector
beginning
u1
Table
plasma
(see
were
of
a
GC - I C?
1. 0
the
the
base
at
the
in
fluorobenzene
nebulizer
to
listed
were
experiments
the
and
T.
I CP
separately
The
the
chromatograph),
in
all
between
argon.
couple
poor
times
helium
attached
(signalling
GC - I C ?
fiber
(0.2
of
chamber
was
mak e u p
for
line
spray
line
place
gases
transfer
rather
into
All
sulfide
in
carrier
Th e
with
ethyl
and
shorter
introduced
a mixture.
optic
I nap t s r
sources).
injected
wer e
as
the
lens,
MI ?
from
ul/compound)
spectral
the
compounds
the
(1
If
aperture
with
Compounds
to
a
integration
much b e t t e r
used
has
injections
large
fiber
convenience
fiber
experiment.
be u s e d a n d
fiber
The
conditions
remote
detrimental
chromatographic
for
The
and
scheduling
lab.
actually
this
I V . 3•
enhance
multi-station
and
apparatus
and
tne
Th e
tne
torch
along
ma k e u p
argor.
c® b e l o w
tne
threshold
wa s
eiution
photodiode
from
array
no.
91
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
the
were
T able
IV.3
ICP A p p a r a t u s a nd E z p e r i m e n t a l C o n d i t i o n s
(where d i f f e r e n t
Incident
Reflected
from Cha pt e r
P o we r
p o we r
Argon?low
Rates
( L/ mi n)
2 and T a b l e
1.75
1<w
< 25
W
plasm a
auxiliary
sampl e: a.
I V. 1
above.;
20
p o s t c ol umn
ma k e u p
b. GC c a r r i e r
Transfer
line
Observation
Entrance
Array
0 . 1
0 .0 a 0
25 cm x 1 / 8 i n . c o p p e r t u b i n g ;
the e f f l u e n t e x i t s t r a n s f e r l i n e
d i r e c t l y i n t o t h e I CP s a m p l e g a s
(heated)
A 0. 6 mm v e r t i c a l l y i s o l a t e d z o n e
centered
between thetop
two
t u r n s of the r . f . load c o i i .
Zo n e
Slit
25
Exposure
1 55
um
ms
92
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table I V .4
Saaples In je c te d
in to
t h e 1 . 7 5 ktf ICP
Co mp o u n d
For mul a
mec h a n o l
ch4o
carbon
CS 2
ethyl
disulfide
sulfide
metnylene
C4 H1 0 S
chloride
ch2c i 2
fluorobenzene
c6h5f
iodobenzene
c6 h5
bromopentane
C5 Ht t 3 r
ni t r o e t h a n e
C5 H5 NO 2
I
93
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
RESULTS AND DI SC US S IO N
GC- MI ?
Results.
Figure
response
can
be
I V. 1
shows
chromatogram
tbought
of
as
resolved
photodiode
complete
spectrum
times
near
separated
collected
to
the
650
-
plasma
emissions
entrainment
in
contamination
of
residual
torch
regulator
tees,
shown
observation
zone
grade
figure
involving
erosion
of
is
by
also
the
hot
to
GC
prior
and
950
MI P
only
nm a r e
residual
air
The oxygen
(13,13,
out
the
atmospheric
torches
less
air
on t n e
reduced
MI P
A
The
-
supply.
plasma
pumping r e s i d u a l
dead spaces
650
considerably
capillary
the
from
I V . 2.
and/or
considerably
interconnecting
and o t h e r
collected
due
helium
from
eluted.
Figure
line
at
closest
collected
region
A
mixture
discarded).
c ompound
in
the
spectrum
also
time
plasma.
selected
spectrum
of
automatically
were
oxygen
welder's
is
was
spectral
weak
the
reports
all
is
were
was
first
emission
MI P
level
the
of
the
rest
3pectrum
the
a result
and
a
the
the
figure
"on-the-fly"
maximum
spectra
This
collection
from
c o mp o u n d ;
entire
and
wall
oxygen
2 as
the
peak
and
area
for
collected
maximum
before
this
previous
severe
Chapter
in
lines
contamination
numerous
emission
baseline
into
each
peak
background
present
helium
nm w a s
conductivity
mixture.
spectra
(Twenty
of
baseline
chromatographic
waveform
950
I V. 1.
thermal
component
emission
plotting,
bacxground
The
lines,
array
elution
for
chromatograpnic
seven
trigger
chromatographic
plasma
to
the
the
Figure
file
conventional
chromatographic
during
computer
three
of
from
each
in
the
subject
24).
than
of
torch
to s t a r t i n g
over
that
the
The
of
helium
transfer
the
94
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
system
FIGURE
I V . 1.
Thermal
Conductivity Detector
Elution of 7 Component Mixture.
Response
95
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
During
I “ diethyl ether
2’ carbon disulfide
3“ acetone
4" carbon tetrachloride
5-fluorobenzene
6'acefonitrile
7-bromopentane
L±J
CO
O
CL
CO
Ld
<r
<r
o
h o
LU
H
LU
Q
O
K
air
R E T E N T IO N
TIM E
>
96
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE IV.2.
Photodiode Array Spectrum of 350 V Helium Microwave
Plasma Background in the Region 650 - 950 nm. O n l y
three helium em ission l in e s are v i s i b l e in th is
entire region.
The Y - a x i s has been a r b i t r a r i l y
t e r m i n a t e d a t r e l a t i v e i n t e n s i t y 16000.
97
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
HELIUM MICROWAVE
PLASMA BACKGROUND
hi
*m
o
CCi
v
r
i' in
I—CM
( ac
x
HO
SD
Ld
I
UO
•0008
'COOS
-QOOti
0002
A1ISN31NI
98
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
up on
welder's
Further
made
in
future
means
of
zone.
IV.2
be
should
to
be
quantitative
The
seven
For
combination
of
of
with
originally
in
ether
the
about
plasma
All
lines
signal
could
helium
entrainment
oxygen
and
from
line
interpreting
be
s ome
the
of
chromatographic
rapid
is
are
in
MI ?
Figure
baseline
results
in
any
emission
is
the
spectrum
The
three
elemental
completely
650
950
nm.
emissions
in
overlays
of
each
of
of
volatile
seven
shows
A salient
of
compound
atomized
interference-free
the
unknown
atomized
emissions
from
of
the
figure
sim plicity
organic
helium
throug.n
chromatograph.
compound
spectrum
an
of
the
used
concentrated,
striking
of
be
plate"
I V . 3. T h e
-
of
identification
gas-liquid
eluting
run
IV.3
can
formula
in Figure
region
figure
the
first
Figures
"master
tne
emission
these
reasonably
on
given
spectral
region.
as
in
qualitative
of
W MIP-excited
a few
such
transparent
the
atomic
illustrated
present
of
emission
with
purity
the
GC - MI P
are
separated
thi3
wavelength
high
a constant
mixture
mixture
350
along
any
spectrum
complete
note
of
before
report.
contamination
present,
figures
3 for
c ompounds
in
as
the
elements
component
use
the
mixture
2 and
A
oxygen
a single
Chapters
organic
present
sense.
data
component
the
atmospheric
subtracted
results
The
the
through
viewed
component
I V . 9.
of
excluding
observation
offset
n e l i urn i n
lowering
the
improved
grade
in t h i s
are
the
diethyl
point
the
to
hot
in
this
s t i l l
seen
diethyl
ether.
low r e s o l u t i o n
s pectrum.
The
presence
of
the
elements
C,
H,
and 0 in
the
formula
99
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
of
FIGURE I V . 3.
P h o t o d i o d e A r r a y S p e c t r u m of H I P E x c i t e d Carbon,
H y d r o g e n and O x y g e n E m i s s i o n s from A t o m i z e d
^C 2 h 5^2° in the R e g i o n 650 - 950 nm. T h i s s p e c t r u m
w a s c o l l e c t e d a s GC p e a k #1 e l u t e d i n t o t h e 3 5 0 W
He MI P . T h e T - a x i s h a s b e e n a r b i t r a r i l y t e r m i n a t e c
a t r e l a t i v e i n t e n s i t y 16 0 0 0 .
1 00
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
o
J
1009
0008
0009
0002
A1ISN31N1
101
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
di e t h y l
ether
emissions
from
is
labeled
the
line
seen
in
The
compared
for
at
subtracted
each
and oxygen
carbon
Figure
IV.4
from
from
formula
missing
the
from
of
this
the
figure
contamination
background
lines
The
occurs.
sulfur
lines
The
apparent
computer
the
at
“ 925
markedly
from
the
feature
perform
U ;.
for
can
the
simply
spectral
IV.3 is
line
strong
to
in
future
studies
dynamic
time
*
range
excited
(the
Figure
the
the
need
to
for
run.
I V . 1) .
the
same
is
emission
second
As
and oxygen
for
this
puoiisnea
Figure
hydrogen
and
0
and
eluting
expected
lines
small
are
oxygen
series
of
carbon
a series
of
strong
nm.
d iffe re n t
Figure
controlled
present,
added
level),
H,
center.
W MI P
(except
A
points
disulfide
c ompound,
I V . 2.
line
linear
in
e a c h C,
the
This
time
separated
than
Figure
each
the
in
350
stronger
background
at
the
emissions
to
chromatographic
carbon
mixture
easy
emissions.
of
oxygen
of
beside
line
respective
oeen
The
location
complete
atomized
c om p o u n d
very
t he i r
in
utility
integration
the
mu c h
already
hydrogen
a single
is
earlier
I V . 3.
optimization
within
from
the
variable
seen
intensity
to
element
the
the
of
computer
spectrum
from
intensity
automatic
provide
appropriate
atomic
are
is
Figure
from
I V . 3)
na 3
correction
of
The
analytical
I'/. 3
data
an
I V . 3•
level
the
Figure
array
measured
then
of
confirmed
(Figure
background
background
photodiode
and
ether
discussion
Spectral
be
in Figure
atomized
contamination
thorough
unambiguously
I V. h
variable
figure
line
serve
s e n s itiv itie s
to
reiterate
integration
provides
time
in
of
the
the
unambiguous
C and
5
need
for
future.
For
q u a lita tiv e
102
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE I V.4.
Photodiode Array Spectrua of MIP Excited Sulfur and
C a r b o n E m i s s i o n s f r o m A t o m i z e d C S 2 in the B e g i o n
6 5 0 - 9 5 0 n m. T h i s s p e c t r u m w a s c o l l e c t e d a s GC
p e a k #2 e l u t e d i n t o t h e 3 5 0 W He MI P . T h e Y - a x i s
has
been a r b i t r a r i l y
term inated
at
re la tiv e
intensity
16000.
103
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
950
on
650.
675.
700.
725.
u
75(1.
•ooos:
-QCOTit
*00021
•30001
*0008
*0009
OOOti
*0002
A1ISN31NI
104
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(nm)
WAVELENGTH
775.
800.
825.
8511.
H75.
800 .
925
U~)
confirmation
of
this
compound
17.1).
17. 5
of
The
909,
oxygen
the
tne
presence
s hows
the
seven
and
940
345,
Figure
IV.6
this
in Figure
element
is
chlorine
the
present,
the
lines.
the
formula
third
eluting
we c a n s p o t
spite
of
Th e
chlorine
alternate
t h e 3 3^
emission.
instead
using
the
the
carbon
iine
line
presence
will
of
of
confirmation
performed
by
(656
the
2 and
which
us
should
is
confirms
17
that
be
line
wh e n
given
master
of
lines
of
t.n is
to
the
with
selection
here
(the
figures
interfered
emissions
and
mixture).
and
about
warn
3
nm)
tetrachloride
tables
of
lines
acetone.
component
the
of
the
scheme
the
by
scheme
overlays
in Figure
of
I V. 6
Chapter
in
this
labeled
2
mas ked
compound
909
indicates
by c h l o r i n e
is
detected
nm e m i s s i o n
in
the
c a r b o n s h o u l d e r a t 9 4 0 nm o n t h e h i g h
chlorine
the
of
be c o m p l e t e l y
carbon
a c o mb i n a t i o n of
side
seven
transparent
selection
MI ? a n d t h e l a b e l l e d
wavelength
carbon
alternate
2 and
of
Figure
carbon
unambiguously
attention
the
in
interference.
nm c a r b o n
The
of
of
hydrogen
presence
carbon
separated
formula
with
Chapters
Following
Chapter
the
the
the
element
Chapter
be
in
(the
series
strong
in
of
special
in
3,
the
spectrum
reveal
I V . 6.
mixture
familiar
spectrum
described
final
sulfur
acetone
n m) e m i s s i o n s
compound
will
of
our
elements
s hows
chlorine
detection
930
these
of
3
n m)
and
eluting
Chapter
helium
and
of
component
and
of
that
carbon
spectrum
of
presence
Comparison
the
combination
(777,
fourth
in
of
c o mp o u n d .
Figure
(334,
of
presence
emission
there.
of
in
application
carbon
of
the
this
dual
If
desired,
c o m p o u n d ma y
wavelength,
1 05
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE IV.5.
P h o t o d i o d e A r r a y S p e c t r u m of M I P E x c i t e d Carbon,
H y d r o g e n and Ox y g e n E m i s s i o n s from A t o m i z e d
(CH 3 )2 C0 in the R e g i o n 650 - 950 nm. T h i s s p e c t r u m
w a s c o l l e c t e d a s GC p e a k If 3 e l u t e d i n t o t h e 3 5 0 «
He MIP. T h e Y - a x i s h a s b e e n a r b i t r a r i l y t e r m i n a t e d
at r e l a t i v e i n t e n s i t y 16000.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
DURING (CH3)f 0 ELUTION
CO
it
<
LU
Q_
u
O
o
>o
c
c
0
Z
LJ
_J
LU
1
IT)
'00091
'OOOhI
'00021
'00001
'0008
*0009
'OOOfi
'0002
A1ISN31NI
107
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGUBE
IV. 6 .
Photodiode Array Spec t r u m of HIP Excited Chlorine
and C a r b o n E m i s s i o n s f r o m A t o m i z e d C C I 4 in the
B e g i o n 650 - 950 nm. T h i s s p e c t r u m wa s c o l l e c t e d a s
GC p e a k #4 e l u t e d i n t o t h e 3 5 0 W He MI P . T h e Y - a x i s
has
been a r b i t r a r i l y
term inated
at
re la tiv e
i n t e n s i t y 16000.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
o
I -
Z)
UJ
^ C
<5
* 1
< >
__ ^ r
CJ
l.
cn
O
OJ
O
"S iL cS**
o
c c
J
Z)
Q
•0CQ9I
'OOOhl
'00021
’00001
'0 0 0 8
'0009
'OOOfi
'0002
in
to
Is
: ufl
A1ISN31NI
109
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
mterelement
outlined
in
spectral
interference
Chapter
2 to
the
data
IV.7
is
the
spectrum
of
the
seven
computer
file
correction
used
to
s e n erne
generate
Figure
IV . 6 .
Figure
eluting
compound
Figure
I V . 1).
fluorine
the
formula
attack
torch
on
of
the
erosion
upon
Figure
eluting
the
atomization
I V. 3
is
compounds
is
the
incomplete
molecular
even
bands
higher
dramatic
nitrogen
of
can
on
of
of
nitrogen
quartz
compounds . )
acetonitrile
mixture
(the
from
the
be
especially
Another
energy
in
fragmentation.
be
” 790
at
power
and
input
"920
wouid
fragmentation
c o mp o u n d
of
this
and
sixth
Figure
N unambiguously
formula.
beneficial
important
molecular
seen
from
lines
in
emissions
fluorine
(0 t n e r
elements
C-N b o n d
in
design.
and
nitrogen.
high
atomic
H,
woul d
ana
elements
C,
time
in
contamination
torch
oxygen
component
lines
nitrile
iine
particular
spectrum
these
by
fifth
hydrogen,
oxygen
enhanced
fluorinated
seven
of
(the
separated
carbon,
weak
strong
these
microwave
effect
Figure
of
unusually
due
eiuting
of
the
containing
intensity
atomic
give
mixture
presence
The
this
integration
limited
to
the
of
slightly
of
the
of
presence
variable
consider
of
wall
Interference-free
confirm
Future
only
frequently
compound
I V. 1 ).
confirm
is
quartz
designs
lines
fluorobenzene.
emission
fluorobenzene
component
emission
unambiguously
background
for
Atomic
of
factor
a nitrile.
spectrum
In
Th e
most
likely
the
Tn e
couid
fact,
nm.
to
oe
some
future
use
have
a
corresponding
intensity.
IV.9
is
the
compound
of
the
spectrum
seven
of
bromopentane
component
mixture
(the
from
1 10
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
last
Figure
FIGUHE IV.7.
P h o t o d i o d e A r r a y S p e c t r u a of HIP E x c i t e d Carbon,
Hydrogen and Fluorine Emissions from At o m i z e d CgH^F
in t h e R e g i o n 6 5 0 - 9 5 0 nm. T h i s s p e c t r u m w a s
c o l l e c t e d a s GC p e a k #5 e l u t e d i n t o t h e 3 5 0 W He
MI P. T h e Y - a x i s h a s b e e n a r b i t r a r i l y t e r m i n a t e d a t
r e l a t i v e i n t e n s i t y 16000.
111
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
950
900 .
925.
u
^
^
Q _ o
075.
i . «o
”
050.
8
8P5.
^
U _‘
*30091
*3G0M
-3 0 0 2 :
'OOOOt
‘0008
*0009
*000h
*0002
^50.
675.
700.
725.
750.
775
000
u
A1ISN31NI
11 2
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WAVELENGTH (nm)
Lu
FIGURE IV. 8 .
P h o t o d i o d e A r r a y S p e c t r u a of HIP E x c i t e d Carbon,
Hydrogen and Nitrogen Emissions from Atomized CH^CN
in t h e R e g i o n 6 5 0 - 9 5 0 nm. T h i s s p e c t r u m w a s
c o l l e c t e d a s GC p e a k it 6 e l u t e d i n t o t h e 3 5 0 W He
MIP. T h e I-a x i s h a s b e e n a r b i t r a r i l y t e r m i n a t e d a t
r e l a t i v e i n t e n s i t y 16000.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
I
-o
^
LJ
Q_ O
CO
Lf)
—( 'i
on )jj
<N
—C
:oos
CGCS
’GOOft
-Q00E
’C002
-0001
A1ISN31NI
114
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGUBE
IV.9.
P h o t o d i o d e A r r a y S p e c t r u m of HIP E x c i t e d Carbon,
Hydrogen
and B r o m i n e E m i s s i o n s f r o m A t o m i z e d
C s H i i B r in the R e g i o n 650 - 950 nm. T h i s s p e c t r u m
w a s . c o l l e c t e d a s GC p e a k iPl e l u t e d i n t o t h e 3 5 0 W
He MI P. T h e Y - a x i s h a s b e e n a r b i t r a r i l y t e r m i n a t e d
a t r e l a t i v e i n t e n s i t y 16000.
1 15
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
925.
o
UOll.
H
Z)
875.
u
825.
o
CD
'ZCZhl
'OCCS:
’00001
•0008
*0009
‘TiSO.
675.
700.
/25.
CO
750.
775.
800.
cn
A1ISN31NI
116
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WAVELENGTH (nm)
850.
GQ
I V . 1).
Carbon,
hydrogen,
bromine
is
line
scheme
emission
along
can
of
with
of
be
Chapter
used
for
bromine.
of
The
the
f if th
and
benefit
of
elem ental
Although
fluorobenzene
on
column
C.
'.Figures
I V. 7 a n d I V . 3)
there
immediately
of
a
the
memory
of
no
nm c a r b o n
emission
in
from F igure
909
the
I V. 9 ,
nm c a r b o n
in a helium
chromatographic
Figure
line
plasma.
the
overlapping
the
are
not
rapid
the
illustrate
the
this
system.
baseline
resolved
thermal
of
conductivity
collected
the
spectrum
lines
fluorobenzene
enables
in
of
carried
(Figure
sample
for
each
MI ? d e t e c t o r
chromatographic
acetonitrile
emission
by
spectrum
ability
seen
IV. 1
offered
conventional
shows
eluted
effect
the
emission
fluorine
prior
of
the
atomic
between
are
the
940
compounds
s e le c tiv ity
using
feature
eluting
and a c e t o n i t r i l e
( TCD) ,
that
of
alternate
the
carbon
gas i n t e r f e r e n c e
response
detector
important
that
evident
usefulness
sixth
T.
distinguish
clearly
The
formula.
Me mor y B e n e f i t .
nonspecific
this
indicates
is
c ompound
spectrum.
unambiguous
group which i s f r e e of r a r e
S p e c i f i c i t y and
2
This
indication
the
the
to
when
in
in
present
2 h a s w a r n e d us t o be w a r y o f t h e 8 3 4 no c a r b o n l i n e
elsewhere
elements
ail
Chapter
selection
these
are
the
found
of
emissions
confirm
presence
presence
bromine
peaks.
Figure
over
I V. 7).
throughput
to
An
IV. 3
from
is
the
This
lack
and
good
resolution.
GC- 1 CP R e s u l t s .
The
atomic
compounds
emission
injected
system
are
into
listed
the
GC-ICP/photodiode-array
in Table
I V . 4.
Figure
1 17
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
I V . 10
s nows
on
a
oacxground
the
chromatographic
A number
or
0
of a rg on
near
the
time
interference
figure
to
of
peak
free
lines
had
especially
been
at
oxygen
emission
line
in
656
Sulfur
at
33**
resolution
(Figure
I V . 11).
data
of
extrapolation
line
and
of
from
excited
for
n m,
both
656
nm
only
iines
are
present
makes
more
the
evident
these
in
elements
emission
IV.2
ma d e
be
on
with
of
the
performed
both
an
argon
spectrum
correction
is
The
for
by a s t r o n g
easily
are
7 7 7 nm.
emission
can
the
lines
Figure
here
excited
at
in
sides
by
of
a n d 0.
I CP
excited
d isu lfid e
(see
occurs
in
especially
in
both
the
seen
to
ethyl
su lfid e,
83** n m) ,
but
and
iines
hydrogen
spectrum.
interference
than
Figure
carbon
sulfide
I CP e m i s s i o n
interpret
in
collected
expected,
ethyl
3pectra,
earlier
spectra
and
As
low r e s o l u t i o n
difficult
spectrum
labeled
occurs
obscured
chromatograph.
figures
N
methanol.
hydrogen
measurements
carbon
the
H,
collected
clearly
3ackground
H,
C,
spectrum
Carbon
I V . 11
eluted.
background.
compound).
I V . 13 a r e
at
sulfur
I CP
9**0
collected
has
of
I CP
from
o f C,
I V . 12
in
I C?
earlier
Figure
c o mp o u n d
the prese nc e
and
low
element
excited
unknown
the
argon emissions
this
confirm
II?
no d i s c e r n i b l e
and a good oxygen l i n e
elution
emission
H,
argon
the
and 0 a r e
C,
is
evident
but
of
plasma
respectively,
any
elution
helium
array
one
maximum
the
Figures
are
argon
seen
spectral
during
in
3 4 5 nm
photodiode
each
nm,
before
at
methanol
baseline
an
an
prominent
strong
in
s hows
of
apparent,
occur
unambiguously
this
ether
are
lines
I V . 11
spectrum
baseline
lines
contamination
Figure
(if
emission
the
I V . 3.
from
spectrum
helium
Th e
1 13
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
of
MI ?
strong
FIGURE I V . 10. P h o t o d i o d e A r r a y
Spectrum
of 1.75 k W A r g o n
Inductively Coupled Plasma Background Emissions in
the R e g i o n 650 - 950 nm. A l l e m i s s i o n l i n e s a r e
from
argon.
The Y - a x i s
has
been a r b i t r a r i l y
t e r m in a te d at r e l a t i v e
i n t e n s i t y 8000,
whereas
d e t e c t o r s a t u r a t i o n occur s a t 14,400.
119
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
‘C\J
WAVELENGTH
(n m )
m
m
04
CO
'QQQL
*OOQS
‘QGGS
'QOOh
’OQQ£
*0002
#000t
A11SN31NI
120
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE I V . 11.
P h o t o d i o d e A r r a y S p e c t r u m of ICP E x c i t e d Carbon,
Hydrogen, and Oxygen
Emissions from A t o m i z e d CH,OH
in t h e R e g i o n 6 50 - 9 5 0 nm.
These lines
are
c l e a r l y v i s i b l e i n t h e f i g u r e . The Y - a x i s h a s b e e n
a r b i t r a r i l y t e r m i n a t e d at r e l a t i v e i n t e n s i t y 3000,
wher eas d e t e c t o r s a t u r a t i o n o c c u r s a t 14,400.
1 21
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CO I -
2 2
1-2
•0008
*000£
'0009
ooos
000 ft
’0008
‘0002
'0001
A1ISN31NI
122
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FI CUBE I V . 12. Pbotodiode Array Spectrum of ICP Excited Sulfur and
C a r b o n E m i s s i o n s f r o m A t o m i z e d C S 2 in the B e g i o n
650 - 950 nm. T h e s e l i n e s a r e c l e a r l y v i s i b l e i n
the
figure.
The Y - a x i s
has
been
a r b itr a r ily
te r m in a te d at r e l a t i v e
i n t e n s i t y 3000,
whereas
d e t e c t o r s a t u r a t i o n o c c u r s at 14,400.
1 23
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CM
in
oo
E
c
o
z
LJ
I
00
o
in
-r^
CD
•Q008
'QC0£
'0009
'OOOS
'OOOh
'0009
A1ISN31NI
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE I V . 13. P h o t o d i o d e A r r a y S p e c t r u m of ICP E x c i t e d Sulfur,
Carbon, and Hydrogen Emissions from Atomiz ed C^HiqS
in the R e g i o n 650 - 950 nm. T h e Y - a x i s h a s b e e n
a r b i t r a r i l y t e r m i n a t e d at r e l a t i v e i n t e n s i t y 8000,
whe r e as d e t e c t o r s a t u r a t i o n o c c u r s at 14,400.
1 25
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
o o
CVJ
OO
o
-C D
in
-C M
©
d 2
LlJ
in
*0008
’000^1
0009
0009
’ OOOti
0001
A1ISN31NI
126
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
sulfur
lines
or
high
by
argon
observed
I V. 12
instead.
and
iines
photodiode
array
alternate
correction
carbon
I CP
emission
in
the
in
secondary
confirmed
dual
at
argon
emission
at
false
broadening
925
wavelength
72 4
and
on
of
nm.
the
nm a n d
but
Unresolved
intensity
ratio
at
675
n m.
intensity
(ratioed
e.g.
to
sulfur
spectrum
be
spectra
will
sharpiy
sulfur
with
show
enhanced
the
the
the
presence
presence
may
of
be
I V . 12 a n d I V . 1 3 .
first
spotted
presence
from
is
then
of
the
on t h e
high
wavelength
side
of
tne
analyst
side
3houlder
on
will
of
the
also
the
low
note
strong
Ar
wavelength
T h e s e p h e nome na a r e b o t h due t o
lines
emission
underlying
also
alters
A comparison
the
argon
earlier
(compare
the
side
wavelength
675/685
interference
wavelength
sulfur
emission.
Using
high
a slight
strong
is
using
3-
sulfide
Its
A perceptive
high
and
used
resolution
2 a n d 3.
Figures
n m.
be
of
the
s i d e of the same a r g o n e m i s s i o n .
unresolved,
of
sulfur
3o0
9*40 nm a n d
370
spectra
low
ethyl
data
obscured
must
interelement
in
the
snoulders
lines
this
disuifide,
sulfur
from
are
I V . 3;
determination
in Chapters
carbon
and
( 36)
ma y b e f o u n d i n C h a p t e r
I V . 12 a n d I V . 1 3 .
emission
at
and
(Figure
excited
secondary
ICP
in
at
I CP
the
argon
plasma
spectrum
sulfur
confirmed
lines
helium
of
sulfur
by n o t i n g
emission
Alternate
described
hydrogen,
a
discussion
and
From F i g u r e s
in
resolution
spectrograph
approach
unambiguously
low
I V . 13.
line
and
carbon,
carbon
argon
A complete
secondary
of
nm
emissions
Figures
tne
921
resolution
at
nm
Figure
of
line
plasma
argon
I V . 12
the
this
at
the
635
argon
argon
n m;
background
line
with
intensity
Figure
argon
line
line
in
the
emission
ratio
I V. 10)
1 27
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
to
due
“o
an
underlying
sulfur
sulfur
emissions
are
An i m p o r t a n t
the
the
plasma
points
out
the
need
figures
spectral
show
spectrum
once
as
3u c h
Figure
methylene
labeled,
and
carbon
remind
is
the
from
dual
clearly
is
909
nm
nm.
334
a
The
complete
array.
As
spectrum
chlorine
up a t
presence
Cl l i n e s ,
or
lines
carbon
nm
carbon
determination
correction
of
the
ma y
according
technique
3
exhibit
interference-free
940
n m,
2 and
both
the
of
iines
656
Chapter
iines
once
the
line.
with
shows
carbon
plasma
line
state
to
detected,
but
GC-ICP/photodiode-array
energies
the
low
of
a mor e
lines
discernible
occur
above
The
no
spectrum.
should
discerned
I V . 10).
a
Interference-free
evident,
upper
be
of
line
However,
inter element
I V . 15
argon
fluorine
Figure
be
of
to
be
the
discussed
in
spectrum
of
3.
fluorobenzene.
be
spectral
i 3
level.
measurement
can
nm.
continuum
interference-free
at
902
I V . 1 2 a n d I V . 13
a photodiode
hydrogen
940
quantitative
Figure
the
of
other
ratio
wavelength,
Chapter
from
and
GC- 1 CP / p h o t o d i o d e - a r r a y
detected
and
confirmatory
330
and
the
this
with
chlorine.
i 3 spotted
for
beside
easy
A number
33u
lines
simultaneous
predictable
selectivity
employed
for
the
Other
I V . 12 a t
background
recorded
clearly
n m.
between Figures
how
shows
the
us,
chlorine
can
that
I V . 14
interference
C: C1
again
675
in Figure
intensity
chloride.
are
at
difference
of
continuum
in
evident
intensity
This
are
line
The
i 3 marked
plasma
is
element
energetic
carbon
fluorine
position
in the
background
intensity
this
of
due
to
(>_ 1 4. 7
plasma
and
line
hydrogen
is
where
the
figure,
but
level
the
eV) .
operating
apparent
636
nm
no l i n e
(compare
with
unusually
high
If
fluorine
on
helium
1 28
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
is
must
FIGUHE IV.14. Photodiode Array Spectrum of ICP Excited Chlorine,
Hydrogen, and Carbon Emissions from A to mi ze d CH 2 Cl 2
in t h e R e g i o n 650 - 950 nm. N u m e r o u s c h l o r i n e
e m i s s i o n s a r e v i s i b l e i n t h i s s p e c t r u m . Th e Y - a x i s
has
been a r b i t r a r i l y
term inated
at
re la tiv e
i n t e n s i t y 3000, w h e r e a s d e t e c t o r s a t u r a t i o n o c c u r s
at 14,400.
