close

Вход

Забыли?

вход по аккаунту

?

I. THE ACTION OF TERT-BUTYLMAGNESIUM CHLORIDE ON ACETYL CHLORIDE. II. THE NONENES FROM THE COPOLYMERIZATION OF THE OLEFINS FROM TERT-BUTYLALCOHOL AND TERT-AMYL ALCOHOL. III. STUDIES ON METHYLPINACOLYLCARBINOL.IV. MISCELLANEOUS STUDIES

код для вставкиСкачать
T H E P E N N S Y L V A N I A S T A T E COLLEGE
The Graduate
Sc h o o l
De p a r t m e n t of C h e m i s t r y
I
T H E ACTIOiT OF t - B U T Y L M A G N E S I U M CHLORIDE
OH
A C E T Y L CHLORIDE
II
T H E HOHEHES FROLI THE CO-POLYHHRIZATIOIT OF T H E
OLEFIHS F R O M jt-BUTYL A L C O H O L A HD jb-AI"YL A L C O H O L
III
IV
S T U D I E S OH MET HYLPIITA C O LYL C A R BI ITOL
M I S C E L L A N E O U S STUDIES
A Thesis
"by
WILLIAM RALEIGH WHEELER
S u b m i t t e d in par t i a l f u l f i l l m e n t of the r e ­
quirem e n t s for the dec r e e of
D O C T O R OF P H I L O S O P H Y
Au g u s t
Approved:
^
1941
1941
A p p r o v e d 3
T7
By
R e s e a r c h P r o f e s s o r of
Organic C h e m i s t r y
1941
y
V Y
H ead of the D e p a r t m e n t
of C h e m i s t r y
A C K N OY/LEDCjMEM1
Tlie author v/ishes to express Iris sincere a p p r e c i a t i o n
to Dr.
F. C. W h i t m o r e D o r his valuable a s s i s t a n c e
throughout
the course of these i n v e s tigations.
ij
--cC'irJ»
1'
rvriu
O' >
2.
TABLE
PART I
OF
CONTENTS
T H E ACTION OF t- B U T Y L M A G-TTES ITJIvI CHLORIDE
Oil
A C E T Y L CHLORIDE
IITTRODUCT10 IT
- --
HISTORICAL - - -
--
- -
--
- --
---
---
---
DISCUSSION E X PER IITEI'TTAL
6
,7
-
-
-
-
-
-
-
-
-
-
-
-
-
P R E P A R A T I O N OF H A T E R IALS
B.
R E A C T I O N OF t-BUTYLI.TAGITESIUM CHLORIDE W I T H
- -
--
--
--12
-
A.
A C E T Y L CHLORIDE - - -
- --
-
8
--
--
--
- 12
--
13
1 . Preparation of* t - B u t y l n a g n e s i u m Chloride
in Di-n-butyl E t h e r
13
2.
C.
Addi t i o n of* _t-3utylinagnesiuin Chloride
to Acetyl Chloride - - - - - - - - - -
13
3. ‘ Ident if ication of* P r o d u c t s _ _ _ _ _ _
13
R E A C T I O N OP t-AMYLLTAGNESIUXI CHLORIDE TO
A C E T Y L CHLORIDE
21
1 . Preparation of _t-Amylm3.Hne3iiuTi Chloride
- - - - - - - 21
2*
3.
Addi t i o n of t-Amylmagnesiuin' Chloride
to Acetyl Chloride - - - - - - - - - -
21
Identification of P r o d u c t s
24
_ _ _ _ _ _
SUHEARY
PART II
26
THE
ITOITEHE3 F R O L T H E C 0 P 0 L Y H E R I 2 A T I 0 H OF
THE
OLEFINS F R O M Jb-BUTYL A N D _t-AMYL
ALCOHOLS
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
INTRODUCTION _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _
HISTORICAL
DISCUSSION
27
27
28
_ _ _ _ _ _ _ _
30
d.
EXP HR II-.'E1TTAL - - - - - - - - - - - - - - - - A.
P RE PAR AT 10 IT OF THE NOITEITES - - -
-39
--
- - -57
1.
P r e p a r a t i o n of S t a r r i n g Materials
- - - 57
2.
P o l y m e r i z a t i o n and
- - - 62
Distillation -
3. I d e n t i f i c a t i o n of P o l y m erization P r o d u c t s
- _ _ 80
a.
2,3,4 - T r i m e t h y l - 2 ~ p e n t e n e
- -
b. 5, 4,4 - T r i m e t h y l - 2 - h e x e n e and
2,3, 4, 4 —T e t r a m e t lryl-2-pentene
c*
B.
- - - 80
- -
3,5-Dirrietliyl~2-Isopropyl-l-Butene
OXIDATIOIT OP T H E H 0 X E H E 3 -
- 81
- 86
-
-89
1. The O x i d a t i o n and D i s t i l l a t i o n of P r o d u c t s
- - - 89
2.
I d e n t i f i c a t i o n of Ketonic Product s
- - -102
3.
Identiflca.tion of R e c o v e r e d Olefins
- -3 05
a. A t t e m p t e d I d e n t i f i c a t i o n of H o n e n e ,
B.P. 133°C., n
D 1.4300 - - - - -105
b.
3, 3-Dinietliyl-2-±sopropyl-l-butene —
c. 2, 3, 4, 4-Tetrametliyl-l-bentene
C.
-
-
111
117
P R E L I M I N A R Y S T U D Y — TILE PONEPEE FROM T E E
G 0 POLYMER I Z A T 1 0 IT .OP T H E
OLJSFIMS PROM
_t-BUTYL A HD jt-AMYL A L C O H O L S
1. P r e p a ration and. Oxidation - - - - -
-121
- —
121
2, I d e n t i f i c a t i o n of Products - - - - -
_
131
a. I d e n t i f i c a t i o n of Acidic Products
-
131
b. D e g r a d a t i o n of Ket h y l p i n a c o l y l a c e t i c
A c i d -- - - -
133
, c. I d e n t i f i c a t i o n of Ketonic Products
-
133
d. D e g r a d a t i o n of 4,4--Dimethy 1- 2- h e x a n o n e
- - - - 135
e. D e g r a d a t i o n of 3, 4 ,4-Trimethyl-2- n e n t a n o n e
- - - - 157
4.
D.
I S O M E R I Z A T I O N OP 2, 4, 4-TRIHETHYL-:i-PSHTENE
'.TITII 67y SULFURIC A C I D - - - - - - - - - -
oUT.TI.ARY
-142
PART III STUDIES OH LiETITYLPITTACOLYLCARBITTOL
ITTTR 0DUG TIO IT
HISTORICAL
- - - - -143
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
-143
- - - - - - - - - - - - - - - - - -
-144
DISCUSSION
-147
E K P E RI HE ITTA L
A.
-138
- - - - - - - - - - - - - - A - -
-154
D E H Y D R A T I O N OP I.aUTHYLPIl-TACOLYLCARBINOL - - - -154
1. P r e p a r a t i o n of S t a r t i n g Mater i a l s - - - - -154
a. R e d u c t i o n of M e t h y l Pinao o l y l ICetone v/ith
S o d i u m in Ifoist Benzene - - - - - - - - 154
b. .Reduction of F e t h y l P i n a c o l y l Ketone v/ith
A l u m i n u m Isopropoxide - - - - - - - - - 155
c. R e d u c t i o n of Fet h y l Pinac o l y l Ketone w i t h
A l u m i n u m Isopr opoxide - Isopropyl Ale olio1
F ix t u r e
156
d. R e d u c t i o n of I.Ietliyl P i n a c o l y l Ketone with.
A l u m i n u m Isopropoxide - Isopropyl A l c o h o l
Fixture - - - - - - - _ _ _ _ _ _ _ _
157
2. D e h y d r a t i o n and I d e n t i f i c a t i o n of Olefins
f r o m T.Tethylpinaeolylcarbinol - - - - - a„ D e h y d r a t i o n - - - - - - - -
B.
_ _ _ _ _
161
161
b.
Ozonolysis of Olefins,
Run I
- _ _ _
162
c.
Osonolysis
Run II - - - -
164
of Olefins,
R EACTION OP JETiTYLPIITACOLYLCARBIHOL V/ITH
H Y D R O G E N CHLORIDE
169
1. P r e p a r a t i o n of S t a r t i n g M a t e r i a l - - - -
169
2, R e a c t i o n v/ith H y d r o y e n Chloride - - - -
172
a. A d d i t i o n of H y d r o y e n Chloride - - - -
172
b 0 Attempt-ed P r e p a r a t i o n of C-riynard Reayent
of Chlorides from F e t h y l p i n a c o l y l c a r b i n o l
- - 175
o.
Preparation of 2, o, o-Trimetliyl-S-cliloropent ane
............ 183
4.
Preparation of 3, 4, 4 - T x >liaetl'iyl-3-oh.lor’o p e n t a n e
_ _ _ _ _
183
5*
Preparation of 2 9 3, 4-f riirethyl-2-ch.loropentane
_ _ _ _ _
184
SUMMARY
PART I V
185
ItlSCALIAITEOUS S T U D I E S
DISCUSSION
EXPERIMENTAL
- - -
--
- -
-
186
-
_
- - - - - - -
189
1.
ALICYLAT ION Of A N I L I N E W I T H
2.
PREPARATION OP DIIETTIYLMEOPEHTYIACETIC A C I D -
SUIliARY -
186
t-BUTYL C H L O R I D E -
_ _ _ _ _ _ _ _ _ _ _
189
190
igi
APPENDIX
195
D E S C R I P T I O N OP COLUMNS
USED
- - _ _ _ _ _ _ _ _
195
C O N S T R U C T I O N OP
COLUMN S W - - - - - - - - - -
C O N S T R U C T I O N OP
COLUMN W 1
202
C O N S T R U C T I O N OP
COLUMN W 2
205
B IBLIO G-RAPIIY
_ _ _ _ _ _ _ _
_
_ _ _ _ _ _ _ _ _
-
197
210
PART I .
THE A C T I O N OP t - BUT Y L M A CrNES ITJIvT C H L O R I D E O H ACE T Y L C H L O R I D E
INTRODUCTION
P r e v i o u s papers c o n c e r n i n g the r e a c t i o n of jt-butylm a g n e s i u m chloride w i t h a c e t y l chloride have p r o v e d
value
nature
in the
its
synthesis of p i n a c o l o n e a n d reported, the
of other products w h i c h are formed in a c c o m p a n y i n g
reactions
(1,2,17).
m e s i t y l oxide,
isobutane,
Compounds
ethyl acetate,
ca r b o n monoxide,
identified were p i n a c o l o n e ,
p i n a c o l y l acetate,
and
isobuty l e n e ,
hexamethylethane•
I n a s m u c h as the r e a c t i o n had b e e n c a r r i e d out
d i e t h y l e t h e r solution it w a s
i m p o s s i b l e to
in
state w h e t h e r
the e t h y l acetate h a d been f o r m e d b y the r e d u c t i o n of a cetyl
c h l oride to
ethanol,
f o l l o w e d b y acetylation,
or b y the
r e a c t i o n of
acetyl chloride v/ith the solvent e t h e r
p r e sence of a catalyst s u c h as m a g n e s i u m c h l o r i d e
Also,
it w a s not possible to
of the m e s i t y l oxide,
since
deter m i n e
the m o d e
I n the
(2,3,4).
of f o r m a t i o n
it might h a v e b e e n f o r m e d either
b y the a c t i o n of acetyl c h l o r i d e on i s o b u tylene
In the
p r e sence of a catalyst such as m a g n e s i u m c h l o r i d e
b y a c t i o n o f t - b u t y l m a g n e s l u m chloride
(5),
or
on e t h y l a c e t a t e
In order to c l a r i f y t h e s e questions
(6 ).
the r e a c t i o n
has b e e n c a r r i e d out in d i - n —b u t y l ether solution,
thus
e l i m i n a t i n g the p o s s i b i l i t y of forming i d e n t i c a l p r o d u c t s
in the r e a c t i o n b e i n g s^idied a n d in s i d e - r e a c t i o n s w i t h
the s o l vent.
HISTORICAL
The a c t i o n of a l k y l magnesium h a l i d e s on acyl and
aroyl halides has
r e c e n t l y received close e x a m i n a t i o n in
this l a b o r a t o r y b y Whitmore and coworkers
Their work has
(7a to d,10,17).
i n c l u d e d the reactions of a large n u m b e r
of acid chlorides
demonstrates the
w i t h various G r i g n a r d reagents a n d
e f f e c t on the products formed b y b r a n c h ­
ing of the a l k y l m a g n e s i u m halide, b r a n c h i n g of the acid
chloride,
the h a l o g e n of either the alkyl halide
acyl halide,
the
c o n c e n t r a t i o n of reactants,
addition of the a l k y l m a g n e s i u m halide
or the
"reverse"
to the acyl h a l i d e
and "normal" a d d i t i o n of the acyl halide to the G r i g n a r d
reagent.
I n a s m u c h as these studies do not a p p l y d i r e c t l y
to the questions
Invo l v e d in this paper,
namely,
of formation of e t h y l acetate and m e s i t y l oxide
the mode
in the
addition of t - b u t y l m a g n e slum chloride to acetyl chloride^
they will not be d i s c u s s e d further at this point.
A r e v i e w of earlier work on the r e a c t i o n of acid
halides with G r i g n a r d reagents has b e e n p r e s e n t e d in
previous work
(2 ).
DISCUSSION
P r e v ious w o r k (2) h a s
d e m o n s t r a t e d that the products
f o r m e d w h e n _t-but ylmagne s i u m chloride is added to a n excess
of a c e t y l
chloride in d i e t h y l
(17;£), p i n a c o l y l acetate
oxide
traces
(6*6>S), isohutane
of
ether solution are p i n a c o l o n e
(8/S).* ethyl acetate
(23
carton m o n o x i d e
, isobutene
(9%{ *-) , m e s i t y l
(6. 6/S), a n d
and hexamethylethane•
t i o n of p i nacolone, p i n a c o l y l
acetate,
T h e for m a ­
and i s o b u t y l e n e
is
r e a d i l y a c c o unted for b y the f o l l o w i n g w e l l k n o w n reacti o n s .
(CH3 )3 C M g C l
t CH3 C O C I ---- (GH3)3
(CH3 )3C C 0 CII3 * (CII3 )3 C M g C l
(CH3 )3 C H C H 3
*■
g
COCHg + M g C l g
^ ( C H 3 )3 C H C H 3 +
OMgCl
(CHsJgC^CHg-.
CHg COC l ------ (C H 3 )3CHCri3 + MgClg
OMgCl
OCOCH
3
I s o butane was u n d o u b t e d l y formed b y the r e a c t i o n of
the G r i g n a r d reagent w i t h t h e
present.
The yield,
23.6/o,
enol f o r m of the k e t o n e s
c o r r e s p o n d e d well w i t h the
of p i n a c o l o n e and mesityl o x i d e present,
amount
t o t a l i n g 23-24/£.
T he e v o l u t i o n of carbon m o n o x i d e f r o m analogous r e a c t i o n s
had bee n noticed previously
obscure.
(S)
a l t h o u g h the r e a c t i o n
F o r m a t i o n of h e x a m e t h y l e t h a n e
Is
Inevitably accompanies
the f o r m a t i o n of t - b u t y l m a g n e s i u m chlo r i d e and t h e r e f o r e
should n o t be considered a p r o d u c t of its r e a c t i o n w i t h
a c e t y l chloride.
The
ethyl acetate m i g h t
n o r m a l l y be c o n s i d e r e d a
p r o d u c t o f the r e d u c t i o n of acetyl c h l o r i d e w i t h subseq u e n t
Y i e l d b a s e d on acid c h l o r i d e .
acetylation of t h e
ethanol.
However,
several facts m a k e it
improbable that a i l of the r e l a t i v e l y large amounts of e t h y l
acetate found, was
formed, in this m a n n e r ,
shown that a l k y l m a g n e slum h a l i d e s
tion of p r i m a r y a c i d halides.
cause
Also,
(9) has
little or no r e d u c ­
it has been shown that
acetyl c h l oride w i l l react w i t h d i e t h y l
of anhydrous m a g n e s i u m chloride
Whitmore
ether in the p r e s e n c e
to f o r m ethyl acetate
(2 ) a n d
that n - p r o p y l , n-Toutyl, and n - a m y l G r i g n a r d reagent reac t
wi t h t - b u t y l a c e t y l chloride in d i e t h y l
tion of ethyl _t-butylacetate
ether v/ith the f o r m a ­
(1 0 ), in w h i c h cases the f o r m a ­
tion of e t h a n o l b y reduction is e x c l u d e d .
amount of isobuterne found was s u f f i c i e n t
formation of p i n a c o l y l acetate,
but not
and ethyl a c e t a t e s , assuming that
Moreover,
the
to account for the
for b o t h p i n a c o l y l
the e t h y l acetate was
formed t h r o u g h t h e reduction of a c e t y l
chloride.
In order b o determine t h e a c t u a l amount of r e d u c t i o n
of the acetyl chloride the r e a c t i o n h a s n o w been c a r r i e d out
in di-n-butyl e t h e r solution s i n c e
in this solvent no r e ­
action p r o d u c t s ar’e formed w h i c h are
identical w i t h those
obtained b y side react i o n s w i t h the solvent.
W h e n the r e a c t i o n was c a r r i e d
comparable to t h o s e used when d i e t h y l
the following p r o d u c t s were formed:
acetate
isobutylene
n - b u t y l acetate,
(13/2),
isobutane
out under conditions
e t h e r was the solvent
p i n a c o l o n e (23/2), p i n a c o l y l
1 (19/&), a n d
, mesityl oxide
(5^),
traces of c a r b o n
monoxide, hexametlxylethane, and t r i m e t h y l a c e t a l d e h y d e ,
Y ield not d e t e r m i n e d due to t h e d i f f i c u l t i e s e n c o u n t e r e d
in its s e p a r a t i o n from the solvent.
Y i e l d b a s e d on acetyl chloride.
10.
E thyl acetate could not be identified a l t h o u g h
there was some i n d i c a t i o n that it might have b e e n present
to the extent of not m o r e t h a n one percent. This,
together
w i t h the fact that n - b u t y l acetate was obtained b y the r e ­
a c t i o n of acetyl chloride w i t h the solvent,
c l u s i v e evidence that the la r g e amounts
is h e l d c o n ­
of et h y l acetate
o b t a i n e d when the r e a c t i o n is carried out in e t h y l ether are
not f o r m e d through r e d u c t i o n of the acid chloride,
its a c t i o n on the solvent ether.
but b y
This c o n c l u s i o n is consist-
ant w i t h the findings of \iiMtmore that p r i m a r y acyl halides
are n o t reduced b y a l k y l m a g n e s l u m halides.
The mode of f o r m a t i o n of mesityl oxide was
to q u e s t i o n in the previous
w o r k since it might h a v e bee n
p r o d u c e d b y the a c t i o n of the acid halide
the presence
also open
on i s o b u t y l e n e in
of anhydrous m a g n e s i u m chloride
(c.f.ref.