1 29
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
o
p«n
' <r>
m
<J1
I©
'
01
IU rn
©
®
i in ^
'0008
0009
0001
000S
A1ISN31NI
130
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE I V . 15. P h o t o d i o d e A r r a y S p e c t r u m of ICP E x c i t e d Carbon,
Hy d r og en , and
Fluorine Emissions from Atomized
C 5 H 5 F in the R e g i o n 650 - 950 nm. T h e e x p e c t e d
l o c a t i o n of t he s t r o n g e s t f l u o r i n e e m i s s i o n is
labeled
in
the
figure.
The
Y-axis
nas
been
a r b i t r a r i l y t e r m i n a t e d a t r e l a t i v e i n t e n s i t y 8000,
whereas d e t e c t o r s a t u r a t i o n o c c u r s at 14,400.
131
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
LL.
c
c
o
cc
O
Z
LJ
g
LO
o
in
•0008
0009
000S
'OOO‘b
'OOOE
0002
0001
A1ISN31NI
L32
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
be
employed.
earlier
Figure
in
The
the
I V . 15
iodobenzene.
apparent,
this
emission
a
familiar
a number
published
complete
alternate
of
line
strong
atomic
for
the
red
discussion
selection
element
with
a low
Figure
I V . 17
is
of
demonstrated
fluorobenzene
bromine
the
in
interference-free
bromopentane.
the
909
Figure
I V . 13
but
the
detection
is
is
the
lines
emission
we a k ,
background
another
spectrum
line
spectrograph
and
region
9 ** 0
of
nm
this
lines
along
determination
of
( 3 3 ).
carbon
of c a r b o n
been
an
is
element
the
and
spectrum
hydrogen
line
all
in
has
overlap
unambi guous
bromine
are
labeled
near-infrared
of
lines
overlapped
iine
in
are
the
of
are
by
a
provides
formula
also
of
available
nm g r o u p .
nitrogen
plasma
lines
are
emission
8 3 1* nm c a r b o n
Confirmatory
interference-free
experiment
spectrum
GC-IC?/photodiode-array
The
emission,
lines
spectral
resolution
figure.
in
and
for
labeled
is
wa s
hydrogen
iodine
of
scheme
a
and
iodine
Interference-free
The
spectrum
carbon
bromopentane.
with
approach
GC- I C P / p h o t o d i o d e - a r r a y
T h e I CP e x c i t e d
recently
a
is
The
and
figure.
this
He-MI?
of
17 . 7 .
Figure
with
utility
element
spectrum
of
in
but
C,
an
nitroethcr.e.
and 0 a r e
"on-the-fiy"
discernible
emission
better
H,
of
spectrum
done
with
at
of
labeled
The f a m i l i a r
in
the
figure.
GC-ICP/photodiode-array
822
nm
Figure
a helium
(compare
I V. 1 0 ) .
with
the
Nitrogen
plasma.
1 33
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FICUBC I V . 16. P h o t o d i o d e A r r a y S p e c t r u m of ICP E x c i t e d Iodine,
Carbon, and Hydrogen Em issions from At omi zed CgHgl
in the R e g i o n 650 - 950 nm. I o d i n e e m i s s i o n l i n e s
are e a s i l y found in t h i s f i g u r e .
T h e I - a x i s r .a s
been a r b i t r a r i l y t e r m i n a t e d at r e l a t i v e
intensity
3000, wh e r e a s d e t e c t o r s a t u r a t i o n o c c u r s a t 14, 400.
1 3 11
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
o
-m
a>
M
if)
-CvJ
0)
H
E
U -
Lf! c
.(N
*
I—I
e °
-g
z
OB | j J
Id
If) ^
-£ £
cm
M
c
•QOOfi
‘OOOe
’0002
A1ISN31NI
135
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGUBE IV.17. Photodiode Array Spectrum of ICP Excited Bromine,
H y d ro ge n,
and C a r b o n E m i s s i o n s f r o m A t o m i z e d
C g H ^ B r in the R e g i o n 650 - 950 nm. S t r o n g b r o m i n e
l i n e s a r e r e a d i l y a p p a r e n t . The I - a x i s h a s b e e n
a r b i t r a r i l y t e r m i n a t e d a t r e l a t i v e i n t e n s i t y 3 0 C0 ,
w h e r e a s d e t e c t o r s a t u r a t i o n o c c u r s a t 1 U. 4 0 C.
1 36
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.
CO
c o ! 00
-rvj
■ GO
C&l
H
u l 6
Z
r~;
U
_l
■ co
!
CO
•QC08
•GCOi
•0003
’OOOS
!
3
H S 'I
•ocpti
*cooe
•0002
‘0001
A1ISN31NI
137
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE I V . 18. P h o t o d i o d e A r r a y S p e c t r u m of ICP E x c i t e d Oxygen,
Carbon,
H yd ro ge n,
an d N i t r o g e n E m i s s i o n s f ro m
Atomized C 2 H 5 N O 2 in the Region 650 - 950 nm. S t r o n g
e m i s s i o n l i n e s o f 0 , C, a n d H a r e c l e a r l y v i s i b l e ,
a l o n g w i t h one weak N e m i s s i o n . The Y - a x i s has been
a r b i t r a r i l y t e r m i n a t e d a t r e l a t i v e i n t e n s i t y 3000,
wher eas d e t e c t o r s a t u r a t i o n o c c u r s a t 14,400.
1 33
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CM
o
Z
H
800.
675.
700.
725.
750.
775.
O
*CCC£
"0009
•DOOS
*0002
•0001
A1ISN31NI
139
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
( nm )
825.
■*
U
WAVELENGTH
850.
875.
900.
925.
cm
950.
o
CONCLUSION
Although
and
is
the
subject
to
Figures
IV.2-IV.9
induced
plasma
multielement
infrared
mixtures
p l a s m a and
power
the
5.
It
and
is
I CP
the
aperture
aperture
a
lens,
photodiode
substituted
a
array
for
it
the
if
with
nonmetailic
is
a
readily
in
cleanup
formulas
performed
chromatograph
oxygen
red/near-
qualitative
atoms
spectrograph.
microwave
simultaneous,
Unambiguous
gas-liquid
performed
that*
did
optic
higher
present
the
here
higher
of
for
effect,
with
in
this
Even h i g h e r
Ml ?
procedures
ma y
future.
fiber
2 .)
helium
source
compounds
injections
contamination
determinations
array
system
than
best
extensive
the
sample
powered
spectrograph.
organic
possible
better
the
constituent
more
in
perform
low
array
larger
oxygen
high
emission
photodiode
argon
the
currently
the
tolerate
less
that
interfacing
effective
The
and
is
of
levels
prove
show
volatile
by
can
relatively
photodiode
unknown
I CP
GC-atomic
identification
of
argon
for
were
r.f.
well
for
argon
I CP
fluorine
discarded
power
resolution
1024
channel
wer e
(e. g.
C, H,
0,
could
Cl,
Br,
eventually
and n i t r o g e n
in
favor
employed,
Seticon
I,
of
if:
a large
and
40
t.}
96)
device.
1 40
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
3 -)
if
were
REFERENCES
1)
McCormack,
A.j.jion^,
-
1 470
11.
<3 . C . ;
Cooke,
W. 0 .
1476 •
2)
3ache,
C. A,
Li s k , D• J ■
A n a l . Che m. ,
1965,
3)
Bache,
C. A.
L i s k , D. J .
Anal .
Ch e m. ,
1966,
4)
3ache,
u •A•
L i s k , D. J •
A n a l . Che m. ,
1966,
5)
Bache,
C. A.
L i s k , D. J •
A n a l . Che m.,
1967,
6)
B a c n e , C. A. ;
J . A s s . Off
Anal
-
1 246
7)
3ache,
3)
Mo y e ,
9)
Dagnail,
D. j •
1250.
J.
C. A. ; L i s k , D . J .
Anal.
H. A.
1969,
10)
Lisk,
Pr at t ,
R. M . ;
1 6,
Da g n a i l ,
Ch e m. ,
797
-
R. M. ;
Ga s
1967,
Ch r o m,
39,
1968,
1441
-
1
3 . J .;
West,
T. S . ;
De
S.J.;
West,
T. S. ;
Deans,
30 6 .
Pratt,
D. R.
Ta 1 an t a ,
1 970, J_7 , 1 009 - 1013.
11)
Da g n a i l ,
1972,
12 )
R. M. ;
60,
Dagnali,
25
West,
-
R. M. ;
T.3.;
in'tii t e i i e a d ,
P.
Anal.
Ch_i m.
Ac t a ,
35.
Whitehead,
P.
£.
Soc.
Anal.
1 972,
£,
201-204.
13)
McLean,
98,
14)
15)
W. R. ;
432
-
Stanton,
Penketh,
G. E.
A n a l ^ ,
19 7 3.
442.
Dagnail,
R. M. ;
1973,
6, 37-95.
Skogerboe,
D. L . ;
Johnson,
R. K. ;
Coleman,
D. J. ;
’W e s t ,
T. S.
Sp e c t r o s .
G. N.
An a l .
C h e m. ,
S p e c t r o c h i m.
Acta,
Par t
1 976,
Lett.
4J 3 ,
,
6 1 1 A-
6 21 A •
16)
Beenakker,
C. I . M.
3,
1 976,
313.
486 .
14 1
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
433-
REFERENCES
17)
Beenakker,
C . I . M.
(.con;.;
S p e c t r o c h i m. A c t a ,
Part
3,
1977,
32£,
173 —
Gaian,
1.
1 87 .
18)
Va n
Dalen,
Anal.
19)
H.P.J.;
Chi m. A c t a ,
Q u i m b y , B. D. ;
21)
1981,
Tanabe,
3,
23)
X. ;
Estes,
_9J* > 1 - 1 9 .
M. F . ;
Ud e n , P. C. ;
Barnes,
R. M.
Anal.
M. F . ;
Ud e n , P. C. :
Barnes,
R. M.
Anai.
H. :
Fuwa,
X. S p e c t r o c h i m.
Ac t a ,
Part
H. ;
Fuwa,
X. S p e c t r o c h i m .
Acta.
Part
119-127.
Haraguchi,
563,
S. A. ;
de
375-380 .
Haraguchi,
X. ;
C o u l a n d e r , P. A. ;
2112-2113.
5 J.,
3 6 B,
1981,
1977,
Delaney,
1979,
Tanabe,
3,
22)
50,
Q u i m b y , B. D. ;
Ch e m. ,
Lezenne
Delaney,
Ch e m. , 1 9 7 8 ,
20)
de
633-639.
Uden,
P. C. ;
B a r n e s , R. M.
Anal.
Uden,
P. C. ;
B a r n e s , R. M.
Anal.
1 9 8 1 , 5_3,
13 3 6 - 1 3 ^ 0 .
24)
Estes,
S. A. ;
££.£.£•>
1 9 8 1 , 5_3,
1329-1337.
25)
van
Dalen,
Acta,
26)
27)
1982,
Brenner,
H.P.J.;
£42,
X. S .
Bonnekessel,
Kwee,
G a l a n , L.
Anal.
C h_i m.
159-171.
J.
J.;
3 . G. ; de
C h r o m a t o g r . , 1978,
Xlier,
M.
167,
365-330.
A n a l . . C h_i m. A c t a ,
1978,
££ _ 3 ,
29-42.
28)
Slatkavitz,
K. J. ;
Chromat ogr.,
29)
Ou ,
Q. Y. ;
Part
B,
Uden,
1 9 8 H,
302,
P. C. ;
Hoey,
L. C. ;
Barnes,
R. M.
J.
277-287.
Wa n g ,
G. C. ;
Zeng,
X. W. ;
1983,
3 3 B,
419-425.
Yu ,
W. L.
Spectrochim.
1 42
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Acta,
REFERENCES
30)
Slatkavitz,
Abs
3 1)
32)
K . J . ; H o e y , L . D. ;
f / 368,
1984,
3 1 a t <a v i t z ,
Orleans,
Keane,
Atlantic
K. J . ;
Jaen,
Barnes,
City,
?. C .
R. M. ;
Uden,
P. O.
? i 1 1 C o r.
N.J.
PittCon
Ab s
6 13 ,
19 8 5 ,
'is.
1985,
5,1 *
LA.
J . M. ;
No v .
(cent.)
Brown,
D. C . ;
Fry,
R. C.
Fry,
R. C.
Ana l .
Chem. ,
issue.
33) K e a n e ,
J.M.;
Anal.
Chem. ,
subm itted
for
publication.
3 4)
Bollo-Kamara,
1981,
35)
Haas,
37,
36)
D. L . ;
32
Hughes,
(This
3o_B,
work
-
A. ;
Codding,
E. G.
Sp e c t r o c h i m .
Ac t a ,
Part
3,
973-982 .
Carnahan,
J . W. j
Caruso,
J. A.
^ £ £_1. § £ £ £ • •
1983.
35.
5.K.;
Fry,
will
be
R. C.
Ap p 1 .
submitted
to
Spec. ,
1981,
Applied
^35 ,
493
“ J 97.
Spectroscopy
publication).
143
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
for
CHAPTER 5
ORGANIC EMPIRICAL FORMULA DETERMINATIONS
IN GC EFFLUENT USING A RED/NEAR-INFRARED
PHOTODIODE ARRAY ATOMIC EMISSION SPECTROGRAPH
144
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
INTRODUCTION
A number
coupled
the
with
calculation
for
elements,
authors
e.g.
have
C and
the
spectrometry
effects
of
(3,
In
infrared
unique
C,
or
previous
I CP
systems
simultaneously
array
over
650
as
a
11,
12).
GC- MI P
values
means
for
Others
have
atomic
emission
nonuniformity
result
of
of
Several
expected
viable
citing
a
number
(1-16).
with
for
empirical,
limited
3r
6-3,
spectrai
contamination,
the
of
-
of
950
to
low
a
severe
in
matrix
a
nm
and
and
systems
and
of
carbon
tim e-resolved
nonmetals
as
( 1 8 ).
of
sulfur,
Means
of
background,
torch
atomic
simultaneously
GC
"window"
well
the
in
emissions
spectral
on
s o me
simultaneous
atomic
iodine
deposits
red/.near-
nonmetals
as
flow
offer
array
(17),
interference,
to
for
photodiode
bromine,
line
shown
variety
oxygen
tangential
resolution
were
nonresonant
successful
nine
powered,
photomultiplier
nitrogen,
chlorine,
high
spectrograph
encompassed
hydrogen,
determination
2,
power
coupled
The
in
low
chapters,
effluent.
employed
(1,
elements
identification
oxygen
or
as
elucidation,
qualitative
circumventing
organic
agreement
G C - MI P
inductively
instrumentation
and
Cl
and
9 ).
photodiode
fluorine,
and
in
formulas
of
based
a relatively
H,
powered
formula
advantages
carbon,
microwave
ratios
formulas
certain
4,
or
potential
severai
torches
H,
low
for
used
containing
empirical
the
excitation
elemental
reported
claimed
questioned
of
have
photomultiplier
compounds
determining
MI ?
researchers
piasmas
formulas
and
of
wall
were
emission
i n GC e f f l u e n t
(17-19).
This
chapter
concerns
use
of
the
previously
described
1 45
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
low
resolution
powered
red/NIR
tangential
quantitative
ratios
photodiode
and
eluting
computation
photodiode
a gas
array
in
of
of
torches
and
involving
chromatograph.
for
I CP
(17,'3)
formulas
The
of
of
multichannel
number
of
nigh
i n a more
elemental
organic
multieiementai
empirical
ana
systems
measurement
a larger
simultaneous
organic
spectrograph
empirical
a n o v s
the
measurement
MI ?
application
from
included
flow
array
c ompounds
nature
of
elements
atomic
the
to
be
emission
formula.
EXPERIMENTAL
^££££1£H£*
chromatograph
systems
has
-
described
and
conditions
apparatus
in
Table
7.1.
A
variety
injected
each
into
sample
injections
light
of
the
used
throughput
For
energy
the
I C?
compounds,
(v / v ) m i x t u r e
injected
MI ?
for
(alcohols)
tested
the
provided
onto
and
for
in
ul
argon
of
Amine
the
were
2 2 0^
samples.
injections
compounds
were
ma y
The
volume
Larger
due
to
injected
were
made
(chlorinated
sample
the
low
limited
for
ail
Diethylamine,
as
a 5
Volumes
Separate
of
environment.
amines.
column.
Differences
used and the
injections
GC-IC?
found
ul.
plasma
gas
be
mostly
optic
the
and
4.
report
0.02
study,
fiber
piperidine
the
s ome
I CP
an
Chapter
detector.
wa s
for
(GC-MI?)
halogenated
separate
remaining
2.0
the
used
earlier
study
exception
and
in
plasma
external
study,
the
for
the
and
in
with
t r i e th y i a m ine,
from
each
of
plasma
previously
GC f o r
the
apparatus
induced
alcohols
were r e q u i r e d
excitation
also
microwave
been
in
Ti : l e
0. 5
ul
uL,
1. 0
ul
1 : 1:2
were
injections
hydrocarbons)
c ompounds .
14 6
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
were
T able
ICP Apparatus and Experimental Conditions
R e f e r e n c e 3 f o r MI P a p p a r a t u s a n d c o n d i t i o n s )
(See
U f t x 1/ 8 - i n . n i c k e l
( Carbowax c ol umn and
have been
described
( 19))
^ o i uinn
Solid
Support
Stationary
Carrier
Phase
Ga s
Incident
P o we r
Spectral
cheated)
p o we r
25 cm x 1 / 8 i n . c o p p e r t u b i n g ;
the e f f l u e n t e x i t s t r a n s f e r l i
d i r e c t l y i n t o t h e I CP s a m p l e g a
1.75
Filter
p l a s m a , 20 L / m i n ; a u x i l i a r y ,
2 L / m i n ; s a m p l e , 0. 1 L / m i n *
0.025 L/ mi n
First
Ho y a
Ti me
kW
<25 W
Rates
Order
Integration
25 m l / m i n
C o l u m n A, 9 5 ° C , i s o t h e r m a l ;
t r a n s f e r l i n e , 8 0 °C
line
Argon Flow
20% A m i n e 2 2 0 s ( 1- h y d r o x y e t n y l 2-heptadecenylglyoxalidine)
Argon,
Transfer
Reflected
tubing
conditions
previously
3 0 - 1 0 0 Me s h KOH w a s h e d
Chr omosor b V ( H . P . )
Temperature
Order
V . 1.
25A ( r e d )
15 5 ms
1 U7
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Tne
o a r bo w a x c o l u m n
compounds
in
the
I CP
separating
amines,
used
study,
in Chapter
with
a column
the
packed
4 wa s
exception
with
Ami ne
study
thermal
with
whenever
MI P
beginning
of
GC a n d
c ompound
atomic
then
the
wa s
background
following
were
the
desired
elution
plasma.
from
corrected.
manner.
and
the
channel
ratios
each
reference
c o mp o u n d
wa s
injected
provide
time.
replaced
the
Simple
contamination
made,
a
in
the
plasma
wa s
was
then
gas
the
and
in
center
to
to
comput e
standard
calibrate
Where
compound
a few
amounts
satisfactorily
from
center.
U3 e d
w*ithin
small
line
internal
mixture
recallbration
strongest
achieved
line
then
A known
reference
a given
subtracted
analytical
were
of
from
interference-free
determination.
of
the
subtracted
value
known
subtraction
current
spectral
each
a
series
eluted
the
the
in
in
formula
cf
the
of
sigaiiing
c o mp o u n d
correction
compound.
system
and
exhibiting
dark
emissions
ratio
to
eight,
at
collected
response
of
side
included
elemental
were
first
This
elemental
to
For
col umn.
each
3ackground
corrected
injections
as
spectrum
were
averaged.
prior
The e m p i r i c a l
on e i t h e r
for
threshold
the
The r e s p o n s e
photodiode
for
amines.
were
automatically
from
collected
background
system
all
gas f o r the e n t i r e
samples
(connected
exceeded,
Raw d a t a
channels
summed
The
the
computed
emissions.
photodiode
wa s
wer e
entered
atomized
preselected
detector
detector)
spectra
from
the
a c o mp o u n d
Twenty
the
spectra
conductivity
the
for
( T a b l e V. 1) .
Time-resolved
on-the-fly
of
220R
C a r b o w a x c o l u m n . Ar g o n was u s e d as t h e c a r r i e r
GC - I CP
suitaole
the
separate
wa s
also
minutes
oxygen
eliminates
1 48
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
the
contribution
zne
to
Hydrogen
wa s
at
oxygen
940
for
n m.
mos t
by S r
at
of
the
to
f ir s t
outlined
in
nm c a r b o n
the
940
pair
(17).
Carbon
using
and
determinations
line
nm e m i s s i o n
could
is
zhe
Interference-
nm ( 1 7 ) ,
777
emissions
interelement
the
measuring
not
Cl
tne
nitrogen
were
have
ma d e
been used
interfered
Chapter
from
empirical
the
3.
carbon
formula
at
ratio
337
to
with
chlorine
applied
content
nm
and
generate
according
calculated
channel
wa s
of
contribution.
chlorine
channel
This
free
correction
emission
carbon
are
chlorine
the
C: C1 s e l e c t i v i t y
for
in
subtracted
used
the
334
performed
at
nm.
remove
in te rfe re n c e -free
correction
line
measured
carbon
so an
onannel
appropriate
were
source.
emissions.
interference,
by
tnis
a n d 321
calculations,
Hone
done
nm a t o m i c
were
747
Althougn
atomic
carbon
556
emissions
monitored
from
determ inations
interference-free
free
signal
total
and
the
an
to
the
This
wa s
using
the
applying
the
interelement
the
correction
net
to
carbon
procedure
was
then
response
calculations.
1 49
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
RESULTS AND DISCUSSION
Helium Microwave Induced Plasma (MIP) .
Tables
for
the
7 . 2 a n d 7. 3 c o n t a i n
compounds
injected
formulas
are
listed
measured
raw
empirical
column.
Compounds
"reference
raw
far
7.2
for
these
alcohol
formulas
refined
formula
to
of
powered
to
permit
the
center
The
are
of
a
data
the
whole
of
of
the
have
been
table
table.
in
the
are
center
designated
of
stoichiometric
one
atom,
further
the
refined
by r o u n d i n g
integer
The
table.
normal
fraction
empirical
each
calibration
column
formulas
known
included
knowledge t h a t
formula
empirical
column
system
contain
from
raw
a series
all
in
atomic
in each e x p e r i m e n t a l l y
higher
wa s
wa s
10C t o
sufficiently
one
does
of
refined
35CW.
Th e
small
the
plasma
but
100
chosen
empirical
improves
not
the
the
formulas
appear
in
higher
formula
level
this
ail
t wo
to
W and
as
of
in
most
the
raw
improve
the
cases
for
molecular
upon
the
formuias
k n o wn f o r m u l a s
correct
from
formula
both
arbitrarily
with
already
fact,
in
experimental
agree
7. 2,
experimental
alcohols
power ed
a worse
em pirical
of
refined
alcohols
In
and r e f i n e d
( C ^ Hg O )
The
(which
yielded
be
the
in Table
MI?).
density
appears
the
nearest
c o mp o u n d .
’J s e
power
in
column
contains
cases.
compounds
study.
formula data
cannot
Propanoi
measured for
low
this
lefthand
chemical
e a c h of
W MI ? .
reference
the
measured
formula.
Table
measured
nand
to
determined
in
empirical
right
subscripts
350
prior
molecules
measured
the
the
the
used
c o mp o u n d "
Wi t h
organic
in
in
the
tr .e
weignt
increasing
the
of o x y g e n c o n t a m i n a t i o n
tangential
determ inations
on
flow
torch
oxygenated
150
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE
V.2.
Calculated Empirical Formulas for Alcohol Series in He MIP.
100
W Hel i um
Refined Experimental
E m p i r i c a l For mul a*
Me as ur ed
Haw F o r m u l a
Known F o r m u l a
c 2H 6 o
c 1.92h5.65°
C 2 H6 0
Reference
C 3 H3 0
c o mp o u n d
c 4 . 41 H1 0 . 3 1 0
0°
350
CUH1 o °
W H e l i u m MIP
Meas ur e d
Raw F o r m u l a
Known F o r m u l a
Refined Experimental
Emp i r i c a l F o r m u l a *
C2 H6 0
c 2 . 06h6 . 03°
C2 h 6 °
Reference
C 3 H3 C
q0
‘ refinement
MIP
C3 ^7 7 Hg 99O
performed
raw e x p e r i m e n t a l
oy
formula
rounding
to
tne
all
nearest
c o mp o u n d
C^HgO
atomic
whole
subscripts
in
integer.
151
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
eacn
compounds.
Table
of
V. 3
lists
brominated
MI P .
for
hydrocarbons
'-bromopentane
this
group
formulas
well
the
Errors
occur
the
with
with
the
atomic
(3,
4,
of
power
this
case,
several
are
of
as
therefore'
likely
determination
tne
muc h
authors
not
of
4
350
even
series
helium
standard
the
refined
1 0 0 4 p l a s m a do n o t a g r e e
and
'tie a r e
a
calibration
formulas
hydrogen
of
sources
formula
contrast,
MI P
inspection
atomic
agreement
emission
between
brominated
the
predicted
data
for
the
every
of
the
data
be
compounds
as
three
inclined
that
to
low
to
for
organic
in
carbons
agree
powered
useful
unknown
S o me
elemental
refined
(Table
predicted
hydrocarbons.
from
MI ?
accurate
compounds
and
of
the
formulas
from
higher
V. 3 . b ) r e v e a l s
mu c h
better
experim ental
raw
data
ratio,
but
the
correct
350
4 MI ?
for
fluorobenzene
yield
the
values
exhibit
refined
for
deviation
experimental
empirical
formula
in
case.
Results
also
included
experimental
regardless
a to m ic
of
in
formula
whether
e m i s s io n
bromofluorobenzene
F.
In
for
4 and
'00
reference
empirical
one
formulas
9).
In
are
the
the
in T a b l e 7.3 f rom t he
statements
empirical
as
100W H e - M I P .
emission
both
compounds.
known
question.
empirical
in
served
of
reported
with
measured
Calibration
for
in
Table
V. 3 *
measured
high
or
both
by
low
This
3r
yielded
MI P p o w e r
was
not
the
of
correct
performed
100
4 and
time,
atomic
d e t e r m i n a t i o n
also
the
in
the
emission
i3
350
refined
is
correct
employed.
the
values
this
4 MI P
Further
f o r m u la
for
of
C,
H,
and
section
of
the
study.
152
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE
V.3.
Calculated Empirical Foraulas for Br om in at ed Hydrocarbons
in Helium MIP.
100
W Hel i um
Refined Experimental
E m p i r i c a l For mul a
Me a s u r e d
Haw F o r m u l a
Kn o wn F o r m u l a
reference
C5 H1 1 3 r
c o mp o u n d
C6 H1 3 3 r
c 6 . 6 3 Hf 3 • 2 0 Br
g7 h 1 3 3
u7 h
c 9 . o 0 H1 4 . 2 0 3 r
c i o Hl U 5 r
153r
3.
Kn o wn F o r m u l a
350
W Hel i um
r
MIP
Me a s u r e d
Emp i r i c a l F o r m u l a
Me a s u r e d
Haw F o r m u l a
reference
C5 h 1 1 3 r
c o mp o u n d
iH1 3 3 r
c 6 . 0 0 H1 3 . 4 7 3 r
c 6 H13 3 r
' 7 H1 5 3 r
c 7 . 0 6 H1 5 . 1 7 3 r
' 7 H i 5 Sr
C.
Fluorinated
Kn o wn F o r m u l a
C o mp o u n d s
in
and
Heference
C5 H4 F 3 r
'5 . 6 5 3 3 • 5 6
c 6 H5 F
' 5 . 9 5 rf5 . 0 1
not
350
Me a s ur e d
Haw F o r m u l a
C5 H5 F
x -
MIP
!3r x
100
W H e l i u m MI?
Me as ur ed
Emp i r i c a l F o r m u l a
c o mp o u n d
C5 H4 F B r x
CgH5 F
( 350
measured
153
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
W}
Argon Inductively Coupled Plasma (I C P ).
Table
formulas
of
V. 4 s h o w s
for
whether
a number
reference
table.
for
The
calibrate
series
for
in
of
one
alcohol,
out
the
excited
higher
occured
c ompounds
formula
formula
( THF)
one
series,
and
wa s
used
was
for
test
series,
determinations
determination
the
for
this
a cyclic
and
ether,
the
as
in
the
used
to
the
alcohol
the
refined
alcohol
The
raw
formula
data
for
the
hydrogen
content
call"
final
with
heptane
case.
"close
atomic
result
in
the
c o mp o u n d .
refined
Identical
and
with
carbon
high
were
The
correct
compounds
hydrogen
observed
Several
and
and
for
series
of
results
are
Tabie
of
formula
formulas
for
column
were
V. •»
methyl
seen
of
wa s
for
the
authors
working
2.0
the
in
t wo
ul
the
IIP
brominated
and
are
found
hydrocarbons
system
and c h l o r o f o r m
using
with
The
by
formulas
chlorinated
chlorine
for
determined
several
refined
content.
tetrachloride
percentage
instrumentation
empirical
spectroscopy
hydrocarbons.
carbon
compounds.
the
emission
brominated
unusually
re s u lts
of
alcohol
tetrahyrofuran
of
V. 5 c o n t a i n s
chlorinated
both
class
a preliminary
homologous
the
empirical
injection.
Taole
for
formulas
correct
0.5 u l
with
oxygenated
for
As
within
included
calibration
every
indicate
alcohols.
applies
ether
experimental
heptane.
spite
correct
refined
empirical
cyclic
experimental
stiil
all
the system
and
In
wa 3
another
and
primary
only
(heptane)
a c ompound f r om
raw
of
calibration
hydrocarbon
the
the
failures
which have
formula.
injectio n s
an
Similar
of
these
photom ultiplier
ultra-violet
cf
and
based
visible
15 a
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.
TABLE
Calculated
E m pirical
Known F o r m u l a
^
44
w
Form ulas
V.4.
for
Alcohol
Me a s u r e d
Haw F o r m u l a
6 H 4
S e r ie s in
Argon
Refined Experiments;
Emp i r i c a l F o r m u l a
r u „ 0
*•“ *
. 4 5 '^
c 2h6 o
c 2h6 0
C 2 . 0 4 H6 . 2 0 °
031130
c 2 . 97 h T . 9 6 °
0 3 h3 o
CyH! qO
c 4 . 0 4 H1 0 . 1 8 °
Cu H i o °
c7 h 15 . 8 6
c7 h
/ C7 h 16
( neptaneJ
C 4 H3 O
Ctetranydrofuranj
Reference
ICP.
16
c o mp o u n d
15 5
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
V .5
C a l c u l a t e d E m p i r i c a l F o r m u la s f o r Brominated
C h l o r i n a t e d H y d r o ca rb o n s i n Argon ICP.
n
>•
•
W k
*4* Wt *
C5 H1 l 3 r
5 nu
Ca
Refined
mi t 1 o
c 5 . 01 H1 1 . 1 3 Br
- 6 ^ 1 33 r
reference
C7 h 1 5 3 r
c 7 . 1 0 HM . 5 2 3 r
Known F o r m u l a
Measur ed
Raw F o r m u l a
Experimen
7
|D
Me as ur e d
•t .iW
and
art
C5 Hn 3 r
c o mp o u n d
C7 H1 5 Br
Refined Experimencai
Emp i r i c a l F o r m u l a
CCI 4
^ C 1 2 < ;jq
CC1 2
wHCx3
CH1 . 0 3 C 1 1 . 9 0
CHC12
CH2 C 1 o
reference
Ct
TABLE
c o mp o u n d
CHpul ^
^^1.39^^2.02
CH2 C1 2
C 2 H3 C 1 3
c 2 h 2 . 3 6 c 1 2. 9U
c 2 h 3c 1 3
^ 2h 3 C1 3
C2 H2 . 3 U C 1 2 . 94
C2 H3 C I 3
1 56
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
region
of
the
difficulties
(3,
).
plasma
with
The
effect
can
be m e a s u r e d
to
the
of
interelement
accuracy
of
of
carbon
not
be
scheme
and
this
a
percentages.
detected
gain
were
qualitatively,
hydrogen
excited
to
content
nitrogen
of
array.
For
emission
did
present
which,
the
at
by
the
procedure
array
of
greater
selectivity
method
carbon
and
in
use
and
the
ayarogen
compounds . N i t r o g e n
were
this
c ompound
the
The
this
organic
out
chlorine
3.
carbon
by
the
Chapter
quantitatively
each
in
in
too
i n " o n - t h e - f l y " I CP
photodiode
measured
in
measured
nitrogenous
usefulness
tne
for
with
compensated
partly
the
chlorine
several
to
used
photodiode
high
for
measured
adequately
improve
the
in
authors
subject
completely
and/or
formulas
atoms
interference
described
mor e
contains
were
lines
determination
were
Th e I CP
ma y
empirical
previous
not
formula
unity
and
is
chlorine
ma y e v e n t u a l l y
V. o
subscripts
carbon
c ompounds
problem
chlorine
by
content
which
to
methods
quantitative
a
similar
2/ 3-
of
stoichiometry
with
noted
weight
a
refined
found
near-infrared
paper
power
Table
any
that
f ra c tio n of
than
line
correction
this
emissions
have
molecular
reliable
formulas
extremes,
correlation
presence
where
subject
concentration
the
low
indicate
high c h lo rin e
The
are
resolving
V. 5
no m o r e
carbon
interference.
of
in
the number
is
very
u ltra v io le t
of
if
erroneous
compounds
section
Table
point
formula
The
study
of
element
spectrum
b u t t h e h i g h p o w e r e d I CP c a n r e d u c e t h e m a g n i t u d e o f
the
c ompound
this
data
type e x is ts ,
emission
we a k t o
determinations
reason,
reflect
in
oe o f
the
formula
only
the
table.
qualitatively
indicate
157
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
T able
Calculated
V.6.
E m p irical Formulas for M itrogen C ontaining
Compounds i n A r g o n ICP.
Meas u r e d
fCn ow n For isu a>
a a- m. .
Cu Hn N ( CH2 . 7 5 ^ x )
CH2 . 7 5 Nx
Cq H ^ M
C*w^ i
->
Reference
( CH2 . 5 0 n x '
C5 H1 1N ( CH2 . 2 0 n x ^
1
Z
ch
2 .2 0 nx
Refined experiment
7 ^^
? a wwn 1
Cn H i , N
c o mp o u n d
c 5 h 11m
1 53
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
che
presence
available
is
this
composition
nitrogen
of
using
the
I C?
atom,
the
c o mp o u n d
stoichiometry
by I CP
better
tne
source
high
for
a red/near-infrared
in
the
and
the
at
into
7^ 7
the
If
ocher
most,
aperture
For
then
nm
formulas
lens
will
will
elem ental
the
for
the
measurement
present,
microwave
array
821
one
chromatograph.
determination
photodiode
and
quantitative
helium
nitrogen
at
q u an titativ e
emission.
powered
that,
refined
a large
allow
7.6.
unknown m o l e c u l e ,
emissions
injected
of
of T a b l e
indicates
complete
should
that
formula
present
substitution
fiber
each
optic
4 indicates
a
be
observed
re fle c t
Eventual
throughput
to
nitrogen
accurately
in
information
likely
qualitatively
detect
is
nitrogen
chemical
nitrogen
the
of
of
Chapter
induced
in
low
plasma
GC e f f l u e n t
spectrograph.
1 59
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
REFERENCES
1)
Dagnall,
4_4,
2)
West,
T. S. ;
Whitehead,
?.
Anal.
Cnem. ,
1 972,
An a l y s t ,
1973.
2074-2073.
McLean,
98,
3)
R. M. ;
W. R. ;
432
-
Stanton,
D. L. ;
Penketh,
G. E.
442.
3eenakker,
C. I . M. S p e c t r o c h i m .
Acta,
Part
3,
1977,
323,
l 73~
187.
4)
Va n
Oalen,
Anal.
H.P.J.;
de
Chi m. A c t a ,
5)
3renner,
K. S.
6)
3onnexessel,
1977,
J.
J.;
Lezenne
9_4,
Coulander,
de
Galan,
L.
1-19.
C h r o m a t o g r . , 1978,
Klier,
P. A. ;
M.
Anal.
167,
Ch_i m.
365-330.
Acta,
1978,
£0__3.
29-42.
7)
Windsor,
3)
7u ,
W. L. ;
D. L . ;
Denton,
Ou ,
Q. Y. ;
££
Dingjan,
363,
10)
11)
H. A. ;
H. A. ;
333,
Q. Y. ;
Part
13)
3,
Zerezghi,
Sci .,
Wa n g ,
5J_,
1 979,
G. C.
1116-1119.
1981,
Chromat o g r aphy,
Ed.
?. £££•
R. E.
4^n
Kaiser.
H. J .
Sp e c t r och im.Acta.,
Part
3,
1981,
DeJong,
K. J .
S p e c t r o c h i m.
Acta,
Part
3,
777-731 .
Slatkavitz,
Ou ,
K. W. ;
Chen.,
F . R. G.
DeJong,
K. J . ;
Ch r o ma t o g r .,
12)
Ana_l .
325-331 .
Dingjan,
1 983,
Zeng,
Cap i l l a r y
Hen d e l a g A l l g a u ,
9)
M. 3 .
P. C. ;
302,
277-237.
1984,
Wa n g ,
1983,
G. C. ;
333,
M. ;
1 984,
Uden,
22,
Zeng,
K. W. ;
Hoey,
Yu,
L. C. ;
W. L.
Barnes,
R. M.
Sp e c t rochim.
J.
Ac t a ,
419-425.
Mulligan,
K. J. ;
Caruso,
J . A.
J.
Ch r o m a t o g r .
348-352.
1 60
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
REFERENCES
14)
SlaU avitz,
Orleans,
15)
15)
17 )
13)
J.S.;
4 0 B,
P. C.
PittCon
Ads
G. M.
S p e c t r o c i i i m.
6 13 ,
1985,
Acta,
Part
Mew
Che m,
1985,
Keane,
J . M. ;
Hieftje,
3,
653-664.
Siatkavitz,
Mo v .
(J d e n ,
LA.
Freeman,
1985,
K. J .;
,cent.;
K. J . ; H o e y ,
57,
L . D. ;
Uden,
P. O. ;
Barnes,
P. M.
A_n_a_l.
1846-1353.
Brown,
D. C. ;
Fry,
R. C.
A_n_a_i.
1985,
5 1_,
submitted
for
submitted
for
Cnem. ,
issue.
Keane,
J.M.;
Fry,
P. O.
A n a _l .
C h e m .,
publication.
19)
Keane,
J . M. ;
Fry,
R. C.
Ap p 1 .
3£_e£.,
to
be
publication.
(This
work
will
be
submitted
to
Applied
Spectrocopy
publication)
1 61
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
for
CHAPTER 6
GENERAL SUMMARY OF DISSERTATION RESULTS
162
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
SUMMARY
The
work
presented
of
simultaneous
advantages
atomic
emission
o p tic a l
in
the
exposure
of
The
a
of
Interelem ent
the
of
line
The
helium
for
near-infrared
region.
corrections
are
time
resuiting
from
q u a lita tiv e
This
data
elutes,
measurements
empirical
with
formulas
adequate
since
analysis
i 3
the
of
and
only
nitrogen,
iodine
observed.
for
only
in
the
simply
is
to
carbon
argon
with
date
atomic
plasma.
alternate
the
and
organic
"on-the-fly"
as
of
of
red
and
spectra
for
rapid
compounds.
the
incom pletely
confirmation
fre e
interelement
provides
unknown
of
in
emission
effluent
for
the
compound
resolved
presence
shown.
multichannel
photodiode
and
c o m p le te ly
of
resolved,
are
sulfur
plasma.
been
compounds
hydrogen,
this
Unambiguous
has
be
selection
performed
nonmetal
to
line
id e n tific a tio n
time
array.
studied
with
in
plasma.
chromatographic
peaks.
Quantitative,
b rie f
then
co llectio n
perm itting
each
a single,
spectrum
unnecessary
elemental
of
nonmetals
argon
nonmetals
data
allo w s
circumvented
Alternate
acquisition
absence
the
a il
gas
chromatographic
or
in
plasma
interferen ce
Seal
be
selection
reg io n
required
can
nonmetal
w avelength
carbon,
and
excited
the
Simple
bromine,
is
shown
region.
appears
of
chlorine),
interference
the
system
chlorine,
plasma
has
in frared
photodiode
the
correction
presence
3romine
of
of
near
th is
emissions
flu o rin e ,
d is se rta tio n
and
of
1024-channel
in te rfe re n c e -fre e
carbon
red
determ ination
reso lu tio n
oxygen,
this
detection
" com pression"
m ultielem ent
(in
in
array
eluting
can
be
from
atomic
used
the
to
emission
determine
chromatograph.
163
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The
in
elemental
injection
This
rapid
provide
methods
from
mass,
me t nod e l i m i n a t e s
other
for
such
to
as
determination
N MR ,
expedite
c omp o u n d .
mass
the
vibrational
data
formula
useful
in
spectrom etry,
final
the
structure
elemental
could
spectra
influence
parameters
of
information
Knowi ng
emission
tne
chromatographic
complementary
atomic
or
and
met hod
spectrscopy
u n known
ratio
far
ma k e
the
of
on
variations
the
result.
stoichiometry
conjunction
and
can
with
vibrational
determination
composition
in
interpretation
of
an
advance
of
easier.
1o 4
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
N MR,
CHAPTER 7
FUTURE DIRECTIONS
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
A number
involving
fiber
to
the
lens.
I CP
lens,
This
in
the
wa s
the
permit
compounds
be
of
station
The
future
low
larger
and
The
of
It
and
studies
througnput
atomic
than
I CP
excited
dissertation)
and
they
in
should
be
low
photodiode
array
be p o s s i b l e
formulas
the
"on-the-fly"
have
to
nitrogen
MI P
array
signal
from
the
I CP
this
been
lines
of
helium
involving
nitrogen
its
Wi t h
ma y t h e n
GC-photodiode
emissions
but
access
intensities.
the
empirical
formula measurements
remote
fluorine.
be e x a m i n e d
weak
for
laboratory,
experimental
nitrogen
collected
nitrogen
stronger
for
convenient
be s h o r t e r .
should
I CP.
wa s
to
calculation
spectra
excited
will
spectra
empirical
optic
multiple
could
the
argon
nitrogen
recommended
determination.
detrimental
times
Secondly,
of
fiber
a busy,
GC- I CP
containing
formula
intensity
integration
measure
are
u s e d i n t h e I CP s t u d y s h o u l d be r e p l a c e d w i t h a l a r g e
transmittance
a
improvements
empirical
optic
aperture
of
investigated
for
did
not
element.
MIP
shown
(Figure
instead
to
be
much
IV.3
of
this
soon
for
formula
should
further
calculation.
Investigation
improve
lim its
the
degree
examined
considerably
case.
both
our
provide
5 00
intensity
extensive
of
excitation
in
this
limits
in
more
s till
improved
These
oscillators
of
this
W MI P
insight
and
higher
work,
over
the
could
lab.
be
of
350
normal
into
the
cf
of
5000
effect
formula
The
of
upper
W I CP
higher
W (ICP)
and
extended
the
upper
a nd 2000
1 0 0 W ( MI P )
further
and
power
nonmetals.
W ( MI P )
Evaluation
generator
accuracy
plasma
powe r
existing
limits
transmitter
determination
were
1 0 0 0 W ( I CP)
with
power
power
on
of
would
spectral
through
fragmentation.
16 6
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
more
The
be
explored
signals
S,
use
is
the
(Figure
very
weak
strong
reduce
low
to
proper
spectral
array.
for
density
can
ma y
exactly
maintaining
a
The
fiat
expected
will
with
present
2 5 mm
item
both s u l f u r
longer
and
blaze
be
of
have
to
be
fit
the
array
in the
to
be
be
the
3y
of
650
potential
1024
to
seen
by
A fiat
to
be
system
-
a
in
the
950
with
nm
the
from
Jarrell-
device,
but
ma k e
the
"on-
selecting
"off-the-shelf"
format
the
offer
have
the
to
to
work.
will
grating,
present
would
investigated
Czerny-Turner
manufactured
60mm
should
of
G3 2
performed
present
full
G,
need
interferences
array.
its
in
atomized
chip
should
the
3 t r o n g H,
comparison
frame.
4096
available
of
in
time
field
utilized
wa s
up
of
spectrograph
the
the
M, a n d F
T h e VI T m e t h o d
easily
used
C,
a spectrum
spectral
curved
format
the
4096
650 -
array
a
950
while
field.
four-fold
eliminate
the
system
for
could
and
of
canceling
the
nm i n t e r v a l
seen
1024
A grating
the
specialty
array
improvement
method should
weaker
spectrum
photodiode
and m a g n i t u d e
interval
of
build
This
4096/40
accommodate
ruling
to
chromatographic
aberration
for
saturation
example
signal
(VII)
the
dissertation).
resolution
substituted
of
of t h i s
emissions.
resolution
fie ld ,
channel
A good
carbon
t he number
extension
emission
104
the
time
atomic
ne w E e t i c o n
four-fold
As h
lines.
sulfur
within
The
4096
I
integration
range
incurring
G C - MI P
the
order
dynami c
I V. 4 , p.
the-fly"
the
for
3r , and
allow
a variable
without
Cl,
VI T
of
a few
1024-channel
and c a r b o n ) .
resolution
of
the
mor e
photodiode
This
will
improvement
troublesome
array
system
especially
of
the
4096
interferences
(chlorine
be e v i d e n t
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
in
on
the
a r g o n ICP,
reduced
were
where
and
s o me
previously
Another
of
the
MI P .
viewed
central
obscured
zone)
through
the
observation
side
zone
will
outer
slow
time
The
mo r e
woul d
of
system
alignment
of
Viewing
light
in
alternative
and
reconstructions,
enhance
system
performance.
hot
of
limited
importance
formula
demountable
replacement
of
in
of
woul d
the
be
face
to
empl oy
effect.
measured
emission
a
of
a
daily
transparency
is
needed
computer
corrections,
atomic
in
the
improvement,
software
resolved
on
the
degree
accuracy
approximate
this
hot
drawback.
result
this
the
formula
(exclusively
and
plasma
reasonable
this
mo r e
only
recombination
will
initialization,
display
that
the
region,
viewing
operation
interference
ce
viewing
the
apparent
An
more
that
the
shed
out
minimize
meant
improve
maintain
development
of
torch
to
chromatographic
time
ma y
devitrification.
emerge
wa s
post-torch
fragmentation
wall
also
transverse
torch
cases,
tubing
to
This
spite
quartz
carry
is
MI P
and
many
in
woul d
pre-dissociation
ailow
tubing
rapid
study.
to
interelement
and
the
gas
should
on
To
automatic
grating
of
transverse
whi ch
emissions
woula
lines.
be n e c e s s a r y
quartz
sapphire
In
end-on
This
determination.
the
this
burned
the
continuum
investigation
made
of
of
residence
Ar
initial
the
were
instead
torch
in
the
and
fragmentation.
of
by
sim ultaneously.
tnrougn
nonmetal
observation
utilized
determinations
background
deserving
Axial
zone,
zones
plasma
important
area
configuration
wa s
'he
formula,
spectra
3
are
facilitate
control.
background
empirical
and
to
formula
element
dimensional
only
a few
Automatic
correction,
calculations
se le c tiv e
plotting
items
163
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
of
which
APPENDI X A
169
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
PHOTODIODE ARRAY CLASS EXPERIMENT
be s u b m i t t e d t o Applied Spectroscopy)
(to
This
document
u t i l i t y
of
4
undergraduate
of
The f i r s t
a
of
all
of
the
standard
second
to
illustrate
place.
also
are
part
the
on s p e c t r a l
The
assess
for
each
for
the
of
the
the
of
is
a
of
of
spectral
in
Selection
of
facilitated
by
appear
aperture
after
simple
array
size,
and
is
and
observation
of
illustration
of
wavelength
orders
each.
spectrometers
range
t u r n of a knob whi ch p u t s a d i f f e r e n t
principle
a 2-
compiled
photodiode
Simultaneous
The
of
terminal.
size,
enables
variables.
be
automatically
slit
resolution.
range
can
simultaneously.
experiment,
effects
investigation.
channel
video
w4
*c
complete
concentration
single
the
o .l * ~ i o
analysis
calculations
on
^
more
laboratory
which
plotted
a
involves
educational
spectroscopy.
w
*
class
component
observed
for
wavelength
by a s i m p l e
to
cursors
are
spectroscopic
through
required
screen
the
altered
are
time
curves
desired
Analysis
the
in
c wu wd wi wi i a i
experiment
mixture
curves
demonstrate
detectors
wii i ^ u e
the
wavelengths
In
dispersion
in
tne
movable
these
of
wavelengths
use
the
part
calibration
appropriate
used
ii x o
spectroscopy
unknown
fraction
since
wii
to
array
Instrumental
understanding
Standard
prepared
photodiode
e
component
wa s
the
use
can
be
grating
of
investigated.
1 70
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
filters
PDP11 f i l e n a m e : PDAEXP. RNO
Mov. 2 7 , 1982
Instrumental Analysis
Photodiode
A.
Sa mpl e
P r e p a r a t ion
T u r n on
not
turn
the
on
the
wi ndow
less
300
of
wa s
than
by
nm.
to
solvent
woul d
4 pyr a x
of
cobalt
0.050
and
the
with your
are
gone
all
fingerprints,
the
frosted
and
for
the
diluted
Load a l l
to
the
the
etc.
of
the
indicator
by t h e
of
must
oe
dial
1 30
is
equal
nm
array
to
cuvette
the
nitrate
Be
cuvette
Hol d
see
U times
array
( 130
is
now
0.138
third
all
wiped
the cu vettes
c u v e t t e s in
blank
with
M
a
(nonahydrate),
sure
is
volume.
with
standardized
chromi um
of
to
wavelength
and d i l u t e
one
unknown.
of
of
that
6 7 0 n m) .
T. A.
a
is
wavelength
(hexahydr'.te),
of
outside
center
Do
spectral
reading
the
covered
with
real
setting
370
nitrate
solutions,
sides.
the
a
grating
diai
see
Check
wavelength
the
the
Load
M solution
that
get
that
the
next
to
give
This
the
dial
from
from
the
standardized
last
to
see
a
Check
to
nm.
whi ch
cuvettes.
(reference),
solution
300
wavelength
nm ( o r
unknown
place
grating,
to
supply.
10 m i c r o m e t e r s .
for
me a n
of
520 nm * 150
the
equals
one
power.
in
wavelength
The r a n g e
an
is
is
this
Check
This
Ootain
Clean
4.
lamp
In order
with
a real
X 4 » 520).
equal
the
calibrated.
to give
520
grating
Startup .
t h e B e c k m a n DU p o w e r
setting
l ambda"
spectrograph
to
hydrogen
g/ mm
Experiment
Spec t r o m e t e r
power
slit
"delta
multiplied
to
the
dispersive
dial
set
main
spectrograph
that
tne
the
and
Array
t h e quad
bubbles
clean
of
only
by
sample
171
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
no- i - der
of
the
spectrometer
spectrometer
3.
sample
Comput er
the
control
front
at
top
find
the
PDP
compartment.
one
Close
"DC O F F " .
(labeled
h e i g h t ) . At
the
power
Turn
computer.
11/34
panel
ma i n
DSD-830
place
aoiaer
tne
into
one
lid.
S t a r tup
Face
table
ana
it
"digital
lower
switch.
to
Locate
right
Its
hard
hand c o r n e r ,
turns
disc,
computer
PDP 1 1 / 3 4 "a n d l o c a t e d
position
"DC ON" . T h i s
Winchester
the
you w i l l
will
on
the
probably
computer,
be
the
and
tne
diode
array
enter
the
number
171000
spectrometer.
To
with
bring
the
number
PDP
will
left
front
panel.
number
screen.
printing
finally
typed
use
that
ask
out
will
same
whi ch
as
you
for
above
appear
typing
the
of
strikeover
y o u ma y
largely
pauses
t h i 3 query.
today's
by
labeled
current
date,
correct
will
the
replace
the
query.
is
directly
the
old
it
in,
to
the
LAD b u t t o n
on
the
push
the
the
ignore
front
appear
If
that
the
mos t
over
date
the
the
more
system
will
appear
recent
system
it.
is
the
not
the
is
done
(this
type
This
old date
with
on
A
will
date
to c o r r e c t
the
with
A calendar
the
to
decscope").
will
screen,
of
panel.
(located
"digital
this
register
interspersed
date
your job
date
on
date.
Th e
the
terminal
and
following
type
simultaneously
"START"
a p p e a r on
the
push
computer
several
will
As y o u
you mus t
and
the
computer
Following
Next ,
this,
"CNTRL"
at
Ke y p a d .
" ADDRS DATA" d i s p l a y
keypad.
down
things
first
panel
the
Following
the
of
in
the
sit
of
front
labeled
Next,
system,
11/34
of
buttons
right
the
appear
upper
t wo
up
new
1 72
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
one).
Next,
nit
the
throughout
send
the
key)).
in
same
the
"RETURN"
w ill
program
w ili
w ill
you
see
the
way
it
is
the
array
or
has
in
spectrometer.
the
c om m a n d :
paragraph
on
h it
the
Enter
to
hit
tne
for
you
ready
and
this
"winking
spectrometer,
several
programs
times
lab.
a
plots
f u il
To
displays
it
every
useful
proceed
with
If
desired,
you
Its
sole
purpose
screen
only
the
in
perform
is
to
the
screen
on
half
in tia l
experiment,
let
same
is
half
at
making
do
difference
channel
it
" WAT CH"
nearly
only
diode
the
second.
terminal
plotted
for
array
allow
p lo ttin g
spectrum
photodiode
not
The
other
f ir s t
every
term inal
of
the
The
once
does
whereas
the
screen.
about
array.
channels
in
that
only
has
of
the
the
screen.
resolution.
adjustments
simpiy
to
enter
R UN WATCH
program
to
the
the
particularly
the
The
(period)
tc
a
processing.
Instead
" WAT CH"
results
is
then
forget
is
this
desire
time.
computer
."
terminal
but
data
by
1024
the
use,
spectrum
seen
array
spectrum
to
channels.
" WAT CH"
a "
the
Don't
the
with
simpiy
on
the
easy
calculations
spectrum,
When
command,
for
date.
d iffe re n t
" WATCH"
update
any
This
at
graphically
also
the
ask
you
Jo
screen.
photodiode
executed
extremely
512
the
whenever
desired
next
did
respond
on
the
called
spectrum
w ill
instructed,
Execution.
use
be
the
finished.
symbol
? rogram
To
is
it
otherwise
experiment
type
you
when
(unless
the
system
way
<ey
underline"
of
(F irs t
The
proceed,
C.
rest
a command.
return
to
" R E T U R N 11 k e y
read
w ill
on
begin
the
running
screen.
by
The
giving
firs t
you
query
a
you
tu to ria l
have
173
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
to
answer
is
whether
the
whether
you
want
screen
(the
sampling").
not
answer
the
be
the
are
produces
a
screen.
This
the
for
in
require
screen
broad
the
a
program.
which
are
finished
a
means
with
the
the
of
to the
the
and
shaded
mo d e
the
iris
sample
Return
diaphragm
compartment)
for
(type:
to
such
mode.
Typing
of
for
on
the
sharp
line
a
better
be
Typing
more
superimposing
more
plots
(this
key
command
"S"
are
screen
to
on
" WATCH"
gives
Dot
you
appear
contribution.
single
running
will
be d o n e
commands
execute
you
used
and
the
displayed
S),
the
that
type
It also
should
the
(located
will
spectrum
the
key
On c e
Several
array
reply
do
with
net
this
must
give
is
iater
when
you
program.
program
on
this
paragraph.
the
essential
screen
spectrometer.
plot".
" RETURN"
continuous
that
spectra
current
on
is
second
"RETURN" Ke y .
array
These
"WATCH"
turn
Y
tne
and
"WATCH"
Now
of
band s p e c t r a
"quit"
be:
want
program
plot
other
you
diode
dark
the
"do
analysis.
continuously
array.
on
useful
atomic
being
the
per
tutorial
the
jpectrum
in
once
dot
of
only
updated
"dot
simultaneously
stroke
"Q"
of
the
cr
ask
photodiode
experiment).
The
Wi t h
of
displayed
"WATCH"
especially
in
scan
probably
the
plot
impression
the
will
in
spectral
be
by a s t r o k e
described
one s p e c t r u m
iater
of
form
is
to
will
query,
shaded
"D" r e t u r n s
than
answer
encountered
useful
spectrum
feature
in
a single
computer
above
features
visual
want
followed
screen
spectra
the
' four
A special
need
you
note
the
tungsten
dot
plot
between
the
l amp
and
dark
current
spectrum
on
level
source
(type:
lamp
array
updated
light
mode
the
photodiode
of
D) .
housing
appears
the
of
the
Adjust
and
strong
1 74
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
the
on
tne
screen,
of
diode
figure
long
1,
out
some
diodes
is
that
the
in
the
for
On c e
your
This
Th e
program
routine
and
spectrum
on
data
(software
how
the
spectrum
2 of
the
the
to
In
step
is
screen.
function
Once
performed
subtraction)
,
know
you
you
such
and
the
should
be
noted
2,
update
the
to
rate
(allow
on
capable
some
screen).
type:
Q
and
simply
ready
for
step
show you
seen
the
step
hit
it
(e.g.
the
to
conversions
In
the
through
at
number
normalization
T data).
you
a
the
subtraction,
file
take
a
" S I MUL T " w i l l
given
performs
logarithmic
will
collection
displaying
current
percent
have
data
of
" S I MULT"
manipulation
wiil
slowly
reference
" S I MUL T "
a
saturation
should
similar
as d a r k
from
by
are
a
addition,
you
the
through
screen
figure
uses
is
beam"),
completed,
on
program.
it
sample
data
like
In
instantaneously
"equilibrate"
looks
If
It
1 3ec.
adjustment
" WATCH" ,
experiment,
handout.
The
" SI MULT"
screen.
of
this
screen.
does not respond
calculation
stages
" S I MU L T "
of
"WATCH"
"double
(absorbance
the
An e x a m p l e
diaphragm.
averaging,
of
light
manipulations
signal
cutoff
less
called
the
r e a c h an u p p e r l i m i t
handout.
allow
the
like
this
to
spectrum
end
1 of
An e x a m p l e
diaphragm
spectrum
will
in fig u re
side
display
screen
saturated.
the
you make
the
diodes
of
figure
iris
the
given
hand)
iris
in
that
time
these
the
screen
requires
part
the
(left
given
cnanges
each
of
compartment.
look
of
is
adjust
sample
none
saturation
wavelength
occurs,
of
with
most
a time.
the
first
After
result
improvement
dark
RETURN
key
show you t h e
of
on
or
current
to
result
1 75
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
let
of
^70
>120.
Fig. 1.
47CL
S20L
570
WAVELENGTH o»)
62CL
670.
Saturation Effect (iris open too wide).
W filament lamp emissions.
a-.
O
cn
cno
ZP
U JC N I
470
570
5 20.
WAVELENGTH com)
Properly adjusted i r i s ;
L la n en t
620
ramp e m i s s i o n s
176
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
670
the
next
you
step
nave
(e.g.
seen
individual
the
the
result
basis,
automatically
subsequent
will
be
solve
used
to
cobalt
chromi um
and
experiment,
S I MUL T
will
then
fou
source
with
your
sit
left
reduce
SI MULT
display
for
random
are
step
on
these
result
an
steps
for
all
It
can
the
the
that
black
it
dark
will
blocks
the
system.
Th e
then
the
and
system
the
things:
front
the
All
the
Do
this
hit
tne
Tt
mo d e
will
the
result
on
averaging
serves
to
processed
by
spectra
At
will
will
of
pause
10 t i m e s .