5) or
b y a c t i o n of _fc-butylmagnesium chloride on ethyl ace t a t e
(c.f.ref.
6). However,
results
a p p r o x i m a t e l y the same-' y i e l d
ether
show that it is formed, in
in either ethyl or d i - n - b u t y l
solution a l t h o u g h no e t h y l acetate was i d e n t i f i e d in
the l a t t e r case, thus i n d i c a t i n g t h a t .preference
g i v e n to the first m e c h a n i s m .
should be
T h e v a l i d i t y of this hypothesis
was p r o v e n by ex a m i n a t i o n of the products of the a d d i t i o n of
_t-amjlmagnesium chloride to
acetyl chloride in d i e t h y l ether.
A l t h o u g h 4% of ethyl a c e t a t e was found there was no evidence
of the presence of m e s i t y l oxide, but in its place was found
a 9;a y i e l d of 2,4 - d i m e t h y l - 3 - p e n t e n e - 2 - o n e .
This
is direct
p r o o f that the u n s a t u r a t e d ketones are formed b y r e a c t i o n of
the olefins w i t h acetyl chloride.
CH3
S
GH3
?
GH3-G
= GH2 + CH3 CC1 MsC1S. CH3-C
= CH-C CH3 + HC1
GH3 CH3
Q
0H3-63= CH * CH3 001
CH^
CH'2;
CHg-i
=
b -
0
a - CHg * HC1
It is i n t e r e s t i n g that some i n d i c a t i o n of the
presence of t r i m e t h y l a c e t aldehyde was
obtained.
Its p r e s e n c e
might be a t t r i b u t e d to the partial r e d u c t i o n of the t r i m e t h y l acetic acid c o m p l e x formed b y the a c t i o n of atmospheric
dioxide on the G r i g n a r d reagent,
or to a r e a c t i o n w h i c h
supposedly i n v o l v e s the a c t i o n of c a r b o n mono x i d e on the
Grignard r e ag e n t
(-*)•
U n p u b l i s h e d w o r k b y Thomas Clapper of this la b o r a t o r y
indicates t h a t r e l a t i v e l y large a m o u n t s of trimethylacetaldehyde are obtained b y the a c t i o n of t-butylm a g n e s i u m c h l o r i d e on p h e n y l a c e t y l chloride.
carbon
EXPERIMENTAL
A.
P R E P A R A T I O N OP-MATERIALS
1.
T e r t i a r y B u t y l Chloride
This m a t e r i a l w a s prepared In the u s u a l m a n n e r
(2)
b y t r e a t i n g js-butyl a l c o h o l w i t h cold, concentrated, hydr o ­
c h l o r i c acid.
D i s t i l l a t i o n through column I g a v e constant
b o i l i n g , constant index m a t e rial, b.p.
50.2°C.,n
20
D 1.3849 -
1.3850 o
2.
Acetyl C h l o r i d e
E a stman Pract i c a l g r a d e acetyl chloride,
w as d i s t i l led f r o m 50 ccm.
of dimethylaniline t h r o u g h
c o l u m n I. The first five ccm. distilling, b.p.
discarded;
5 0 0 gm. ,
the r e m a i n d e r of the distillate,
50°G., were
435 gm. , was
c o l l e c t e d in a glass s t o p p e r e d bottle.
3.
D i - n - b u t y l Ether
Commercial d i - n - b u t y l ether, 3288 gm. , was
t h r o u g h column H P
distilled
(11). The m a t e r i a l b o i l i n g at 1 4 0 - 4 2 . 5°C.,
2 8 0 0 g m . , was collected a n d stored over s o d i u m wi r e .
refractive
index at 20°C. was
1.3985.
Its
B.
REAC T I O N OP _t— B U T Y L M A G N E S I U M CHLORIDE
V/ITH A C E T Y L C H L O R I D E
1.
I N Dl-n-BUTYL ETH E R
P r e p a r a t i o n of t - B u t y l m a g n e s l u m Chloride in
D i b u t y l Ethe r
I n a t h r e e - n e c k flask f i t t e d w i t h a refTox condenser,
dropping funnel,
p l aced 99 gm.
m e r c u r y - 3ealed s t i r r e r ,
(4 moles)
and Gilman trap w e r e
of m a g n e s i u m timings.
Dr y nitrogen
was then f l u s h e d thr o u g h the s y s t e m f o r
an hour.
n-propyl b r o m i d e dissolve in 25 ccm.
dihutyl ether was
of
Five ccm.
of
added to the m a g n e s i u m a n d a l l o w e d to s t a n d about ten m i n u t e s
w h e n the r e a c t i o n
started s p o n t a n e o u s l y .
Immediately fi v e
of n-propyl b r o m i d e dissolved in 1000 ccm.
a d d e d after, w h i c h a solution of 370 gm.
ccm,
of the ether was
(4 moles)
of t - b u t y l
chloride in 1 7 0 0 ccm. of d i b u t y l e t h e r was dropped into the
r e a c t i o n f l a s k o v e r a p e r i o d of 24 h o u r s . Stirring was c o n ­
tinued for 18 h o u r s after the a d d i t i o n w a s complete. T h r o u g h ­
out the r e a c t i o n the f l a s k was cooled i n a bath of r u n n i n g
water at 16-1©°C.
A five
ccm. aliquot was t a k e n f r o m the 3100 ccm.
solution for analysis b y the m e t h o d of
of
Gilman (12). Y i e l d -
2.94 moles or 73?£.
2,
A d d i t i o n of t - But y l m a g n e s i u m Chloride to
Acetyl
Chloride
A five l i t e r f l a s k fitted w i t h
denser, d r o p p i n g funnel,
trident,
reflux con­
and m e r c u r y - s e a l e d stirrer was
flushed w i t h d r y n i t r o g e n for an hour.
A brine f i l l e d ca r b o y ,
e q u ipped w ith c a l c i u m chloride and anh.yd.rone dry i n g tubes to
prevent
the d i f f u s i o n of w a t e r vapor into the r e a c t i o n f l a s k
was t h e n attached to the a p p a r a t u s for the"'collect ion of a n y
gas produced i n the r e a c t i o n .
In the flask w a s p l a c e d 345 gm.
(4.4 moles) of acetyl c h l o r i d e dissolved in 500 c c m .
dibutyl
ether;
2860 ccm.
o f t h e Grignard rea g e n t
of
containing
2.72 m o l e s of m a t e r i a l w a s t h e n added over a p e r i o d of two
h o u r s a n d thirty-five m i n u t e s .
t e m p e r a t u r e of the l i q u i d w a s
means
During the r e a c t i o n the
kept bet w e e n 23 a n d
of a b a t h of r u n n i n g water. The mixture,
a h e a v y yellow precipitate, w a s
r e a c t i o n about
40°C. b y
v/hich contained
stirred o v e r n i g h t .
During the
one liter' of g a s was evolved but t h i s was not
w o r k e d u p as it - could h a v e conta i n e d little b u t d i s p l a c e d
nitrogen.
D e composition of t h e
reaction mix t u r e
was
accomp l i s h e d
b y Immersing t h e flask in r u n n i n g water and a d d i n g
one liter
of w a t e r
stirring;
through the d r o p p i n g funnel w i t h v i g o r o u s
the precip i tate dissolved.
twice w i t h 500 ccm.
T h e oil layer was
separated,
of s a t u r a t e d sodium b i c a r b o n a t e
washed
solution,
and f i n a l l y d r i e d over p o t a s s i u m carbonate.
The water layer f r o m
the decomposition and. the b i ­
c a r b o n a t e wash water were c o m b i n e d and neutralized.,
ccm.
d i s t illed off w h i c h was
further exami n e d f o r
and 500
low-boiling,
w a t e r soluble p r o d u c t s b y f r a c t i o n a t i o n t h r o u g h c o l u m n I.
After a
small amount of d i - n - butyl ethe r had d i s t i l l e d off
the h e a d temperature rose
that n o
i m m e d i a t e l y to 99°C.,
indicating
products boi l i n g b e l o w water were p r e s e n t .
T he oil l a y e r was charged to C o l u m n H P
(11) and
fractionated at a h i g h reflux r a t i o to o b t a i n all products
boiling b e l o w d i - n - b u t y l ether.
D u r i n g initial h e a t i n g
under t o t a l r e f l u x 30 liters of gas, m e a s u r e d at 28°C.,
and 744 mm., w e r e
Analysis
Air —
stripped off.
of Gas b y Orsat A p p a r a t u s
25.5?a
Unsaturates
- 30.0;£ equal to .356 moles or 13.1^
yield of isobutylene.
Carbon monoxide
- 0.4/£ or 0. 0 0 4 7 moles.
Saturated hydrocarbons
or 19.2^ y ield of
0.522 moles
isobutane.
F r a c t i o n a t i o n No.
Cut
(by difference)
1
H e a d Temp.
(Column HP)
n 20D
Grams
50
R e f l u x Ratio
T
1
59
1 .3797
20.0
5-1
2
135
1 .3986
98.1
4-1
3
140
1.4003
84.0
5-1
4
1 39
1.4018
77.0
25-1
5
141
1.4001
49.0
25-1
6
142
1.3993
92.5
25-1
7
142
1.3991
51.0
25-1
Residue
- D i b u t y l ether and h i g h - b o i l i n g mater i a l
f r o m reaction.
F r a c t i o n a t i o n No.
2
Cuts 1,2 f r o m f r a c t i o n a t i o n No.
t h r o u g h c o l u m n I.
1 were redistille d
H e a d Temp.
Cut
n 20D
Grams
Reflux I
1
45-48
1.3818
4.0
5-1
2
49
1.3838
7.3
15-.1
3
51
1^ 3840
6.0
20-1
4
67
1.3900
1.8
it
5
80
1.3940
3.6
it
cuts 3,4,5 f r o m f r a c t i o n a t i o n 1 were added.
6
56.5-80
1.3937
1.3
it
7
95
1.3968
4.6
10-1
8
97
1.3984
6.3
it
9
98.7
1.3997
10.6
10
101
1.3993
8.7
tr
11
102.5
1.3988
13.6
it
12
106
1.3978
10.0
12-1
13
107.5
1.3973
9.7
H
14
113
1.3975
7.0
15-1
15
125
1.4028
4.0
it
16
125
1.4090
3.3
n
17
127.3
1.4100
7.6
it
18
130.5
1.4130
7.4
it
19
132. 5
1.4108
8.4
it
20
134.5
1.4080
8.5
it
21
137.4
1.4049
o
t
o
H
R e s idue
*
F r a c t i o n a t i o n No.
1.3993
less
20-1
1 7 2 . Ogms
3
Cuts 4- 8 f r o m f r a c t i o n a t i o n No.
a n 0.8 x 42 cm.
15-1
2 were c h a r g e d to
c o l u m n p a c k e d with. 3/32 i n c h s t a i n ­
steel helixes.
17.
Cut
n
Head Temp.
20_
D
Reflux Ratio
Grams.
20-1
Ether f r o m v i a l w a s h i n g s
1
32-33
2
45
1.3569
2.0
it
3
60
1.3790
2.4
it
4
70
1.3934
1. 3
tr
5
77
1.3949
1.8
it
6
83
1.3960
0.9
it
7
94
1.3973
1.3
n
1.4000
8.4
R
F r a c t i o n a t i o n Wo . 4
Cuts 4 to R f r o m fractionation H o . 3, and cuts 9-15
from f r a c t i o n a t i o n Ho.
Cut
Head Temp.
2 , were c h a r g e d to c olumn EMJ
n 20D
Grams.
Re f l u x R a t i o
1
58-61
1.3915
1. 5
20-1
2
72
1.3950
1.3
25-1
3
83
1.3882
2.2
40-1
4
95
1.3927
2. 3
10-1
5
97
1.3971
2.4
30-1
6
98
1.4013
2.5
30-1
7
85-96
1.3948
2.2
10-1
8
96. 5
1.3968
2.7
30-1
9
99
1.4006
4.3
30-1
10
96-98
1.4013
2.3
11
99
1.4017
7.6
12
104
1.4000
7.5
13
106
1.3973
8.0
Cuts 16-21,
f r a c t i o n a t i o n Ho.
2 were
30-1 S o l i d
in c o n d e n s e r
30-1 H e x amethylet h a n e
30-1
30-1
added.
14
83-104
1.3980
2.9
20-1
15
106
1. 3 9 7 0
6.2
.30-1
Head Temp
Cut
Grams.
n 20D
Reflux
16
105.5.
1.3967
8.2
30— X
17
107
1.3980
5.7
rl
i
o
to
18
118
1 .3930
2.5
30-X
19
122.5
1.3965
2.2
30-X
20
125
1.4100
2.6
30-X
21
126.2
1.4192
2.5
30-X
22
127.5
1.4270
4.9
30-X
23
124— 29
1.4308
5.1
20-X
24
138
1.4140
2.8
20— X
25
139
1 .4000
4.8
20-X
Cut R,
fractionation Ho.
was added.
2,
26
102-24
1.4-096
1.7
30-X
27
139
1.4066
5.8
30-X
28
140
1 .4001
. 8.6
30-X
29
138.5
1.3998
7.2
30-X
30
139. 5
1 .3992
6.9
30-X
31
139
1.3993
6.1
30-X
32
139
1.3992
3.8
30-X
1.4000
132 gm.
R
3.
<
I d e n t i f i c a t i o n of P r o d u c t s
F r a c t i o n a t i o n 2.
As
the
physical propert ie s of cut 3 corre s p o n d e d
_t-butyl c h lor i d e the material was
conve r t e d to t r i m e t h y l -
aceta n i l i d e b y formation of G r i g n a r d reagent f o l l o w e d b y
treatment w i t h phenyl isocyanate.
izations
After
several r e c r y s t a l l ­
the derivative m e l t e d at 131.5-133°C.
m e t h y l a c e t a n i l i d e melts at 133~4°G.
Pure t r i —
F r a c t i o n a t i o n _4.
Cut 1 was l a r g e l y _t-butyl chloride.
However,
treat­
ment with. 2 , 4 - d i n i t r o p h e n y l h y d r a z i n e in 2 N. HC1 yielded, a
small amount
of m a t e r i a l which c o u l d be p u r i f i e d b y c h r o m a t o ­
graphic m e thods to o b t a i n a y e l l o w d i n i t r o p h e n y l h y d r a z o n e ,
melting w i thout d e c o m p o s i t i o n at 200-20 1 ° C .
this d e r i v ative w i t h a n authentic
sample
hydrazone of t r i m e t h y l a c e t a l d e h y d e , m.p.
A mixed m.p.
of
of* the d i n i t r o p h e n y l ­
2 0 8 . 5 ° C . , was 200.5-
203.5°C.
Hydrolysis
of
steam distillation,
cuts 2 and 3 w i t h alk a l i ,
gave a n e u t r a l oil l a y e r
derivatives c o u l d b e
obtained, and a s m a l l
followed b y
on w h i c h no
amount of water
soluble m a te r i a l w h i c h was salted out and d r i e d over p o t a s s i u m
carbonate.
A p h e n y l u r e t h a n e or 3 , 5 - d i n i t r o b e n z o a t e coul d not
be prepared.
On w o r k i n g up the alkaline r e s i d u e f r o m the
hydrolysis D u c l a u x n u m b e r s for acetic acid, could be obtained,
although the amo u n t
the basis of this
of acid present w a s e x t r e m e l y small.
e v i d e n c e it seems p o s s i b l e
acetate was p r e s e n t
On
that ethyl
i n these cuts, t h o u g h the quantity was
not appreciable.
A 2,4 - d i n i t r o p h e n y l h y d r a z o n e of cut
prepared,
8 was r e a d i l y
and a l t h o u g h it could not be p u r i f i e d by c r y s t a l l ­
ization c h r o m a t o g r a p h i c methods y i e l d e d m a t e r i a l m e l t i n g at
125.5°C.,
c o r r e s p o n d i n g to the d e r i v a t i v e
other material m e l t i n g over wide ranges,
tained the d e r i v a t i v e
the n-propyl b r o m i d e
of pinacolone,
and
w h i c h probably con­
of methyl n - p r o p y l k e t o n e formed f r o m
u s e d to start the G r i g n a r d reaction.
16 was identified b y p r e p a ration of the 2, 4-dinit r o p h e n y l -
Gut
h y d r a z o n e , m.p.
1 2 5 . 3 - 1 2 6 ° C •, corresponding to the d e r i v a ­
tive of pinacolone.
Alkaline hydrolysis
of cut 20 gave an oil which,
f o rmed a p h e n y l u r e t h a n e , m.p.
point
6 1 • 0 - 6 1 . 5 ° C .; a m i x e d m e l t i n g
of this with the d e r i v a t i v e
61.5-62°C*,
acid w e r e
was m.p.
61.0-61.7°C.
of n-b u t y l alcohol, m.p.
Duclaux numbers f o r acetic
obtained on the acid fragment f r o m the hydroly s i s .
T r e atment of cut 23 v/ith 2 , 4 - d i n i t r o p h e n y l h y d r a z i n e
gave a b r i l l i a n t red,
alco h o l
insoluble powder, m.p.
200-201°C.
c o r r e s p o n d i n g to the d e r i v a t i v e of mes i t y l oxide.
Cuts 25 to 28 were a m i x t u r e of pinac o l y l a c e t a t e and
d i - n - b u t y l ether.
Alkaline hydrolysis yielded an acid frag­
ment, w h i c h gave D u c l a u x n u m b e r s for acetic acid,
a n d an
alcohol w i t h a pheny l u r e t h a n e m e l t i n g at 77-78°C. A m i x e d
m e l t i n g point with the k n o w n p h e n y l urethane
alcohol,
m.p.
78-79°C.,
was m.p.
77.5-78°C.
of p i n a c o l y l
C.
REACTION OP js-AMYXMA ONES IUM C H L O R I D E
WITH A C E T Y L C H L O R I D E
1.
P r e p a r a t i o n of t-A m y l m a ,q;nes ium C h l o r i d e .
This m a t e r i a l was p r e p a r e d in
from 145 gm.
(6 moles)
of m a g n e s i u m turnings,
of pure _t-amyl chloride,
Yield:
the usual m a n n e r
and 1150 ccm.
(1)
639 gm. (6 m o l e s )
of diethyl ether.
41#.
2.
A d d i t i o n of t - A m y lmagne s i u m Chloride w i t h A c e t y l
Chloride.
In a t h r e e liter t h r e e - n e c k f l a s k f i t t e d w i t h m e r c u r y
sealed stirrer,
d r o p p i n g funnel,
were p laced 471 gm.
(6 moles)
chloride and 500 ccm.
hour period,
was
condenser,
of the r e d i s t i l l e d acetyl
of d r y ether.
d r o p p e d 1110 ccm.
taining 2.03 m o l e s
and G i l m a n trap
I n t o this,
over a three
of a n ether s o l u t i o n c o n ­
of the Grignard r e a g e n t .
A white p r e ­
cipitate first f o r m e d but changed to y e l l o w as the r e a c t i o n
proceeded.