Signal
query
two
blocked,
display
the
current".
beam.
exit
10 s p e c t r a .
adjust
with
dark
in
the
beam
spectrum
and
contains
During
the
plate
the
3).
100JT".
pause.
following
black
10 s p e c t r a
pause
study
Data.
sample
SI MULT w i l l
using
mixture
To p r o c e e d
will
the
(Fig.
in
plate,
y o u do
current
the
new
and
Wi t h
s i m u l t a n e o u s
RUN S I MULT
completely
averaged
the
the
Spectral
smali
2. )
sec.
a
equations.
you
"PAUSE -
hold
noise
signal
period,
say
until
10
of
executing
there
average
"PAUSE - S a m p l e
r emove
After
unknown a b s o r b i n g
c o mma n d :
will
the
of
system
terminal.
sample
screen
the
hand.
the
signal
p e r f o r m
Processing
such
RETURN k e y o f
then
of
final
i n an u nknown m i x t u r e .
begin
snould
light
the
and
tnecomputer
will
all
simultaneous
particular
simply type
Acquisition
and
the
function).
processing
perform
determination
The
1. )
b e a m"
data
only
aiso
components.
will
each
will
display
spectrophotometric
It
"double
samples.
t h e r e f o r e
pause
of
" S I MU L T "
and
" S I MUL T "
D.
software
occur
then
sample
the
end
as
of
thi3
follows:
wait
for
holder
to
177
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
you
to
select
o
o
«
0-1
C0
a
a
r 'c n -
* ra.
>
UJ
O .J
e g
»■ iQ
^eo.
420.
F ig . 3 .
two!
suo!
600
WAVELENGTH (N H )
66o!
Fixed P a tte r n Dark C u rren t
All spectra in this lab taken
with the array at room temperature.
178
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
720.
'-o
>00
>
Ll I
2§
q
O
360
420
480
540
600
WAVELENGTH (NM)
660
720
o
o
~uo
> 3*
>
360
420
F ig.
4.
480
540.
600
WAVELENGTH (NM)
660
V f i l a m e n t lamp e m i s s i o n s ; ( r e f e r e n c e ) ; s i g n a l
no d a r k c u r r e n t s u b t r a c t e d .
A. Ol d l ame b u l b
179
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
averaged,tut
3 . " e w l amp r u .
;he
reference
raw
tungsten
sec.
l amp
(Fig.
At
cuvette,
finaiiy
emission
to
spectrum
nit
will
tne
then
<ey.
RETURN
be d i s p l a y e d
Tne
for
10
4).
the
end
automatically
of
the
10
subtract
present
raw
will
automatically
be
ana
spectrum
sec
the
to
give
period,
the
previous
dark
a corrected
displayed
for
computer
current
spectrum.
from
This
an a d d i t i o n a l
10
will
the
spectrum
sec.
(Fig.
5) .
The
next
standard
for
and q u e r y
solution
displayed
been
pause
in
(no
single
10
double
sec.
chromium
beam
automatically
will
form,
6).
beam f u n c t i o n
At
will
but
the
end
automatically
displayed
period
^Fi g.
7).
be
in
the
spectrum
Clearly
explain
the
l amp
W
why
"-log
absorbance
mode
need
the
of
the
hit
cobalt
displayed
of
noise
sampling
for
10
with
T"
is
RETURN k e y ) .
3ec.
queries
(no
in
and
the
this
will
added
unknown m i x t u r e
with
the
10 s e c .
noise
wavelengths.
(Hint:
consider
(without
absorbance
then
and
spectrum
be
explain
to
pause
the
or
spectrum
automatically
the
variation
spectrum.
pauses
cobalt
software
remaining
entire
The r e s u l t i n g
Not e
have
the
shorter
automatically
3).
be
5).
the
will
will
an a d d i t i o n a l
at
Fig.
will
persist
time
report.
of
solution
(Fig.
worse
of
proceed
for
cobalt
will
performed
that
your
conversion
wavelength
the
in
spectrum
will
standard
of
this
standard
Additional
chromium
considerably
emission
Further
to
gets
noted
current
this
automatically
being
should
dark
the
spectrum
display
of
result
It
The
This
the
be
sam p lin g of
added).
subtracted.
(Fig.
allow
of
allow
(Fig.
cobalt
sampling
9)),
and
of
the
followed
chromium.
1 30
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
oy
These
o
CM
CO
o
> C \I
LU
360
420
Fig. 5.
600
0.
540.
WAVELENGTH (NM)
660
720
Corrected Spectrum o£ W filament lamp emissions (dark current
subtracted) . This is the eiagle beam reference curve. Every
point on this graph * 100 ZT.
131
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
3200.
CMVJ
2M00.
VOLTAGE
1600.
DIODE
800.
360
600
WAVELENGTH (NM)
Fig. 6.
660
Single beam transmission spectrum of Cobalt standard
(Dark current subtracted).
182
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
720
z
CE
H
420
Fig. 7.
600
540.
48 0.
WAVELENGTH (NH)
660
720
Software Double beam transmission spectrum of Cobalt standard.
( (Fig. 6 i Fig.5) X 100 ZT)
O
O
o°
480
540.
(
600
WAVELENGTH (NH)
Fig. 8.
660
720
Corrected, Double 3eam Absorbance spectrum of Cobalt standard.
(2 -log Fig.7)
183
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
spectra
will
double
be
beam
stepwise
directly
absorbance
dark
software
in
turn,
Remutntng
quertes
concentrations
add
units
decimal
this
time
to
be
select
(appearing
on
until
cobalt.
the
The
at
cobait
right
moves
the
cursor
time
it
a
to
the
right.
c a n be u s e f u l
is
bit
REPEAT
a
bit
faster
key
for
allow
slow
an
move
side
wavelength
The
or
left
Moving
the
for
is
screen
cursor
for
to
the
the
initial
with
the
you
deem
time
left
cursor
final
first
moved
and
type
the
cursors
the
adjustment.
10) .
cursor
to
a
the
for
a
single
one
screen
< or
> key.
moves
channel
adjustment,
To mo v e
setting,
< or
t wo
(Fig.
> key
one s c r e e n
the
the
appropriate
is
"touchup"
either
over
screen)
with
you
("rough")
but
screen
one
oy
me mor y,
select
of
the
typing
screen
equations
the
use
respond
from
two
Do
numerical
after
then
to
cursor
each
approximate
simultaneously
you
xncwn
not
spectrum
simultaneous
spectrum
the
key
the
the
key
provide
query.
the
Do
again
be
chromium).
in
will
and
will
and
tn
and
type
cobalt
also
hand
type
(cobalt
spectra
wavelength,
channel
to
in
pause
RETURN
the
will
spectrum
next
to
the
averaging,
Each
3 I MUL T
ccrrectec
observe
concentration.
solution
left
is
you
just
the
used
maxi mum.
<
Hit
to
wavelength
The
the
lines)
the
having
you
standards
of
It
the
it
for
superimpose
dotted
wavelengths
right
value
will
final
signal
the
concentration;
spectrum.
(vertical
To
two
t wo s t a n d a r d
it
by
a3x
concentration.
the
chromium
the
notation.
each
plotting
followed
the
molar
scientific
in
to
(without
:ne
conversions).
wtll
of
in
subtraction,
beam
displayed
not
mode
current
double
plotted
the
On c e
1 3a
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
at
a
but
cursor
depress
> keys.
the
the
you
540.
600
WAVELENGTH (NM)
Fig. 9.
660
Corrected Double Beam Absorbance spectra of the
Chromium standard solution.
A.
B.
Taken with old W lamp bulb.
Taken when the W lamp bulb was newer.
185
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
t ------------------ 1-------------------r
^60.
420.
F ig . 10.
0.
540.
i
WAVELENGTH (NM)
T
660.
720.
G ra p h ic a lly superim posed s ta n d a rd s o lu tio n s p e c tr a of
Co and Cr. The two m e ta ls were n o t mixed in s o lu tio n .
They were run s e p a r a te l y and th e two c o rr e c te d double
beam absorbance s p e c tr a were g r a p h ic a lly superim posed
h e re by Che com puter ( F ig s . 8 S 9A su p erim p o sed ).
The v e r t i c a l d o tte d l i n e s ( s c re e n c u rs o rs ) a r e moved r i g h t
o r l e f t to s e l e c t w avelengths f o r sim u ltan eo u s a n a ly s is .
T h e ir p r e s e n t p o s itio n s a re not n e c e s s a r ily th e b e s t.
I t i s up to you to move them on th e te rm in a l sc re e n to
th e p o s itio n s - you deem b e s t . Mark th e p o s itio n s you chose
on t h i s f ig u r e and tu rn th e f ig u r e in w ith your r e p o r t.
Give some j u s t i f i c a t i o n f o r your c h o ice in your r e p o r t
and p o in t o u t why some o th e r w avelengths would n o t have
been a good c h o ic e . L a s tly , in your r e p o r t , t e l l me what
you c h in k of my c h o ice o f w avelengths (c u rs o r p o s itio n )
in th e f ig u r e above. T e ll me what I d id r i g h t ( i f an y th in g )
and what I d id wrong ( i f a n y th in g ) .
186
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
are
satisfied
cobalt
.ntoplace
side
chromium
second
it
choose
so
don't
first
key.
This
cursor
at
the
with
the
the
Mo v e t h i s
it
from
the
will
cursor
screen
one
but
worry
criteria
of
about
the
on t h e
your
right
>,
and
choice
for
the
your
first
computer
one
remembers
In s e l e c t i n g
analysis,
in
tr .e
first
ma x i ma ) . I f
it.
discussed
on
t h e <,
(locked),
the
equation
locks
using
wavelength
fir3t
cursor
appear
wavelength
t wo
simultaneous
wavelengths
the
the
please
keep
in
lecture.
Tr y
to
where:
1.)
t h e s p e c t r a l d i f f e r e n c e b e t w e e n t h e t wo c o mp o u n d s i s
great
(with
thecompound
having
the
greater
absorbance
at
the f i r s t w a v e l e n g t h e x c hanging to
have the l e s s e r a b s o r b a n c e at the second wavel engt h) .
2.)
the
theaiode
you
cursor,
hit
the
slope
are
(molarity
options
the
the
units]
for
screen
with
of
the
in
in
and
your
both
continue.
these
is
high.
c o mp o u n d s i s l o w.
t ne l amp i s not
toe
is not e x c e s s i v e .
position
The
unknown
It
will
Follow
the
options.
of
the
computer
compute
calculator
thescreen.
exercise
c o mp o u n d s
saturated.
again.
equations
answers
you t o
to
are not
cooalt
on
the
beam i n t e n s i t y of
5 - 9 ) , so t h e n o i s e
satisfied
and
of
spectra
channels
simultaneous
print
one
t h e RETURN x e y
bo t h chromium
will
of
of
t h e raw s i n g l e
low
(see Figs.
5.)
Once
absorbance
the
u .)
the
second
over
selection
3.)
of
for
of
RETURN
screen.
crosses
wa s
wavelengths
the
the
position
disappear
mi nd
the
(the spectrum
cursor
wnere
solve
and
to
position
hit
of t h e
REP EAT < e y s
will
tne
spectrum,
cursor
hand
with
the
second
will
concentrations
mixture.
scientific
then
lis t
instructions
This
then
will
3I MULT
notation
several
given
on
include
1 87
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
a o s e r v i ng
the
It
:ne
rules
will
for
also
and
ink
the
screen.
the
selecting
include
hardcopy
of
The
on
so
screen
plotting
doesn't
Devise
diode
the
plots
these
for
begin
and
not
use
one
or
simultaneous
plotter
to
more
of
analysis.
obtain
a
pen
you o b s e r v e d
earlier
on
plots
are
already
stored
in
re-run
the
samples
to
plotter
are
of
the
data
NOTE:
until
implement
and
on
remaining
you
end
The
the
actual
S I MULT
get
the
given
hardcopy
program
using
experiment
the
for
corrected
simultaneous
(Hint:
use
observing
double
beam
calculation
the
iris
the
effect
absorbance
of
Co
diaphragm
and
and
Cr
the
3 1 MULT o p t i o n s . )
Optical
Variables.
Replace
iris
select
an
on
the
concentration.
Set
data
of
need
for
the
needed.
saturation
spectrum
the
you
violating
9.
option
I.
of
for
as
of
wavelengths
several
Instructions
the
effects
use
data
computer,
hardcopy.
of
infortunace
the
tungsten
diaphragm
the
g / mm
600
lambda
to the
real
*
lamp
fully
grating
520
with
the
mercury
open p o s i t i o n .
(lambda
real
nm ( l a m b d a
dial
pen
lamp.
Very
» lambda
» 260
Set
carefully
dial
n m) .
X
2).
Turn
the
p e n l a m p o n a n d r u n t h e ' NATCH p r o g r a m .
Not e
at
the
the
t wo s t r o n g
center
and
neutral
right
atom
side
of
emission
the
lines
screen.
of
( F i g . 11).
a l 3 0 t h e w e a k e r " y e l l o w d o u b l e t " o f m e r c u r y on t h e l e f t
of
the
of
these
lines
screen.
you
two
see
Try
yellow
in
this
to
get
lines
a
and
mental
the
image of
general
mercury
the
spacing
Note
hand s i a e
resolution
of
all
spectrum.
1 88
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
four
o
a
a-
<0
a
o
in­
s’
25 3 .7 am
(2nd order)
5 4 6 .1 am
—o
tn o
z 2*
ujcn
"Yellow Doublet"
/
o
o
in-
577TcTnm
579.1 nm
T
^ 5 5 .
480.
T
505.
530.
555.
WAVELENGTH (n»)
580.
60S.
OK. POAFllRflW
F ig . 11,
Mercury (Hg) pen lamp e m issio n s:
600 g/mm g r a tin g
10 ym s l i t
189
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Now
return
(lambda
dial
increased
(Fig.
=
in
you
has
grating),
To
13 0
image
to
a
doublet
adjust
relative
intensity
micrometer
(Fig.
12).
these
two
saturation,
the
the
3li t
to
=
Ma n y
the
same
that
the
dispersive
the
setting
increase
d o wn )
two
lines
of
asi t
wa s
In
your
setting
pertinent
intensity
this
your
for
the
a
and
slit
observations
diaphragm
for
of
resolution
all
doublet,
iris
resolution
slit
Report
Report
the
on
the
Repeat
resolution
slit
fully
so
that
s a me
the
for
this
10 m i c r o m e t e r s
the
yellow
report,
effects
to
a setting
open
position.
150 g / mm g r a t i n g
65 n m) .
Note
the
spectral
more
iines
Find
(less
yellow"doublet” is
and
the
doublet
for
explain
you
have
ail
observed
iris.
the
the
(calculate
15).
and
return
iris
dial
grating).
(Fig.
the
has
less.
( F i g . 1 3 ).
( F i g . 1 a)
r.i
spectrum.
Note
between
etc.).
settings.
Now s e i e c t
larger
the
slit
slit
Carefully
(lambda
of
Compare
intensity,
return
(close
window
Locate
halved
theyellow
channels,
= 520
mercury
spectrum.
m icrometers.
micrometers
Ne xt
the
of s l i t
of
real
spectral
appear.
carefully
50
any
200
of
resolution
effect
l amoda
the
previous
somewhat
of
of
of
involving
is
the
again.
200
the
(resolution
saturation
more
lines
the
intensity,
observations
setting
in
ana
that
approximately
that
value
grating
Note
take
in
been
observe
and
g / mm
nm) .
to
saw
and
yellow
300
Additional
lines
spacing
the
size
12).
four
the
to
the
that
and
the
interval
have
original
of
l ambda
real
spectral
being
appeared
4
10 m i c r o m e t e r s
lines,
note
52C
window
covered
in
»
the
the
and
nm
is
even
with
this
spectrum.
change
1 90
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
in
o
o
«
o
CD
in
546.1 nm
253.7 nm
(2nd ord)
435.8 nm
Yellow
D oublet
in
380
530.
580
WAVELENGTH (am)
630
OR PJJAF12RAW
F ig . 12,
Hg e m is s io n s :
300 g/mm g ra c in g
10 ^m s l i t
191
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
680
o
o
0-1
<0
546.1
435.8
253.7
(2nd)
530.
580
WAVELENGTH (nm)
630
OK POBFlURflW
F ig . 13,
Hg e m is s io n s :
300 g/mm g ra c in g
200
pm s l i c
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
680
o
0 -1
CO
in
546.1 am
253.7 am
(2ad ord)
435.8 am
U nresolved
Yellow
D oublet
in
430
480
530
WAVELENGTH (am)
580
630
OK P D flF lS R flW
Fig. 14,
Hg emissions:
300 g/mm gracing
200
slic (reduced aperacure iris)
193
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
680
spacing
the
from
change
tne
in
In your
"window”
size
is
25
the
Using
wavelengths
dispersion
of
Calculate
micrometer
siit
narrow
To
iocate
hand
and
real
spectral
registers
in
3 or
side
iowest
of
equivalents
the
of
UV l i n e
this
they
are,
make
them
of
glass
into
UV
lines
the
should
intact).
Note
intensity
in
(Hint:
blazed
the
think
for
50C
line
should
3
Once
the
so
the
1st,
UV l i n e
different
the
blaze.
nm
the
first
in
(leaving
does
not
These
for
a
10
width.
channels
per
line
generally
order
overlap,
(extreme
2nd a n d
see
you
right
3rd o r d e r
if
you
know w h i c h
by
(Fig.
and
orders.
about
the
and
path
three
channel
and
think
2nd,
disappear
the
bandpass
selectively
optical
the
the
mercury
occur
and
1.
blaze
where
length
of
4 diode
just
its
reciprocal
spectral
of
you
disappear
all
that
order)
Estimate
spectrum.
UV l i g h t ,
grating
(1st
screen).
in
ali
of
have
the
diode
3 or
of
you
handout
each
a
spectral
and
this
spectral
why
yellow
grating.
in
for
instead
and
calculate
assuming
the
effects
micrometer
Explain
effects
them
filte r
25
especially
of
channels
given
12-15,
bandpass
find
piece
a
lines
the
'024
theoretical
4 channels
the
of
spectrograph
the
t wo
note
resolution
density
Figs.
and
coverage)
contains
feature.
observe
the
ruling
this
the
of
the
the
information
of
gratings.
Calculate
explain
array
the
spectra,
between
(interval
photodiode
mm.
<nown
report,
involving
Th e
t wo
resolution
doublet.
observed
earlier
c a r.
ones
inserting
16).
This
a
will
3rd
order
mercury
all
visible
Hg l i n e s
appear
(Fig.
three
15) .
to
be
the
Why i s
gratings
are
order).
1 94
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
same
this?
all
o
U nresolved Yellow D oublet
o
in
253.7
253.7 (3rd)
1
^30.
330.
J
430.
530.
WAVELENGTH (nm)
630.
730.
L
.
830
UK P0HFi3RfiW
Fig, 15,
9g emissions;
150 g/mm gracing
10
jm
slic
unfiltered exposure
(exposures of all previous figures also unf
195
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
o
o
Unresolved Yellow Doublet
LTM
JL.
— LU
^30.
330.
430.
530.
WAVELENGTH
630.
JL
730.
830.
OK. P0AF16RAW
F ig . 16,
Hg e m issio n s:
150 g/mm g r a tin g
10 jjm s l i t
Same as F ig . 15 except a g la s s f i l t e r has
been added to remove a l l UV s p e c t r a l f e a t u r e s .
196
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Report
i n
this
you
plotted
ana
explain
laboratory.
on
the
data
all
Turn
ooservacions
in
original
ana
functions
perfcriea
hardcop y of any
spectra
plotter.
1 97
Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.
APPENDIX B
Software Listing
1 98
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Software
o <
1o o o n o n o o o o o o
o
o o o o o o o a a o n o o o o
Thi 3
L isting
program
for
opens
an
Photodiode
input
F I L E : OP E NI N. FOR
F.
Updated
Version:
for
Data
A quisition
photodiode
array
BUROUGH
data.
1 0 - NOV- 3 1
V0 1
PURPOSE:
To o p e n
package,
calling
format:
modified for compatabi1ity
and t o d i s p o s e of c h a n n e l s
an i n p u t
and r ea d
f i l e for the
in and p r i n t
with
correctly.
photodiode array
out i t s header.
CALL OP E NI N( n a m e , c h a n , e x t , f l a g )
NAME
integer
CHAN
contains
EXT
a 3~lstter
FLAG
e r r o r r e t u r n f l a g - - 0 » a l l o . k . , n o t 0 me a n s
error
t h e s u b r o u t i n e p r i n t s e r r o r m e s s a g e s , b u t t a k e s no
o t h e r a c t i o n on t h e e r r o r .
Up o n r e t u r n ,
a filename
array[3]
if
channel
in
whi ch
numbe r
L0GI CAL*1
ERRFLG > 0 ,
SUBROUTI NE OPENI N
filename
to
returned
use
default
then
is
extension
user
did
not
give
( FI LNAM, I CHAN, EXT, ERRF LG)
COMMON/ BLOCK/
HBUF, I ARR. SUMARR, REALAR
COMMON/ HDBLK/
QNUM, ASTRNG, ALSN, L EN, STEPOS. ENDPOS
I NTEGER HBUF( 2 5 6 ) , I A R R ( 1 1 5 2 ) , EHDPOS( 2 0 ) , ZERO
I NTEGER FI LNAMC3) , ERRFLG, I CHAN, QNUM, ALEN( 2 0 ) ,
LEN( 2 0 ) , 3 T R P OS ( 2 0 )
REAL
SUMARR( 1 1 5 2 ) , RE ALAR( 1 1 5 2 )
LG GI CAL * 1 EXT (.3) , AS TRNG( . 2 0 , 6 0 ) , ANS
n o o
]
30-Nov-8l
Modifications:
2 9- APR- 83
SGS TSX .COM f i l e s
'
file
Array
input
filename
1 99
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
GO TO 2
!
!
C
1
2
C
C
3
333
t h i s wa y , t h e f i r s t
the c a l l i n g ro u tin e
query
ERRFLG*0
TYPE 1 0 2 0
FI LMAM( 1 ) * 0
REPLACE GTLI N FOR COMPATA 3 I L I T Y WITH TSX
CALL GTLI N( F I LNAM)
ACCEPT 3 3 3 , FILNAM
FORMAT( 8 A 2 )
’ C f ? T [
*
•
v *
n i J M f
1
•
l
>
nr r
» » I m «
i
r
4
\ r.n t
a w
*
r\
W
c o me s
from
.COM FI LE
s
a
I F ( FI LNAM(1 ) . N E . 0 ) GO TO 5
TYPE * , ' R e - e n t e r f i l e n a m e : '
goto 3
open
5
the
file
I CHAN* I GE T C()
I F ( I C H A N . G E . O ) GO TO 7
STOP ' ? 0 P E N I N - F - N o c h a n n e l
available
for
input
7
CALL F O P J N ( ' I N P U T I C H A N . F I L N A M , E X T , 0 , ERRFLG)
I F ( ERRFLG . EQ. 0 ) GO TO 10
TYPE * , ' O p e n f a i l e d f o r i n p u t f i l e '
GO TO 9 9 9
! error return
10
CONTI NUE
0
20
ERRFLG =■ I READW( 2 5 6 , HBUF, 0 , I CHAN)
TYPE 1 0 1 0 , ERRFLG
I F ( ERRFLG . GE. 0 ) GO TO 20
TYPE * , ' R e a d e r r o r i n i n p u t f i l e '
GO TO 9 9 7
terror exit - close
! input
file
header
first
CONTINUE
C
read
0
TYPE 1 0 0 0 , HBUF( 1 )
CALL HDF I ND( HB UF ( 1 ) , ERRFLG)
CALL HEADER( 0 , ' I N S P E C T ' , 7 )
ERRFLG - 0
cc
cc
cc
cc
cc
cc
file.'
in
and
print
out
header
! display
header
to
TYPE 1 0 4 0
ACCEPT 1 0 3 0 , ANS
I F ( ANS . E Q . ' Y' ) GO TO 990
CALL CLOSEC( I CHAN )
CALL I F R E E C ( I CHAN )
GO TO 1
200
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
us
oont inus
990
RETURN
99 7
999
D1 0 0 0
D1 0 1 0
1020
^
go 1 0 4 0
.
w
w
I No r ma l
end
is
here
CALL CLOSEC( I CHAN)
CONTI NUE
CALL I FREEC (, ICHAN )
RETURN
l Ab n o r ma l end
F ORMAT( ' O P E N I N - - H B U F (1 ) I S : ' , 1 7 )
FORMAT( ' OPENI N- - RETURN CODE FROM IREADW I S :
FORMAT( ' O E n t e r n a me o f i n p u t f i l e :
'.$)
•
’ ,15)
s,wn o 4.w A «.' rVf >i j*vi *' \/
FORMAT( 10 1 s
this
the
correct
file?
' , $)
END
20 1
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
C This
C
C
C
C
C
C
Fiie:
program s e t s
HDFI ND. FOR
FUNCTI ON:
F.
up t h e
header
Bur ough
for
the
data
file
]
13~Oct-9l
L o c a t e s and r e a d s in h e a d e r f o r m a t
for the s p e ci f ie d header type.
Calling
Format:
C
TYPE
Format
n u mb e r
for
C
ERRFLG
'0'
all
well,
information
CALL HDFI ND( T YP E , ERRFLG)
r
if
i3
the
desired
otherwise
header
type
nonzero
SUBROUTI NE HDF I ND( T YP E , ERRFLG)
CGMMON/ HDBLK/
COMMON/ 3 LOCK/
QNUM, ASTRNG. ALEN, LEN, STRPOS. ENDPOS
HBUF, I AR R , SUMARR, REALAR
I NTEGER QNUM, TYPE, ALEN( 2 0 ) , L E N ( 2 0 ) , S T H P O S ( 2 0 ) , E N D P 0 S ( 2 0 )
I NTEGER ERRF LG, CMTTS T, LENS TR( 5 ) , FMTNO
I NTEGER H3UFC 256 ) , I A R R ( 1 1 5 2 )
REAL SUMARR( 1 1 5 2 ) , REALAR( 1 1 5 2 )
LOGI CAL* 1
D
09000
ASTRNG( 2 C , 6 0 )
TYPE 9 0 0 0 , TYPE
FORMAT ( ' HDFI ND:
find
proper
HEADER TYPE I S :
’ ,17)
header
CALL ASSI GN ( J , ' A : HEADER. F M T R D O N C
)
lopen
header
fil
CONTI NUE
READ ( 4 , 1 0 1 5 , END- 9 9 6 )
I F ( CMTTST . EQ. ' ! ' )
BACKSPACE 4
c h e c k f o r c o mme n t
CMTTST
i f c o m m e n t , r e a d nex^
GO TO 1
! B a c k up a r e c o r d i f n o t a c o mme n t
! input
stuff
, 12 , ' T Y P E :
f ,12)
READ ( 4, 1 0 2 0 , E ND- 9 9 6 ) FMTNO, QNUM
D
D3 0 0 0
D
D3 0 0 5
TYPE 3 0 0 0 , F MTNO, LI NES , TYP E
FORMAT( ' O F o r m a t n o . : ' , 1 2 , ' L i n e s
TYPE 5 0 0 5 , QRTNG
FORMAT( ' O Q u e r y n u m b e r - ' , 1 2 )
I F ( FMTNO
. EQ.
DO 100
= 1 , QNUM
I
TYPE)
GO TO 10
!
loopto
read
past
this
header.
202
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
READ ( 4 , 1 0 0 5 ) ( A3TRNG( I , J ) , J - i , 6 0)
READ ( 4 , 1 0 1 0 ) AL EN( I ) , S T RP 0 S ( I ) , E NDP 0 3 ( I }
1 00
CONTI NUE
GO TO 1
10
CONTI NUE
DO 2 0 0
200
I - 1 , QNUM
READ ( 4 , 1 0 0 5 ) ( ASTRNG( I , J ) , J - 1 , 6 0 )
READ ( 4 , 1 0 1 0 ) A L E N ( I ) . S T R P O S ( I ) . E N D P O S ( I )
CONTI NUE
DO 300
300
I
- 1 , QNUM
CALL SUBSTR( ALEN( I ) , LENSTR, 1 , 2 )
CALL C V T AD ( L E NS T R , L E N ( I ) , ERRFLG)
CONTI NUE
CLOSE ( U N I T - 4 , D I S P - ' S A V E ' )
! close
header
file
RETURN
996
CONTINUE
3000
TYPE 3 0 0 0 , TYPE
FORMAT( ' ? WORKUP - F - He a d e r
STOP
2000
T Y P E * , 1? WORKUP - r - Op e n
type
failed
is:
for
’ ,15)
file
HEADER. FMT
i n HEADER'
STOP
C
r
format
statements
1005
10 10
1015
FORMAT
FORMAT
FORMAT
FORMAT
END
(6 0 A1 )
(A2,1X.I3,1X.I3)
( 1 A2 )
( 1 1 , I X , 12)
1020
follow
203
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
a OOOCi o o o o c» o o
C This
FI LE:
C
C
program
prints
the
HEADER. FOR
FUNCTI ON:
Calling
F.
Prints
Format:
query:
' O'
header
* wo r k
logical
SUBROUTI NE HEADER
COMMON / BLOCK/
COMMON/ HDBLK/
of
the
header.
3UR0UGH
]
1 3 ‘ 0 CT - 3 1
information.
CALL HEADER ( q u e r y , o p t i o n , u n i t )
o p t i o n : 'INSPECT'-' CREATE' - - p r i n t s
unit:
contents
on e n t i r e
h e a d e r , e l s e wo r k on
specified parameter.
allows user to see c u r r e n t
q u e r i e s so us e r can c r e a t e
device
n u mb e r
to
which
to
print
header
header
header
( QUERY, OP TI ON, UNI T)
HBUF, I AR R , SUMARR, REALAR
QNUM, ASTRNG, A L E N , 3 L E N , 3 T R P 0 S , S N D P 0 S
I NTEGER HBUF( 256 ) , I A R R ( 1 152)
REAL
5UMARRC115 2 ) , REALARC115 2 )
I NTEGER S T R P 0 S ( 2 0 ) , ENDP 0 S ( 2 Q) , AL E N( 2 0 ) , T E X T ( 40)
I NTEGER DONE, QRYNO, QNUM, TXTFMT( 1 1 ) , BLEN( 2 0 )
I NTEGER FMTOUT( 9 ) . F MTFLG, QUERY, UNI T
LOGI CAL*!
D
D1111
0 P T I 0 N C 7 ) , ASTRNGC2 0 , 6 0 )
DATA
DATA
DATA
DATA
DATA
TXTFMT(1 ) / '
( ' / , TXTFMT( 2 ) / ' ' ' ' / , TXTFMT( 3 ) / ' ' ' , ' /
TXTFMT( 5 ) / ' A1 ’ / , TXTFMT( 6 ) / ' ,1 ' /
TXTFMT( 7 ) / ' X , ' / . T X T F M T ( 8 ) / ' 3 0 ' / , T X T F M T ( 9 ) / ' A 2 ' /
T XTFMT( 1 0 ) / ' ) ' /
TXTFMT( 1 1 ) / 0 /
DATA
DATA
Da TA
FMTOUT ( 1 ) / '
( ' / , FMTOUT ( 2 ) / ' " $ ' / , FMTOUT (3 ) / ' " , '
FMTOUT( 5 ) / ' A 1 ' / , FMTOUT( 6 ) / ' , 1 ' /
F M T 0 U T ( 7 ) / ' X , ' / , F M T 0 U T ( 3 ) / ' ) ' / , F MTOUT{ 9 ) / 0 /
D
D
TYPE1 1 1 1 , QUERY, OPTI ONC 1 ) , ’J N IT
FORMAT( ' HEADER CALL: ' , 1 3 , A 3 , 1 3 )
QRYNO-QUERY
DONE - 1
I F (QRYNO . NE. 0) GO TO 5
DONE * QNUM
QRYNO- 1
T Y P E * , ' DONE - ' . DONE
T Y P E * , ' QRYNO - ' , QRYNO
5
CONTI NUE
2C4
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
/
FMTFLG- 0
I F ( OP T I ON( 1 )
C
C
G
C
C
. EQ.
'I')
FMTFLG- 1
' I NSPECT'
I F ( Q R Y N O . L E . 2 0 . AND. QRYNO. GE. 1 ) GOTO 3 3 3
W R I T E ( 7 , 9 2 7 ) QRYNO, DONE
FORMAT( ' HEADER - e r r o r i n l o o p v a l u e ' , / , '
Q R Y N O - ' , 13
DONE- ' , 1 3 )
W R I T E ( 7 , 9 3 0 ) QUERY, u n i t , OPTI ON
FORMAT( ' O p t i o n s p a s s e d : q u e r y - ' , i 8 , ' , u n i t - ' , i 8 , ' ,
o p t i o n - ' , 7 A1 )
UN I T - U N I T / 0
TERMI NATE WITH I NTENTI ONAL ERROR A30VE TO GET
TRACE OF LOCATI ON UPON ERROR ( CALLS)
STOP
930
C
C
333
CONTI NUE
DO 2 0 0 I - QRYNO, DONE
TYPE*, ' I , Q R Y N O , D O N E - ' , I , QRYNO, DONE
D
FMTOUT( 4 ) - AL E N( I )
TXTFMT( 4 ) - AL E N( I )
I F ( FMTFLG . EQ. 1) GO TO 20
.
print
(branch
if
' I N3P
description
c
WRI TE( UN I T, FMTOUT)
GO TO 2 0 0
20
CONTI NUE
C
print
1
200
opt.
t h i s i s t h e l o o p wh i c h d o e s t h e a c t u a l p r i n t i n g of
t h e f i l e h e a d e r s . T h e l o o p r u n s f r o m QRYNO t o DONE
w h e r e DONE -1 i f o n l y 1 q u e r y i s t o be e x a m i n e d .
Thus t h e l o o p i s a l wa y s e x e c u t e d a t l e a s t o n c e .
9 27
C
! 1 if
out
( ASTRNG( I , J ) , J - 1 , S L E N ( I ) )
description
& current
value
WRI TE( UN I T , TXTFMT) ( A S T R N G ( I , J ) , J - 1 , 3 L E N ( I ) )
( HBUF( K) , K - S T R P O S ( I ) . E N DP O S ( I ) )
CONTI NUE
RETURN
END
205
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
[
This
program
converts
F I L E : CVTAD. MAC
F.
ASCII
input
binary
BUROUGH
format.
]
d-SEP-81
T h i s s u b r o u t i n e t a k e s an ASCI I
it to its corresponding binary
CALLI NG FORMAT:
into
i n p u t s t r i n g and
i n t e g e r f or m.
converts
CALL CVTAD( i n s t r i n g , o u t v a r , e r r f 1 g )
ERROR CODES:
0
all
is
well
-1
invalid
char
*1
integer
overflow
on i n p u t
stream
APPROACH:
1)
2)
3)
4)
t e s t f or non-numeric chars
convert character to a d i g it
s h i f t p a r t i a l r e s u l t by MUL BY 10
add i n c o n v e r t e d d i g i t
. GLOBL
CVTAD
CVTAD:
MOV
MOV
MOV
MOV
CL R
R2 , - ( 5 P )
R1 , - C S P )
R3 , “ ( S P )
2 ( R 5 ) , R3
R1
e a c h c h a r c o n v e r t e d i n t o R2
holds r e s u l t a n t value
pointer to input s t r i n g
R3<- - add of i n p u t s t r i n g
c l e a r out answer b u f f e r
13 :
TST3
3EQ
CMP3
8NE
INC
BR
CMP 3
3HI
MOV
MOV
3R
CMPB
3HI
MOV 3
SUB
MUL
5 CC
MOV
MOV
3R
ADD
3R
( R 3)
DONE
( R 3 ) ,<M 0
23
33
1$
( R3 ) , * 5 7
43
6 ( R 5 ) , R0
#- 1 , ( RO)
EXI T
( R 3) , #71
3$
( R 3 ) ■*• i R2
* 6 0 , R2
* 1 C . , R1
53
6 ( R 5 ) , RO
#1 , ( RO)
EXI T
R2 , R1
13
if
23 :
3S :
43 :
53 :
null,
test
for
testing
set
done
a blank
for
error
valid
characters
flag
mo v e c h a r t o R2 t o
convert to a d i g i t
s h i f t over p a r t i a l
b r a n c h i f no e r r o r
set
error
add
in
convert it
(decimal)
result
flag
converted
digit
20 6
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
MOV
CLR
MOV
MOV
MOV
MOV
MOV
RTS
o i. R5 ) , R0
CRO )
4(R5),R0
R 1 , ( RO)
( S P ) + , R3
( S P ) ♦ ,R1
( S P ) + , R2
PC
. END
CVTAD
;
clear
; save
error
flag
result
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
[
T his
program
FILS:
C
G
C
C
C
C
stores
in fo rm a tio n
3PCQRY
F.
for
fu tu re
3UR0UGH
retriev a l.
]
30- OCT- 31
Modified 24-Nov-3t
PURPOSE:
To r e q u e s t i n f o r m a t i o n f r o m t h e u s e r o n t h e s p e c t r a
t o be u s e d i n t h e l a t e r s t e p s o f t h e p r o g r a m .
Th is r o u t i n e i s used fo r f i l e m a i n t e n a n c e and
for selected arithem tic operations.
r
C
CALL 3PCQRYI S CANS, START, E ND, T OTAL, ERRF LG)
SUBROUTI NE 3PCQRY( S C ANS . S T ART , END, TOTAL, ERRFLG)
INTEGER SCANS . START. END, TOTAL, ERRF LG
LOGI CAL* 1 ANS( 5 )
I F ( S C A N S . G T . 1 ) GO TO 55
START-1
END-1
TOTAL- 1
GO TO 75
55
50
65
70
cc
cc
cc
cc
cc
cc
cc
75
TYPE 1 0 7 0 , SCANS
TYPE 1 0 8 0
ACCEPT 1 0 9 0 , START
I F ( ( S TART . GT. 0)
TYPE 11 3 0
GO TO 55
. AND.
( START
.LE.
TYPE 1 1 0 0
ACCEPT 1 0 9 0 , END
I F (END . GE . START) GO TO 65
TYPE 1 1 4 0
GO TO 50
I F (END . L E . SCANS) GO TO 70
TYPE 1 1 3 0
GO TO 60
TOTAL - END- START+ 1
! TOTAL- number
TYPE 1 1 1 0 , START, END, TOTAL
CALL G T L I N ( ANS)
I F ( ANS(1 )
. EQ. ' Y ' ) GO TO 75
TYPE 1 1 2 0
CALL GTLI N( ANS)
I F ( ANS( 1 )
. EQ. ' Y ' ) GO TO 55
ERRFLG- 1
GO TO 30
CONTINUE
ERRFLG -
SCANS) )
of
GO TO 50
spectra
to
0
30
RETURN
1040
FORMAT( 1 A 1 )
208
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
sum
1070
FORMAT; ' O T h i s a a t a f i l e c o n t a i n s ' , 1 3 . ' s p e c t r a . ' / '
' A i l o r p a r t o f t h e m may be o p e r a t e d o n . ' }
1080
FORMAT! ' S p e c t r u m a t w h i c h t o s t a r t :
',S)
1090
FORMAT; I 3 )
1100
FORMAT( ' 5 L a s t s p e c t r u m t o b e i n c l u d e d :
')
1110
FORMAT! ' O S p e c t r a ' , 1 3 , ' t h r o u g h ’ , 1 3 , ’ a r e t o be u s e d
1
'
f o r a t o t a l of ' , 1 3 , ' s p e c t r a . ' )
cc
1
'
f o r a t o t a l of ' , 1 3 , ' s p e c t r a . ' /
Is this correct? '
c c 1120 FORMAT! ' $ D o y o u w i s h t o c o n t i n u e ? ' )
1130
FORMAT! ' 0 I n v a i i d s p e c t r u m n u m b e r ' )
1 1 u0
FORMAT! ' O E n d i n g s p e c t r u m n u m b e r m u s t be g r e a t e r
than
1
or ' , / ' e q u a l t o s t a r t i n g s p e c t r u m number
1
END
209
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
o o o o o o o o
[ T his
c
c
c
program
p rovid es
hard
copy
F I L E : ? LOTT. FOR
UP DATED 3 - J U L - 3 2
Plotting
package
p lo ts
of
selected
scans.
]
8-APR-32
for
the
photodiode
array
software
I n I NTEGER b l o c k POI NTS a n d FI LNAM m u s t be
t h i s i s u s e d t o p a s s f i l e n a me t o p l o t t i n g
COMMON/3 LOCK/
! chain
to
this
R.C.
Fr
together
package
Modified 27~3ep-82
by 5 . S p e a r m a n
to allow screen p l o ts
C h a n g e d STOP s t a t e m e n t s t o c h a i n s t o PHOTO
PROGRAM PLGTT
for
28-5ep-32
DC3
later!!!
KBUF, I A R R , SUMARR, REALAR
INTEGER H3 UFC2 5 6 ) , I ARR( 1 0 2 4 ) , I CHAN, ERF LG, FLG
I NTEGER P O I N T S , F I L N A M( 8 ) . S C ANS . S T A R T , END. TOTAL, 3LKNC
I NTEGER ? ARR( 9 )
RE AL
3 U MA R R ( 1 0 2 4 ) , R E A L A R ( 1 0 2 4 ) , X A R R ( 1 0 2 4 )
REAL
FNAMC
EQUIVALENCE
, YARR( 1 0 2 4 ,
2) , PHOTO( 2 )
( SUMARR, XARR) , ( REALAR, YARR)
L 0 GI CAL 4 1
D 0 P L 0 T , ANS . REAL
DATA FNAM/ 6RA
P L 0 . 6 R T 2 SAV/
! n a me o f f i l e t o c h a i n
DATA PHOTO/ 6RA
PHO. oRTO SAV/
DATA D 0 P L 0 T / . F A L S E . /
lir.dicates if doing a c tu a l plot
C
program s t a r t s here
CALL RCHAI NCFLG, CHECK, 1)
I F ( C H E C K . N E . O ) GO TO 9 9 9 9
10
CONTINUE
! back
to
REAL * . TRUE.
! flag
for
15
DO 1 5 , 1 = 1 , 8
FI LNAM( I ) =3 2
CONTINUE
real
!put
TYPE
1000
CALLOP ENI N( F I LNAM. I CHAN,
I F ( ERFLG . E Q . 0 ) GO TO
I F ( ERFLG . L T . 0) T Y P E * ,
GO TO 950
20
here
for
or
codes
next
go-round
integer
for
data
spaces
files
in
FILNAM
!ask for input filename
' . 3 I N ' . ERFLG) ! o p e n f i l e
20
! a l l O.K., branch
' PLOT-F-Open f a i l e d f o r f i l e '
! 950 i s r e t u r n l a b e l
CONTINUE
21 0
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
22
POI NTS = H3 UF ( 2 5 5)
! g e t number o f p o i n t s
I F ( P G I N T S . L E . 1 0 2 4 ) GO TO 22
TYPE*, ' P L O T T - i l l e g a l nu mb er o f p o i n t s i n f i l e ’
GO TO 9 50
SCANS = KBUF ( 25 6)
! g e t number o f d a t a s e t s
correct
file
open,
read
in
desired
see
d
IF
IF
C
loop
if
file
is
real
or
( ( HB UF (1 ) . EQ. 1)
( . N O T . R E A L ) TYPE
from
1 to
integer
of
wants
to
quit
format
. OR. ( HBUF ( 1 )
PLOTT-input
TOTAL n u m b e r
file
spectrum
CALL SPCQRY (SCANS . START , E ND, T 0 T AL , ERFLG)
I F ( ERFLG . EQ. 1 ) GO TO 9 5 0
! branch if user
C
in
. EQ. 4 ) )
not r e a l
spectra
to
REAL - . FALSE,
(integer)'
plot
DG 5 0 0 , :<-1 . TOTAL
C
input
spectrum,
convert
to
real
or
positive
if
necessary
3LKN0 = I 3 L 0 C K ( POI NTS , S T A R T * k - 1 . REAL)
t y p e * , ' R e a d i n g b l o c k ' , 3 L KN 0 , P O I N T S , 1 p o i n t s '
30
I F ( REAL) GO TO 50
! branch if already r ea l
J - I READW ( P O I N T S , I ARR, BLKNO, I CHAN) ! i n p u t
DC 30 1- 1 , POI NTS
I F ( H B U F ( 1 ) . EQ. 1) I A R R ( I ) - O - I A R R ( I )
YARR( I ) - FLOAT ( I A R R ( I ) )
CONTINUE
GO TO 6 0
50
CONTINUE
U
C
input
60
C
C
110
120
125
real
spectrum
here
J - I READW ( P 0 I N T S * 2 , Y A R R , 3 L K N 0 , I C H A N )
CONTINUE
type 120,k , t o t a l
f o r m a t e ' SPECTRA# ' , 1
*' p l o t o n s c r e e n ,
accept *,ians
i f ( i a n s . e q .2 ) goto
i f ( i a n s . e q .3) g o t o
3,'
of ' , 1 3 / '
2 for p lo tter,
Enter
1t o ' ,
3 t oend t h i s
!
input
spectra')
190
500
21 1
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
i f ( i a n s . eq . 1 ) g o t o MO
t y p e 130
f o r m a c ( 1 E n t e r only 1,2 , or 3 : ' )
g o t o 125
do 150 1 = 1 , 5 1 2
i a r r ( i ) » i n t ( ( y a r r ( i * 2 ) + y a r r ( i * 2 - 1 } ) / 2 . 0 +0 . 5 )
call plct2b(iarr)
i u s e s o n l y 512 p o i n t s of
g o t o 110
1 30
1 4G
1 50
C
1 9G
array
W r i t e o u t Temp f i l e : TEMP. TMP
I ? ! DOPLGT) GOTO 193
I f i l e a l r e a d y opened
CALL ASSIGN ( 3 . ' A : TEMP. TMP' , ' NEW' , ' NC1 )
! o p e n t emp o u t p u t f i l e
WRITE ( 3 ) ( YARR( I ) , 1 - 1 . P OI NT S )
TYPE * , ' OK, t h i 3 s p e c t r u m w r i t t e n o u t t o f i l e '
TYPE * , ' I t w i l l b e p l o t t e d a f t e r a l l s p e c t r a e x a m i n e d '
DOPLGT* . TRUE.
GOTO 1 1 0
CONTINUE
193
500
type * ,'E n d of s p e c t r a to
CALL CL OS E C( I CHAN)
CALL I F R E S C ( ICHAN )
I F ( . NOT . D0PL0T ) GOTO 9 9 9 9
5 23
9999
950
1000
1
examine.'
1 1 f no s p e c t r a
! d o n 't chain
run p l o t t e r - '
output,
TYPE * , ' S t a r t i n g t o o u t p u t t o
CLOSE ( U N I T - 3 , D I S P - ' S AVE' )
** SET UP ARRAY TO PASS TO PL0 T2
P ARR(1 ) - P OI NT S
DO 5 2 8 1 - 1 , 8
? A R R ( I - 1 ) - F I L NAM( I )
CALL CHAIN (FNAM, PARR, 9)
! chain to p l o t t e r program
CALL CHAIN ( P H O T O , , 0)
T Y P E * , ' P L O T T - F - E r r o r r e t u r n t o PHOTO'
GO TO 9 9 9 9
FORMAT ( ' PHOTODIODE ARRAY PLOTTI NG PACKAGE X 0 2 . 0 ' , / ,
' ONa me o f f i l e c o n t a i n i n g d a t a t o b e p l o t t e d : ' , 3 )
END
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
C T h is
is
the
oain
p hotodiod e
CONTROL FORT ? L0 T 2
CONTROL L I N K / L I 3 : P L T L I 3
P L0 T2
c
C F i l e : PL0T2 . FOR
S.
c
c
w
C
C
C
c
c
c
C
array
p lo ttin g
iC. HUGHES
ro u tin e.
]
5 - MAY- 3 2
M o d i f i e d by S . S p e a r m a n 1 7 - S e p - 3 2
Bu g s r e m o v e d s n d c n s r . g s d f o r ns w p 1 o 1 1 6 r
M o d i f i e d by D a v e B r o wn 2 9 " N o v - 3 2
Changed t o use v a r i a b l e g r a t i n g s
M o d i f i e d by 5 . S p e a r m a n
Al l ow pen c h a n g e and
M o d i f i e d by Da v e 3 r o w n
Allow s p e c i f i c a t i o n
with
correct
X-scaling
4/20/83
h a n d l e NEWPN 4 RSTR c o r r e c t l y .
4- May- 33
of Y s c a l i n g
by u s e r .
C This routine is
C actual plotting
t h e i n t e r f a c e b e t w e e n t h e r o u t i n e PLOTT a n d
l i b r a r y r e q u i r e d f o r t h e C0MPL0T p l o t t e r .
C This
invoxed
routine
is
via
the
CHAIN
c o mma n d f r o m
the
PLOTT
PROGRAM PL0T2
D
REAL
XARR, YARR, S P EC( 2 )
REAL
YLEN, XLEN, XS TRT, DY, DX, YMI N, XMIN
DIMENSION XARRC1 0 2 7 ) , YARR( 1 0 2 7 )
INTEGER F L A G , P O I N T S , FILNAMC 8 ) , I K N T , PARR( 9 )
INTEGER D I S P ( 3 )
DATA
D I S P / 6 0 0 , 300 , 150/
DATA
S P E C/ 6 RA
P H 0 . 6 R T 0 SAV/
REAL I MI N, IMAX
C
program
3tarts
here!
with
a call
to
get
data
from
PLOTT
9
CALL RCHAI N( F L AG, PARR, 9 )
! get f il e n a m e 4 V of p o in ts
POI MTS- PARRC1 )
l e x t r a c t arg uments from a r r a y pa s se d
DO 3 1 - 1 , 8
,
F I LNAMCI ) - P A R R ( 1 + 1 )
i f ( p o i n t s . g t . 1 0 2 4 ) s t o p ' P L 0 T 2 - t o o many p o i n t s '
I F ( P O I N T S . E Q . 1 0 2 4 ) GOTO 9
TYPE * , ' P L 0 T 2 - u n u s u a l # o f p o i n t s : ' , p o i n t s
type *,'
s e t t i n g to 1024'
P OI NTS - 1 024
CALL ASSIGN ( 3 . ' A: T E MP . TMP' , ' OLD' , ' S C R ' ) ! i n p u t t e m p f i i e
D
D
18
22
TYPE * , ' P L 0 T 2 - n u m b e r o f
TYPE 1 3 , FILNAM
FORMAT( ' P L 0 T 2 - f i l e n a m e
TYPE 1 0 1 0
3
points
is:
'.points
is:
’ ,8a2)
! ask for le n g t h
o f ' Y'
axis
21 3
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
24
3
26
270
i f ( y l e n . g e . 1 . 0 . a n d . y i e n . i e . 8 . 0 ) g o t o 24
type * , ' I l l e g a l value, r e - e n t e r '
g o t o 22
TYPE 1 03 0
! a s k f o r l e n g t h o f ' X' a x i s
ACCEPT * , XLEN
i f ( x l e n . g e .1 . 0 . a n d . x l e n . l e . l 2 . 0 ) g o t o 26
type * , ' I l l e g a l value, r e - e n t e r '
g o t o 24
TYPE 1 0 5 0
! get c e n t e r w a v e l e n g t h of d a t a 5
ACCEPT * , XCNT
T Y P E * , ' E n t e r g r a t i n g n u m b e r : ( 1 , 2 , 3. o r 0 f o r o t h e r ) '
ACCEP T* , NGRATE
I F ( N G R A T E . G T . O . A N D . M G R A T E . L T . 4) DI S P S N- DI S P ( NGR AT E )
I F ( N G R A T S . N E . O ) GO TO 2 7 0
TY PE* ,'E n ter n a n o m e ter s of d i s p e r s i o n of t h i s g r a t i n g : '
AC CE P T * , DI 3PSN
XSTRT-XCNT-DISPSN/ 2.
XINC-DI3PSN/1023prepare
C
C
50
53
input
to
data
plot
to
plot
CONTINUE
! T0P OF LOOP
READ ( 3 , END-1 0 0 0 ) ( YARR( I ) , I - 1 , P O I N T S )
1 MA X - - 1 0 0 0
1MI N- 9 9 9 9
DO 53 I - 1 , POI NTS
I F C Y A R R ( I ) . G T . I M A X ) I MAX- YARR( I )
I F ( Y A R R ( I ) . L T . I M I N ) I MI N - Y A R R ( I )
CONTINUE
TYPE * , ' Y - a r r a y v a l u e s go f r o m ' . i m i n , ' t o ' . i m a x
T Y P E * , ' E n t e r d e s i r e d s c a l i n g , or 0 , 0 f o r a u t o s c a l i n g : '
ACCE P T * , 3 CMI N, SCMAX
DO 70
70
D
d
C
C
C
d
1 - 1 , POI NTS
XARR( I ) CONTINUE
xstrt+x in c *
I generate
( po: n t s - i )
PAUSE ' RESET PLOTTER, THEN HI T RETURN'
TYPE * , ' P L 0 T 2 - c a i l i n g
inital'
c a l l i n i t a l ( 5 , 2 0 0 , 1 1 , 1 , 0 , 0 ) ! new p l o t t e r
TYPE * , ' P L G T 2 - b a c k f r o m i n i t a l '
output
laDel
for
'X'
data
setup
plot
type * , ' P L 0 T 2 -callin g
SYMBOL'
CALL S Y M B O L ( 3 . , 0 . , . 1 4 . F I L N A M . 0 . , 1 6 )
! label
is
filename
21 4
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
C
C
d
C If
d
D
D
D
D
D
D
D15 3
D
scale
' X'
' X'
data
type * , ' P L 0T 2-calling 3 c a le '
I F ( S C MI N . E Q . O . A N D . S C MA X . E Q . O )
•CALL SCALE ( Y A R R , P OI NT S , YLEN, YMI N, DY)
IF(SCMIN.NE.0.0R.3CMAX.NE.0)
♦CALL YSCALE( YAR R , P OI NT S , YLEM, YMI N, DY, 3 C MI N, SCMAX)
n o r m a l s c a l i n g i s d e s i r e d , u s e SCALE i n s t e a d o f GSCALE
type • , ' P L 0 T 2 - c a l l i n g s c a l e or g s c a l e ' . n g r a t e
I F ( NGRATE. EQ. 0 ) CALL S CALE( XARR, P O I N T S , XLEN, XMI N, DX)
I F ( NGRATE. NE. 0 ) CALL GSCALE( XARR, P O I N T S , XLEN, XMI N, DX)
T Y P E * , ' GSCALE: ' , POI NTS , XLEN , XMIN , DX
i m a x * - 1000
imin-9999
do 15 3 i ■ 1 , p o i n t s
i f C y a r r ( i ) . g t . imax) im ax -y arr(i)
i f ( y a r r ( i ) .I t . imin) imin*yarr(i)
continue
t y p e * , ' P L 0 T 2 - n o w y a r r v a l u e s go f r o m ' , i m i n , '
C
c
and
Calculate
and
plot
t o ' , i ma x
Y-axis
D
DS005
D
DY*1 0 0 . / YLEN
! c r e a t e i n c r e m e n t f o r ' Y' a x i s
CALL AXI S ( 1 . , 1 . , ' I N T E N S I T Y ' , 9 , Y L E N, 9 0 . , Y M I N , D Y , 0 )
TYPE 8 0 0 5 , XMI N. DX, YMI N, DY
FORMAT( ' Omi n X* ' , F 6 . 1 , ' X - i n c r * ' , F o - 1/
*
' mi n Y* ' , F 14 . 7 , ' Y - i n c r - ' , F 1 4 . 7 )
c
c
p r i n t ' X' a x i s
DX*1 0 2 4 . / XLEN
D
D
t y p e * , ' P L 0 T 2 - a b o u t t o c a l l a x i s 2 n d t i m e , XLEN*' , x l e n
type ♦,'
XMI N*' , XMI N, ' , D X - ' , D X
CALL AXIS (1 . , 1
WAVELENGTH ( n m ) ' , - 1 4 , XLEN, 0 . , XMI N, DX , 0)
TYPE*, ' MADE I T 3ACX FROM AXI S '
D
/■
*
W
693
C
D
D
t y p e 693
f o r m a t ( ' As s o o n a s A x i s i s d o n e , ' ,
* , ' y o u may c h a n g e p e n c o l o r i f d e s i r e d ' )
c a l l newpn(2)
CALL PLOT ( 1 . , 1 . , - 3 )
! r e d e f i n e ( 1 , 1 ) as ( 3 , 0 )
plotdata
TYPE * , ' ? L 0 T 2 - a b o u t t o c a l l l i n e '
CALL L I N E ( X A R R , Y A R R , P O I N T S , 0 , 1 ) !NEW PLOTTER VERSION
t y p e * , ' P L 0 T 2 - a b o u t t o c a l l RSTR'
CALL PLOT( - I . , - 1 . , - 3 ) I r e d e f i n e s t a r t i n g p o i n t a s o r i g i n a l
CALL RS TR( 2 )
! dump r e m a i n d e r o f b u f f e r
START = S T A R T * 1
GO TO 50
! infinite
loop
exited
via
215
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ECF
TOGO
CHE CK= 1
CLOSE ( UN I T - 3 ) '■ ADDI TI ON 31 DAVE 3R0WN 2 3 - S E P - 3 2
CALL CHAI NCSPEC. CHECK, 0)
! c h a i n back to c a l l e r
STOP
data
1010
1030
1050
0
D
20
D
c The
c
c
c
10
10
formats
follow
FORMAT ( ' Y - a x i s l e n g t h
FORMAT ( ' X - a x i s l e n g t h
FORMAT ( ' W a v e l e n g t h o f
END
in inches
in inches
the center
( r e a l 4 <- 3 . 0 ) : ’ , 3)
(real 4 <-12.0):
',$)
of t h e s p e c t r u m : ' , 3
SUBROUTINE GSCALE( XARR, P O I N T S , XLEN, XMI N, DX)
INTEGER POI NTS
REAL XARR( 1 0 2 7 )
XMI N- XARR(1 )
XMAX- XARR( 1 )
TYPE* , XARR( 1)
DO 20 1 - 2 , POINTS
TYPE* , XARR ( I )
I F ( XARR ( I ) . LT. XMI N) XMI N- XARR( I )
I F ( XARR( I ) . GT. XMAX) XMAX-XARR( I )
CONTINUE
T Y P E * , ' X AXIS SCALES F R O M' , X MI N , ' TO' , XMAX
DX- ( XMAX- XMI N) / XLEN
follow ing three l i n e s are fo r comparing d i f f e r e n t
XCNT- ( XMI N* XMAX) / 2.
XMI N- XCNT- 3 0 0 .
DX- o OO. / XLEN
DO 10 1 - 1 , POI NTS
XARR(I)-(XARR(I)-XMIN)/DX
RETURN
END
gratings
SUBROUTINE YSCALE{YARR, P O I N T S , YLEN, YMI N, DY, SCMI N. SCMAX)
INTEGER POI NTS
REAL YAR R( 1 027 )
YMI N- SCMI N
DY- ( SCMAX- SCMI N) / YLEN
DO 10 1 - 1 , POI NTS
YARR( I ) =( YARR( I ) - YMI N) / DY
.is ( YARR( I ) . LT. 0 . ) Y A R R ( I / = 0 .
I F (YARR ( I ) . GT. YLEN) YARR( D - Y L E N
CONTINUE
RETURN
END
21 6
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
r This
program a l l ow s
screen
plots
of
photodiode data.