After
stirred one h o u r
the a d d i t i o n was c o m p l e t e the m i x t u r e was
a n d allowed to stand
overnight.
D e c o m p o s i t i o n was a c c o m p l i s h e d b y a d d i n g 600 ccm.
water t h r o u g h t h e
vigorously.
After
was extracted w i t h
dropping funnel w h i l e
stirring the m i x t u r e
separation of t h e l a y e r s the w a t e r layer
100 ccm.
of ether a n d the combined ether
layers w a s h e d v/ith 5 percent so d i u m c a r b o n a t e
no more c a r b o n d i o x i d e was evolved.
through c o l u m n I,
The
solution until
ether was r e m o v e d
the residue dried o v e r m a g n e s i u m sulfate
and charged to c o l u m n I.
of
22.
F r a c t i o n a t i o n Ho.
5
Reflux Rat i o
Gut
H e a d Temp.
n 20D
Grams
1
40-73
1.3844
8.4
5-1
2
76.5
1.3869
12.0
10-1
3
78.5
1.3914
5.7
10-1
4
82.5
1.3974
12.2
10-1
5
83.5
1.4003
11.8
8-rl
6
83.5
1.4022
10.6
8-1
7
83.5
1.4025
10.9
8-1
8
83.5
1.4028
12.7
8-1
9
83.0
1.4030
11.9
8-1
10
83.0
1.4030
12.2
8-1
11
82.0
1.4032
11.7
8-1
12
81
1.4032
16.9
8-1
13
113.0
1.4036
7.2
8-1
14
123.0
1.4026
3.9
8-1
Bar 728 mm.
Pressure
15
54.5-57
1.4103
8.1
10-1
55 mi.
16
59.5
1.4123
8.5
10-1
56
17
68.5
1.4214
9.2
10-1
50
18
73.5
1.4382
8.2
10-1
56
19
78.0
1 .4393
9.3 .
10-1
56
20
83.0
1.4320
3.8
10-1
•56
21
85.0
1.4261
7.6
10-1
55
22
81.5
1.4231
8.4
10-1
47
23'
88.0
1.4183
10.5
10-1
53
24 .
88.0
1.4163
9.5
10-1
53
25
87.0
■1.4184
11.0
10-1
53
26
86.0
1.4168
16.7
55
23.
Gut
27
H e a d Temp.
n
—
R
20
D
Grams
1.4188
3.0
1.4330
7.7
R e f l u x Ratio
32
---
F r a c t i o n a t i o n No. _6
Cuts 14-17,
fractionation No.
a n 0.8 x 4 2
cm. column p a c k e d w i t h 3/32 inch
stainless
H e a d Temp.
steel helixes
n^D
Grams
R e f l u x Ratio
2.1
—
1.3900
0.2
20-1
127.5
1.4022
0.9
20-1
4
128.5
1.4070
1.3
30-1
5
128.0
1.4083
1.8
20-1
6
127.0
1.4086
1.7
20-1
7
128.0
1.4083
2.1
20-1
8
128.3
1.4086
1.5
25-1
55-95
2
3
I
CO
1
CO
ITG1 present
co
Cut
5, were charged to
9
—
1.4089
2.0
25-1
10
—
1.4087
1.6
25-1
11
—
1.4200
2.9
15-1
1.4397
1.9
15-1
12
R
M
2.4
Bars
7 4 4 mm.
3.
Ident If icat i o n
of Products
Cuts 2 and 3, f r a c t i o n a t i o n 5, r e p r e s e n t
5 ,7$ of
used.
crude ethyl acetate,
Teased on the acetyl chlo r i d e
C u t s 4 to 12 were l a r g e l y t-amyl chloride,
ing a b o u t a mole of m a t e r i a l
about
represent­
w h i c h had not r e a c t e d durin g
the p r e p a r a t i o n of the G r i g n a r d reagent.
Methyl _b-amyl k e t o n e was obtained in a b o u t
y i e l d i n cuts 14-17,
and the
9$
i d e n t i f i e d b y its phys i c a l c o n s t a n t s
preparation of its 2 , 4 - d i n i t r o p h e n y l h y d r a z o n e , m.p.
109-110°C,
750 m m , ,
The absence of m e s i t y l oxide
n^D
(b.p,
128°C,
at
1.4428) was p r o v e n by the fact that a single
r e f r a c t i o n a t i o n ( f r a c t i o n a t i o n 6 ) yielded m e t h y l jb— amyl
ketone o f b.p. 128-9°C. at 7 4 4 mm. and n 20D 1.4083^-7.
A l t h o u g h the refractive i n d e x
of methyl _t-amyl k e t o n e p r e ­
pared b y
other methods does n o t
appear in the l i t e r a t u r e
Meerwein
(13) gives the d e n s i t y of this ke t o n e p r e p a r e d by
the r e a r r a n g e m e n t of t r i m e t h y l e t h y l e t h y l e n e glycol
0.8243.
The refractive i n d e x
as d ^
o f the m a t e r i a l c a l c u l a t e d
f r o m t h i s measurement and t h e
theoretical m o l e c u l a r refr a c t i o n
is n ^ O p
the ketone p r e p a r e d f r o m acetyl
1.410.
The fact t h a t
chloride
and t - a m y l m a g n e s i u m chloride
index is
substantial proof o f the absence of m e s i t y l
since
is of lower re f r a c t i v e
oxide
i t s presence would p r o b a b l y increase the v a l u e
appre c i a b l y .
No de r i v a t i v e s
o f mesityl oxide c o u l d be p r e ­
pared .
Cuts 18-20 r e p r e s e n t
a yield of about
2 , 3 - d i m e t h y l - 2 - p e n t e n e - 4 ~ o n e • It was
of its
semicarbazone , m.p.
9% of crude
identi f i e d b y p r e p a r a t i o n
185.5- 1 8 7 . 5 ° C .
This m a t e r i a l has
"been v a r i o u s l y d e s c r i b e d as m e l t i n g at 1 7 8 - 8 0 ° C .(14),
1 3 4 - 5 ° C . (15),
a n d 1 9 1 . 5°C.(I S ).
Analysis.
Calc,
Pound:
The
for G H
OIL: H , 8 .88/£; C, 56.77/a.
o _LO
H,
9.04;£; C,
57.13^.
2 , 4 — dinit r o p h e n y l h y d r a zone was p r e p a r e d but
could not be p u r i f i e d by c r y s t a l l i z a t i o n .
Separation b y
chromatographic m e t h o d s over a l u m i n a g a v e red-orange plates,
m.p.
129-30°C.,
a n d orange needles, m.p.
156.5-157°C.
This
might indicate e i t h e r that two, i s o m e r i c u n s a t u r a t e d ket o n e s
were present
or t h a t different d e r i v a t i v e s
ketone were f o r m e d .
of a single
Ho i n f o r m a t i o n on these d e r i v ative s was
found in the literature.
Cuts 2 1 - 2 7 were not w o r k e d u p but were u n d o u b t e d l y
m e t h y l - t - a m y l c a r b i n y l acetate,
20/b.
r e p r e s e n t i n g a yield of about
SUMMARY
1.
The r e a c t i o n of jb-butylmagnesium c h l o r i d e
w i t h a c e t y l chloride has b e e n
carried out
e ther
identified were p i n a c o l o n e ,
solution.
The p r o d u c t s
p i n a c o l y l acetate, m e s i t y l
isobutane,
ethane.
oxide, n —butyl acetate,
c a r b o n monoxide a n d h e x a m e t h y l -
No appreciable' a m o u n t
2.
that
isobutylene,
in d i - n - b u t y l
of ethyl a c e t a t e w a s found.
Evidence h a s b e e n presented w h i c h i n d i c a t e s
t h e large amounts
of e t h y l acetate f o r m e d w h e n the
r e a c t i o n is carried out i n d i e t h y l ether s o l u t i o n is a
p r o d u c t of the cleavage
3.
of the
ether b y ac e t y l c h l o r i d e .
It has b e e n s h o w n that the m e s i t y l
oxide formed
in t h i s r eaction is p r o d u c e d b y the act i o n of a c e t y l
chloride
4.
on isobutylene.
The r e a c t i o n of _t-amylmagnesium c h l o r i d e has
b e e n described; m e t h y l jt-amyl ketone, ethyl a c e t a t e ,
2 , 3 — d i m e t h y l - 2 —p e n t e n e - 4 - o n e were identified.
and
FART II
THE NONHNES FROM THE GOPOLYMERIZATION OF THE OLEFIHS FROM t—BUT Y L AND t-AMYL ALCOHOLS
INTRODUCTION
Pr oce sse s
involving t h e polymerization of o l e f i n s
have r e c e i v e d much atten tio n in re c e n t years,
by those
especially
i nte res ted in the u t i l i z a t i o n of gaseous m a t e r i a l
f r o m the c rac kin g of petroleum.
However,
attention h a s
been
di rec ted l a r g e l y toward the p r o c e s s i n g of r e l a t i v e l y c o m p l e x
mixtures,
a n d the e x a m i n a t i o n of
structure h a s been neglected.
the products as to c h e m i c a l
C o n s e q u e n t l y the data a v a i l ­
able b y w h i c h conclusions as to mechanism,
or the n a t u r e and amount
reactions
rearrangements,
of th e products for m e d in such,
is relatively meager.
The present w o r k is
in
of P.O.
Wh itm o r e and c owo rke rs
52, 84,
92,
93, 91,
99, 104,
p o l y m e r i z a t i o n processes;
(19, 28, 27, 29, 49,
106,
the
continuation of the p r o g r a m
116, 125,
126,
50,
129)
s t u d y of the products
51,
on
of
the
c o p o l y m e r i z a t i o n (•?:-) of the o l e f i n s from t^-butjdL and _t— amyl
alcohols
and M i x o n
succeeds and supplement s the researches of W h i t m o r e
(19, 129).
(-■0
Copolymerization:
The term c o p o l y m e r i z a t i o n is
de si g n e d to include those p o l y m e r i z a t i o n s in w h i c h a p o l y m e r
Is f o r m e d f r o m two or m o r e d i f f e r e n t olefins w h i c h are not
isomeri zed t o an id entical c o m p o u n d under the c o n d i t i o n s used.
HISTORICAL
The pr ocess of
technical imp ort a n c e
olefin p o l y m e r i s a t i o n ,
a t a c o m p a r a t i v e l y r e c e n t date, has b e e n
Imown for about a c e n t u r y ,
published b y Cah o u r s
subject has be com e
be feasible here,
one of the e a r l y papers bei ng
( 22) in 1839.
Sin ce t h e
so Toulky that a c o m p l e t e
only
the w o r k w h i c h is
the present p r o b l e m w i l l be discussed.
reviews on the s u b j e c t
29, 19, 30,
31, 32,
olefins ta bul ate d
while co m i n g into
(20,
63, 100,
summary w o u l d not
of direct in terest In
However,
have be en p u b l i s h e d
33,
literature on the
(24,
21, 23 ),
of the w o r k
25, 25,
27, 28,
92), a n d the properties
of the
E m p h a s i s w i l l be p l a c e d on
polymerizations c a r r i e d out w i t h acid c a t a l y s t s
the nature
co mpr ehe nsi ve
permits that
and In w h i c h
some c o n c l u s i o n be d r a w n
as to the nature a n d m e c h a n i c s of the p r o c e s s .
Ethylene h a s p r o v e n a difficult
s u b j e c t for s t u d y since
Its resistance to p o l y m e r i z a t i o n is v e r y gr e a t .
ditions w h i c h do n o t
ca u s e un des ira ble
bring about r e a c t i o n
( S 8 ).
Propylene
processes.
catalysts
is
sulfuric a c i d
trifluoride
(38),
(40).
at room temperat ure
(42).
to p o l y m e r i z a t i o n
(34), p h o s p h o r i c
zinc chloride
acid
(39)
(35,36,37), -
a n d boron
P l o r i d i n Is said to p o l y m e r i z e pr opy l e n e
a f t e r several m o n t h s
Marschner
2 5 0-3 5 0 ° C ., br ou g h t
products;
s i m i l a r l y re sistant
reactions f a i l to
The r e a c t i o n has b e e n c a r r i e d o u t u sin g as
aluminum chloride
350°C.
side
Mi ld c o n ­
(28)
showed that
a b o u t reaction,
I d e n t i f i e d w e r e olefins,
carbon atoms, b e n z e n e
a n d toluene.
but
(41)
or r a p i d l y at
t h i s catalyst at
y i e l d e d a v a r i e t y of
paraffins
of five to ni ne
Ipatieff
(43) found that
p r o p y l e n e w o u l d not p o l y m e r i z e
at 0 - l l O ° C . ,
i n 96 percent
y i e l d i n g in st e a d the
sulfuric a c i d
sulfuric acid e s t e r o f
propanol.
B u t l e r o w i n v e s t i g a t e d i s o b u t y l e n e and fou nd tliat it
would react
und er
s u lfuric a c i d
the inf lue nce
o f b o r o n t r i f l uo rid e or
(44) to y i e l d p o l y b u t y l e n e s .
ing p r i n c i p a l l y of d i i s o b u t y l e n e
acid and isobutylene
to 100°G.
(45)
H e w a s able to
or t - b u t y l alcohol
dichromate
were
and 2 , 4 , 4 - t r i m e t h y l - 2 - p e n trimethylacetic
ob tai ned b y o x i d a t i o n with p o t a s s i u m
- sulfuric acid m i x t u r e
T h e s e c o n c l u s i o n s were
(48)
isomers
distillation;
showed t h a t
(47).
confirmed by McCubbin and
and b y W hi t m o r e a n d C h u r c h
a t i o n b y ozone.
the t w o
a mix­
" octylic acid", n o w k n o w n to be m e t h y l n e o p e n t y l -
acetic acid,
Adkins
(46) w e r e h e a t e d
show t h a t d iis o b u t y l e n e w a s
tene as a ce ton e, me t h y l n e o p e n t y l ketone,
and
consist
c o u l d be obtained if d i l u t e
ture of 2 , 4 , 4 - t r i m e t h y l - l - p e n t e n e
acid,
A pr o d u c t
Whitmor and W r e n n
could be
(49) t h r o u g h d e g r a d ­
(50) d e m o n s t r a t e d t h a t
separated b y repeated fractional
later Fenske,
Q u i g g l e , a n d Ton g b e r g
s e p a r a t i o n c o u l d be
(51)
accomplished by a single
d i s t i l l a t i o n in a h i g h l y e f f i c i e n t
column.
D i i s o b u t y l e n e has also b e e n p r e p a r e d in a n u m b e r of
other ways:
f r o m _t-butyl i odide w i t h c a l c i u m oxide
(54),
f r o m _t-butyl chloride and i s o b u t y l e n e w i t h zinc c h l o r i d e
(55), f r o m t - b u t y l a lco hol w i t h f er r i c
sulfate
chloride
(56),
passing
or s t a n n o u s
f r o m t-butyl a l c o h o l w i t h quinoline h y d r o ­
(57),
(58), b y the
chloride
f r o m isobutyl a l c o h o l over al umina at
a c t i o n of f l o r i d i n o n isobutylene
isobutylene
over h e a v y m e t a l
sulfides
250-370°
(59), b y
(60)
and
salts
(61) or over s u p p o r t e d acid catalysts
Whitmore
and f r e n n
isomers of d i i s o b u t y l e n e
(62).
(50) have shown t h a t
either of the
is Isomerized to a n e q u i l i b r i u m
m i x t u r e of 2 , 4 , 4 - t r i m e t h y l - l - p e n t e n e and 2 , 4 , 4-trimethyl-2pe nte ne when p l a c e d in contact w ith sulfuric acid.
S hab ica
(52) confirmed this o b s e r v a t i o n and f urther dem o n s t r a t e d
that no other r e a r r a n g e m e n t s took place u n l e s s
the treatment
was most severe; h e a t i n g diisob uty len e w i t h 7 5 percent b y
w eight sulfuric aci d or w i t h zinc chloride - hydrochloric
ac id solution for m a n y hours yielded about 10 percent of
2 . 3 . 4 - t r i m e t h y l - 2 - p e n t e n e and some h i g h e r pol ymers.
also ascertained that the presence of p e r o x i d e s
It was
or ant i­
oxidants in th e p o l y m e r i z a t i o n mixture d o e s n o t affect the
product s or the ir re lat iv e ' p r o p o r t i o n s ,
pr esence of p ero x i d e s
a l t h o u g h the
r e t a r d e d the rate of r e a c t i o n
appreciably.
The B u r e a u of S t a n d a r d s has i n v e s t i g a t e d the im p u r i ­
ties present
in crude
isooctane prepared b y t h e h y d r o g e n a ­
t i o n of dii s o b u t y l e n e p r e p a r e d f r o m jt-butyl a l c o h o l and
acids
(64).
Drake an d V e i t c h
(65) found that the olefins from
2-butanol p o l y m e r i z e d w i t h d i f f i c u l t y in su lf u r i c acid of
a n y c onc e n t r a t i o n bu t
3. 4 - d i m e t h yl- 2-h exe ne,
that about 25/a of o c t e n e s ,
m ain ly
c o u l d be obtained b y h e a t i n g the
al coh ol w ith 75?( s ulfuric acid for 48 hours
Lebedev a n d O r l o v
In an autoclave.
(59) found that p o l y m e r i z a t i o n of
2 - butene took p lac e w h e n the materi al st ood In contact wit h
f l o r i d i n for m a n y days
at r o o m temperature.
Ipa tieff and
Pines
(77)
iiave discussed the
p o l y m e r i z a t i o n of olefins
tion,
" c o n junct" or c o m p l e x
in which. processes of c y c l i c i z a -
dehydrogenation, hydrogenation,
and a r o m a t i z a t i o n
occur s i m u l t a n e o u s l y wi th p o l y m e r i z a t i o n .
(89) have d i s c u s s e d the k i n e t i c s
o f the reaction.
T h e t rimers of isobutylene
their s t r u c t u r e s proved.
have b een d e s c r i b e d and.
Butlerov/
(66) p rep are d the t r i m e r
by the a c t i o n o f 5:1 sulfuric a c i d
may also be
lime
(67),
obtained f rom jb-butyl
on t- butyl alcohol;
Iodide,
it
isobutylene a n d
f r o m iso- or j:-butyl iodide w i t h m e t a l l i c o x i d e s
(68), f r o m isobutyl a l c o h o l and
zinc chloride
the a c t i o n of f l o r i d i n
on I s o b u t y l e n e (70)
of heat on isobuty len e
(71).
Butlerow
acid,
St eac ie and S h a n e
acetone,
(56)
(69), f r o m
and b y the a c t i o n
obtained a c e t i c acid,
trimethylacetic
a solid acid, a n d other u n i d e n t i f i e d m a t e r i a l
b y o x i d a t i o n of triisobutylene with, chromic
unable to p r o v e
McGxibbln
acid but w as
the structure of olefins conclusively.
(72) ozonized the
olefins a nd c o n c l u d e d t h a t
the isomers pre sen t w e r e l , l - d i m e t h y l - 2,2-di~_t-butyethylene,
l- t-b uty l-2- m e t h y l - 2- n e o p e n t y l - e t h y l e n e , and u n s y m - d i n e o p e n t y l ethylene.
Co n a n t a n d Wheland
chromic acid,
12H 2 4 02*
o x i d i z e d the trimer w i t h
ob tai n i n g Butlerow' s
proved to b e a mixture
g
(73)
T h e s e acids
of two a c i d s having the f orm ula
were p r o v e d
to be d l n e o p e n t y l a c e t i c acid
t-butylneopentylacetic
(66) solid a c i d w h i c h
(74)
acid (75)
by
Whitmore and c o - w o r k e r s
(alpha-acid)
an d m e t h y l -
(beta-acid). Wilson
(76)
concluded that tlie i s o m e r s present were
2, 2,4, 6 ,6-
p en tam eth yl- 3-h ept ene , u n s y m -di neopentyle tlp/OLene, 2,4 ,4, 6,6pentamethyl-2-heptene
and. 2 , 4 , 4 , 6 , 6 - p e n t ame thy l- l ~he pte ne,
t h e first two c o n s t i t u t i n g about 90% of the mixture.
D i m e r iza tio ns
of amylenes have b e e n c a r r i e d out b y
B u tle row (78), W i s c h n e g r a d s k y (79), Kondakov; (BO), Norris
a n d Joubert
(81) and o t h e r s using acid c a t a l y s t s . Unfortunate
l y their wo rk a ffords l i t t l e inform ati on as to the nature of
t h e isomer*s formed.
Drake and K li ne,
(82)
(83)
p o l y m e r i z e d t h e olefins
f r o m m e t h y l i s o p r o p y l c a r b l n o l wi th 75>o b y w e i g h t
at
80°C. and i d e n t i f i e d
two diamylenes,
2-h.exene and 3 , 5 , 5 - t r i m e t h y l - 2 ~ h e p t e n e .
checked b y Mosher
(84,
sulfuric acid
5 , 4 , 5 , 5-tetramethylT h i s w o r k has b e e n
125).
T e t r a m e t h y l e t h y l e n e has b e e n p o l y m e r i z e d by Brooks and
H u m p h r e y (85) u s i n g 0 5 % sulfuric acid and b y M i c h a e l and
Br u n e i (8G) a l t h o u g h n o n e
Ke uni er
(27)
he ptene
(61. 7%),
of the products w e r e
identified.
id_entified th e dimers as 2, 2 ,3 , 5 ,6— pentamethyl-3
2, 2, 4, 6 , 6 - p e n t a m e t h y l ~ 3 - h e p t e n e
2,3,4,6,6~pentamethyl-2-heptene
ne ope n t y l - l - p e n t e n e
(0,13/0.
(26.6%) y
(8.9>o) and 4 , 4 — d i m e t h y l - 2-
The presence
of these olefins
proves that t e t r a m e t h y l e t h y l e n e polymerizes o n l y after r e ­
arrangement to an i s o m e r i c
M arc h n e r
(28) h a s
olefin.
polymerized o cte nes f r o m dimethyl-n-
amyl, d i e t h y l - n - p r o p y l , a n d me t h y l e t h y l - n - b u t y l c a r b i n o l , but
d i d not i den t i f y the products.
CopolymerizatIon
The
field of copolyme ri z a t ion has n a t u r a l l y r e c e i v e d
less a t t e n t i o n than that of s i m p l e p o l y mer iza tio n due
to the
inc re a s e d d i f f i c u l t y in i s o l a t i o n and c h a r a c t e r i z a t i o n of
the p r o d uct s.
mi x t u r e of
In 1932 T h o m a s a n d Carmody (90)
treated a
isoprene and 2- p e n t e n e with alu m i n u m c h l o r i d e and
obtained t w o products.
d e r i v e d f r o m isoprene,
Later
it was shown that b o t h w e r e
the m o n o o l e f i n acting m e r e l y as
a
solvent.
Laughlin
a m ix t u r e
(91)
(99)
(116)
p o l y m e r i z e d the o l e f i n s f r o m
of sec- and _t-butyl a l c o h o l s with 50 % b y w ei g h t
sulfuric a c i d and ob tained the t w o diisobutylenes,
c a . 10/2
of 2, 3,4-t r i m e t h y l - 2 - p e n t e n e , 2, 2 , 3 - t r i m e t h y l - 3 - p e n t e n e and
indications
of the presence
The p r e s e n c e
of 3 , 4 , 4 - t r i m e t h y l - l - p e n t e n e .
of the 2 , 3 , 4 - t r i m e t h y l - 2 —pentene
by W hit mor e ’s r eac tio n m e c h a n i s m
pr oduct of
a secondary r e a r r a n g e m e n t .
b y other w o r k e r s
co pol y m e r s
(93). Birch,
Pirn,
It is r e g a r d e d as a
The w o r k was c o n f i r m e d
and Tait
(96)
obtained
f r o m sec- an d _t-butyl alcohols w i t h sul f u r i c
but did n o t
acid
identify the m i x t u r e •
Ipatieff
pr opylene
(92).
is not p r e d i c t e d
(94)
(95)
s t u d i e d the p o l y m e r i z a t i o n of
a n d n-butylene s In p h o s p h o r i c acid and f o u n d that
the r e a c t i o n occurred more r e a d i l y if a more r e a c t i v e
such as iso but yle ne, was
Noll
added.
This gave rise to copolymers,
(97) a tte m p t e d to c o p o l y m e r i z e
the ol efins
n- a n d j;-butyl alcohols w i t h 67% b y weight sulfuric
o b t a i n e d o n l y ethers
and p o l y m e r s
olefin,
of Isobutylene.
from
a c i d b ut
34.
Although. O r m a n d y and C r a v e n
(36)
were
able to p o l y m e r ­
ize propylene in 98/a sulfuric acid,
Ipatieff
such a r e a c t i o n does not take place
in 96% sulfuric acid at
0-25°C.
states that
except w h e n isobutenes or i s o p e n t e n e s are present.
The product of the
i s o b u t y l e n e - p r o p y l e n e r e a c t i o n was h y d r o ­
genated and the p r o d u c t s
butane,
(43)
identified as 5% 2 ,2 , 3 - 1 rime thy 1-
45%' 2 , 2 - d l m e t h y l p e n t a n e and 15% of 2 , 3 - d i m e t h y l p e n t a n e .
Ho polymers
of p r o p y l e n e
Sparks, Rosen,
itself w ere
and P r o l i c h
obtained.
(100) h a v e
discussed the
r e ac t i o n of d i m e r i z a t i o n an d cod imerization.
Birch,
P i m and Tair
(96) c o p o l y m e r i z e d the olefins f r o m
-butyl and _t-amyl a l c o h o l s with sulfuric
octenes, nonenes,
dia m y l e n e s ,
acid,
obtaining
and h i g h e r b o i l i n g material.
The
structure of the n o n e n e s was not d e t e r m i n e d but a fraction,
b.p.
122,5 - 129°C.,
n^D
1.4268 was
s e p a r a t e d and studied
w i th respect to Its a n t i k n o c k p roperties.
T h e s e workers also
p olymerized the ole f i n s f r o m _t-amyl and •s e c -butyl alcohols,
and jt-butyl and sec - b u t y l alcohols,
of the products was not
Mixon
(19)
a l t h o u g h the structure
t h o r o u g h l y investigated.
i n v e s t i g a t e d the no nen es f o r m e d In the
copolymer izat I on of the olefins f r o m t_-butyl and _fc-amyl
alcohols.
I d e n t i f y i n g five of the
sev en olefins predicted
t h rou gh c o n s i d e r a t i o n of p o l y m e r i z a t i o n pr oce s s e s as v i s u a l ­
ized b y Whi tmo re
(92).
Those
olefins i d e n t i f i e d were 2,3,4-,4-
tetramethyl-l-pentene, 3,5,5-trimethyl-2-hexene,
te tra met h y l - 2 - p e n t e n e ,
trimethyl-3-hexene.
2,3,4,4-
2 , 4 , 4 - t r i m e t h y l - 2 - h e x e n e , and 3,5,5-
A n u m b e r of patents on c o p o l y m e r izat ion h a v e b e e n
issued.
D e a n e s l y and V/achter
of a t e r t i a r y
(101)
olefin with, one o f lower r e a c t i v i t y at a n
creased p r e s s u r e in the p r e s e n c e
An oth er
(102)
isobutylene
provides for the
a n d 2-butene.
es p e c i a l l y to
lene, c l a i m s
claim tbe p o l y m e r i z a t ion
Yet
o f an a cid catalyst.
catalytic polymerization
another
copolymers of n o r m a l
that the
addition
in­
of
(103)
of
applying
but yle nes and
isobuty­
triisobutylene
to the
fe ed
stock d e c r e a s e s the y iel d of t r i m e r while the y i e l d of d i m e r
is a c c o r d i n g l y increased.
O x i d a tion o f
During
lene B u t l e r o w
Olefins
the e a r l y work o n t h e str ucture of d i i s o b u t y ­
(47) t reated the
b i c h r o m a t e - sulfuric
ole fin s w i t h p o t a s s i u m
acid m i x t u r e
ducts w h i c h could be
t o obtain d e g r a d a t i o n p r o ­
identified as
carbon dio x i d e ,
acid, t r i m e t h y l a c e t i c acid, a c e t o n e , a n e u t r a l
high boiling
acid.
methylacetic
acid wer e pro duc ts
olefin,
He c o n c l u d e d
oil,
that the a c e t o n e
of
acetic
and a
and t r i -
direct o x i d a t i o n of a n
2 ,4 ,4 — tr imeth.yl-2-pentene , at the d o u b l e bond.
?
9
?
c-o-c-c-c 4- [o]------------- c-c-c'c°H *
c
c
Acetic
9
c-c-c
acid was ass ume d to h e a pro d u c t
partial o x i d a t i o n of the a c e t o n e
formed.
T h e n e u t r a l oil was f o u n d t o be a k e t o n e
could be
of the
Oyli-^O w h i c h
f u r t h e r oxidized by c h r o m i c aci d to tr i m e t h y l a c e t ic
a c id and a c e t i c acid;
n e o p e n t y l ketone.
therefore,
the n e u t r a l oil was m e t h y l
T he h i g h b o i l i n g acid was f o u n d to b e
an
aci d of eight carbon atoms,
To exp lai n t h i s
and was na med o ct y l i c acid.
product he
adv anc ed t w o theories.
In
the first, he a s s u m e d that 2,4,4-t r i m e t h y l - 2— pentene was
hydrated' d u r i n g r e a c t i o n to d i m e t h y l n e o p e n t y l c a r b i n o l ,
d e hyd rat ed to 2,4 , 4 - t r i met hyl -l-pentene , r e h y d r a t e d to
m e t h y l n e o p e n t y l c a r b i n y l c a r b i n o l and s u b s e q u e n t l y oxidized to
methylneopentylacetic
acid.
Some credence v/as lent to this m e c h a n i s m for the last
step since a n a n a l o g o u s reaction h a d b e e n c a r r i e d out in the
oxidation of _t-butyl al c o h o l to isobutyric
acid.
In the light
untenable
of
a c i d by chromic
present k n o w l e d g e t h i s
appears quite
since t e r t i a r y olefins have b e e n s h o w n to give only
te rt i a r y alcohols on hydration.
If o x i d a t i o n of the In t e r ­
me diate o l e f i n 2 , 4 , 4 - t r i m e t h y l - l - p e n t e n e , t o o k place, me thy l
ne opentyl ke ton e was
»
formed.
u
C-C-C— 6 - c - o h +
[o]
C
G
1
T
C -G-C-C-C
_
t
c
c
c
0
OH
c
C-G-C-C = C
t
c
0
it
1
G-G-C-C-G
t
C
[0]
GO,
The s eco nd p r o p o s a l assumed that d i i s o b u t y l e n e
contained two olefins
itself
of similar phy s i c a l properties which
were in e q u i l i b r i u m w i t h each other.
C
G
t
t
G-G-G = G-C
T
c
G
C
i
i
C-C-C-G
=
C
t
G
A m e t h o d d e v e l o p e d in this l a b o r a t o r y b y W.R. Trent
for o x i d a t i o n of d iis obutylene
method
is based on B u t l e r o w ' s
(104).
W i s c h n e g r a d s k y (79) t r e a t e d the diamylenes f r o m
" i s o a m y l e n e " with p ota ssium d i c h r ornate-sulfuric a c i d
m i xture a n d obtained carbon d i o x i d e ,
"oxydiamylene".
Schneider
(105)
obtained f r o m amylenes, b.p.
and
oxidized di a m y l e n e s
35-7°C.
similar m i x t u r e and obtained w h a t
of acids
acetic acid,
(720 mm.)
with a
appears to be a m i x t u r e
o f seven to eight c a r b o n s and a y e l l o w n e u t r a l
oil w h i c h he describes as
boiling at
oxidation
180 - 9 0 ° C .
" d i a m y l e n e oxide",
Norris a n d
Joubert
C^ q H£>q O,
(81)
attempted
the
of diamylenes w i t h p o t a s s i u m p e r m a n g a n a t e a n d
with p o t a s s i u m d i c h r o m a t e - s u l f u r i c acid m i x t u r e w i t h o u t
obtaining
satisfactory results.
The
dichromate o x i d a t i o n o f triisobutylene was
carried o u t b y Butlerow (66) w h o
acetic a c i d ,
which w e r e
acetone, t r i m e t h y l a c e t i c acid,
apparently ketones
C o n a n t and Whe l a n d
c o ncl ude d
(73)
neu t r a l o i l s
and. a solid acid.
obtained similar r e s u l t s
that Butlerow's a c i d w a s a mixture
of the f o r m u l a ^ 2.2^24^2*
and c o - w o r k e r s
(74)
acid
but
of two a c i d s
wox>^ was r e p e a t e d b y W h i t m o r e
(75) and the
methylneopentyl-t-butylacetic
acetic
obtained car bon d i o x i d e ,
structures
acid
(beta)
shown to b e
and dineopentyl-
(alpha).
T h e manner in w h i c h the t w e l v e ca rbon acid is o b t a i n ­
ed f r o m a
direct
twelve carbon ol efi n w a s
explained.
Instead
of a
o x i d a t i o n of the double b o n d to pr odu ce s p l i t t i n g of
the m o l e c u l e ,
addition of an o x y g e n atom f o l l o w e d b y a n
i n t r a m o l e c u l a r rearrangement t o o k place.
Mixon
(106)
o b t a i n e d _t-amylacetic
acid in 2
l n% y i e l d
b y dichr ornate o x i d a t i o n of 4,4 - d i m e t h y l - 1-h exe ne .
Triebs
(107)
d e m o n st rat ed that g o o d yields of acids
could be obtained f r o m olefins of the
same n u m b e r of carbons
by the use of ch romic
acid-acetic acid solution,
reaction analogous to
that b y wh ich B u t l e r o w ’s acids are
obtained from t r i i s o b u t y l e n e .
dineopentylacetic
Schiessler
(108)
acid from dineopentylethylene
by a
pr epared
in yields as
high as 80p u s i n g this method.
Other
wor k o n the ox ida tio n of ole fin s has b e e n p e r ­
formed b y W i l s o n
(76), F le m i n g
(29), Noll (97),
and M o s h e r
Some
(109), M i n e r
(110), W r e n n
(84).
work h a s b e e n done on the o x i d a t i o n of liquid
o l efi n3 with p o t a s s i u m p e r m an gan ate
(109,
114,
not b e e n so sa t i s f a c t o r y
115) .
In g e n e r a l results have
as w ith the c hro mic a c i d methods.
29,
111,
112,
113,
discussion
In the first c o m p r e h e n s i v e
study of the n one n e s
formed in the c o p o l y m e r i z a t i o n of the olefins f r o m _t-butyl
and t-amyl alcohols W hit m o r e a n d M i x o n
(19) p r e d i c t e d t hat
seven n o n e n e s could be f o r m e d b y no rma l p o l y m e r i z a t i o n
processes.
In addition several other nonenes w o u l d p r o b a b l y
be formed If the nonenes,
p o l y m e r i z a t i o n catalyst,
polymerization.
in the presence
of the a c i d
should rearrange during,
or after,
Their p r e d i c t i o n s were ba sed u p o n a tried
and useful m e c h a n i s m a d v a n c e d b y Whi tm o r e
(92)
for o l e f i n
polymerization.
The a p p l i cat ion of these princip les to p o l y m e r i z a t i o n
of the ol efins or their c o r r e s p o n d i n g alcohols
presence of acid catalysts m a y b e
1.
considered thus:
A n organic f rag m e n t
is first f o r m e d w h i c h has
one c arb on a t o m h a v i n g only six electrons,
ad dition of a proton (h ydrogen ion)
an olefin d oub le bond,
or b y loss
its full com ple men t of el ect ron s
m e d i u m [c.f. Whitmore
ch3
:
c
:;
ch
2
+
of an h y d r o x y l ion wp.th
f r o m an alc o h o l to the acid
(130)].
CH3
cii3 : c
ii+
ch3
CH~
. G . OH
either b y the
fr om the aci d m e d i u m to
ch3
•*
in the
CII„
+H
+
--------- C H 3 I G
CII3
••
+
HgO
gh 3
The _lragment c o n t a i n i n g a c a r o o n at om h a v i n g b u t
electrons is in a h i g h l y r e a c t i v e
and un stable
s t a t e • ^t
six
40.
should not be co nfu sed with, a free radical,
car bo n atom holds but
sev en electrons,
w h i c h holds a complete
2.
i n w h i c h one
or w i t h an ion,
octet of electrons.
It is t h e n possible for the a c t i v e
resume a stable
state b y the a d d i t i o n
splitting out
a p r o t o n to yield
fragment to
of a n e g a t i v e ion,
an olefin,
or
by
b y adding to
the double b o n d of a n olefin, t h e r e b y f o r m i n g another
fragment of greater weight.
Gil
3
CH
3
i•
ch3 : g
+
: o h ------------cii3 : c ; o h
• *
• •
gh3
ch3
ch3
ch3
• •
ch3
I •
: c
------------- h +
+
:
ch
c
; :
ch
2
’C‘H 3
ci -i 3
•
»•
ch
:
3
c
+
ch„
3
gh3
ch3
• *
I•
: c : :
gh_
2
: c :
3 ,.
CII,
3
—
ch„
.CH,
3
3.
ch3
••
ci -i 0
2
:
c ;
ch,
3
In the case in w h i c h the l a t t e r process takes
place the new, hea vie r fragment m a y s i m i l a r l y stabilize
itself by any of the three processes m ent io n e d .
is expelled the d im e r i c
ch,
°
:
GH 3
CH3
*•
••
c : ch0 : c
:
CH3
If a pro ton
olefin is obtained.