SUBROUTI NE P LOT 2 B ( IRA Y)
I NTEGER* 2 I S T A T ( 1 6 )
I NTEGER I RAYC5 1 2 )
DATA I S T A T / 1 6 * 0 /
* *
PLOTS AN ARRAY OF 5 1 2 POI NTS ON THE VT55 TERMINAL
TYPE * , ' P L 0 T 2 B - a b o u t t o f i g u r e max a n d m i n '
CALL MINMAXCI RAY, I M I N . IMAX)
, IMAX,
B i n * ' , I MI N
TYPE *, ' P L 0 T 2 , max
RANGE- FLOATCI MAX- I MI N) / 2 3 ^ . 0
i f ( r a n g e . e q . 0 . ) g o t o 14 3 6
TYPE*, ' P L 0 T 2 3 - a b o u t t o a d j u s t a r r a y '
DO 2 0 0 1 - 1 , 5 1 2
TEMP - FLOAT ( I R A Y d ) ~ I MI N ) / RANGE
IRAY(I)-INT(TEMP+0.5)
tROUND OFF AND ASSI GN TO INTEGER
200
CALL MI NMAXCI RAY, I M I N , IMAX)
D
TYPE * , ' PL0 T2 , max - ' . I M A X , ' , m i n - ' , I M I N
D
d
PAUSE ' H I T RETURN TO CONTI NUE'
CALL P L O T 5 5 ( 9 , 0 , 0 , I STAT )
t CURSOR TO UPPER LEFT
218
CALL P L O T 5 5 ( 1 0 , 0 , 0 , I STAT)
! E RASE TO END OF SCREEN
TYPE 2 2 2
cc
FORMAT( ' O S c r e e n p l o t o f s p e c t r a : ' /
cc222
* ' 1- t o s e e d o t p l o t o f s p e c t r a ' /
cc
cc
*' 2- t o s e e s h a d e d p l o t ' /
*' 3“ t o q u i t s c r e e n p l o t ' /
cc
cc
*'0Always push r e t u r n to e x i t a p l o t s c r e e n ' )
accept *,ians
cc22 4
cc
i f ( i a n s • e q . 3) g o t o 9 0 0 0
i f ( i a n s . eq . 1 ) g o t o 228
cc
i f ( i a n s . e q . 2) g o t o 230
cc
t y p e * , ' E n t e r j us t 1 , 2 , o r 3 '
cc
g o t o 224
cc
ion-2
te n a b l e dot graph
cc228
ioff-8
[ d is a b l e shaded graph
cc
cc
g o t o 232
ion-8
tenable shaded graph
2 30
ioff*2
t d i s a b l e dot graph
CALL P L OT 5 5 C2 , 1 + 5 1 2 , , I STAT) tENABLE GRAPHI CS, CLEAR MEMGR
232
! CURSOR TO UPPER LEFT
CALL P L O T 5 5 C 1 3 , 7 2 , . I S T A T )
! CLEAR GRAPHI CS DI SPLAYS
CALL P L O T 5 5 C 1 3 . 7 4 , . I S T A T )
! CURSOR TO UPPER LEFT
CALL P LOT5 5 C9 , 0 , 0 , I S T A T )
! ERASE ALPHA TO END OF SCREEN
CALL P L O T 5 5 ( 1 0 , 0 , 0 , I STAT)
CALL P L O T 5 5 ( 2 , i o n + 3 2 + 6 4 + 1 28 i o f f , I S T A T ) t ENABLE ALL GRAPH
* *
NOW PLOT THE IRAY
CALL P L O T 5 5 C 7 , 0 , 0 , I STAT)
! DEFI NE STARTI NG COORDINATES
! CURSOR TO UPPER LEFT
CALL P L O T 5 5 C 9 , 0 , 0 , I STAT)
t SELECT GRAPH 0
9 | i u 1n i /
CALL P L O T 5 5 ( 3 , - 5 1 2 , I R A Y , I S T A T )
CALL P L O T 5 5 ( 1 2 , , ' G r a p h o f S p e c t r u r n : ' , 1 S T A T )
accept 230,c
twait for retu rn
280
fo rm a t(a 1)
CALL P L O T 5 5 ( 9 , 0 , 0 , I STAT)
tCURSOR TO UPPER LEFT
T O >T
»*
\
217
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
230
cc
9000
1 436
C
**
1 00
f or a a t ( a 1)
GALL P L O T 5 5 ( 9 , 0 , 0 , 15TAT)
ICUESOR TO UPPER LEFT
CALL PLOT55 ( 1 3 , 7 4 , , I STAT )
! CLEAR GRAPHICS
CALL PLOT55 ( 2 , , IOM + 32 + 54-t-1 28 , I S T AT )
[ DI SABLE GRAPHI CS
GOTO 2 1 8
CONTINUE
RETURN
type*,'No spectrum - a ll values i d e n t i c a l . 1
return
end
SUBROUTINE MINMAX( I R A Y , I MI N , IMAX)
RETURNS THE MINIMUM AND MAXIMUM VALUES IN A 5 1 2
I NTEGER IRA Y( 5 1 2 )
I MI N- 29999
I MAX- - 2 9 9 9 9
DO 100 1 - 1 , 5 1 2
I F ( I R A Y ( I ) .LT.IMIN) I MI N- I RAY( I)
I F ( I RAY( I ) . GT. I MAX) I MA X - I R A Y ( I )
CONTINUE
RETURN
END
I NT ARRAY
213
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
C T h is
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
c**
c»*
C**
program
C
C
C
22
2^
26
C
50
60
data
co llected
by
the
WATCH r o u t i n e .
]
FORT ? LCTWT/ON DE
R LI NK
P LOTWT-P LOTWT, DL1 : P L T L I B / P : 1 0 0 0
*C
S I Z E PLOTWT
PROGRAM PLOTWT
program p l o t s d a t a s e n t vi a f i i e from
m o d i f i e d v e r s i o n o f P L0 T2 a n d PLOTSR
MAT 2 4 , 1 9 8 4 , Da v e B r o wn
REAL
REAL
REAL
REAL
I NTEGER
5
p lo ts
WATCH p r o g r a m
YLEN, XLEN, XS TRT, DY, DX, YMI N, XMIN
LEFT, RI GHT
XL. YL. XS
XARRC 1 0 2 7 ) , YARR ( 1 0 2 7 )
F L A G, P O I NT S , F I L N AM( S ) , I K N T , PARR( 9 ) . START
HT- . 1
TYPE 5
f o r m a t ( ' OThis i s t h e p l o t r o u t i n e : ' / )
OPEN(UN I T - 3 . NAME- ' WATCH. DAT' , T Y P E - ' OL D ' )
s tar t - 1
Nu mb e r c f p o i n t s , s t a r t i n g n u m b e r , e n d i n g n u m b e r , l e f t c u r s o r ,
Right cursor, increment for cursor
I n t e n s i t y of l e f t c u r s o r , I n t e n s i t y of r i g h t c u r s o r
READ( 3 , * . E N D - 1 0 0 0 ) P O I N T S , 1 S T ART, I E ND, I L E F T , I R I GH T , INCURS
R E A D ( 3 , * , E N D - 1 0 0 0 ) LEF T, RI GHT
TYPE 1 0 1 0
! ask f o r l e n g t h of
ACCEPT * , YLEN
i f ( y l e n . ge . 1 . 0 . a n d . y l e n . l e . 3 . 0 ) g o t o 24
type * , ' I l l e g a l value, r e - e n t e r '
g o t o 22
TYPE 1 0 3 0
! a s k f o r l e n g t n of
ACCEPT * , XLEN
i f ( x l e n . ge . 1 . 0 . a n d . x l e n . l e . 1 2 . 0 ) g o t o 26
type * , ' I l l e g a l value, r e - e n t e r '
g o t o 24
CONTINUE
input
data
to
' Y'
axis
' X'
axis
plot
PAUSE ' RESET PLOTTER, THEN HI T RETURN'
c a l l i n i t a l ( 5 , 2 0 0 , 1 1 , 1 , 0 , 0 ) ! ne w p l o t t e r s e t u p
CONTINUE
! T0P OF LOOP
XL-XLEN 1ASSIGN VALUES EACH TIME THRU LOOP
YL-YLEN
XS- XSTRT
READ ( 3 , * , E N D - 1 0 0 0 ) ( YARR( I ) , 1 - 1 . P OI NT S )
type 6 0 ,s t a r t
f o r m a t ( ' OR e a d y
to
do
plot
-V',i2/)
21 9
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
111
TYPE*, ' E n t e r new s n e e t o f p a p e r ,
* or a l e t t e r to s k ip i t . '
accept 111,i x
f o r m a t ( A 1)
I F CIX . ME . ' ' ) GO TO 9 3 7 6
type * , ' w orking--'
DO 70
tnen
pus. n r e t u r n ,
70
1- 1 . POI NTS
XARR( I ) CONTINUE
D
D
D
0
D
D
D53
D
TYPE * , ' P OI NTS I S ' , POI NTS
imax»-1000
imin-9999
do 53 i —1 . p o i n t s
i f ( y a r r ( i ) . g t . i m a x )i m a x - y a r r ( i )
i f ( y a r r ( i ) . I t . i m i n )i m i n - y a r r ( i )
continue
type * , ' PL0T2-yarray values
go f r o m ' , i m i n , '
C
C
324
D
D
D
D
D
D
D15 3
D
scale
'X'
and
' Y'
! generate
' X'
data
I -1+ISTART
to',imax
data
OX-O
DY- 0
XMI N- 0
YMI N- 0
do 3 2 4 i - 1 , POINTS
YARR( I ) - YARR( I ) / 1 0 . * YL
continue
CALL SCALE ( XARR, P O I N T S , XL, XMI N, OX)
TYPE * , ' XMIN I S ’ , XMI N, ' AND YMIN I S ' , Y M I N
imax--1000
imin-9999
do 153 i - 1 , p o i n t s
i f ( y a r r ( i ) . g t . imax) im a x -y arr(i)
i f (y a r r ( i ) . I t . imin) im in -y arr(i)
continue
t y p e * , ' P L 0 T 2 - n o w y a r r v a l u e s go f r o m ' , i m i n , '
C
Calculate
and
plot
to',imax
Y-axis
D
D8005
D
1
TYPE 3 0 0 5 , XMI N, DX, YMI N, DY
FORMAT( ' Omi n X- ' , r o . 1 , ' X - i n c r '
Y- i n c r - ' , F 6. 1 )
d
d
D
type
type
TYPE
CALL
',F6.1,'m in
Y=
' , F6 . 1 ,
* , TP L 0 T 2 - a b o u t t o c a l l a x i s 2 n d t i m e , XL i N—' , x l
*,'
XMI N- ' , XMIN , ' , DX= ' , DX
• , '
DX I S ' ,DX
AXI S (1 . , 1 , , ' WATCH P LOT' , - 1 0 , XL , 0 . , XMI N, DX, 0 )
C
C
220
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
D
D
9 376
CALL PLOT v 1 . , 1 . , “ 3 )
• r e d e f i n e (.0,1) as v G, 0 ,
plot data
TYPE *, ' ? L 0 T 2 - a b o u t t o c a l l l i n e '
CALL L I N E ( X A R R , Y A R R , P O I N T S , 0 , 1) !NEW PLOTTER VERSI ON
t y p e * , ' P L 0 T 2 - a b o u t t o c a l l RSTR'
CALL NUMBER( 0 . , Y L * . 5 , H T , 1 . * I L E F T , 0 . , 0 )
CALL NUMBER( 0 . , YL + . 5 - H T , HT , L E F T , 0 . , 0 )
CALL NUMBER( XL, YL+ . 5 , - H T , 1 . * I R I G H T , 0 . , 0 )
CALL NUMBER( XL, YL + . 5 " H T , - H T , R I G H T , 0 . , 0 )
CALL P L 0 T ( ( I L E F T - 1 ) / D X , 0 . , 3 )
CALL PLOT ( ( I L E F T - 1 ) / DX , YL, 2 )
CALL P L O T ( ( I R I G H T - 1 ) / DX , Y L , 3)
CALL P L O T ( ( I R I G H T - 1 ) / D X , 0 . , 2 )
CALL P LOT( - 1 . , - 1 . , - 3 ) I r e d e f i n e s t a r t i n g p o i n t a s o r i g i n a l
CALL RS T R ( 2 )
! d u mp r e m a i n d e r o f P u f f e r
START « START«■1
GO TO 50
CHECK*1
CLOSE( U N I T - 3 )
STOP
loop
exited
via
EOF
! ADDI TI ON 3Y DAVE 3R0WN 2 3 - S E P - 3 2
data
formats
follow
i I
<}
Cj
1OOO
! infinite
1010
1030
1 050
FORMAT
FORMAT
FORMAT
END
( ' Y - a x i s l e n g t h i n i n c h e s ( r e a l £ <» 8 . 0 ) :
(' X-axis l e n g t h in i n ch e s ( r e a l £ < - 1 2 . 0 ) :
( ' W a v e l e n g t h o f f i r s t d a t a p o i n t ( A) :
',$)
221
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
' , •$)
',$)
[
T h is
program
m erges
d ifferen t
typ es
of
data
file s.
]
{ Lt >+ , C + ] }
[
{
{
{
t
{
t
t
{
{
{
i
f
{
(
t
[
{
v
{
{
i
i
{
t
filename: decls.pas
author
: Gr eg D i e t r i c h
date
: V e r s i o n 00; 6 / 3 5
This f i l e c o n ta in s type d e f i n i t i o n s
P a s c a l m o d u l e s o f t h e PHOTO s y s t e m .
for
the
operation
of
the
NOTE:
To e l i m i n a t e s o me s p a c e w a s t a g e a n d o v e r h e a d , a r r a y s h a v e b e e n
p a s s e d t o p r o c e d u r e s by r e f e r e n c e , e v e n w h e n t h e y a r e n o t
m o d i f i e d . T h i s i s t h e c a s e i f t h e word ' v a r ' i n t h e p r o c e d u r e
heading is c a p i t a l i z e d . O therw ise, 'var' p aram eters
may be m o d i f i e d .
versions:
0 0 - M a r g i n a i i y c o m p a t i b l e w i t h t h e FORTRAN v e r s i o n . n u m S c a n s
p t s P e r S c a n b i n a r y v a l u e s a r e l e f t i n h e a d e r w h e r e FORTRAN
e x p e c t s . But c h a r a c t e r c o d e d v a l u e s f o r a l l n u m e r i c d a t a
i s not in clu d e d .
and
0 1 - F i x e d f o r c o m p a t i b i l i t y w i t h r a t i o FORTRAN p r o g r a m . I t u s e s
h e a d e r T y p e v a l u e 5 f o r r a t i o d a t a . S o d a r k - s u b t r a c t e d d a t a now
u s e s n e a d e r s of t y p e 6. Type 7 u s e d f o r f i l e s w i t h s p e c i f i c
d i o d e s e x t r a c t e d from a r r a y s .
i ;
const
currentVersion
= '01';
type
cnar3
array
-
const
scanSize
packed
* 1024;
const
rawType = 1
avgType » 2
s u m T y p e =« 3
binType - 4
ratType * 5
bisType = 6
xtrType = 7
b i v T y p e - 3;
maxHeaderType
xtrDiodeLimit
C1 - - 3]
{ points
{ unused-a
{ used
of
per
scan
relic
by r a t i o
char;
of
the
photodiode
old
version
array
size
}
}
}
{ e x tr a c te d diodes }
{ extra f i l e for var.
= 3;
*10;
-
int.
time
scanning
{ ma x i mu m n u m b e r o f d i o d e s
{ f rom a d a t a f i l e i n t o an
}
extracted }
xtrType f i l e
222
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
}
type
nT y p e Na me T y p e
cons t
hTypeName
= array
f 1 . . ma xH e ad e rT yp e ] of
* hT y p e Na me T y p e ( ' r a w ' ,
' avg',
char3;
'sum', ' b i n 1 , ' r a t ' ,
' b i s ' , ' x t r ' , ' bi v ' ) ;
type
n T y p e S e t * s e t of 1 . . ma x H e a d e r T ype ;
o p e n R e s u l t * (openOk, openNoSpace, o p e n F a i i ) ;
cons t
blank2
»
'
b1a n k3 * '
blanku » '
blank6 - '
'o1 a n k 1 4 * '
b l a n k 16 - '
blank20 - '
type
char2 char4 *
charo =
char!4 »
charlo »
char20 *
char30 =
charoO «
';
1;
' ;
' ;
' ;
' ;
' ;
packeda r r a y [ 1 . . 2 ]
of char;
packedarray [ 1 . . 4 ]
of char;
packeda rra y C l ..o ]
of char;
packed a r r a y [ 1 . . 1 4 ] of
char;
packed a r r a y [ 1 - . 1 6 ] of
char;
packed a r r a y [ 1 . . 2 0 ] of
char;
packed a r r a y [ 1 . . 3 0 ] of
char;
packed a r r a y [ 1 . . 6 0 ] of
char;
i The h e a d e r c o n t a i n s a l l n e c e s s a r y d a t a t o i d e n t i f y t h e
i p a r t i c u l a r d a t a f i l e i n q u e s t i o n . I t i s one b l o c k (512 b y t e s )
{ l o n g ; t h e f i r s t b l o c k i n a d a t a f i l e . T h e FORTRAN v e r s i o n o f
t PHOTO k e p t t h e h e a d e r d a t a i n c h a r a c t e r f o r m , w i t h t wo w o r d s a t
{ t h e end of the bl ock f o r i n t e g e r fo rm a t v a lu e s f o r p o i n t s P e r S c a n
{ a n d n u m b e r O f S c a n s f o r t h e f i l e . The P a s c a l v e r s i o n k e e p s t h e
{ c h a r a c t e r d a t a f o r none of t h e s e f i e l d s ,
t}
headerType =
record
hType: i n t e g e r ;
hVersion: char2;
fileName, p a re n tF ile : cnarl4;
userName: c h a r 2 0 ;
d a t e T i m e : c h a r 16;
d e s c r ip tio n : char30;
flow , e n e r g y S o u r c e , power: c h a r 2 0 ;
cl , c 2 , c 3 : c h a r 6 0 ;
integrationTim e, firstS electedS pectrum , numSelectedSpectra,
p o i n t s P e r S c a n , numScans: i n t e g e r ;
diodeCt: integer;
xtrFlag: integer;
d i o d e , f i r s t D i o d e , l a 3 t D i o d e : a r r a y 1 1. . x t r D i o d e L i m i t ] o f i n
v a rIn t: boolean;
end;
223
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
0 i OCX =
record
c a s e i n t e g e r of
0: ( b l o c k H e a d e r : h e a d e r T y p e ) ;
1: ( b l o c k l n t e g e r : p a c k e d a r r a y [ 0 . . 2 5 5 ] o f i n t e g e r ) ;
2: ( b l o c k R e a l : p a c k e d a r r a y [ 0 . . 1 2 7 ] o f r e a l ) ;
end;
x t rB l o c k T y p e * p a c k ed a r r a y [ 1 . . 1 2 8 3 of r e a l ;
intScanType *
r e c o r d { d a t a f o r one s c a n of the a r r a y ; i n t e g e r }
c a s e b o o l e a n of
t r u e : ( i n t V a i : pa cked a r r a y r i . . o o a n S i z e j of i n t e g e r ) ;
f a l s e : ( b u f : pa cked a r r a y [ 1 . . 4 ] of b l o c k )
end;
realScanType »
r e c o r d I d a t a f o r one sc an of the a r r a y ; r e a l }
c a se b o o l e a n of
t r u e : ( r e a lV a l; packed a r r a y [ 1 . . s c a n S i z e ] of r e a l ) ;
f a l s e : ( b uf : packed a r r a y [ 1 . . 3 ] of b l o c k )
end ;
blockFile
» file
of
block;
i system s e r v i c e r o u t i n e s }
p r o c e d u r e s e t c m d ( v a r s: c h a r 2 0 ) ; n o n p a s c a l ;
p r o c e d u r e ikanmy; n o n p a s c a l ;
procedure mpiops; nonpascal;
function i t t i n r : integer; nonpascal;
{ scan.mac }
procedure s e t p r i o r i t y ( i : integer); external;
procedure s c an (v a r buf: intScanType; len: i n t e g e r ) ;
{ da r k . pa s }
procedure darkCurrent;
external;
external;
i colct.pas }
procedure collect;
external;
t ins pet.pas }
procedure inspect;
external;
{ s p l i t . pas }
p rocedure s p i i t S c a n s (var
f:
blockFile;
VAR h:
headerType);
e x t e r n a l ;
p r o c e d u r e
3 p i i t ;
e x t e r n a l ;
{ e x t r c t . pas }
procedure extract;
external;
( header.pas }
p r o c e d u r e i n p u t R a n g e ( m i n f ma x : i n t e g e r ; v a r f i r s t , l a s t : i n t e g e r ) ;
external;
f u n c t i o n yesNo: b o o l e a n ; e x t e r n a l ;
p r o c e d u r e c r H e a d e r ( h T y p : i n t e g e r ; v a r h: h e a d e r T y p e ) ; e x t e r n a l ;
p r o c e d u r e q H e a d e r ( v a r h: h e a d e r T y p e ) ; e x t e r n a l ;
224
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
[ io.pas }
p r o c e d u r e o pe r i l n p u t Cv a r f : b l o c k F i l e ;
n: c h a r 14 ;
e: c h a r 4 ;
var r e s : o p e n R e s u l t ) ;
external;
procedure openO utput( var f: b l o ck F ile;
n: c h a r 1 4 ;
e: c h a r 4 ;
s: i n t e g e r ;
var r e s : o p e n R e s u l t ) ;
external;
p r o c e d u r e r d H e a d e r i v a r f : b l o c k F i l e ; v a r h: h e a d e r T y p e ) ;
external;
p ro c e d u r e r d l n t S c a n i v a r f : b l o c k F i l e ; var iScan: intScanType);
external;
p r o c e d u r e r d R e a l S c a n ( v a r f : b l o c k F i l e ; v a r r S c a n : r e a l S c a n T y p e );
external;
p r o c e d u r e w r H e a d e r ( v a r f : b l o c k F i l e ; VAR h: h e a d e r T y p e ) ; e x t e r n a l ;
p r o c e d u r e w r l n t S c a n ( v a r f : b l o c k F i l e ; VAR i S c a n : i n t S c a n T y p e ) ;
external;
p r o c e d u r e w r R e a l S c a n ( v a r f : b l o c k F i l e ; VAR r S c a n : r e a l S c a n T y p e ) ;
external;
p r o c e d u r e d s H e a d e r ( v a r f : t e x t ; VAR h: h e a d e r T y p e ) ; e x t e r n a l ;
p r o c e d u r e d s I n t S c a n ( v a r f : t e x t ; VAR i S c a n : i n t S c a n T y p e ) ;
ext er n a l ;
p r o c e d u r e d s R e a l S c a n ( v a r f : t e x t ; VAR r S c a n : R e a l S c a n T y p e ) ;
external;
{ global variables }
var
i n t e g e r F i l e s : hTypeSet;
iTime: i n t e g e r ;
225
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
C T h is
program
runs
the
p h otod iod e
array
softw are.
]
( Lb+, c +j }
i ne w p h o t o d r i v e r }
{include src :d e cls;
procedure
photo;
label
3;
var
stop: boolean;
c o mma n d : c h a r ;
begin
s t o p :» f a l s e ;
i n t e g e r F i l e s :» [ b i n T y p e , r aw Type ];
i f s i z e ( h e a d e r T y p e ) > 512 t h e n
oegin
w r i t e l n ( ' ERROR i n h e a d e r s i z e ! ! ! L a r g e r
g o t o 9;
end;
i T i me : « 5 7;
repeat
wr i t e 1 n ;
w r i t e l n C ' Photo package 2.1 : 8 / 8 5 ' ) ;
writelnC'
i n t e g r a t i o n time ■ ' , iTime:
wr i t e 1 n ;
w r i te l n ( ' in tegration Time');
w rite in (' Extract diode');
w r i t e l n C ' C o l l e c t ' );
w r i t e l n C ' S p l i t ' );
w r i t e l n ( ' I n s p e c t ' );
wr i t e l n ( ' Da r k ' ) ;
w r i t e l n ( ' e Xi t ' ) ;
wr i t e ( ' C o m m a n d : 1 ) ;
readln(command) ;
c a s e c o mma n d o f
' t' , 'T' :
repeat
w r i t e ( ' M e w i n t e g r a t i o n time (ms):
r e a d l n ( i T i m e );
u n t i l i T i m e > 0;
extract;
' e ' , 'E'
' c ' , ' C'
collect;
split;
' s' , 'S'
» *: »
ir»
inspect;
darkCurrent;
' d' , ' D
' x ' , ' X'
s t o p :* t r u e ;
otherwise writelnC'Try a g a in .')
end;
n u i i s uop ;
than
512
bytes!');
4);
');
9 :
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
end;
begin
photo
end.
227
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
C T his
program
creates
the
header
b lo ck .
]
( $ n o ma i n [b + , c + j }
{ i n c l u d e
(
{ -
3 r c : d e c l 3 ;
header.pas
-
header
type
j n n r oT
z
month
y p <9
*
setup,
9y ^ T# # 12] 0f
EP P
inspection,
etc
}
-}
CH3, P 3 5
co ns
« monthType( ' J a n ' , 'F eb ',
'Mar1, ’Apr', 'May', ' Jun'
'Jul',
' A u g ' , ' S e p ' , ' O c t ' , ' N o v ' , 'Dec
p r o c e d u r e t im es t a rn p (var a, b, c, d,
{ r e t u r n s c u r r e n t t i m e of day }
e,
procedure
begin
ch[1]
ch[2]
end;
iToC2(i:
char2);
procedure
inputRange
i n t e g e r ; var ch:
f:
integer);
: » c h r ( ( i d i v 10) mod 10
+• o r d ( ' O ' ) ) ;
: * c h r ( i mod 10 * o r d ( ' O ' ) )
((min,
ma x:
integer;
var f i r s t ,
l a s t : i n t e g e r )}
begin
repeat
r epe a t
w r i t e ( ' E n t e r f i r s t number ( ' , mi n :
1,
readln(first);
u n t i l ( f i r s t >« m i n ) a n d ( f i r s t <* m a x ) ;
i f ( f i r s t * ma x ) o r ( f i r s t - 0) t h e n
last
else
be g i n
w rite('E nter l a s t number(', f i r s t :
1,
r e a d l n ( 1 a s t );
end;
u n t i l ( l a s t >» f i r s t ) a n d ( l a s t <» m a x ) ;
end;
procedure
external
setDateTime( var
type
kluge »
packed
case
record
boolean
h:
ma x :
;
1, '
:■ f i r s t
ma x :
1, '
headerType);
of
false:
(split:
r e c o r d
dd: c h a r 2 ;
f 1: c h a r ;
mmm: c h a r 3;
223
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
char;
f2
c h a r 2;
yy
c
har;
?3
hh
c h a r 2;
char ;
f ft
mm
char 2
end) ;
true: (unsplit: charto)
end;
var
d, m, y , n r ,
d t : <1 u g e ;
min,
sec:
integer;
begin
t i m e s t a m p ( d , m, y , h r , m i n , s e c ) ;
d t . u n s p l i t : « ' d d / y y y / m m hh : mm ' ;
w i t h d t . s p l i t do
begin
iToC2 ( d , d d ) ;
mmm : = MONTH C m ] ;
i T oC 2 ( y - 1900 , y y ) ;
iToC2(hr, h h ) ;
i T oC 2 ( m i n , mm )
end;
h . d a t e T i m e :» d t . u n s p l i t ;
end;
i .................................................................................................................................................................. )
Header
-
Each
so the
cases.
procedures.
neader type uses d i f f e r e n t f i e l d s w ith in the header,
p r o c e d u r e s h a n d l e t h e d i f f e r e n t f i l e t y p e s as s e p a r a
i ................................ ............................................................. -
procedure dsHeader
i display header
var
i: i n t e g e r ;
{(var f:
contents
............................................ }
t e x t ; VAR h: h e a d e r T y p e ) }
on t h e t e r m i n a l }
begin
with h ao
begin
w r i t e l n i f , ' F i l e n a me
wri t e l n ( f , ' F i l e t y p e
wr i t e l n ( f , ' U s e r na me
w r i t e l n ( f , ' C r e a t i o n Date
c a s e hT y p e o f
rawType , b i nT y p e :
begin
w r i t e i n ( f , 'Flow
wr i t e i n ( f , ' D e s c r i p t i o n
w r i t e l n ( f , ' I n t e g r a t i o n T i me
' P t s per Spectrum
writeln(f,
f i l e N a m e );
h Type N a m e [ hTy p e ] ) ;
u s e r N a m e );
d a t e T i m e );
flow ) ;
d e s c r i p t i o n );
i n t e g r a t i o n ! i m e );
po i n t s P e r S c a n ) ;
229
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
w r i t e ! n c f , ' Mum b e r o f S c a n s
i f h T y p e = r a wT y p e t n e n
, n umS c s
j,
, Cf , ' N u m b e r o f
pea<s
c o l ci
e n e r g y S o ur c e ) ;
p o w e r );
wri t e l n ( f , ' E n e r g y source
wri t e l n ( f , 'Power
c1 )
wr i t e l n ( f , ' R e m : '
w r i t e l n ( f , ' R e m: * c 2)
w r i t e l n ( f , 1R e m : '
c 3>
end;
avgType:
begin
p a r e n t F i l e );
w riteinC f, 'Parent file
wri t e l n ( f , ' F i r s t Spectrum
firstSelectedSpectrum)
numSeiectedSpectra);
w r i t e l n ( f , ' Mum o f S p e c t r a
w r i t e i n C f , ' Rem: ' , c 1 )
wr i t e l n ( f , ' R em : ' , c 2)
wr i t e l n ( f , ' R e m : ' , c 3 )
end;
bisType:
begi n
writeinCf, 'Parent file
o a r e n t F i l e );
if firstSelectedSpectrum > 0 then
begi n
w r i t e l n ( f , ' F i r s t Spectrum :
firstSelectedSpectrum)
, n u m S e l e c t e d S p e c t r a );
w r i t e i n C f , ' Mum o f S p e c t r a
:
end
e l s e w r i t e i n C f , ' Mu mb e r o f s c a n s : ' , n u m S c a n s ) ;
w r i t e i n C f , ' Rem: ' , c l )
w r i t e i n C f , ' R e m: ' , c 2 )
w r i t e i n C f , ' Rem: ' , c 3 )
end;
xtrType :
begin
wri t el n C f , ' P a r e n t f i l e
p a r e n t F i 1 e );
Diodes e x t r a c t e d :
wr i t e ( f ,
) :
f o r i : » 1 t o d i o d e C t do w r i t e C f , d i o d e [ i j : 5)
wr i t e i n Cf )
wri t e l n C f ,
writeinCf,
wri t e l n t f ,
end;
o t h e r w i s e wr
end
end
' R e m:
' Rem:
' R e m:
c 1)
c2)
c 3)
t e l n C ' d s H e a d e r’ : 3 a d
header
type'
end;
p r o c e d u r e c r H e a d e r ( C h T y p : i n t e g e r ; v a r h: h e a d e r T y p e ) } ;
t }
{ s e t s up a h e a d e r o f t h e s p e c i f i e d t y p e , f o r a l l t y p e s b u t
[ rawType, th e h ead er i n f o r m a t i o n f o r th e d a t a f i l e t h a t th e
{ new f i l e i s d e r i v e d f r o m i s p a s s e d i n h t o h e l p s e t u p t h e
{ fields.
t }
var
response: integer;
230
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
begin
h . h V e r s i o n :* c u r r e n t V e r s i o n ;
in . hT y p e : - hT y p ;
setDateTime(h) ;
w i t h h do
c a s e hTyp o f
rawType:
begin
u s e r N a m e [ 1] : » ' ? ' :
f1 o w [ 1]
'? ' ;
d e s c r 1 p t i o n [ 1] : e n e r g y S o u r c e [ 1]
power [ 1] : - ' ? ' ;
c l [1 ]
;
C 2 [ 1]
: -
' ? 1;
' ? ' ;
C 3 C1 ]
;
i n t e g r a t i o n T i m e :» i Ti me;
p o in tsP erS can :- scanSize;
numScans : ■ - 1 ;
i
query
for information necessary for c o lle ctio n }
repeat
write('
I n te g r a t io n time: ') ;
i f i n t e g r a t i onTi me < 0 t h e n r e a d i n ( i n t e g r a t i o n T i m e )
e l s e w r i t e l n ( i n t e g r a t i o n T i m e );
writelnC'
P o i n t s per sc an : ' , p o i n t s P e r S c a n ) ;
w r i t e ( M > Nu mb e r o f S c a n s : ' ) ;
i f numScans < 0 t h e n r e a d i n ( numScans )
e l s e w r i t e l n ( n u m S c a n s );
w r i t e l n C ' E n t e r n u mb e r t o c h a n g e f i e l d (0 t o e x i t ) :
readin(response);
ca se r e s p o n s e of
0 :
;
1: n u m S c a n s : » - 1;
otherwise writelnC'Bad
end;
u n til response = 0
end;
b i n T y p e : c 3 [ 1] : - ' ? ' ;
avgT y p e :
w i t h h do
begin
p a r e n t F i l e := f i i e N a m e ;
f i l e N a m e :» b l a n k l U ;
Cl [ 1 J
value')
: - ' ? ';
c2[ 1]
;
c 3 L 1]
'? ';
n u m S c a n s : * 1;
end;
bisType:
w i t h h do
begin
parentFile
fileName;
f i r s t S e l e c t e d S p e c t r u m :»
0;
231
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
n u m S e l e c t e d S p e c t r a :* 0
f i 1 eN ame : » b l a n k 1 U;
c 1 [ 13 : - » ? » .
c 2 [ 1j : * f ? t .