+
ch,
3
h
+
GH3
CH3
■
••
ch„ : c : chq : c : :
3 ^ . 2
ch3
gh0
2
If the h e a v y f rag men t f o r m e d "by the a d d i t i o n of the
li ghter f r a g m e n t to the o l e f i n m o l e c u l e
subsequent to
its formation,
ole f i n s
other t h a n those p r e ­
d i c t e d for n o r m a l p o l y m e r i z a t i o n w i l l ,
This is o f t e n the case,
ca rried out
of course,
be f o r m e d .
e s p e c i a l l y i f the p o l y m e r i z a t i o n is
i n v e r y hot or v e r y c o n c e n t r a t e d aci d s o l u t i o n s ,
or In the p r e s e n c e
of cataly sts w h i c h are u n u s u a l l y a c t i v e
in r e a r r a n g e m e n t reactions.
shift of an e l e c t r o n pair,
it holds,
should r e a r r a n g e
Suc h a process
including
f r o m a position adjacent
d e f i c i e n c y of
is due to t he
the group or a t o m w h i c h
t o the a t o m h a v i n g a
electrons to that a t o m ,
leaving the a t o m w h i c h
o r i g i n a l l y h e l d the m i g r a t i n g g r o u p w i t h an o pen sextet
electrons.
T h e rearrangement may be
f o r m a t i o n of 2- m e t h y l - l - p r o p e n e f r o m
ch3
: CHS : CH : : c h 2 +
h
+ --- >-
of
illustrated b y the
2-butene.
ch3
: cii2 :
ch
:
ch3
CH,
o Lfl
CH3
ch3
♦ «
ch2 ; :
c
• •
;
ch3
+ ii+
cii2:
c h :c h 3
In c o n s i d e r i n g the n o n e n e s w h i c h would be f orm ed b y
the c o p o l y m e r i z a t i o n of the o lefins
alcohols b y s u l f u r i c a cid it
a lc o h o l w o u l d
once apparent
that _t—b u t y l
f u r n i s h a t e r t i a r y b u t y l fragment b y loss
hydroxyl group,
al coh ol w o u l d
is at
f r o m t-butyl and t - a m y l
of a n
and i s o b u ty lene b y d e h y d r ati on; _t-amyl
f u r n i s h a t- a m y l g r o u p b y loss
of a n h y d r o x y l
gr oup while d e h y d r a t i o n w o u l d y i e l d a p p r o x i m a t e l y 8 0 ^ of
trimethylethylene
and 20/Z of m e t h y l e t h y l e t h y l e n e
(98).
CHr
CEL
CH,
C
»
ch3
ch3
OH
: c
:
oh
•
CEL
CEL
CHr
CH,
: c
ch 3
OH
:
c : :
cei2 ,
+
h
?o
CEIr
CEL
c el
CKg : c ;
CHS
ch3
oh
:
ch2
:c ;
gei3
+
:o
h
CEIr*
ch
.
CEIr
CH 3 * cHg : c : on
CHr*
c h 3: cei2 : c
;:
CEIr
cei2
+
cei 3; c h
: ;c
20fo
:
ch
80 %
The n o n e n e s e x p e c t e d will therefore be m a d e up of all
po ss i b l e combinations
of
either fragment w i t h t h e
olefins
d e r i v e d from the other.
In order to s i m p l i f y t h e diagrams
only
will be
the ca r b o n s k e l e t o n
shown;
a tom s h a v i n g but six
electrons w i l l be d e s i g n a t e d b y a n asterisk.
C
C
t
- C ©
t
c
1
c
c = c - c - c
II
III
c
I
c
I
c - c
I
c
IV
c
I
I
C - C - C - C - C - C
’
©
C
c
t
c= c - C- C
-H
c
0
C-C-C-C-C-C
I
c
V
?
?
C-C-C-C - c c
T
c
VI
43.
9
c-cI ©
c
c!
c
c
C-C
c 9 c
c -6I -c -c -c
$
c
XIV
44
/
The olefins
i n d i c a t e d here are those w h i c h may be
e x p e c t e d in a normal polymerization.
There
is n o sure means
of p re dic tin g the a m o u n t s of each w h i c h w ill be
a l t h o u g h it is o f t e n p o s s i b l e to ma ke r e a s o n a b l e
present,
estimates in
advance of e xp e r i m e n t a l evidence.
As M i x o n
Wh itm o r e ,
(19) h a s poi n t e d out, the w o r k of Church,
and M c G r e w
(132),
and that of Jones
(131)
shows that
the for mation of an o l e f i n f r o m an active f r a g m e n t appears to
take place m o s t r e a d i l y w h e n an ethyl group is adjacent to the
a t o m h a v i n g an open sextet.
This infers that m o r e nonenes
w o u l d be formed b y the a c t i o n of the t -bu tyl f r a g m e n t on the
amylenes than b y the a c t i o n of the _b-amyl f r a g m e n t on the
butylenes.
This M i x o n f o u n d to be the case,
r e p o r t i n g that
88>o of the nonenes were f o r m e d b y r e a c t i o n of the _t-butyl
f r ag m e n t wit h amylenes
Some est imate
(olefins IV, V, VI,
IX, X).
of the relative amounts' of olefins h a v i n g
similar carbon skeletons m a y also be formed.
T h e marked
t e n d e n c y of an ethyl g r o u p adjacent to an a t o m deficient
in
electrons to lose a p r o t o n suggests that 3 , 5 , 5 -tr i m e t h y l - 2 hexene
(VI) would be f o r m e d in greater amount
t r i m e t h y 1 - 3 -hexene
(IV)
or 2-e t h y l — 4, 4 - d i m e t h y l — 1-pentene
The previous w ork i n d i c a t e d concentrations
(IV), while no
(V) was
t h a n 3,5,5-
Identified.
of 22)a (VI),
The f ailure
of
(V).
5%
(V) to be
f o r m e d in quantities large e n o u g h to id en t i f y w a s unexpected,
since the d i i s o b u t y l e n e s
indicate that p r o t o n e x p u l s i o n f r o m
a m e t h y l group is som ewhat easier than f r o m a n e o p e n t y l group.
The present w o r k f a i l e d to prove the presence
4, 4-dimethyl-l-pentene
(V).
of 2-ethyl-
In the second group of o l e f i n s there are fewer f a c t s
available
to
indicate whether 2 ,3 , 4 , 4- t e t r a m e t h y l - l - p e n t e n e
(lit) or 2 , 3 , 4 , 4 - t e t r a m e t h y l - 2 - p e n t e n e
(X) should p r e d o m i n a t e
since the a b i l i t y of a p i n a c o l y l g r o u p to expel a p r o t o n h a s
never b e e n s t u d i e d thoroughly.
W h i t m o r e and B e r n s t e i n
(117)
have c o n c l u d e d f r o m their s t u d y of pinacolyl chloride t h a t
this
group is c o n s i d e r a b l y less a c t i v e
m e t h y l group.
This is in ag ree m e n t
2,3 ,4,4 - t e t r a m e t h y l - l - p e n t e n e
(IX)
in this r espect
than a
with M i x o n ’s rep ort
that
and 2 , 3 , 4 , 4 - t e t r a m e t h y l —
2-pentene w e r e present in the n o n e n e s
in concentrations
of
50?o
and 10;£ respectively.
M i x o n reports that 2 , 4 , 4 - t r i m e t h y l - 2 - h e x e n e
(XV)
present to the extent of 10;'o of the nonenes but that n o
trimethyl—1-hexene
(XIV)
could be found.
This was
was
2,4,4-
in d i r e c t
o p p o s i t i o n to the obvious a s s u m p t i o n that the two o l e f i n s
should f o r m a system analogous to
in w h i c h the
1.
that of the d i i s o b u t y l e n e s ,
1- and 2- isomer are pre sen t in the r ati o
of 4 to
The s u b s t i t u t i o n of a n alpha n e o h e x y l group for a n e o p e n t y l
g r oup ha d n o t b e e n expected to p r o d u c e
s i m i l a r i t y in the olefin systems,
such a striking d i s ­
It was thought p o s s i b l e
that
the o l e f i n h a d escaped i d e n t i f i c a t i o n due to the d i f f i c u l t i e s
of s e p a r a t i o n of the small q u a n t i t i e s of ozonolysis p r o d u c t s .
T h e p res e n t work,
ca rri ed out using m u c h larger am o u n t s
of m a t e r i a l s , has shown that 2,4 ,4- tri met h y l - l - h e x e n e
is indeed pre s e n t
(XIV)
in quite a p p r e c i a b l e amounts. A l t h o u g h the
nature of t he wor k does not a l l o w accurate estimates of t h e
yields
of the
individual olefins,
it m a y be said w i t h some
c e r t a i n t y that 2 , 4 , 4-t r i m e t h y l - 2 - h e x e n e
(XV)
is pr es e n t
to
the
ex t e n t of less t h a n 5'}&, as opposed to the 10;o p r e v i o u s l y
reported,
(XXV)
and that tlie r a t i o of 2,4,4-trimeth.yI-l-hexene
and 2 , 4 , 4 - t r i m e t h y l - 2 - h e x e n e
of foui’ to one,
(XV), is of
in accord, with, the analogous
tine order
c a s e of the
diisobutylene.
In add iti on to th e nonenes p r e v i o u s l y m e n t i o n e d , w h i c h
w e r e products
of p o l y m e r i z a t i o n wit h o u t r e a r ran gem ent ,
n e w nine-carbon olefins
two .
were found.
A p p r o x i m a t e l y 3-5,^ of 2 - i s o p r o p y l - 3 , 3 - d i m e t h y l - l b u t e n e was identified.
This is r ega rde d as t h e r ear ran ge­
m e n t product of the f r a g m e n t formed b y the a d d i t i o n of a
t - b u t y l fragment to t r i m e t h y l e t h y l e n e .
C
C
I
C - C ®
i
G
G
T
G = G -
C
C
G
t
"
i
G - G - G - C - G
r
C
A conside rab le
C
G
G
i
i
t
C - C - C - G - C
i
©
G
H U)
f
G
C
G
i
t
i
C - c - c - C r.
®
a m o u n t of a nonene b e l i e v e d to be
2 . 3 . 3 . 4 - t e t r a m e t h y l - l - p e n t e n e was obtained.
It was not
p o s s i b l e to i den t i f y t h e mat e r i a l c o n c l u s i v e l y due to some
c o n f u s i o n in the l i t e r a t u r e and results o b t a i n e d in this
l a b o r a t o r y ( see part
II,
3, a ) on the d e r i v a t i v e s
of
3 . 3 . 4 - t r i m e t h y l - 2 - p e n t a n o n e , w h i c h would be d e r i v e d from
t h i s olefin on ox ida t i o n ,
and those of 4,4 - d i m e t h y l - 2-
he xan one , w h i c h w o u l d b e derived f r o m 2,4 , 4 - t r i m e t h y l - 1 hexene.
The presen ce
w o u l d not be
of 2,3 ,3, 4 - t e t r a m e t h y l - l - p e n t e n e
surprising,
inasmuch as a r e l a t i v e l y large
amount or 2- i s o p r o p 7
/l-3 ,3- d i m e t h y l — 1-butene, an i n t e r ­
mediate p r o d u c t of tlie same r e a r r a n g e m e n t , was i d e n t i f i e d .
c c
0
t
C - C1 ®
ct
I 1
C=C - G
G -
cI
cT
C - C - C - C
c
c
©
I-Il/l
C
C
0
t
11
I
_TT
G - C - C - C - C
. c
+
---
c
t
!
c
*
T
c
t
cI
c = c - cI - c - c
- H +
t
C - C - G - C - C
G
C
T
c
I
c1
vt
ct
ch3 //)
G
i
c - c - c - c - c
c
®
c
w n
Such, a rearrangement as the f o r m a t i o n of f r a g m e n t
XVII from f r a g m e n t XVI would be e x p e c t e d since the d e h y d r a ­
tion of 2 , 4 , 4 — trimethyl-3 -pe nta nol ,
analogous to fragment X VI on loss
which gives a f r a g m e n t
o f an hydroxyl
be en shown to yield the m a j o r i t y of
ion, h a s
its products b y r e a r r a n g e ­
ment of a m e t h y l group f r o m the 4- b o the 3- p o s i t i o n
134).
Laughlin
(91) h a s shown that
(133,
methyl isopropyl _t-b-utyl
carbinol d e h y d r a t e s to yield 2 - i s o p r o p y l - 3 , 3 ~ d i m e t h y l - l butene and 2 , 3 , 3,4-tetramethyl-l-peratene in the r a t i o
of
three to one.
Another
olefin was
t r imethyl-2-hexene.
i d e n t i f i e d tentatively as 3 , 4 , 4 -
This m a t e r i a l w a s found in the h i g h e s t
b o ili ng cuts o f the nonenes, b.p.
identification
132-41°C.,
and the
was based on the p r e s e n c e of ac etaldehyde
and
48,
m e t h y l t-arayl ke tone
in the ozonolysis
h i g h b oi l i n g p oin t of t h e
pr odu cts .
Due to the
original olefin it is considered
p o s s i b l e though, u n l i k e l y that the m e t h y l _t-amyl ketone was
d e r i v e d fr om a d e c e n e n o t
In the light
c o n c e r n i n g the m o d e
separated in the dis tillation.
of present knowledge l i t t l e m a y be said
of f o r m a t i o n of 3 ,4 , 4 - t r i m e t h y l - 2 - h e x e n e ,
f o r although several r a t h e r complicated r e a r r a n g e m e n t s w h i c h
y i e l d this product coxild be postulated,
no one appears to
h o l d proference.
In the early p h a s e s of the w o r k m e t h y l
was
Isolated in the c h r o m i c
acid oxi da t i o n p r o d u c t s
n o n e n e s prepared fr om stock alcohols.
w h i c h was neither
nonene.
isopropyl ketone
This
of the
I n d i c a t e d a nonene
p r e d i c t e d nor derived from a n expected
Subsequent w o r k on nonenes p r e p a r e d f r o m pure alcohols
demonstrated, that the m e t h y l isopropyl ketone
n'ot from a nonene, but f r o m the h i g h - b o i l i n g
was derived,
(116°C. ) octene,
2 , 3 , 4 - t r i m e t h y l - 2 - p e n t e n e . This was p a r t i c u l a r l y un exp ect ed
since It had b e e n shown m a n y times
(52)
that
the
octenes
p r e p a r e d from t -bu t y l a l c o h o l contained on ly 2 ,1 , 4 - brimethyl1- pentene
and 2,4 ,4 - t r l m e t h y l - 2 - p e n t e n e .
c o n f i r m e d b y Surmatis
b y Shabica
(52)
(126)
in new work.
This
was again
It was further shown
that the p oly me r i z a t i o n of the
olefin from
jt—b u t y l alcohol by QQ.o s ulfuric acid b y wei g h t , d i d not yie ld
ot her olefins either
peroxides,
in the presence of a nti o x i d a n t s
or
t h o u g h the ra te
of reaction was d e c r e a s e d a p p r e ­
c i a b l y in the l atter case.
B y re f l u x i n g 2 , 4 , 4 - trimethyl-1-
p e n t e n e w i t h 6 7 .t aqueous
days,
sulfuric acid b y w e i g h t
the author was u n a b l e to Isolate
for several
or i d e n t i f y any 2,3,4-
tr i m e t h y l - 2- p e n t e n e , o b t a i n i n g o n l y the
of* 2 , 4 , 4 - t r i m e t h y l ~ l - p e n t e n e and
equilibrium mixture
2,4, 4-tr I m e t h y l - 2 - p e n t e n e
with, small a m o u n t s of h i g h e r p o l y m e r . .H o w e v e r , S h a b i c a
(52)
o b tained 5;'o to 10?£ b y r e f l u x i n g the lower isomer of d i i s o ­
b u tyl ene with. 75/o b y weight a q u e o u s
sulfuric acid or w i t h
zinc c h l o r i d e - h y d r o c h l o r i c a c i d m i x t u r e .
that w h i l e
Thus it was
shown
i s o b u ty len e or its p o l y m e r s would yi e l d 2 , 3 , 4 -
'trimethyl-2— pe n t e n e with m o r e
r e a r r a n g i n g catalysts,
c o n c e n t r a t e d acids
none of this
or s t r o n g l y
ole fin was f o r m e d u n d e r
the c o n d i t i o n s vised for the p r e p a r a t i o n of the n o n e n e s
from
the d e h y d r a t i o n and p o l y m e r i z a t i o n of _t-butyl and t - a m y l
alcohols.
T h e a s s e r t i o n of Brooks,
C l e a t o n and C art er
(64)
that
crude isoocjtane pre par ed b y h y d r o g e n a t i o n of d i i s o b u t y l e n e
derived, f r o m _t-butyl alc o h o l c o n t a i n s 0.12;^ of 2 , 3 , 4 - t r i m e t h y l
pentane c a n n o t be
said to h a v e b e a r i n g on this w o r k si nce
their i d e n t i f i c a t i o n of m a n y o t h e r hy dr o c a r b o n s
carbon a t o m s
in co mpa rab le c o n c e n t r a t i o n s
that the ir p r e s e n c e
The p r e s e n c e
polymerization
alcohols
is t r a c e a b l e
products
of the
p o l y m e r i z a t i o n products of the
the m o d e
sources.
in the
co-
o l e f i n s f r o m t_-butyl a n d t-amyl
is not without p r e c e d e n t .
bu tyl al co h o l ;
clearly indicates
of 2 , 3 , 4 - t r i m e t h y l - 2 - p e n t e n e
id ent ifi ed this o lef in as a b o u t
(93)
to other
of 7 to 9
Laughlin
(116,91)
35/o of the octenes
in t h e
o l e f i n s f r o m t -b u t y l and
co­
sec-
while his w o r k h a s b e e n checked r e p e a t e d l y
of f o r m a t i o n of t h i s
ol e f i n has r e m a i n e d a n
open qviestion.
L a u g h l i n suggested that the
ole f i n was f o r m e d e i t h e r
b y two succesive sh i f t s
of met hyl group,
in t h e active
fragment de riv ed f r o m a _t-butyl fr agm ent
and 2-butene,
a 1:3 shift of a m e t h y l
group.
or b y
(See S e c t i o n I I I of this paper
f o r further e x p l a na tio n) .
C G
i t
c-c-c-c-c
0
G
G
i
i
C-C-C-C-C
1 ©
c ®
ch5 w
s
c h 3 If)
G G C
i t i
c-c= c-c-c
c c
' '
C-C-C-C-C-------I
o
®
c c c
! I I
c-c-c-c-c
-Ii
c c c
CH„ I/}
I l f
3 — --- C- C-C - C - C
1 - 3
©
l-H C C c
(
t
I
C — C = C — C-G
The d e h y d r a t i o n of m e t h y l p i n a c o l y l c a r b i n o l , which
yields the same a cti ve
fragment as that f o r m e d b y the r e a c t i o n
of a _t-butyl fra g m e n t w i t h 2-butene, was
e x p e c t e d to clarify
the que st i o n .
On the contrary,
picture
the results f u r t h e r
since this d e h y d r a t i o n yielded no
c o m p l i cat ed the
identifiable amount
of 2 ,3,4 - t r i m e t h y l - 2 - p e n t e n e .
In r e - e x a m i n i n g L a u g h l i n ’s report S u r m a t i s
co ver ed that the y i e l d
(126) d i s ­
of 2, 3, 4-t r i m e t h y l - 2 - p e n t ene m a y be
Increased if the _t-butyl alcohol is a d d e d
s l o w l y to an aqueous
sulfuric acid. and. 2-butanol mixtu re,
rather t h a n b y t r e a t i n g
a mixture of _t—butyl al cohol and s e c o n d a r y b u t y l a l c o h o l w i t h
the acid.
I n a s m u c h as isobutylene
the n-b ute nes
p olymerises w i t h i t s e l f
or
several times as r a p i d l y as the n- but ene s p o l y ­
m e r i z e w i t h themselves,
this fact
of 2 ,3 ,4- tr i m e t h y l - 2 - p e n t e n e
indicates that the f o r m a l ion
is d e p e n d e n t up on the r e a c t i o n
of iso- and n- but e n e s r a t h e r than of
is also s u g g e s t e d b y the fact that
any olefin alone.
This
the © p o l y m e r i z a t i o n of the
olefins f r o m _t—butyl a lcohol and 3— pe nt a n o l does not c a u s e
the
f o rma ti on of 2, 3, 4-tr i m e t h y l - 2 - p e n t e n e . Deh ydr ati on and. p o l y ­
m e r i z a t i o n of a mixture
of t-butyl a n d n-butyl alcohols
yield
only 2,4,4 - t r i m e t h y l - 1- and 2- p e n t e n e , with no n - b u t y l e n e
polymers f o r m e d .
F r o m t he In f o r m a t i o n not ed a b o v e
is no e vid enc e
to prove
it appears that
th e r e
that 2 , 3 , 4 - t r i m e t h y l - 2 - p e n t e n e
n e c e s s a r i l y Is formed b y similar p r o c e s s e s in b o t h the
co­
polymers f r o m jb-butyl and _t-amyl a l c o h o l s and. those f r o m _t— butyl
and sec-butyl alcohols; however,
the
implication remains.
S e v e r a l mechanis ms for the f o r m a t i o n of
this o l e f i n
are
conceivable.
1.
Is obu tyl ene m a y r e a r r a n g e
to 2-butene and t h e n
react with a _t-butyl fragmen t f o l l o w e d b y formation to 2 , 3 , 4 t r i m e t h y l - 2- p e n t e n e by processes s u c h as those o r i g i n a l l y
suggested for
its fo rma tio n i n the c opo lym ers f r o m t_-butyl
and sec-butyl alcohols.
_t—butyl a l c o h o l alone
The fact t h a t diisobutylene f r o m
contains
and 2,4,4 - t r i m e t h y l - 2-pentene
2.
The
octenes,
onl y 2 ,4,4 - t r i m e t h y l - l - p e n t e n e
is o p p o s e d to this.
2 , 4 , 4 - t r i m e t h y l - l - p e n t e n e and 2 , 4 , 4 -
t r i m e t h y l - 2- p e n t e n e m a y rearrange d u r i n g or f o l l o w i n g t h e i r
f o r m a t i o n , due to unusual
circumstances.
lower* isomer of d i i s o b u t y l e n e
The f a c t
rearranges to 2 , 3 , 4 - trimethyl-
2- p e n t e n e with hot 75% b y w e i g h t aqueous sulfuric
zinc
that the
acid or w i t h
chloride, but not w i t h h o t 66^ b y weight a q u e o u s sulfuric
acid,
supports this idea.
The "unusual ci rcu m s t a n c e s " m e n t i o n e d m a y h e
presence
the
of other f rag ments w h i c h on l o s s of a p roton,
or b y
m e t a t h i c a l reaction with a n ol efi n leave that o l e f i n in a
s u f f i c i e n t l y excited state
wise
to rearrange to c o m p o u n d 3 not o t h e r ­
formed.
In this connection
it
a m y l e n e s are formed in the
is interesting to n o t e
c o p o l yme riz ati on of the
from t-butyl and _t-amyl a l c o h o l s by 56% by w eight
su lfu ric
acid, althou gh the diamylenes
that diolefins
aqueous
are not f o r m e d in a
p e r i o d of days when _t-amyl a lcohol alone is so t r e a t e d
Shabica
£c*f.
(52)J.
3.
po ssi ble ,
Depolymerization
of high p o l y m e r s
though improbab le mechanism.
is another
The low temperature
and l o w acid c onc e n t r a t i o n ar e not favorable to s u c h a reaction,
nor is
there any reason to bel i e v e that
any other
products were
so f o r m e d .
The oxidation of the nonenes was
c arr ied o u t by means
of s o d i u m d ich rom ate -su lfu ric
acid mixture at r o o m
after
others (7 6,109,104,110,29,97).
the method of Trent
and
The p r o d u c t s obtained were
composed e x c l u s i v e l y of
temperature
ketones
and acids.
The ketones ob tai ned w e r e those d e r i v e d f r o m the olefins
k n o w n to be in the mixture;
there was n o evidence
that
appreciable o x i d a t i o n of either the k e t o n e s
lower ketones
or a c i d s had tak en place.
or acids to
As in the o x i d a t i o n
of diisobutylene r e a c t i o n takes place m o s t rea d i l y w i t h those
olefins h a v i n g the
ethylene s.
structures of tri-
The m e t h y l e n e
to oxidation,
olefins e x h i b i t e d a marked r e s i s t a n c e
a l a r g e part b e i n g r e c o v e r e d unchanged.
Of the m e t h y l e n e
reacted to p roduce
C C C
t i t
C -C -C - C = C
C
or t e t r a - sub sti tut ed
olefins
o x i d i z e d approxi mat ely h a l f
the ketone or e x p e c t e d f is s i o n product:
C G C
T
+
4
[o]
!
C-(y-C-C = 0 + COg + Hg O
C
The r e m a i n d e r was t r a n s f o r m e d to
carbon acid,
just
1
the cor r e s p o n d i n g n i n e
as the alpha and b e t a B u t l e r o w 1s acids
(66,
73, 74, 75), d i n e o p e n t y l a c e t i c a c i d and methylneopentyl-j;butylacetic acid,
1-pentene
are obtained f r o m 2- n e o p e n t y l - 4 ,4-d ime thy l-
and 2 , 2 , 4 , 6 , 6 - p e n t a m e t h y l - 3 ~ h e p t e n e .
The r e a c t i o n
involves the a d d i t i o n of an o xyg en a t o m w i t h but
to the ca r b o n of t he methylene
group,
six e l e c t r o n s
l e a v i n g the adjacent
carbon w i t h but s i x electrons. R e a r r a n g e m e n t yields an a l d e ­
hyde w h i c h i m m e d i a t e l y oxidizes to the acid.
R
H
: C : : C
: H +
R
R*
H
: C : C
H
0
v
R
R'
: C : C : 0 : H
H
:'0:
By this r e a c t i o n large amounts
acid were formed.
H LQ
R*
R
: C
••
H
C : H
:0:
of methylpinacolylacetic
Acids f rom 2 - i s o p r o p y l - 3 , 3 - d i m e t h y l - l -
butene a n d 2,4,4 - t r i m e t h y l - l ~ h e x e n e were not i s o l a t e d or
i d e n t i f i e d although, the p r e s e n c e
by the
of one or b o t h was indicated
s t e a d y upward trend of b o t h boiling point and r e ­
fr a c t i v e
index as d i s t i l l a t i o n progre s s e d of the m a t e r i a l
proved t o contain m e t h y l p i n a c o l y l a c e t i c acid.
I t is interesting to n o t e that oxidation of 2-isopropyl3,3 - d i m e t h y l-l-butene
y i e l d e d a negligible
c o r r e s p o n d i n g ketone,
isopropyl-1_-butyl ketone;
the acid,
isopropyl-t-butyl ac e t i c
b e e n low,
although it was n o t
d i f f i c u l t y of reaction of t h i s
v i e w of its compact
struct ure.
amount
of the
the yiel d of
is p r e s u m e d also to have
de t e r m i n e d or identified.
The
o l e f i n might be e x p e c t e d in
S u m m a r y of Products
The c o p o l y m e r i z a t i o n of the o l e f i n s
from _t-butyl and.
jb-amyl. alcohols y i e l d e d a p p r o ximately 33 fo o f nonenes,
of diisobutylenes,
~LQ% of diamylenes
polymers c a l c u l a t e d as diamylenes),
addition to these
21%
(i n c l u d i n g hi g h e r
and 29>a of amylenes.
In
olefins about 3>o (based o n jt-butyl alcohol)
of 2,3,4-tr imeth.yl-2-pentene was
ide n t i f i e d .
O x i dation of the nonenes w i t h s o d i u m dichromate sulfuric acid m i x t u r e
yielded the f o l l o w i n g materials;
yields are a p p r o x i m a t e ,
based on the t h i r t y moles of non e n e s
oxidized.
4, 4 - D i m e t h y l - 2 -he xanone
Q%
3.4.4-Trime thyl-2-pentanone
10%
4, 4-Dime t h y l - 2 - p e n t a n o n e
5/a
P inacolone
1%
2.4.4-Trimethyl-3-pentanone
Traces
M e t h y l i s o p r o p y l ketone
Traces
(from oct e n e )
Acetone
Traces
2-Is opr o p y l - 3 , 3-dime thyl-l-but ene
3-5/6
2, 3 , 4 , 4 - T e t r a m e t h y l - l - p e n t e n e
11 %
2 . 3 . 3.4 - T e t r a m e t h y l - l - p e n t e n e
(tentatively i d e n t i f i e d )
Nine c a r b o n acids
(largely m e t h y l pinacolylacetic acid)
Methyl-_t-butylacetic acid
Acids
of five
the
7%
18%
2%
to seven carbon atoms,
k n o w n to i n c l u d e trimethylacetic
and e t h y l d i m e t h y l a c e t i c
acid,
acid
about
lO-ISp
F r o m the d a t a o b t a i n e d Toy oxidation of the n o n e n e s
it h a s b e e n concluded that the
listed below,
olefins present are t h o s e
arranged in the probable order of t h e i r
c o n c e n t r a t i o n in the mixture.
2 ,3,4, 4-Tetrameth.yl- 1 - pent ene
2 ,4,4-Trimethyl-l-hexene
2 - I s o p r o p y l — 3 ,3 - d i m e t h y l — 1-butene
2 ,3,3,4-Tetr a m e t h y l - l — pentene
3,5,5-Trimethyl-2-hexene
3 ,5 ,5-Tr ime t h y 1 -3- h e x e n e
2 ,4,4 - T r i m e t h y l - 2 - h e x e n e
2,3,4, 4 - T e t r a m e t h y l - 2 - p e n t e n e
(Tentative)
EXPERIMENTAL
A.
1.
P R E P A R A T I O N OP T H E NOITENSS
P r e p a r a t i o n of S t a r t i n g M a t e r i a l s
Tertiary P u t y 1 Alcohol.
of commerce h a v i n g
a freezing point
with 7-10/3 of its w e i g h t
for 6 to 8 hours,
A H i g h g r a d e t-butyl alcoliol
was refl n x e d
of f r e s h l y c a l c i n e d calcium oxide
a f t e r w h i c h it w a s r a p i d l y distilled f r o m
the inorganic m a t e r i a l .
The di s t i l l a t e w a s
with a p p r o x i m a t e l y 1;£ of its weight
eight hours and d i s t i l l e d f r o m the
residue f r o m the d i s t i l l a t i o n was
brown to white
of 20-23°C.
in color.
of _t-butyl alcohol w a s
This m a t e r i a l ,
then refluxed
of m e t a l l i c
s o d i u m _t-butoxide. The
a crystalline
A total of 1 1 , 8 4 2 gm.
solid,
light
(160 moles)
so treated.
in batches
of a b o u t
placed in a t h e r m o s t a t held at 24.9°C.
and
crystallize over a p e r i o d of 24-36 ho u r s .
3 liters,
was
allowed to
The liquid was
rapidly decanted., t h e crystals well d r a i n e d ,
fused and put a s i d e
sodium for
and the solid
for a second r e c r y s t a l l i z a t i o n .
This
process was r e p e a t e d
on the m o t h e r
of material solid a t
this temperature h a d b e e n obtained.
A r e c r y s t a l l i z a t i o n of the
carried out in the
l i q u o r s until 140 moles
solid
same manner at 25.0°C.
of high q u a l i t y _t-bmtyl alcohol w h i c h w a s
obtained above was
y i e l d i n g 125 m o l e s
used in the pr e ­
paration of the nonen e s .
Tertiary A m y l Aleohol.
C o m m e r c i a l jb-amyl alcohol was
t r e a t e d i n the f o l l o w i n g man n e r .
B a t c h 1.
gm.
The alcohol,
9,825 gm. , was h e a t e d w i t h 750
of f r e s h l y c a l c i n e d c a l c i u m oxide on a s t e a m h a t h for nine
hours,
d i s t i l l e d f r o m the i n o r g a n i c material, h e a t e d w i t h 40 gm.
of m e t a l l i c
sodium for 24 ho u r s ,
and again d i s t i l l e d f r o m i n ­
organic material.
B a t c h 2. A 1,328
with
metallic
gm.
p o r t i o n of the
a l c o h o l was treated
sodium on a s t e a m h a t h for 24 hours,
20 gm. of
s o d i u m a d d ed and the h e a t i n g continued for 36 hours,
after
w h i c h the alcohol was r e m o v e d f r o m non-volatile m a t e r i a l b y
d i s tillation.
B a t c h 3. A 9, 3 5 2
with
155
gm.
gm. of m e t a l l i c
p o r t i o n of the
a l c o h o l was treated
s o d i u m on a steam h a t h f o r
50 hours,
and t h e n distilled f r o m n o n - v o l a t i l e material.
In all cases the r e s i d u e s f r o m the d i s t i l l a t i o n s were
d a r k b r o w n tarry masses.
Kilmer
(98) reports that the crude
a l c o h o l contained v a r i o u s
Impurities,
i n c l uding aldehydes,
w h i c h are l a r g e l y r e m o v e d b y treatment w i t h sodium.
A total of 20,505 gm. of the crude alc o h o l was treated;
17,750 gin. of m a t e r i a l was recovered.
The treated alc o h o l w a s
c o l u m n s IT (137)
and H F
b e t w e e n 5 and 10 to 1.
(11)
then f r a c t i o n a t e d t h r o u g h
in five hatches at a r e f l u x ratio
The d a t a
of a typical f r a c t i o n a t i o n is
g i v e n below.
F r a c t i o n a t i o n No.
7.
C o l u m n H P was c h a r g e d w i t h 3512 gm.
a l c o h o l containing 5 gm.
B a r o m e t e r 735-736 mm.
of the
treated
of anhydrous p o t a s s i u m carbonate.
H e a d Temp,
Cut
94-99
1
n 20D
G-rams .
Reflux
1.4013
91.0
10-1
2
100.3
1.4043
96.2
it
3
101.4
1. 4048
99.1
tr
4
101,5
1.4048
96.8
tt
5
101.8
1.4049
98.3
tt
S
102.0
1.4047
94.4
it
7
102.1
1.4049
89.5
tt
8
102.2
1.4049
88.0
8-1
9
102.2
1.4049
97.8
it
10
102.3
1.4050
277.0
7-1
11
102.4
1.4050
469.0
tt
12
101.7
1.4056
805.0
it
13
102.6
1.4050
463.0
10-1
14
105.0
1.405 2
317.0
it
1.4095
312.0
Residixe
3494.1
Recovery
Loss
22.9
F u r t h e r p u r i f i c a t i o n of the t- a m y l
effected b y c o m b i n i n g middle
alcohol was
cuts f r o m the first f r a c t i o n a ­
tion and r e d i s t i l l i n g through, column II P.
This charging
stock was c o m p o s e d of cuts h a v i n g r e f r a c t i v e indices of n ^ D
1,4047 - SO and b o i l i n g points of 1 0 1 - 1 0 5 ° C .
P r a c t i o n a t i o n H o . _8
Charge
3 , 8 7 0 gm.
Cut
1
Head Temp,
n
2 0 ,
D(tf)
101.3-101.7(739mm) 1.40510
Grams
252
Reflux Ratio
Cottrell B.P.. °C.
Initial
Half Distilled
15-1
2
102.0
1.40490
275
it
100.60
100.82(741mm)
3
102,5
1.40490
916
12-1
100.93
101.00(739mm)
4
102.9(740)
1.40490
797
it
5
102.9
1.40500
904
15-1
6
102.9
1.40495
398
ti
101.30
101.32(741mm)
1.4060
362
Residue
Fractionation 17o. 9
Charge 3764 gm.
Cut
1.
Head Temp.
n20D (-;;*)
101.3-101.6(730mm) 1.40500
Grams
305
Reflux Ratio
Cottrell 3.P., 0 C.
initial
Half Distilled
20-1
it
2
101.8(726)
1.40495
300
3
101.9
1.40490
1059
4
102.0(737)
1.40490
710
it
5
102.0
1.40495
896
it
6
102.0
1.40490
198
II
1.4060
216
esidue
100.60
100.70 (733mm)
101.05
101.05(753™)
12-1
Valentine Refractometer reading directly to fourth decimal, with estimation of fifth.
Fractionation Ho. 10
Charge : 3795 gm.
Cut
1
Head Temp.
n20D
98.5-101.5(740mm)1.40485
Grams
Reflux Ratio
175
15-1
2
101.7
1.40495
169
3
101,S
1,40490
184
ii
4
102.8(743)
1.40490
716
10-1
5
102.9
1.40490
681
ir
6
102,9
1.40490
705
7
102.9
1.40490
707
8
102.9
1.40490
201
1.4068
310
Residue
Cottrell 3.P.,°C.
Initial Half. Distilled
100.55
100.60(733mm)
100.95
100.98(733mn)
it
F o l y m er 1 z a t i o n a n d D i s t i l l a t i o n .
The nonenes were p r e p a r e d "by the m e t h o d
in five
hatches of t w e n t y m o l e s each.
of M i x o n
The a l c o h o l s
those w h o s e p u r i f i c a t i o n h a s
just b e e n described.
alcohol
of 25°C.;
had a f r e e z i n g p o i n t
used were
T h e _t-butyl
the jt-amyl alcohol
h a d a r e f r a c t i v e i n d e x of 1.4r0490 to 1.40500 at 20°C.
maximum
Cottrell b o i l i n g r a n g e
(19)
of 100.55
(733 mm.)
and a
to 101.32°C
(741 m m * )
In a 12 l i t e r f l a 3 k f i t t e d w i t h stir r e r a n d ref l u x
c o n d e n s e r was p l a c e d a m i x t u r e
sulfuric
acid and 3186 ccm.
r o o m temperature.
of 3136 ccm.
o f water,
A mercury
a pressure
(20 m o l e s )
escape
of 2 0 - 3 0 m m .
s o l u t i o n of 1430 gm.
of _t-amyl a l c o h o l
b a t h so
that gentle
loss of
isobutylene.
the h e a d of
of i s o b u t y l e n e
of m e r c u r y on the
(20 m o l e s )
r e a c t i o n mixture was w a r m e d
slightly below
trap was a t t a c h e d to
the c o n d e n s e r to a l l o w f o r t h e
keeping
cooled
of 94 p e r cent
system.