C3 C1 ] :■ 1 ? 1 .
end;
xtrType:
w i t h h do
begin
p a r e n t F i l 9 :* f i i e N a m e ;
diodeCt :* 0 ;
xtrFlag :* - i ;
c1 [ 1 ] : » r ? » .
C 2 [ 1 J : - 1? 1 *
c3C 1 J :■ 1 ? 1 •
end;
o th er w is e w r i t e l n C ' crHeader
end
end;
p r o c e d u r e q H e a d e r { ( v a r h: h e a d e r T y p e ) } ;
{}
{ a l l o w s u s e r t o f i l l i n u n k n o wn h e a d e r f i e l d s
( or change c e r t a i n e x i s t i n g f i e l d s .
{j
var
i, response: integer;
begin
w i t h h do
c a s e hType
binType,
repeat
of
rawType:
writeln( 1
r i l e n a me
writelnC1
F i l e type
write('1>
U s e r name
if
userName[1] » '?'
then
e l 3 e w r i t e l n ( u s e r N a m e );
:
:
fileName);
hTypeName[ h T y p e ] )
:
r e a d i n ( userName)
writelnC'
Date
:
dateTime);
w r i t e C' 2> F l o w
:
' );
if flow [l] - '?' then read ln (flo w )
e l s e w r i t e l n C f l o w );
write('3> Description
:
');
i f d e s c r i p t i o n [ 1] = ' ? ' t h e n r e a d i n ( d e s c r i p t i o n )
e l s e w r i t e l n ( d e s c r i p t i o n );
writelnC1
I n t e g r a t i o n Time:
integrationTime);
writelnC'
P o i n t s per
scan : ', pointsPerScan);
writelnC'
Nu mb e r o f s c a n s
: ' , numScans);
w r i t e ( '4 > Energy source
:
');
i f e n e r g y S o u r c e [ 1] - ' ? ' t h e n r e a d i n C e n e r g y S o u r c e )
e l s e w r i t e l n ( e n e r g y S o u r c e );
w r i t e ( ' 5> P o w e r
:
');
i f power[1] = '? ' then r e a d i n ( pow er)
e l s e w r i t e l n ( p o w e r );
232
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
w r i t e i ' o > Re m:
)
i f c l [ 1 ] -t »' O
? '» t he n r e a d l n Cc 1 )
ei3e w r i t e l n ( c l ) ;
wr i t e C ' 7 > Rem: ' ) ,
.f c 2 [ 1]
' ? ' t he n r e a d l n ( c 2 )
else w ritein(c2);
w r i t e ( ' 8> R e m: ' ) ;
i f c 3 C 1] t h e n r e a d l n ( c 3)
e l s e wri t e l n ( c 3 ) :
w r i t e C E n t e r n u m b e r t o c hange f i e l d (0 t o e x i t )
):
readln(response);
c a s e r e s p o n s e of
0: t
1 : userName[ 1] : 2:
f I o w l 1] : - ' ? ' ;
3: d e s c r i p t i o n [ l ]
4 : e n e r g y S o u r c e [ 1]
5 : power[1] : * ' ? '
6: c 1 [ 1 ] : - ' ? ' ;
7 : C 2 [ 1] : - ' ? ' ;
3 : c 3 C 1]
;
otherwise w riteln('bad e n try .')
end
u n ti1 response » 0 ;
avgType, bisType:
repeat
f i l e N a m c );
writelnC'
F i l e n a me
:
n Ty p e N . i m e i n T y p e ] ) ;
writelnC'
F ile type
:
w r i t e ( ' 1 > U s e r na me
: ');
if userName[l] » '? ' then r e a d l n ( userName)
e l s e w r i t e l n ( u s e r N a m e );
d a t e T i m e );
wr i t e l n ( ' D a t e
p a r e n t F i l e );
writelnC' Parent f ile
firstSelectedSpectrum)
w ritelnC' F i r s t spectrum
n
umSelectedSpectra) ;
w r i t e l n C ' N um o f s p e c t r a
wr i t e ( ' 2> Rem: ' ) ;
if c1[1] - '? ' then readlnCcl)
el3e w r i t e l n ( c l ) :
w r i t e ( ' 3 > Rem: ' ) ;
if c2[l] - '? ' then readln(c2)
e l s e wri t e l n ( c 2 ) ;
wr i t e ( ' 4 > R e m :
)
i f c 3 [ 1 ] -. ' *> * t h e n r e a d l n Cc 3)
eise w riteln(c3);
w r i t e C ' E n t e r number t o c h a n g e f i e l d (0 t o e x i t )
readln(response);
c a s e r e s p o n s e of
0: :
1 : us e r N a me [ 1 ]
e. : 0 i l i J
*
3:
C2[ 1]
4:
C3[l]
ot herwi se w r i t e l n C ' b a d
end;
until response » 0 ;
entry.')
233
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
xtrType:
repeat
writelnC'
F i l e n a me
:
fileName);
writelnC1
F ile type
:
hType Na me [ hType
w r i t e C ' 1 > U s e r n a me
: ');
if userName[l] - '? ' then r e a d l n ( userName)
e l s e w r i t e l n C u s e r N a m e );
writelnC
Date
:
dateTime);
writelnC'
Parent f i l e
: ', parentFile);
writeC'
Diodes e x t r a c t e d : ' ) ;
f o r i : * 1 t o d i c d e C t do w r i t e ( d i o d e [ i ] : 5 ) ;
writeln;
w r i t e C ' 2> Rem: ' ) ;
i f c l [1 ] » ' ? ' t h e n r e a d l n ( c l )
else w rite ln (c l);
w r i t e C ' 3> Rem: ' ) ;
if c 2 [l] - '?' then readln(c2)
e l s e w r i t e l n ( c 2 );
w r i t e ( ' 4> Rem: ' ) ;
i f c 3 C1 j * 1? ' t h e n r e a d l n ( c 3 )
else w riteln(c3);
w r i t e ( ' E n t e r n u m b e r t o c h a n g e f i e l d CO t o e x i t ) :
readln(response);
c ase r e s p o n s e of
0: :
t : u s e r N a me [ 1 j : » ' ? ' ;
2:
c l [1 ] : '? ';
3:
c 2 [ 1] :'?' ;
4:
c 3 [ l ] :■
' ? ';
o t h e r w i s e w r i t e l n C ' bad e n t r y . ' )
end;
u n t i i r e s p o n s e » 0;
o t h e r w i s e w r i t e l n C ' q H e a d e r : bad h e a d e r t y p e ' )
end
end;
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
C This
program
accepts
input.
]
{ $ n o m a i n [ b + » c* ]}
{include src:decls;
t .................................................................................................- }
{-
io.pas:
procedure
blockFile
rdHeader
i/o
( (var
ops
f:
-}
blockFile:
var
h:
headerType);
var
b: b l o c k ;
resp: char;
i : integer;
begin
r e a d C f , b);
n :» b . b l o c k H e a d e r ;
i f h . h V e r s i o n <> c u r r e n t V e r s i o n t h e n
begin
w r i t e l n C ' * * * W a r n i n g *** H e a d e r v e r s i o n m i s m a t c h - ' )
i f C h . h V e r s i o n [ l ] i n [ ' 0 ' . . ' 9 ' J ) and C h . h V e r s i o n [ 2 ]
in [ ' O ' . . ' 9 ' ] ) then
begin
w ritelnC ' Current v e rs io n :', currentV ersion, '
Header v e r s i o n : ' , h .h V ersio n )
w r i t e l n C ' U s e f i x i t t o b r i n g h e a d e r up t o d a t e ' ) ;
end
else
begin
w r i t e l n C ' T h i s wa s p r o b a b l y c o l l e c t e d by t h e FORTRAN
PHOTO p a c k a g e .
writelnC'U se convrt, then f i x i t to update header ')
end
end;
w i t h h do
i f (hType » x t r T y p e ) and ( x t r F l a g 0 - 1 )
then
begin
f o r i :* 1 t o p r e d ( d i o d e C t ) do
d i o d e [ d i o d e C t ~ i * 1] :=* d i o d e [ d i o d e C t - i ] ;
d i o d e [ 1 ] :« x t r F l a g ;
x t r F l a g : » - 1;
f o r i :■ 1 t o d i o d e C t do
begin
f i r s t D i o d e [ i ] :» f i r s t S e l e c t e d S p e c t r u m ;
lastDiode[i]
f i r s t D i o d e [ i ] + numSelectedSpectr
end;
f irstSeiectedSpectrum :* 0 ;
n u m S e l e c t e d S p e c t r a :* 0;
end;
end;
235
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
procedure
wrHeader
i(var
var
b: block;
begin
b . b l o c k H e a d e r : * h;
b.blocklnteger[254j
b . b l o c k l n t e g e r [255]
w r i t e ( f , b );
end;
procedure
rdlntScan
var
i : integer;
begin
f o r i :» 1 t o
olocxFiie;
f:
:-
((var
VAR h:
daaderType;}
;
n .pointsPerScan;
h.numScana;
f:
olockFile;
s i z e ( intScanType) div
var
iScan:
intScanType)
s i z e ( b l o c k ) do r e a d ( f ,
i S c a n . b u f [ i ])
end;
procedure
wrlntScan
((var
f:
blockFile;
var
i; in te g e r;
begin
for i
' to s i z e ( intScanType) div
w r i t e ( f , IS c a n . b u f [ i ] ) ;
end;
procedure
rdRealScan
((var
f:
blockFile;
var
i : integer;
begin
f o r i := 1 t o s i z e ( r e a l S c a n T y p e ) d i v
rea a (f , rS can.buf[ i ]);
end;
procedure
wrRealScan
{(var
f:
blockFile;
var
i: integer;
begin
f o r i :* 1 t o s i z e ( r e a l S c a n T y p e )
w r ite ( f , rScan. buf[ i ]);
end;
procedure
dsIntScan
{(var
f:
text;
div
VAR i S c a n :
intScanType)
size(block)
var
do
rScan:
r e a l S c a n T y p e )}
size(block)
do
VAR r S c a n :
r e a l S c a n T y p e )}
size(block)
YAH i S c a n :
do
IntScanType)}
const
1 i n e S i ze = 3;
var
i : integer;
236
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
;
begin
f o r i : = 1 c o s c a n S i z e do
begin
i f p r e d ( i ) nod i i n e S i z e * 0 then
begin
writelnCf);
w r i t e ( f , i : 5,
end;
w r i t e ( f , i S o a n . i n t ’/ a i [ i ] : 7 )
end;
w r i t e i n ( f );
break(f )
end;
procedure
dsRealScan
cons t
1 i n e S i ze
var
i :
{(var
f:
text;
VAR r S c a n :
RealScanType)}
» 3;
integer;
begin
f o r i : * 1 t o s c a n S i z e do
begin
i f p r e d ( i ) nod I i n e S i z e = 0 then
begin
writelnCf);
w r i t e ( f , i : 5, ' : ' )
end;
w r i t e C f , r S c a n . r e a l V a l C i ] : 9 : 1)
end;
wri t e l n (f ) ;
break(f )
end;
procedure
{(var f :
var
s:
h:
openlnput
biockFiie;
n:
c h a r 14;
e:
char4;
var
res:
openResult)
integer;
headerType;
begin
res
openFail;
r e s e t ( f , n , e , s );
i f s > 0 then
begin
r d H e a d e r ( f , h );
i f ( h . h T y p e < 1) o r ( h . h l y p e > n a x H e a d e r T y p e ) t h e n
w r i t e l n ( ' 0 p e n : Ba d h e a d e r t y p e 1 )
else
begin
r e s e t ( f );
237
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
res
end
end
. = oceri' ui^;
end;
procedure
[ ( v a r f:
openOutput
blockFile;
n:
charlU;
e:
charU;
s:
var
integer;
res: openResuit)}
;
var
3 i z: i n t e g e r ;
begin
r e s : * op e n O k ;
i f s < l t h e n w r i t e l n ( 1O p e n F o r O u t p u t : f i l e S i z e p a r a m e t e r
else
begi n
3i z : - 0 ;
r e w r i t e ( f , n, e , s i z ) ;
if siz < 0 then res
u p e n F a i l { b a d f i l e n a me }
eise
begi n
s i z
:«
s ;
rewr i t e ( f , n , e , s i z ) ;
i f s i z < 0 t h e n r e s :»
end
end
openNoSpace;
end;
233
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
< 1')
C This
program
is
the
main
data
collection
routine.
]
t S n c m a i n [ b * , a* ]}
Sinclude sra: decis;
i COLCT - - PHOTO p a c k a g e d a t a - c o l l e c t i o n p r o g r a m }
{ A d d e d 1 / 3 5 : t e s t s AR11 c h a n n e l 6 , h o o k e d t o g a s c h r o m a t o g r a p h
{
t o d e t e c t ma x i mu m s a m p l e
Added 5 / 8 5 : c o l l e c t i o n o f m u l t i p l e p e a k s
it
MOTE: T h i s m u s t be r u n w i t h t h e / s i n g i e c h a r o p t i o n s e t
to perform c o r r e c t l y .
(i
cons t
m a x C o l c t C t * 6 : { max n u m b e r o f p e a k s }
g c D e l a y - 1 0 ; { s c a n s a f t e r gc d e t e c t s p e a k
sample
h i t 3
plasma }
n u m D a t a P o i n t s T o A v e r a g e « 1 0 ; 1 wh e n l o o k i n g a t g c f o r p e a k }
t h r e s h h o i d « 5 0 ; { mi n i mu m g c v a l u e t h a t s i g n i f i e s a p e a k }
type
unsigned
til
» 0..65535;
var
c s r o r i g i n 167770B: u n s i g n e d ;
d a t a R e g o r i g i n 167772B: u n s i g n e d ;
i n te g R e g o r i g i n 1677748: un s ig n e d ;
a l l s t a t o r i g i n 170400B: u n s i g n e d ;
a l l d a t a o r i g i n 170402B: i n t e g e r ;
procedure
collect;
var
iScan: intScanType;
dataFile: blockFile;
header: headerType;
t t y s t o r i g i n 4 4 B: u n s i g n e d ;
o ld st: unsigned;
exit: boolean;
res: openResuit;
c o l c t C t , i: i n t e g e r ;
tSize: integer;
waitCt: integer;
procedure cbreak;
(
enable characters
to
be
passed
immediately
to
program
begin
o l d s t :» t t y s t ;
t t y s t :» t t y s t o r 10100B;
w rite (c h r(29), 'S') { t e l l
end; { c bre ak }
TSX n o t
to
ignore
ttyst
}
239
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
pr o c e d u r e r.occreax;
{
r e s c o r e s t a t u s quo
begin
tty st :* oldst;
w r ite (chr(29), ' T*)
end; [ n o c b r e a k }
function
}
averageSomeDataFromGC:
const
i n i t S t a t » 23000B;
e x t r a Wa i t * 5 ;
integer;
{ GC o n AR1 1 :
unipolar,
var
a: a r r a y £ 1 , . n u m D a t a P o i n t s T o A v e r a g e ]
i , s u m: i n t e g e r ;
of
channel
6 }
integer;
begin
a 1 1s t a t
:» i n i tS t a t ;
f1
11
i T h i s w r i t e s t o s c r e e n how a a n y t i m e s t h e g c h a s b e e n c h e c k e d { mostly to re a s s u re the user th a t i t is indeed doing something
{i
w r i t e ( c h r ( 1 3 ) . w a i t C t : 4, ' ' ) ;
w a i t C t :« s u c c ( w a i t C t ) ;
f o r i : ■ 1 t o e x t r a W a i t do
begin
allstat
a l l s t a t o r 1; { s e t s t a r t b i t
( t r a n s l a t e d t o BI S i n s t r ) }
w h i l e ( a l l s t a t a n d 1 2 8 ) > 0 do
i wait } ;
end;
•;*
{
(
(
(
KLGGE a l e r t : t h i s l o o p g e t s w e i r d d a t a
s t a t e m e n t imoedded: a p p a r a n t l y w i t h o u t
t o o q u i c k l y f o r t h e a r 11 t o h a n d l e ? ? ?
documentation, that i s n ' t possible, b u
without the write
it data is requested
According to the
t...
{}
f o r i : » 1 t o n u m D a t a P o i n t s T o a v e r a g e do
begin
a l l s t a t : » a l l s t a t o r 1; { s e t s t a r t b i t
( t r a n s l a t e d to
w h i l e ( a l l s t a t a n d 1 2 8 ) * 0 do
{
w a i t
}
BI S
instr)
}
;
a[ i ] : « a 11d a t a ;
w r i t e ( a [ i ] : 5)
end;
s um : =» 0 ;
for i
T t o n u m D a t a P o i n t s T o A v e r a g e do s um : « sum * a [ i ]
a v e r a g e S o m e D a t a F r o m G C : * s um d i v n u m D a t a P o i n t 3 T o A v e r a g e ;
end; ( averageSomeDataFromGC }
240
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
procedure waitForMoPeak;
{ wai c f o r one l a s t peak
var
a v e r a g e : iowCount,
e x it: boolean;
i:
to
subside
before
looking
the
for
next
integer;
begin
1 owCount :* 0;
exi t : - f a l s e ;
w r i t e l n ( ' W a i t i n g f o r no p e a k ( h i t 1 ’ q "
to e x i t ) ' ) ;
w a i t C t : - 1;
repeat
i f averageSomeDataFromGC > t h r e s h h o l d t h e n iowCount
e l s e i o w C o u n t :» s u c c ( i o w C o u n t );
i :» i t t i n r ,
{ h a s he h i t a k e y ? }
i f i >» 0 t h e n e x i t : - c h r ( i ) i n C ' q ' , ' Q ' j ;
u n t i l e x i t or (IowCount > 3);
wri t e l n ;
end; { w a i t F o r N o ? e a k }
function
waitForPeak:
one
:=
boolean;
var
peakDetected, rising, exit, collect:
average, oldAverage, i: i n te g e r;
begin
p e a k D e t e c t e d :» f a l s e ;
c o l l e c t :« f a l s e ;
e x i t :» f a l s e ;
o i dA v e r a g e : = - 1;
w r i t e l n ( ' W a i t i n g fo r peak
(hit
' ' q *'
boolean;
to
exit;
' ' c f ' to
c o l l e c t )'
wa i t C t : * i ;
repeat
a v e r a g e :» averageSomeDataFromGC;
w r i t e ( ' Av g : ' , a v e r a g e : 4, ' D i f f : ' ,
oldAverage - average: 4
p e a k D e t e c t e d :» p e a k D e t e c t e d o r ( a v e r a g e > t h r e s n h o i d ) ;
r i s i n g :- average > oldAverage;
oldAverage :- average;
i := i t t i n r ;
i f i >» 0 t h e n
be g i n
e x i t : = c h r ( i ) i n [ ' q ' , ' Q1 j ;
c o l l e c t :■ c h r ( i ) i n [ ' o ' , * C * ] ;
end;
u n t i l c o l l e c t or e x i t or ( p e a k D e t e c t e d and n ot r i s i n g ) ;
wr i t e 1 n ;
w a i t F o r P e a k :» e x i t
end; { w aitF orPeak }
241
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
procedure
var
i:
doScan;
integer;
degin
w r i t e l n ( ' c o i i e c t i n g now');
c s r : - 0;
s e t p r i o r i t y ( 7 ) ; { r e a l - t i m e : MOBODY e l s e d o e s a n y t h i n g !
f o r i : > 1 t o g c D e l a y do s c a n ( i S c a n , s c a n S i z e ) ;
for i
i t o h e a d e r , n u m S c a n s do
begin
scan(iScan, scanSize);
w rIntS can( d a t a F i l e , iScan);
end;
3 e t p r i o r i t y (0 ) ; { b a c k t o n or ma l }
and; { doScan }
procedure
startup;
begin
crH eader( rawType, header);
integReg
not (h e a d e r . integrationTim e
end;
procedure
}
* 1000
div
48);
coilectSomeScans;
label
0;
begin
3 t a r tU p ;
t S i z e :»
t S i z e :*
s i z e ( i n t S c a n T y p e ) d i v 512; i d o n ' t o v e r f l o w ! ! ! }
t C i z e * h e a d e r . numScans * m a x C o l c t C t ;
{ largest file size j
openOutput(d a ta F ile , 'sd 7 :co lct
'.tm p', tSize, res);
i f r e s <> o p e n O k t h e n
begi n
w r i t e l n ( ' I n s u f f i c i e n t d i 3 k s p a c e on s d 7 : ' ) ;
g o t o 0;
end;
cbreak;
colctC t : * 0 ;
e x i t :* f a l s e ;
w h i l e n o t e x i t and ( c o i c t C t < m a x C o l c t C t ) do
begin
wa i t F or N oP e a k ;
e x i t :« w a i t F o r P e a k ;
i f not e x i t then
oegin
doScan;
c o i c t C t :* s u c c ( c o l c t C t )
end
end;
nocbreak;
24 2
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
n e a d e r . c o l c t C t := c o i c t C t ;
r e s e t ( d a t a F i l e );
s p li t S c a n s (d a t a F i l e , header);
t
each
peak
goes
into
a file
0:
end;
{ coilectSomeScans
begin
writelnC'
writelnC'
writelnC'
lkanmy;
mpiops;
}
COLCT - - P h o t o d i o d e a r r a y c o l l e c t i o n ' ) ;
v e r s i o n 8 5 . 5 - PHOTO p a c k a g e v e r s i o n . ' ) ;
- GC c o n t r o l l e d - m u l t i p i e p e a k s . ' ) ;
{lock
into
me mo r y
and
allow
direct
access
to
i/o
page
writeC'GC c o n t r o l l e d ' ) ;
i f yesNo t h e n c o l l e c t S o m e S c a n s
else
begin
startup;
t S i z e := s i z e ( i n t S c a n T y p e ) d i v 512; { d o n ' t o v e r f l o w ! ! ! }
tSize
tSize * h e a d e r . numScans; { l a r g e s t f i l e s iz e }
o p e n O u t p-ut ( d a t aF i l e , ' s d 7 : c o l c t
',
' . tap' , tSize, res);
i f r e s - openNoSpace t h en w r i t e l n ( ' I n s u f f i c i e n t d i s k s p a c e '
else
begin
c o i c t C t : » 1;
w r i t e C 'H i t r e t u r n to c o l l e c t : ' ) ;
readln;
doScan;
.
reset(dataFile);
h e a d e r . c o l c t C t : » 1;
s p iitS c a n s (d a ta F ile , header);
end
end
end; { co 1 ct ;
2 43
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
C This
{$ n o m a i n
^include
program
sp lits
files
collected
from
GC p e a k s .
from
colct
, c +] }
src:decls;
[ b - f
i ------------------------{- s p l i t . p a s : s p l i t s
{
data
multiple
peak d a t a
files
}
-}
-
}
procedure
splitScans
{(var
var
i, j , tS ize, file S iz e :
outFiie: blockFile;
f u l l : boolean;
res: openResuit;
iScan: intScanType;
r:
blockFile;
VAR h :
headerTvpe)}
integer;
p ro ce d u re alignAndComplementArray( var buf: in tScan T y p e);
{ t h r o w o u t d e a d d i o d e s a t t h e s t a r t of t h e a r r a y }
{ a n d n e g a t e d a t a , y i e l d i n g a . BI N f i l e }
var
i , pos: i nteger;
done: b o olea n;
begin
POS : - 1;
done :« f a l s e ;
r e peat
pos :* s u c c ( p o s );
i f pos > 6 then
begin
pos :* 1 ;
done : » t r u e ;
end
else
w i t h b u f do
done :* a b s ( i n t V a l [ p o s ]
-
intVal[pos
-
1])
>
a bs ( i n t v a l [ pos
u n t i l done;
wr i t e ( p o s : 3 ) ;
w i t h b u f do
begi n
f o r i : =• p o s
to
scanSize
do
f o r i := pos - 2 d o w n t o 0 do
end
end; { ali gn AndCompi ementAr ray }
procedure
{
c a l l e d
cleanUp(VAR
w h en
s p a c e
intVal[i
+ l] :
- - intVal
i n t V a l [ s c a n S i z e - i ] ;■
h:
headerType);
i s
i n s u f f i c i e n t
t o
-
pos
3piit
m o r e
3 c a n s
var
244
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
f S i z e , i: i n t e g e r ;
f i l e N a m e : c h a r 14;
outFile: blockFile;
res: openResuit;
begin
fSize
:» s i z e ( i n t S c a n T y p e ) d i v 512; i b l o c k s p e r s c a n }
fSize
;* f S i z e * h . c o l c t C t * h . n u m S c a n s ;
i number
of s c a n s l e f t i n a r c h i v e }
fSize
s u c c ( f S iz e ) ; { plus header }
repeat
w r i t e C ' E n t e r file n am e to 3ave rem aining scans in: ' ) ;
readlnCfileName);
o penO utput(outF ile, fileName, '.r a w ', fSize, res);
i f r e s * o p e n F a i i t h e n w r i t e l n C ' Cannot open f i l e .