A
of _t~butyl a l c o h o l and 1760 g m
was
stirred i n t o the acid;
cautiously by means
this
of a steam
r e f l u x i n g was m a i n t a i n e d w i t h o u t
After
while
excessive
eight hours the t e m p e r a t u r e of the
l i q u i d h a d risen to a p p r o x i m a t e l y 75°C.
The
acid l a y e r was
t h e n s e p a r a t e d and the oi l l a y e r washed first with. 1500 ccm.
of w a t e r ,
followed b y w a s h i n g
with 5 p e r c e n t
s o d i u m carbonate
s o l u t i o n until e v o l u t i o n of c a r b o n dioxide h a d ceased.
crude
o l e f i n was t h e n w e i g h e d ,
and d i s t i l l e d f r o m a
The
dried over c a l c i u m chloride,
small a m o u n t
of a n h y d r o u s p o t a s s i u m
carbonate
f r a c t ionat i o n ITo. 1 1 .
Column James
height of w a s h e d o l e f i n 2413 gm.
II
or 9 5 . 3 % recovery.
63
H e a d Temp.
n 20D
1
3 5 - 3 8 ( 7 3 5 mm)
2
3
Amount
Ref li
1.3840
121
7-1
3 8 ( 7 3 6 mm)
1.3841
133
tt
4 0 ( 95)
1.3933
66
ii
101.2
1.4094
150
ii
5
10 2 . 0
1.4102
167
8-1
6
11 0 . 0
1.4127
140
12-1
7
125.0 .
1.4223
178
10-1
8
126.5
1.4240
174
8-1
9
128.0
1.4247
162
ti
10
129.0
1.4255
168
7-1
11
130.0
1.4261
169
ii
12
140.0
1.4280
84
1.4367
535
Cut
4
(95)
Residue
F r a c t i o n a t i o n Ho. 12
5-1
C o l u m n Ii P
W e i g h t of was hed olefin 2388 gm. or 94.3^
Cut
1
H e a d Temp.
n 20D
3 0 - 3 9 ( 7 4 1 mm. )
1.3842
159
5-1
7-1
Amount
Ref li
2
39.2
1.3872
155
3
43(75)
1.3904
54
ti
4
(75)102.5
1.4095
154
n
5
103.1
1.4101
164
ii
6
110.0
1.4139
161
ii
7
1 27.0
1.4220
163
it
8
127.5
1.4235
170
10-1
9
129.5
1.4246
182
6-1
10
130.5
1.4259
160
8-1
11
132.0
1.4261
184
n
12
140. 0
1.4283
102
ti
20 d
1. 4380
h
Residue
Fract ionati on. Ho.
Amount
536
1
H e a d Temp.
30-37(741 mm. )
8-1
Column James II
13
Weight of w a s h e d o l e f i n 2490 gm.
Cut
RefI
or 98.5;^
n 20D
Amount
1.3829
140
3-1
Ref l i u
2
38
1.3858
138
4-1
3
41(65)
1.3871
129
7-1
4
(65)100.7
1.4087
167
rr
5
103.0
1.4109
176
it
6
110.0
1.4135
116
10-1
7
123.0
1.4213
166
6-1
8
125.5
1.4231
177
u
9
126.0
1.4240
160
n
10
128.5
1.4250
165
ii
11
129.5(7 3 6 m m ) 1.4260
143
it
12
130.0
1.4270
146
8-1
13
138.0
1.4297
36
tt
1.4380
511
it
Residue
Fr actionation . Ho.
Weight
Cut
14
'
Column James II
of was h e d o l e f i n 2412 gm.
or 95.8>o
Head Temp.
n 20D
1
30-38(741 mm. )
1.3850
147
5-1
2
38.5
1.3871
153
7-1
3
45(82)
1.3950
34
it
Amount
Reflux
4
(82)101.5
1.4089
168
ii
5
102.0
1.4107
165
ii
S
111.0
1.4135
121
it
7
121.5
1.4198
135
ir
Gut
H e a d Temp.
n 20D
8
124.5
1.4236
167
9
127.0
1.4248
154
ii
10
128.5
1.4255
169
ii
11
129.1
1.4260
158
ii
12
140.0
1.4293
160
ii
1.4370
510
ii
Residue
Prac t i ona t i o n Ho. 15
1
2
n^°D
H ead Temp.
7-1
G o lumn H P
V/eight of v/ashed olefin 2440 gm.
Gut
Reflux
Amount
Amount
or 96.8/o
Reflux
32-38.5(741 m m . )1.3821
148
1.3873
151
it
39.0
1 0 - 1
3
45(35)
1.3886
125
ii
4
(85)102.8
1.4097
175
ii
5
104.0
1.4111
177
ii
6
110.0
1.4146
97
ii
'7
123.5
1.4195.
138
ii
8
129.0
1.4232
171
ti
9
130.6
1.4244
164
ii
10
132,0
1.4253
165
ii
11
133.1
1.4260
155
ii
12
133.7 (735mm) 1.4290
176
it
13
140.0
1.4307
57
ii
1.4375
476
rr
Residue
Pract ionat ion No.
16
A ll tlie d i i s o ' D u t y l e n e cuts f r o m fractionations
15 were combined to g i v e about. 3600 ccm.
was charged to column H P.
11 to
of material which,
The l o w b o i l i n g m a t e r i a l was
stripped
off until the toiling p o i n t
atmosp h e r i c pressure;
was added to
the r e s i d u e ,
the nonenes before
reached 103.7°C.
302 gm. , n ^ D
f r a c t i o n a t i o n No.
at
1.4130,
17.
F r a c t i onation ITo. 1 7 .
T h e c o l u m n used in this
able for t h i s
work through the
R e f i n i n g Laboratory.
take-off t y p e ,
It was of
f r a c t i o n a t i o n was made
avail­
c o o p e r a t i o n of the P e t r o l e u m
the
total condensation,
constructed of 2 i n c h Pyrex pipe,
partial
and h a v i n g a
packed s e c t i o n of 91 inches f i l l e d
with 3/52 inch s t a i n l e s s
steel h e l i x e s
efficiency was e q u i v a l e n t
of No.
30 wire.
Its
to a p p r o x i m a t e l y 30 theoretical p l a t e s ,
equivalent
ditions.
although s e p a r a t i o n s
t o 42 plates had b e e n o b t a i n e d under c e r t a i n
It has been fully d e s c r i b e d elsewhere
(153).
T h e material b o i l i n g b e t w e e n 110°C. and 140°G.
f r a c t i o n a t i o n s No. 11 to 15 and
No.
16, 6 3 20
ccm.
the
(4700 gm. ) , was
from
residue f r o m f rac t i ora tion
charged;
10 gm.
Cut
Head
Temp.
H
co
CO
•
01
p o t a s s i u m carbonate was added t o tine stillpot.
-102.2
1.4113
83.0
52-1
2
103.7
1.4130
86.1
126-1
3
106.1
1.4152
84.3
109-1
4
108.9
1.4175
85.8
68-1
5
112.2
1.4200
88.8
70-1
6
116.0
1.4209
84.0
68-1
7
118.6
1.4210
92.6
63-1
8
120.7
1.4211
86.2
61-1
9
121.4
1.4211
86.3
70-1
10
122.7
1.4210
88.5
71-1
n 20D
con­
Amount
Reflux
of a n h y d r o u s
Cut
He ad T e m p .
n 20D
Amount
Recline Ratio
11
123.6
1.4211
87.8
58-1
12
125.0
1.4213
88.2
70-1
13
125.0
1.4219
89.3
78-1
14
125.2
1.4223
89.1
55-1
15
125.2
1. 4 2 2 5
84.9
66-1
16
125.8
1.4229
86.1
67-1
17
125.4
1.4231
86.1
68-1
18
126.0
1. 4233
88.0
61-1
19
126.1
1. 4 2 3 8
88.1
65-1
20
126.1
1.4238
87.1
61-1
21
126.3
1.4238
8 9.0
61-1
1.4237
89.5
58-1
22
126.0-125.9
23
126.0
1. 4 2 3 8
92.3
62-1
24
126.0
1.4238
86.7
69-1
25
126.0
1.4239
85.1
52-1
26
126.0
1.4241
90.5
52-1
27
126.0
1.4241
86.5
55-1
28
126.0
1.4241
86.0
59-1
29
126.1
1.424-3
89.1
58-1
30
126.2
1.4242
87.0
49-1
31
126.8
1.4242
86.9
54-1
32
127.0
1.4242
84.5
55-1
33
127.1
1.4243
89.2
48-1
34
127.5
1.4243
85.2
69-1
35
127.9
1.4245
86.5
58-1
36
129.0
1.4246
89.3
62-1
37
129.0
1.4252
.87.4
62-1
68.
H e a d Temp.
n^D
Amount
38
129.6
1.4250
84.9
39
130.4
1.4257
87.6
61-1
40
130.8
1.4259
89.1
58-1
41
131.4
1.4259
93.6
55-1
42
131.5
1. 4 2 6 0
86.7
55-1
43
131.9
1.42 62
90.2
67-1
44
131.5
1. 4 2 6 3
88.8
-
Out
Residue plus material
caught
c o l u m n with, air 754.2 g m n ^ D
M a t e r i a l r e c o v e r e d 4603 gm.
F r a c t i o n a t i o n Ho.
Guts
Reflux Ratio
64-1
in i c e - t r a p on s w e e p i n g out
1. 4287.
Los s 97 gm.
18
3-10, F r a c t i o n a t i o n . Ho.
17, 697 g m . , were
c h a r g e d to c o l u m n E M J .
Gut
1
H e a d Temp.
9 8 . 5 - 1 0 3 . 5 (733mm)
n^D
Amount
Reflux Ratio
1.4 1 3 1
43.6
12-1
2
105.0
1.4150
38.5
12-1
3
107.0
1.4170
44.0
12-1
4
107.0
1.4178
42.0
17-1
1.4200
45.5
12-1
5
1 0 5 - 1 0 9 . 0 (732mm)
6
112.5
1.4224
46.8
12-1
7
112.0
1.4233
42.0
12-1
1.4 2 3 8
56.5
12-1
8
1 0 7 - 1 1 6 . 0(735mm)
9
118.0
1.4213
42.3
15-1
10
115-120.5
. 1.4187
48.1
20-1
11
119.5
1. 4 1 7 2
50.0
15-1
1.4190
51.0
15-1
12
1 2 0 - 1 2 3 . 5 (722mm)
13
125.0
1.4215
50.6
15-1
14
126.0
1.4240
38 . 5
15-1
.
69
Residue
n.~ D
Amount
1.4257
28.7
Material Recovered 6 6 8 . 1 gm.
Frac tionat i o n Mo. 19
Loss
R e f l u x Ratio
15-1
28.9 gm.
'
Cuts 6-9, F r a c t i o n a t i o n Wo.
18, 1 8 7 . 6 gm. was
charged to c o l u m n EMJ.
Plead Temp.
G ut
1
104-108.5{738mm)
n 20D
Amount
Reflux
1.4171
6.8
20-
2
109.6
1.4205
6.7
ii
3
110.6
1 .4217
7.3
rr
4
111.0
1.4220
7.3
tr
5
111.5
1.4223
8.0
it
6
112.0
1.4228
7.2
ii
7
112.5
1.4229
12.2
it
8
113.0
1.4232
6.5
it
9
113 •3
1.4236
9.1
ii
10 110.5-113.5(735mm)
1•4238
8.1
30-
11
114.0
1.4242
8.2
20-
12
114.0
1.4246
8.1
rt
13
114.5
1.4248
8.7
it
14
114.8
1.4248
12.1
15-
15
114.8
1.4250
10.1
ti
16
115.0
1.4250
10.1
it
17
115.7
1.4249
10.6
ti
18
114.5-115.5
1.4254
6.2
40-
19
117.5
1.4227
5.9
20-
1.4183
17.4
Residue
Fract i onat i on W o .■ 20
The residue f r o m F r a c t i o n a t i o n Wo.
charged to c o l u m n W.
17, 752 g m . , was
n^Op)
Cut
Iiead Temp.
1
124.5-130.0
1.4251
2
131.0
1.4266
8 4.9
ir
3
131. 2
1.4273
81.6
it
4
131.5
1.4273
82.6
IT
5
131. 5
1.4280
89.4
tt
6
131. 5
1.4286
93.2
1t
7
132.0
1.4291
90.8
tt
8
132.0
1.4297
93.0
tt
9
132.0
1.4302
21.9
II
1.4344
96.0
CO
Residue
Amount
Reflux Ratio
25-1
F r a c t i o n a t i o n N o , 21
Cut R. F r a c t i o n a t i o n No.
20 was charged, to c o l u m n
EMJ •
Cut
H e a d Temp.
(735mm)
1
n 20D
Amount
Reflux
1.4295
6.5
25-1
2
134.0
1.4302
6.7
20-1
3
135.0
1.4299
7.2
tt
4
136.0
1.4300
7.7
it
5
137.0
1.4307
5.4
it
6
139.0
1.4309
6.7
it
7
143.5
1.4313
6.8
8
148. O
1.4292
6.4
1.4384-
31.0
Residue
Fractionation
Cuts
tt
N o • 22
11-3.3, F r a c t i o n a t i o n No.
F r a c t i o n a t i o n No.
18,
cuts
w e r e c h a r g e d to C o l u m n W.
17,
cuts 1 0 - R ,
19-R, F r a c t i o n a t i o n No.
Cut
n 20D
Head Temp.
Amount
Reflux
1
101-114
1.4210
7.0
40-1.
2
116.0
1.4222
6.6
70-1
5
117.5
1.4210
9.3
80-1
4
119.3
1 .4182
10.1
60-1
5
119.7
1.4162
8.5
tt
6
120.5
1. 4155
8.7
ii
7
120.5
1.4152
9.4
8
120.8
1.4150
13.3
9
120.8
1.4153
15.6
10
120.8
1.4152
14.0
11
120.8
1.4152
9.4
12
120.5
1.4152
12.5
ti
13
120.4
1.4152
11.6
it
14
120.4
1.4151
12.2
ii
15
120.4
1.4151
14.1
16
120 .5
1.4159
12.8
ii
17
120 . 7
1.4159
15.6
n
18
121.0
1.4154-
9.9
it
19
121.0
1.4154
16.4
it
20
121.0
1.4160
8.4
ti
21
121.5
1.4160
10.0
ii
22
121.5
1.4165
11.0
it
23
122.0
1.4177
7.7
ti
24
124.0
1.4197
12 . 5
25
125.0
—
Residue
1.4234
5.0
169.0
70-1
it
50-1
ii
60-1
50-1
it
ii
F n a c t i o n a t i o n N o , 25
Tiae higher h o i l i n g cuts f r o m previous r e f r a c t i o n a ­
tions
of n o n e n e
tails were c o m b i n e d and fra c t i o n a t e d t h r o u g h
a 1.3 x 9 0 cm. co l u m n p a c k e d b y 3/32 inch stainless
helixes
(30-35 plates).
A total
of 259.5 gm. was charged,
c o m posed o f cuts 1-8, f r a c t i o n a t i o n Ho. 21, b.p.
and m a t e r i a l of b.p.
1
2
H e a d Temp.
88-119
125-14 8 ° C . ,
1 2 4 . 5 - 1 5 1 . 3 ° C . stripped from the r e ­
sidues f r o m fractionations Wo.
Cut
steel
Pre s sure
736
126
11 to 15 in column W.
n^Or)
Amount R e f l u x
1.4068
1. 7
30-1
1.4203
2.1
ii
3
127.5
1.4242
3.0
ti
4
128
1.4253
6.5
ti
5
129
1.4260
5.7
ti
6
129
1.4263
2.2
n
7
130
1.4271
6.2
ri
8
130
1.4268
3.3
TI
9
131
1.4273
8.5
10-1
10
130.2
1.4276
8.7
3 0-1
11
131
1.4275
9.0
2 0-1
12
130.8
1.4289
8.1
13
131
1.4231
9.7
it
14
131.5
1.4283
11.4
it
15
131.5
1.4236
8.6
ir
16
1 3 2 a5
1.4291
7.7
it
17
131.5
1.4289
8.6
it
18
131.5
1.4289
8.8
ti
19
132
1.4290
8.2
ti
20
132. 5
1. 4289
740
7 34
8.6
tt
Pressure
A m o u n t Reflux R a t i o
Cut
Head Temp.
21
133.5
1.4292
13.2
25-1
22
134
1.4293
8.4
20-1
23
137
1.4294
7.4
it
24
138
1.4290
8.9
1!
25
137
740
1.4296
4.3
It
26
141
740
1.4293
3.9
30-1
27
143.5
740
1.4286
4.4
n
28
144 .5
1.42 80
6.2
it
29
144.5
1.4280
4.6
25-1
30
146
1,4281
5.5
it
31
146.5
1.4285
5.8
it
32
147
1.4292
7.7
it
33
148.5
1.4304
5.7
34
149
1.4317
7.2
n
35
148
1.4325
4.4
40-1
36
-
1.4337
9.3
it
1.4460
6.5
741
Residue
F r a c t i o n a t i o n No.
n 2 0 D
n
24
In order to d e t e r m i n e whether
products b o i l i n g b e t w e e n the amylenes
b e e n formed in the polymeria ation,
or n o t any unusual
and diisobutylenes had
1124 gm,
of material,
f r o m a mixture of cuts 1 to 3, f r a c t i o n a t i o n No.
charged to c o l u m n N.
tr
These
taken
15 was
olefins h a d b e e n stored for m o r e
than a year.
Cut
1
2
Head Temp.
34-35
35
P r e s sure
739
n 20D
A m o u n t Reflux R a t i o
1.3827
61.5
7-1
1.3839
68.0
ii
H e a d Temp.
Cut
3
37.5
4
37.5
5
4 2.0
Pres sure
n
20
D
A m o u n t Reflurc R a t i o
1.3870
568.0
7-1
1.3870
254.0
it
1.3868
12.0
Residue
1.4170
119.0
Ice T r a p
1.3847
6.1
737
A l t h o u g h the o r i g i n a l
ciable p e r o x i d e content,
o l e f i n h a d not
the r e s i d u e
ir
shown appre-
from tire d i s t i l l a t i o n
gave a p o s i t i v e test due to c o n c e n t r a t i o n .
co m b i n e d a n d washed w i t h 5 / t K I
17-1
solution,
Cuts 4 a n d R were
water, 1 0 % N a O H ,
and
again w i t h water.
T h e 79 gm.
of m a t e r i a l
r e c o v e r e d after d r y i n g
p o t a s s i u m carbonate was c h a r g e d
to column EMJ for f r a c t i o n a ­
tion.
F r a c t i o n a t i o n No.
Cut
H e a d Temp.