Try a g a i n . ' }
e l s e i f r e s - openNoSpace th en w r i t e l n ( ' That d e v ic e
is too f u l 1 . ' )
u n t i l r e s - openOk;
i f r e s <> o p e n N o S p a c e t h e n
begi n
h . hT y pe : * r awT y pe ;
w r H e a d e r ( o u t F i l e , h);
f o r i ; « 1 t o h . c o l c t C t * h . n u m S c a n s do
begin
rdlntScanCf, iScan);
w rIntS can(o u t F i l e , iScan)
end;
closeCoutF i i e ) ;
end;
end;
begin { s p litS c a n s }
wr i t e 1 n ;
w r ite ln ( ' S p littin g data f i l e ' ) ;
i f h . c o l c t C t < 1 t h e n w r i t e l n C ' N o c o l l e c t i o n wa s p e r f o r m e d ' )
else
begin
w r i t e l n ( h . c o i c t C t , ' c o l l e c t i o n s were m a d e ' ) ;
qHeader ( h ) ;
f i l e S i z e :* s i z e ( i n t S c a n T y p e ) d i v s i z e ( b l o c k ) ;
{ blocks per scan }
f i l e S i z e :» f i l e S i z e * h . n u m S c a n s ; { b l o c k s p e r c o l l e c t i o n
f i l e S i z e :» s u c c ( f i 1 e S i z e ); { p l u s one f o r h e a d e r }
full :» false ;
i :- 1 ;
h . h T y p e ; =» b i r . T y p e ;
w h i l e n o t f u l l a n d ( i < - h . c o l c t C t ) do
begi n
t S i z e := f i l e S i z e ;
repeat
w r i t e ( ' C o l l e c t i on it ' , i : 2 , ' F i l e n a me : ' ) ;
readln(h.fileName);
openO utput(outFile, h.fileName, '. b i n ', tSize, res);
245
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
if r e s * oper.Fail then w r i t e l n C 'T r y
e l s e i f re s » openNoSpace t h en
begin
w r i t e l n C ' Device f u l l ' ) ;
h.colctCt
h.colctCt - i + 1;
c l e a n U p ( h );
end;
u n t i l r e s <> o p e n F a i l ;
i f r e s <> o p e n N o S p a c e t h e n
oegi n
qHeader ( n ) ;
w r K e a d e r ( o u t F i l e , h);
w r i t e ( ' a l i g n pos w a s ' ) ;
f o r j : » 1 t o h . n u m S c a n s do
begin
rdlntScanCf, iScan);
alignAndComplementArray(iScan);
w r l n t S c a n C o u t F i l e , iScan)
end;
wr i t e l n ;
end;
i :- succ( i ) ;
end;
ciose(outFile);
end
end; { s p i i t S c a n s }
procedure s p lit;
( allows fu rth e r s p l i t t i n g
var
iScan: intScanType;
dataFile: blockFile;
header: headerType;
res: openResuit;
f i l e N a m e : c h a r 14;
of
a file
after
again.'/
space
provided
begin
r e pe a t
w r i t e C ' E n t e r na me o f f i l e t o s p l i t : ' ) ;
r e a d l n C f i l e N a m e );
op e n lnput(d a t a F i l e , fileName, ' . r a w ' , res);
u n t i l r e s * openOk;
rdHeader(d a ta F ile , header);
sp litS c an s(d a ta F ile , header);
end; { s p l i t }
{ $ n o ma i r . [ b+ , c + j }
{include src:decls;
}
{- i n s p c t . p a s :
{ - -
Examine
data
file
contents
-}
}
246
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
procedure
ae:U pOu:pu: ( var
:
:exi ) ;
var
i: integer;
o u t N a m e : o n a r 14 ;
begin
repeat
repeat
w r i t e l n ( ' Wh e r e do y o u w a n t
w r i t e l n ( 1 1 : s c r e e n ' );
wr i c e i n C' 2 : d i s k ' ) ;
w r i t e l n ( ' 3: p r i n t e r ' ) ;
w r i t e C ' E n t e r number: ' ) ;
readln(i )
u n t i l Ci > 0) a n d ( i < 4 ) ;
c a s e i of
1 : o u t N ame : - ' 1 1 :
the
output
to
go?');
';
2:
repeat
w r i t e C ' E n t e r f i l e n a me : ' ) ;
r e a d l n ( outN a m e )
u n t i l o u t N a m e <> b i a n k 1 4 ;
3: o u t N ame : * ' 1 p :
'
end;
i : - 0 ; { t a k e w h a t t h e OS g i v e s us
r e w r i t e C f , out Name, ' . x x x ' , i ) ;
u n t i l i >* 0;
end;
}
p r o c e d u r e x t r l n s p e c t ( v a r f : b l o c k F i l e ; VAR h: h e a d e r T y p e ) ;
f inspect e x tr a c t f i l e s : d i f f e r e n t format than o th ers }
label
3, 9;
var
i, response: integer;
blk: block;
xtrBlock: xtr3lockType;
outFile: text;
begi n
setUpOutput(outFile);
d s H e a d e r C o u tF i l e , h);
w h i l e t r u e do
begin
0:
wri t e l n :
f o r i : * 1 t o h . d i o d e C t do w r i t e l n C i : 2,
w r i t e C ' E n t e r n u m b e r by d i o d e t o e x a m i n e C z e r o
readln(response) ;
i f r e s p o n s e < 1 t h e n g o t o 9;
i f r e s p o n s e > h . d i o d e C t t h e n g o t o 0;
h.diode[ij);
to e x i t ) : ');
247
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
f o r i : = i t o s u c c ( r e s p o n s e ) do r e a a ( f , ij I < j ;
x t r 3 1 o c k :» l o o p h o l e ( x t r B l o c k T y p e , b l k ) ;
w r i t e l n ( o u t F i l e , 'Data for diode
h.diode[responsej)
w r i t e l n (o u t F i l e , 'Background diodes used were ',
h.firstDiodefrespons
1,
h . l a s t D i o d e [ r e s p o n s e ] : 1);
w r i t e l n ( o u t F i l e );
f o r i : • 1 t o h . n u m S c a n s do
w r i t e l n ( o u t F i l e , i : 2, ' : ' , x t r B l o c k [ i ] : 7: 1 ) ;
br e a k ( o ut F i l e ) ;
end;
9:
c l o s e ( o u t F i l e );
end;
procedure
inspect;
labei
0, 9;
var
header: headerType;
iScan: intScanType;
rScan: realScanType;
1, f i r s t S c a n , l a s t S c a n :
dataFile: blockFile;
fM a m e : c h a r 14;
outF i l e : t e x t ;
res: openResuit;
integer;
begi n
0:
w h i l e t r u e do
begi n
w r i t e C 'E n t e r filenam e ( r e t to e x i t ) : ' ) ;
r e a d l n ( f N a m e );
i f f Na me » b l a n k l 4 t h e n g o t o 9;
o p e n l n p u t ( d a t a F i l e , f Na me , ' . b i n ' , r e s ) ;
i f r e s * openOk t h e n
b e gi n
rdHe ad e r( da ta F ile , header);
d3Header(output, header);
i f header.hType = x t r T y p e then
be g i n
x trln sp e c t(d a ta F ile , header);
g o t o 0;
end;
w i t h h e a d e r do
be g i n
i n p u t R a n g e ( 0, n u m S c a n s , f i r s t S c a n ,
i f f i r s t S c a n * 0 t h e n g o t o 0;
setllpOutput(outFile);
dsHeader(outFile, header);
lastScan);
248
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
f o r
i
:=
1
co
p r e d ( f i r s t S c a n )
if
j o
h e a d e r . hType i n [ b i n T y p e , r a w T y p e ]
r d i n t S c a n (d a t a F i l e , iScan)
e l s e r d R e a l S c a n ( d a t a F i l e , rScar.);
f o r i :■ f i r s t S c a n t o l a s t S c a n dc
if header.hType in i n te g e r F il e s then
begin
rd in tS c a n (d a t a F i l e , iScan);
d s I n t S c a n ( o u t F i l e , iScan)
end
else
oegi n
rdRealScan(d a ta F i le , rScan);
d s R e a lS c a n ( o u tF ile , rScan)
end;
c l o s e (outF i l e ) ;
:hen
e n d
e n d ;
e n d ;
9:
e n d ;
249
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
C This
program
subtracts
dark
current
from
raw
data
files.
]
{5nomain[ b+, c * ] }
{include src:decls;
{ ----------------------------------------------------------------------------- j
dark.pas: background s u b tr a c ti o n
-}
{ .............................
-i
procedure
ave ra ge B inD a ta ( var f: b lo c k F il e ;
v a r h: h e a d e r T y p e ;
var rScan: realScanType;
pr o m p t : b o o l e a n );
{ average the d a ta for each scan in a bin f i l e }
var
iScan:
first,
intScanType;
l a s t , i, j , count:
integer;
begi n
i f prompt t h e n i n p u t R a n g e (1, h . n u m S c a n s , f i r s t , l a s t )
ei se
be g i n
f i r s t :■ 1;
l a s t :- h.numScans;
end;
c o u n t : « l a s t - f i r s t + 1;
crH ead er(av g T y p e, h);
h. f i r s t S e l e c t e d S p e c t r u m : » f i r s t ;
h . n um SelectedSpectra :- count;
f o r i : * 1 t o p r e d ( f i r s t ) do r d I n t S c a n ( f , i S c a n ) ;
f o r i : « 1 t o s c a n S i z e do r S c a n . r e a l V a l [ i ] :■ 0 . 0 ;
f o r i :■ f i r s t t o l a s t do
begin
rdIntScan(f, iScan);
f o r j :■ 1 t o s c a n S i z e do
rScan.realV al[j]
r S c a n . r e a l ' / a l [ j ] + i S c a n . i nt V a l [ j I ;
end;
f o r j : » 1 t o s c a n S i z e do r S c a n . r e a l V a l [ j j :
* rScan . r e a l ' / a l [j j / count
end;
procedure
darkCurrent;
label
0;
cons t
d a r k S hi f t = 5 ;
( amount t o s h i f t d a r k c u r r e n t f i l e s t o
{ f o r s h i f t i n g done on o t h e r d a t a f i l e s
var
iScan:
compensate
}
intScanType;
250
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
dHeader, oHeader: headerType;
dataFile, outFile: blockFile;
f il e N a m e , oFileName, dFileName: c ha rl U ;
fS ize, f i r s t , l a s t , count, i, j: integer;
res: openResuit;
averaged: boolean;
procedure binSubtract;
{ s u b t r a c t av erag ed dark
var
i , j :
data
from
each
scan
procedure avgSubtract;
{ s u b t r a c t averaged dark
data
from a
-
.3IN
file
}
rScanl. realVal[j
.AVG f i l e
}
integer;
begin
rd R e a lS c a n (d a ta F ile , rSoan2);
f o r i : » 1 t o s c a n S i z e do
r S c a n 2 . r e a l V a l [ i ] :« r S c a n 2 . r e a l V a l [ i ]
wrRealScan(o u t F i l e , rScan2);
end;
procedure
var
i:
a
integer;
begin
f o r i : * 1 t o o H e a d e r . n u m S c a n s do
begin
r d i n t £ c a n (d a ta F ile , iScan);
f o r j : - 1 t o s c a n S i z e do
rScan2. r e a l V a l [ j ] :- iS can . i n t v a l [ j j
wrRealScan(o u t F i l e , rScan2);
end
end;
var
i:
in
-
rScan 1, real'/ al [ i
-
rScanl.realVal[ i
subtractAveragedData;
integer;
begi n
f o r i : * l t o s c a n S i z e do
r S c a n 2 . r e a l V a l [ i ] :- rScan2. r e a l V a l [ i ]
wrRealScan(outFile, rScan2);
end;
be g i n
repeat
w r i t e ( ' E n t e r f i l e with dark c u rr e n t data: ' ) ;
r e a d l n ( dF i l e N a m e );
o p e n l n p u t (d a t a F i l e , dFileName, ' . a v g ' , r e s ) ;
u n t i l r e s * openOk;
r d H e a d e r ( d a t a F i l e , dHeader);
oHeader : = dHeader;
251
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
o p e n l n p u t ; d a t a F i l e , dFileName, ' . a v g ' , res ; ;
u n t i l r e s = openOk;
rdH eader(d a t a F i l e , dHeader);
o H e a d e r :* d H e a d e r ;
d sH e a d e r(o u tp u t, dHeader);
c a s e d H e a d e r . hType of
bi n T y p e :
begin
wr i t e l n ( ' A v e r a g i n g d a r k f i l e ' ) ;
averageBinDat a (d a ta F ile , oHeader, rS can l, f a l s e ) ;
w r i t e ( ' S h i f t dark d a t a ' ) ;
i f yesNo t h e n
be g i n
f o r i : » 1 t o s c a n S i z e - d a r k S h i f t do
rScanl .re a lV a l[ i]
rScan 1 . r e a l V a l [ i
darkShift];
f o r i : « 0 t o p r e d ( d a r k S h i f t ) do
r S c a n 1 . r e a l V a l [ s c a n s i z e - i ] :« 0 . 0 ;
end;
r e pe a t
w r i t e ( 'E n t e r f i l e to save averaged dark data in
( RET f o r n o n e ) : ' ) ;
readln(oFileName);
i f o F i i e N a m e <> b l a n k l d t h e n
o p e n O u t p u t ( o u t F i l e , oFiieName, ' . a v g 1 ,
s i z e ( r e a i S c a n T y p e ) d i v s i z e ( b l o c k ) +• 1, r e s ) ;
i f r e s - openNoSpace t h e n w r i t e l n ( ' I n s u f f i c i e n t
d i s k s p a c e ’ );
u n t i l ( r e s <> o p e n F a i l ) o r ( o F i i e N a m e - b i a n k l 4 ) ;
i f ( o F i i e N a m e <> b l a n k 1 4 ) a n d ( r e s - o p e n O k ) t h e n
begin
oH e a d e r . f i 1 eN ame : = o F i i e N a m e ;
qHeader(oHeader) ;
w rH eader(outFile, oHeader);
wrRealScan(outFile, rScanl);
close(outF i l e ) ;
end
end;
avgType: r d R e a l S c a n (d a t a F i 1 e , r S c a n l ) ;
o t h e r w i s e w r i t e l n ( ' d a r k : bad h e a d e r t y p e ' ) ;
end;
close(dataFile);
repeat
w r i t e ( 'E n t e r f i l e to s u b tr a c t
r e a d l n ( f i l e N a m e );
o p e n l n p u t ( d a t a F i l e , fileName,
u n t i l r e s - openOk;
r d H e a d e r ( d a t a F il e , dHeader);
o H e a d e r := d H e a d e r ;
crH eader(b i 3?y p e , oHeader);
f S i z e :* s i z e ( r e a l S c a n T y p e ) d i v
w i t h d H e a d e r do
i f hType » b i n T y p e t h e n
begi n
w r i t e ( ' A v e r a g e . BI N d a t a f i l
dark
current
'.avg',
from:
');
res);
s i z e (block);{ size
of
one
e 1 );
252
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
scan}
a v e r a g e a := y e s No ;
i f a v e r a g e d t hen
begin
w r i t e l n ( ' Enter data scans to a v e ra g e ');
averageBinD ata( d a ta F ile , oHeader, rScan2,
o H e a d e r . n u i n S c a n a : * 1;
end
else fSize
numScans * f S i z e ;
{ o u t p u t f i l e h o l d s s a me n u mb e r of s c a n s }
end
e l s e i f h T y p e <> a v g T y p e t h e n
begin
w r i t e l n ( ' d a rk : bad d a t a f i l e t y p e ' ) ;
g o t o 0;
end;
fSize
s u c c ( f S i z e ) ; { add h e a d er r e c o r d }
repeat
w r i t e C ' E n t e r f i l e to save s u b t r a c t e d d a ta in:
readln(oFileName);
o p e n O u tp u t(o u tF ile , oFiieName, ' . b i s ' , fS ize,
i f r e s « openNoSpace th en w r i t e l n ( ' I n s u f f i c i e n
u n t i l r e s <> o p e n F a i l ;
i f r e s » openOk t h e n
begin
oH e a d e r . f i l eN a me : « o F i i e N a m e ;
q H e a d e r ( o H e a d e r );
wrHeader( o u t F i 1e , oHeader);
c a s e d H e a d e r . hType of
bi n T y p e :
if averaged then subtractAveragedData
else binSubtract;
avgType: a v g S u b t r a c t ;
otherw ise w r i t e l n ( ' B a a data header t y p e ' ) ;
end;
olose(outFile);
end;
c l o s e ( d a t aF i l e ) ;
end;
true);
');
res);
t disk
253
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
space'
[ T h i s program
extracts
specified
diode(s)
from
corrected f i l e s .]
{ $ n o m a i n [ b + , c + ]}
{include src :d e cis;
[- e x tr c t.p a s : e x tr a c t
{- P i s Ty p e f i l e s , w i t h
i ......................................
f u n c t i o n yesNo;
var
cRespor.se: c ha r;
begin
w r i t e C 1 Cy/n)?
readln(cResponse);
ye s No : « c R e s p o n s e
end;
}
s p e c i f i c d i o d e s from
background s u b tr a c ti o n
-}
in
[* y ' ,
procedure extra ctS im p le ;
[ d i s p l a y raw v a l u e s from
label
0, 1 ,
2,
cons t
extC t
■ 3;
'T'];
a file
for
a specific
diode
}
9;
var
f n : c h a r 14;
h: h e a d e r T y p e ;
is: intScanType;
rs: realScanType;
1, j , k: i n t e g e r ;
res: openResuit;
f: b l o c k F i l e ;
f2 : text;
begin
0:
w r i t e ( ' Ou t p u t f i l e ( r e t f o r t e r m i n a l ) :
r e a d l n ( f n );
i f f n <> b l a n k l 4 t h e n
begin
i := 0;
r e w r i t e ( f 2, f n ,
', i);
i f i < 0 t h e n g o t o 0;
end
a l 3 e r e w r i t e C f 2, ' t t : ' ) ;
');
1:
w r i t e C ' E n t e r f i l e n a me ( r e t t o
r e a d l n ( f n );
i f f n = b i a n k 1 4 t h e n g o t o 9;
openlnputCf, fn,
', res);
exit):
');
254
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
i f r e s <> o p e n O k t h e n
w r i t e l n C f 2, ' F i l e : ' ,
b r e a k ( f 2);
goto
fn);
1;
2:
r e s e t ( f );
rdHeader(f, h );
writeC'Diode to e x tra c t (zero to e x i t ) : ' ) ;
r e a d l n ( i );
i f i > h . p o i n t s P e r S c a n t h e n g o t o 2;
i f i < 1 t h e n g o t o 1;
w r i t e l n C f 2, ' D i o d e ' , i ) ;
f o r j : » 1 t o h . n u m S c a n s do
begi n
w r i t e C f 2, j : 2 , ' : ' ) ;
if h.hType in in te g e rF lie s then
begin
rdintScan(f , is);
w r i t e ( f 2 , ' ' , is . i n t V a l [ i ] : 4);
end
else
begi n
r dR e a l S c a n ( f , r s );
w r i t e C f 2, ' ' , r s . r e a l V a l [ i ] : 3 : 2 ) ;
end;
w r i t e l n C f 2);
end;
b r e a k ( f 2);
g o t o 2;
9:
closeC f 2);
end;
p r o c e d u r e e x t r a c t Wi t h S u b t r a c t i o n ;
( c r e a t e f i l e of e x t r a c t e d d i o d e s
label
0 . 1,
2,
3,
-
subtract
background
9;
var
f n : c h a r 14 ;
f n 2 0 : c h a r 20;
1, j , f i r s t , l a s t , c o u n t : i n t e g e r ;
s u m: r e a l ;
res: openResuit;
h, oh: h e a d e r T y p e ;
rScan: realScanType;
f , f 2: b l o c k F i l e ;
xBlk: a r r a y [ t . . x t r D i o d e L i m i t j of x t r B l o c k T y p e ;
be g i n
0:
writeC'File
to
extract
diodes
from
(ret
to
exit):
');
255
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission
r e a d l n ( f n) ;
i f f n » b l a n k l 4 t h e n g o t o 9;
openInput(f, fn, ' . b i s ' , re s ) ;
i f r e s <> o p e n O k t h e n g o t o 0;
rd Hea der (f , h ) ;
i f h . n T y p e <> o i s T y p e
then
goto
0;
1 :
w r i t e ( ' Out p u t
file
readln(fn);
i f fn - blank14
for
then
extracted
goto
diode
values
(ret
for
none):
! );
2;
o p e n l n p u t ( f 2, f n , ' . x t r 1 , r e s ) ;
i f r e s - ope nOk t h e n
be g i n
rd H e a d er(f2 , oh);
i f o h . h T y p e <> x t r T y p e t h e n
begi n
w r i t e l n ( ' T h i s f i l e e x i s t s , b u t i s n o t i n XTR f o r m a t . ' ) ;
g o t o 1;
end
else
begin
c l o s e ( f 2);
w rite ('T h is f i l e e x is ts . Destroy current c o n te n ts ');
i f n o t y e s N o t h e n g o t o 1;
end
end;
o p e n O u t p u t ( f 2 , fn, ' . x t r ' , s u c c ( x t r D i o d e L i m i t ), r e s ) ;
i f r e s <> o p e n O k t h e n g o t o 1 ;
oh
:*
h ;
d s H e a d e r (o u t p u t , oh);
crH eader(x trT y p e , oh);
w i t h o h do
be g i n
f i l e N a m e :* f n ;
d i o d e C t : * 0;
while diodeCt < xtrD iodeL im it
begin
do
w r i t e C ' E n t e r d i o d e t o e x t r a c t (0
readln(diode[3ucc(diodeCt)]);
i f d i o d e [ s u c c ( d i o d e C t )] < 1 t h e n
diodeCt
succ (diodeC t) ;
to
exit):
goto
');
3;
w rite ln ( 'E n te r diode range for background
i n p u t R a n g e ( *, 3 c a n S i z e , f i r s t , l a s t ) ;
f i r s t D i o d e [ d i o d e C t ] :« f i r s t ;
1astDiode[diodeCt]
last;
c o u n t :» l a s t - f i r s t + t ;
reset (f ) ;
r dH e a d e r ( f , h ) ;
subtraction.');
256
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
f o r i : » 1 c o n u m S c a n s do
begin
rdRealScan(f , rScan);
3 um : »
0.0;
f o r j : = f i r s t t o l a s t do s um : = s um ♦ r S c a n . r e a l ’/ a l [ j [ ;
sum :» sum / c o u n t ;
x B l k [ d i o d e C t ] [ i ] : » r S c a n . r e a l V a l [ d i o d e [ d i o d e C t ] ] - s um;
end;
end;
end;
3;
with
if
o h do
( f n <> b l a n k 1*0 a n d ( d i o d e C t > 0 ) t h e n
begin
qH e a d e r ( o n ) ;
w r H e a d e r ( f 2, o h ) ;
for i
1 t o d i o d e C t do
begin
w rite (f2 , lo o p h o le(block , x B lk [ ij)) ;
wr i t e l n ;
w r i t e l n ( ' Adjus ted v a lu e s f o r diode
d i o d e [ i [ : 4);
w r i t e l n ( ' Background:
f i r s t D i o d e [ i 3 : 4,
1 a s tD i ode [ i j : 4 ) ;
f o r j ; » 1 t o n u m S c a n s do
begin
i f ( p r e d ( j ) mod 5) * 0 t h e n w r i t e l n ;
write('
j : 2, '
x 3 1 k [ i ] [ j ] : 7: * ) ;
end;
writeln;
end;
end;
c l o s e ( f );
close(f 2) ;
9:
end;
procedure extract;
begin
w r i t e ( ' D o y o u w a n t t o do b a c k g r o u n d s u b t r a c t i o n ' ) ;
i f yesNo t h e n e x t r a c t ' d i t h S u b t r a c t i o n
else extractsimple;
end;
257
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
C This program
; scan.mac
. enabl
. me a l l
pascal
p r oc
p a r am
p a r am
save
csr ciksts
initiates the scaning of the photodiode array.
1c
pascal
scan
;
procedure
scan
the
array
once
var b u f f e r : a r r a y [ 1 . . l e n g t h ]
of i n t e g e r
length: integer;
len g th , integer
< r 0 , r 1 , r 2 , r 3>
s a v e t h e r e g i s t e r s t o be u s e d
c o n s t c s r - 166670b
167770
; A d d r e s s of t i m e - o f - d a y s t a t u s r e g i s t
» 177546
ffcsr.rO
?Kcsr*2> ,r1
buffer(sp ) , r 3
iengthC s p ) , r 2
<n 0 0 , 3 / Ac l k s t s
load
load
load
load
turn
rO
r1
r3
r2
off
clr
bio
bne
( r 0)
in 0 0 0 0 0 , ( r O )
3can0
wait
for
s can 1 :
bit
beq
ci r
or
in 0 0 0 0 0 , ( r O )
scanl
( r O)
br 1 4
scan2 :
bit
beq
mov
clr
sob
bis
endpr
or 14 :
to
o u ffe r,address
begin
mo v
mov
mo v
mov
bic
scanO :
]
with the device
with the data r e
with the buffer
with the length
clock i n te r r u p t
end of
csr
gister
addres
counts
enabl
scan
w a it f o r s t a r t of
s i g n a l l e d by h i g h
clear the csr for
scan
bit set.
next time
wait for data ready
loop u n t il bit set
get the d a ta i n t o the a rr a y
c l e a r c s r for n ext time
l o o p u n t i l done
enable clock in te r ru p ts again
r e t u r n to pascal procedure
200 , (rO)
scan2
( r 1) , (r 3) +
(rO)
r 2 , scan2
#1 0 0 , § # c i k s t s
258
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ACKNOWLEDGEMENT
The a u t h o r
friends
whose
of
degree
this
also
like
trust,
to
Petroleum
the
instruction,
during
the
Sorensen
The
by
were
« iehman,
c e rta in ly
an
cooperation,
Their
strong
and
The
like
to
these
author
and
would
Phillips
Dr .
Robert
the
advice
to
of
Ki ng.
Th e
Chris
degree.
Schleisman,
achievement
largely
comradery
guidance
and
this
Anthony
Fry,
integral
and
Hammaker,
pursuit
constant
were
C.
due
exhibited
by
enthusiasm
wa s
to
the
these
me n.
has
created
a
to
Dave
been
extend
thanks
colleagues
others
3rown
feel
and
Th e
a t
Greg
who
ease.
were
without
always
for
achievement
the
time
would
their
of
and
Don
willing
The a u t h o r
Dietrich
successful
possible
t o Ron F i e t k a u ,
a l 3 o
help
this
to
in
degree
expertise
of
me n .
Th e
offered
author
by
inspiration
for
make
have
like
Mc Cu r d y ,
development.
would not
Rooert
experience,
and
completion
impression.
would
and
Valuable
idward
and
to
friendship
grateful
especially
attitudes
Da v e
thank
software
during
The
and
project.
and
Fateley,
unselfishness,
and
a hand
Sill
ma d e
Foundation
thank3
degree.
sincerely
lasting
iend
the
enjoyable
aut.nor
Pivonka,
of
and
optimistic
this
a special
indispensibie
is
of
has
enjoyable.
Science
dedication,
Dr.'s
author
Michael
support
attainment
furnished
and
National
extends
wnose
and a s s i s t a n c e
satisfying
partial
author
t o t h a n k a f ew o f t h e many f a c u l t y
support,
both
thank
for
The
would l i k e
the
Ana
appreciates
Lizano.
the
These
and m o t i v a t i o n
that
frequent
helpful
enabled
discussions
and
suggestions
completion
of
advice
provided
the
degree.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
work
VITA
John
Michael
Massachusetts.
John
in
F.
M.
Saugus,
attended
years.
3oston
College
in
interest
1977
Holy C r o s s ,
in
Dr .
John
arrived
atomic
High
majoring
in
MA.
a
section
from
He
1973
Chemistry
in
1979,
in
to
of
resided
operated
3. C.
High,
1977,
with
John's
Honors
the
many d i f f e r e n t
two y e a r s
to
of
focus
of
in
College
decided
Chemistry
to
The
about
he
apply
Boston.
to
at
to
school
graduated
He l e a r n e d
3 . A.
to
he c o m p l e t e d
decided
scholarship
completing
a
has
where
preparatory
a
developed.
received
decided
complete
with
of
he
Massachusetts,
After
belonging
The f a m i l y
in Saugus
a college
and,
Lynn,
1953.
thirteen,
3.C.
195 9 i n
children
Keane.
offered
Worcester,
then
and
field
nine
12,
on
the
the
undergraduate
(Honors)
from
Holy
1981.
John
interest
of
school
of
was
began
branch.
he
in
field
He
in C h e m is try
research,
Cross
age
Chemistry
in
analytical
since
elementary
the
on N o v e m b e r
(Gormley)
High Sc h o ol ,
and
born
oldest
R.
attending
in
branches
the
Dorchester,
While
June,
At
Jesuits.
located
is
was
Massachusetts
eight
the
He
and B a r b a r a
John
by
Keane
atomic
Robert
in
Fry,
to
an
advanced
spectroscopy
who
August
spectroscopy.
spectroscopy,
continue
wa s
1981
After
Jonn
in
degree.
and
employed
and
four
the
analytical
He
opted
at
harbored
to
Kansas
continued
years
completed
his
of
Ph.
to
do
D.
a
strong
graduate
State
learn
research
chemistry
in
work
University.
about
the
analytical
in August,
2 60
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
1935.
SIMULTANEOUS MONITORING OF RED AND NEAR-INFRARED
NONMETAL ATOMIC EMISSIONS IN MICROVAVE AND
INDUCTIVELY COUPLED PLASMAS WITH A PHOTODIODE ARRAY
by
John Michael Keane
B.A., C o l l e g e o f Ch e H o l y
Worcester, Massachusetts,
Cross
1981
AN ABSTRACT OF A DOCTORAL DISSERTATION
submitted
in
partial
requirements
fulfillment
for
the
of
the
degree
DOCTOR OF PHILOSOPHY
Department
Kansas
of
State
Manhattan,
Chemistry
University
Kansas
66506
1985
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ABSTRACT
In
a
single
paouodiode
covers
nm).
an
exposure,
array
unusually
fluorine,
emissions
plasmas.
is
large
m onitoring
chlorine,
exposure
times
infrared
( MI R )
emission
as
tne
elem ental
concentrations
interest
in
Optical
the
25
near
short
infrared
relatively
located
atomic
time.
and
within
iodine
ICP
array
for
enhanced
red
arrays,
in
350
atomic
coupled
m illisecond
and
near-
2. j f a v o r a b l e
spectrographs,
entire
format
is
purified
of
of
3-)
large
samples
nm
these
minimizing
array
650
nm
and
of
spectral
950
nm r e g i o n
because
organic
(except
of
are
and
compounds
are
relative
is
resolution,
have
IC?
reported
for
intensities
presented
selection
into
red
sulfur)
"window".
elements
A line
-
spectrograpnic
nonmetals
above
detector.
low
650
permitted
spectra
of
wavelengths
excitation
photodiode
described
of
1. )
the
650-950
emissions
A iisting
of
spite
lines
the
sulfur
in
-
nitrogen,
inductively
photodiode
emission
In
interference- free
or
and
obtained
length
(650
hydrogen,
iodine,
occurring
array
atomic
simple.
spectra
grating
chemistry.
"compression"
mm p h o t o d i o d e
ruled
are
of:
of
focai
synthetic
atomic
carbon,
spectra
Czerny-Turner
coarsely
microwave
sensitivity
of
for
of
result
f/num bers
a
bromine,
in
crossed
with
"window"
performed
Intense
sm all,
spectrograph
Simultaneous
oxygen,
a
scheme
been
excited
the
first
fcr
for
is
interference.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
MI ?
the
aiso
The
elemental
composition
a gas
chromatograph
array
spectrograph
ICP's.
is
to
Constituent
elucidated
high
identified
exposure
ms ;
the
by
in
an
from
compounds
interfacing
atmospheric
organic
this
brief
tne
from
photodiode
pressure
compound
a single,
“ o n - t n e - f l y ‘* a s
eluting
MI P ' s
formula
photodiode
compound
eiutes
or
are
array
from
chromatograph.
Empirical
photodiode
a few
containing
formulas
array
hydrocarbon,
for
taxen
organic
powered,
atoms
qualitatively
(. <100
of
data
and
chlorinated
compounds
preliminary
to
in
sufficient
plasma
experiment
photodiode
and
in
the
presented
brominated
are
also
is
C/ H
of
empirical
emission
-
alcohols,
a
Complete
ratios
from
with
of
I CP
in
formula
formulas
nitrogen
data.
expected
photodiode
education
undergraduate
array
atomic
In
many
are
found
values
when
used.
application
spectroscopy
gc
a series
and
of
agreem ent
is
for
computed
determinations
power
from
compounds.
hydrocarbons
reasonable
Finally,
chemistry
are
several
cases,
be
calculated
is
arrays
explored.
Instrumental
to
Th e
Analysis
analytical
first
to
class
utilize
reported.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
a
Документ
Категория
Без категории
Просмотров
0
Размер файла
6 956 Кб
Теги
sdewsdweddes
1/--страниц
Пожаловаться на содержимое документа