1
34-37.5
2
48
3
41-67
Pressure
735
25
n 20D
Am o u n t R e f l u x
1.3853
4.3
is-:
1.3872
2.6
ir
1.3884
3.4
20-:
4
69
1.3860
2,0
ii
5
72.5
1.3853
5.4
ti
6
o
•
rCO
1.3880
8.8
ii
7
89.0
1.4055
4.3
ir
8
89.8
1.4070
8.0
ti
9
92.0
1.4053
6.2
it
10
9 9.0
1.4075
4.0
2-1
Residue
over
*-•
24.5
F r a c t i o n a t I o n No. 26
A further f r a c t i o n a t i o n similar to Nos.
24,25 was
undertaken, w a s h i n g out peroxides be f o r e distillation.
A
273 g.
sample, taken f r o m a m i x t u r e containing
cuts 1 to 3, f r a c t i o n a t i o n No.
fractionation No.
15,
sodium thiosulfate,
The dried olefin,
Gut
H e a d Temp.
33-6
2
was washed with 5 / KX
water,
737
solution,
n 20j)
column EMJ.
A m o u n t R e f l u x Rati'
1.3827
13. 5
8-1
36.5
1.3846
14.7
ti
5
36.5
1.3858
15 .1
ti
4
37.0
1 .3853
15. 3
ti
5
38.0
1.3860
79.7
ii
6
38.0
1.3867
72.4
tr
-
Residue No.
1
T h e d i s t i l l a t i o n was c ontinued in a n
column packed w i t h 3 / 3 2 inch stainless
7
36-37.5
736
5%
and dried over c a l c i u m chloride.
2 5 9 . 5 gtn. , was charged to
Pressure
1 to 3,
H
•
O
1
14, and cuts
.3 x 40 cm.
s t e e l helixes.
1.3868
6.1
7-1
8
37.8
1.3872
4.0
ii
9
37
1.3880
1.8
ii
10
41
1.3880
1 .0
ii
11
66
1.3900
1.0
15-1
12
66
1.3867
1. 7
ti
13
73
1.3973
0.7
10-1
14
74
1.4044
1.0
15-1
15
77
1.4040
1.3
it
IS
79
1.4030
1.0
it
Cut
Plead. Temp.
Pressure
80
17
Amount R e f l u x R a t i o
1.4030
1.4
12-1
1.4033
1..6
it
18
80
19
93
1.4076
0.9
15-1
20
102
1.4197
1.7
tt
21
—
1.4213
2.2
-
1.4646
9.4
R e sidue N o .
734
n 20D
2
F r a c t i o n a t i o n No.
27
I n continuing the e x a m i n a t ion of m a t e r i a l b o i l i n g
"between 40°C.
and 100°G • , a p o r t i o n of the d i i s o b u t y l e n e
f r a c t i o n o f the nonene p r e p a r a t i o n was ref rat Iona ted.
O l efins t a k e n from a m i x t u r e
of
15, cut 4,
14,
No.
13,
f r a c t i o n a t i o n No.
cuts 4 - 6 ,
f r a c t i o n a t i o n No.
cuts 4 - 6, f r a c t i o n a t i o n N<
cuts 4 - 5 ,
f r a c t i o n a t i o n No.
17,
fractionation
12, cuts 1 - 2 ,
538 gm. , w e r e charged to c o l u m n PSIVIJ.
The o l e f i n s gave a v e r y faint
t e s t for peroxides.
Cut
Plead Temp.
n 20D
1
35-41
2
Pres s u r e
739
Amount R e f l u x Ratio'
1.3871
3.0
20-1
89
1.3976
6.0
17-1
3
91.5
1.4038
3.9
20-1
4
92
1.4043
4.5
it
5
93
1.4049
3.9
6
9 3.5
1.4050
3.9
it
7
94
1.4051
4.3
tt
8
9*7
1.4057
7.5
tt
9
99
1.4078
5.0
it
10
99.5
1.4080
6.7
18-1.
11
99.6
1.4083
6.5
tt
H e a d Temp.
Cut
Pressure
n 20D
A m o u n t Reflux
1.4084
8.1
18'
1.4084
75.2
10'
1.4083
40.0
ii
1.4083
89.5
ti
101.
1.4086
64.3
tt
17
102.
1.4099
83.7
8
13
101.2
1.4112
12.3
25
19
102.5
1.4117
7.7
20
103
1.4140
12.9
15
21
104
1.4158
CO
•
IQ
20
1.4403
32.7
12
100.
13
100.5
14
100.6
15
100.5
16
737
734
738
Residue
ii
F r a c t i o n a t i o n Ho, _28
Gut R, F r a c t i o n a t i o n Ho,
27, was refractionated,
through, a n 0,8 x 40 cm,
column pa c k e d with. 3 / 3 2 ” stainless
steel helixes.
28. 0 gm.
Gut
1
Head Temp.
90-104.5
Charge:
Pressure
736
n 20D
A m o u n t Re f l u x Rat i o
1.4160
1.4
20-1
2
110
1.4156
1.0
ii
3
115
- 1.4092
0.3
it
4
119
1.4056
1.0
ii
5
130
1.4082
1.8
I!
1.4513
21.0
Residue
Cut 4 h a d a y e l l o w color and an o d o r of ketone* A
2,4 -dinitr o p h e n y l h y d r az one was prepar ed, m.p.
mixed m,p.
9 9 - 1 0 0 ° C .; a
w i t h the d e r i v a t i v e of m e t h y l n e o p e n t y l ketone
(m.p. 1 0 0 - 1 0 0 . 5°C. ) w a s m.p.
methyl n e o p e n t y l k e t o n e
9 9 . 5 - 1 0 0 . 5°C .
The presence
in this m a t e r i a l w a s u n d o u b t e d l y
of
due to the a c t i o n of a t m o s p h e r i c
during storage
of about one year.
F r a c t i o n a t i o n No.
The
o x y g e n 011 d i i s o b u t y l e n e
29
cuts boiling b e t w e e n the amylenes and the
d i i s o b u t y l e n e s were f r a c t i o n a t e d t h r o u g h column EMJ.
89.7 gm. c h a r g e
consisted of cuts
2 —
Th e
10, f r a c t i o n a t i o n
N 0. 25 and cuts 1 - 10, f r a c t i o n a t i o n N o . 27.
Cut
H e a d Temp.
1
Pressure
734
35-50
n^^D
Amount R e f l u x R a t i o
1.3831
5.2
15-1
2
67
1. 3 9 1 1
3.1
25-1
0
71.5
1.3873
2.7
tt
4
7 2.5
1.3843
2.7
n
5
73.4
1.3841
3.5
30-1
6
76.5
1.3855
2.5
TI
7
89
1.3975
3.7
tl
8
9 1.2
1.4050
2.5
tli
9
91.5
1.4060
5.4
35-1
10
93
1.4053
5.2
tt
11
93.5
1.4042
4.1
30-1
12
95
1.4041
8.3
25-1
15
95
1.4043
5.9
20-1
14
9 5.5
1.4043
6.3
25-1
15
97
1.4051
4.9
it
16
99
1.4070
5.2
it
1.4140
11.4
Res idue
The
cuts having b o i l i n g points b e t w e e n 4 0 - 1 00°C .
were a p p a r e n t l y products of a t m o s p h e r i c
olefins p r e sent,
oxidation of the
and not u n e x p e c t e d products of the
79.
p olymerization.
N o c o m p o u n d s could be definitely-
identified.
cuts gave ketone d e r i v a t i v e s
All
with. 2,4-
dinitroplienylhydrazine w h i c h could not be p u r i f i e d .
however,
m.p.
Gut 5,
gave a 2 , 4 - d i n i t r o p h e n y l h y d r a z o n e w h i c h h a d a
of 1 2 0.5-1.5°C.
after
several r e c r y s t a l l i z a t i o n s ,
gave no d e p r e s s i o n w h e n m i x e d w i t h the d e r i v a t i v e
isopropyl ketone,
m.p.
which
of m e t h y l
1 2 2 . 5 - 1 2 3 . 5°C.
In f u r t h e r w o r k cuts b o i l i n g b e t w e e n 66 and 99°C.
was treated w i t h h y d r o x y l amine and an oxime
at 155-159°C.
at a t m o s p h e r i c pressure,
derivative of e i t h e r m e t h y l
ketone.
the
Alcohols were
isopropyl k e t o n e
or methyl ethyl
it reacted w i t h sodium,
duced potassium permanganate
however no
c ould be prepared.
c o r r e s p o n d i n g to the
s u s p e c t e d in the u n r e a c t e d por t i o n of
starting m a t e r i a l as
alcoholic odor;
obtained boiling
solution,
and h a d
a definite
s a t i s factory p h e n y l u r e t h a n e
F o r m a t i o n of h y d r o x y l a t e d compounds b y
the action of air on o l e f i n s has b e e n r e p o r t e d
It was c o n c l u d e d that no a p p r e c i a b l e
m a t e r i a l b o i l i n g b e t w e e n amylene
f o r m e d in the p o l y m e r i z a t i o n .
(147).
am o u n t of
and d i i s o b u t y l e n e
The
was
intermediate boiling
m a t e r i a l o b t a i n e d w a s a t t r i b u t e d to a t m o s p h e r i c
of olefins.
slowly r e ­
oxidation
80.
3.
I d e n t i f i c a t i o n o f Some Pol-ymerization
Products of t h e
Olefins from t - B u t y l
and t-Amyl A l c o h o l s
a.
I d e n t i f i c a t i o n of 2 ,5 » 4-Trimethyl->2— Pen t e n e
Ozonolysis.
30.8 gm.
( 0 . 2 7 5 mole)
Guts 15,
were o z o n i z e d
solvent in tlie usual manner.
rate:
15 L.
( See
part II-B-3-b.)
ozonide w a s d e c o m p o s e d
of z i n c dust and 0.1 gm.
hydroquinone.
tion of the
The oil layer,
7 hours.
in the usual manner,
d r i e d over m a g n e s i u m
solvent,
sulfate,
c o l u m n packed w i t h 2 m m .
F r a c t i o n a t i o n Ho.
Cut
He ad T e m p .
1
26-28
i.d*
and r e s i d u e f r o m
of the w a t e r
glass helixes.
30
n 20D
Amount
Reflux Ratio
1.3542
ca 15
3-1
1.1
5-1
3
85
1.3680
0.3
7-1
4
90
1.3842
1.1
O
5
91.5
1.3868
1.5
it
6
92.0
1.3881
1.8
tt
7
92.5
1.3885
1.5
tt
8
95.0
1 .3892
1.5
7-1
111.0
1.4040
1.4
110.0
1.4156
1.5
it
1.4150
1.5
II
10
11
M i c r o b.p.113
1
H
H
0
H
1
1.3548
H
34
.
layer
and c h a r g e d to
2
9
using
the r e s i d u e from the d i s t i l l a ­
the e v a p o r a t i o n of ether from the e x t r a c t s
0.7 x 45 cm.
Oxygen
e a c h of silver n i t r a t e a n d
low-boiling hydrocarbon
was c o m b i n e d ,
19,
in l o w - b o i l i n g h y d r o c a r b o n
p e r horir; time r e q u i r e d :
The
18.3 gm.
16, 17 fractionation. H o .
a
Cut
Head Temp.
12
n
-
Residue
20
D
Amount
1.4016
R e f l u x Ratio
1.9
Micro b.p . 150 1.4351
1.9
Ident if ic at ion o f Ozonoh^sis P r o d u c t s
Water L a y e r .
be
obtained m.p.
A
v e r y small amount
167 - 77°C.,
of IICHO m a y have b e e n p r e s e n t ;
of
a dimetol c o u l d
i n d i c a t i n g tliat a small a mount
known d erivative
of KCHO, m.p.
1 8 9 °C.
A dibenzal derivative
1 1 0 . 5 - 111.5°C.;
known derivative
Cuts 5 - 8 .
2.8°G.; m i x e d m.p.
obtained, m.p.
of aceto n e ,
m.p.
112°C.
2 , 4 — d i n i t r o p h e n y l h y d r a z o n e , m.p.
22°C.; known d e r i v a t i v e
121.5
failed to ozonise,
121.5
-
o f methyl i s o p r o p y l k e t o n e 122.3 -
Cuts 10 - 12.
had
for acetone was
— 122°C.
T3ae cuts were l a r g e l y o l e f i n which,
as
shown b y their r e a d y
reaction w i t h
5/b 'bromine in C C 1 A a n d d i l u t e p o t a s s i u m p e r m a n g a n a t e , b o i l i n g
p o i n t and refrac t i v e
appreciable amounts
index,
trimethyl-2-pentene,
that the o l e f i n o z o n i z e d was 2,5,4-
since
w e r e formed on o z o n o l y s i s .
n^D
1.4250,
of the c o n st a n t s
b.
t o form
of k e t o n e derivatives.
It was c o n c l u d e d
1 1 5 . 7°C.,
and their f a i l u r e
acetone a n d m e t h y l
The p h y s i c a l
constant's, b.p,
c h e c k well w i t h the
of t h i s
olefin, b.p.
Isopropyl k e t o n e
l i t e r a t u r e values
1 1 5 . 6°C.,
n^D
1.4263
I d e n t i f i c a t i o n of 3,4, 4 - T r i n e t h y l — 2-IIexene and
2,5,4 , 4 - T e t r a m e t h y l - S - P e n t e n e .
Ozonolysis.
(0.474 moles)
Cuts
f r a c t i o n a t i o n Ho.
gm.
(see
part II-B-5-b) . O x y g e n rate, 17 L. p e r h o u r ;
1 6 . 5 hours.
were
IS - 26,
59.7
required,
114.8-
23,
ozonized in the u s u a l manner
time
82
This
I.4289
-96.
material h a d a b.p.
should c o n t a i n
the highest b o i l i n g of
ozonide was decomposed, as usual
u s i n g 32.7 gm.
silver n i t r a t e
The
of
zinc d u s t
(see part
and 0.1 gm.
each
and h y d r o q u i n o n e .
c o m b i n e d m a t e r i a l f r o m the
oil layer,
the
re s i d u e f r o m the d i s t i l l a t i o n of t h e m a t e r i a l f r o m the
trap,
and t h e
from the e t h e r
residue left
extract was
packed with 5 / 3 2
1
Head Temp.
33-35
Pressure
737
charged
to a n 0.8 x 40 cm.
s t e e l helixes.
column
Charge:
5 8 . 5 gm.
31
n 2° D
Am o u n t
Reflux Ratio
1.3537
10.7
6-1
2
52
1.3620
0.2
25-1
3
70. 5
1.3841
0.8
ti
4
72
1.3830
0.9
25-1
5
79
1.3859
1.0
30-1
6
87
1.3950
0.9
20-1
7
98
1.3967
0.9
2 5-1
8
103
1.3986
1.7
tt
9
112.5
1.4023
1.0
ti
1.4040
1.0
20-1
10
111
11
117
1.4070
1.4
it
12
122
1.4086
1.1
it
13
124
1.4100
1.9
15-1
14
126
1.4108
1.7
738
ice-
a f t e r d i s t i l l a t i o n of the e t h e r
inch s t a i n l e s s
F r a c t i o n a t i o n Ho.
Cut
so
pres e n t .
The
II,B,3,b)
all
or t r i m e t h y l h e x e n e s b o i l b e l o w 1 4 0 ° C . ,
this m a t e r i a l
the n o n e n e s
n^D
A c c o r d i n g to E g l o f f f s t a b u l a t i o n (20)
dimethylheptenes
that
of 132-141°C.,
20-1
n 20 D
Pressure
Amount
Reflux Ratio
Cut
H e a d Temp.
15
130
1.4138
1.2
20-1
16
135
1.4189
2.1
ti
17
141
1. 4 2 2 0
1.2
ir
18
146.5
1.4213
1.0
ti
19
146.5
1.4203
2. 2
15-1
20
149
1.4206
2.1
ti
21
148
1.4196
1.8
it
22
146
1.4205
2.3
20-1
23
148
1.4206
2.2
it
24
—
1.4206
1.8
-
1.4475
10.0
Residue
I d e n t i f i c a t i o n of Oz o n o l y s i s
W a t e r ha^rer.
derivative
Products
Dimetol derivative,
of f o r m a l d e h y d e
m.p.
although, the
i d e n t i f i c a t i o n of p i n a c o l o n e
di c a t e s
it s h o u l d be present.
1 3 8 . 5 - 9 . 5 ° G .; k n o w n d e r i v a t i v e
4i°C„; minced m.p.
m.p.
m.p.
-24°C.;
of a c e t a l d e h y d e , m.p.
is
knovm derivative
m i x e d m.p.
(106°C.)
in this m a t e r i a l
D i m e t o l deri v a t i v e ,
140—
2,4 - D i n i t r o p h e n y l h y d r a z o n e , purified with
122
125.5 -126°C.;
boils higher
in­
139-40°C.
Cuts 4 — 5 .
difficulty,
c o u l d be obt a i n e d
in cuts 5 - 8
Low-Boiling Hydrocarbon Solution.
m.p.
knovm
189°C.
No d i b e n z a l d e r i v a t i v e f o r a c e t o n e
that
188-9°C.;
123 -5°C.
t h a n this m a t e r i a l
probable,
of pinacolone,
A l t h o u g h pinaco l o n e
(72-87°C.)
its p r e s e n c e
i n a s m u c h as h i g h e r cuts c o n t a i n e d
it 0
Th e
that
semicarbazone
the a c e t o n e
could not be
purified,
derivative may have b e e n present.
indicating
Cut s 5 - 8 .
2 , 4-Dinit.r o p h e n y l h y d r a z o n e , m.p.
1 2 4 . 5 - 5 ° C . ; known d e r i v a t i v e
mixed m.p.
m.p.
1 2 5 - 5 . 5°C.;
124.5-5.5°C.
Cut 1 1 .
hydrazone
of pinacolone,
ITo a p p r e c i a b l e
could be obtained,
amount
of 2,4 - d i n i t r o p h e n y l -
i n d i c a t i n g that the m a t e r i a l was
l a r g e l y o l e f i n which h a d f a i l e d
to ozonize.
The fact
that
its b o i l i n g point
(111-17°C.)
w a s m u c h b e l o w that of the
starting material
(132-41°C.)
d o e s not exclude the po s s i b i l i t y
i n a s m u c h as p e c u liarities
in b o i l i n g point are o c c a s i o n a l l y
e n c o u n t e r e d in f r a c t i o n a t i o n of ozonolysis products t h r o u g h
small columns.
C u t 14.
111°C.;
2,4-Dinitrophenylliydrazone , m.p.
I m o v m derivative
1 1 1 . 5°C.;
m i x e d m.p.
110.5
Semicarbazone
134°0.;
m.p.
111-
- 111.2°C.
p u r i f i e d w i t h difficulty, m.p.
I m o v m deriva t i v e
139°C.; m i x e d m.p.
of m e t h y l _t-amyl ketone,
110.5-
130.5-
of m e t h y l _t-amyl ketone, m.p.
138.5-
132 - 6°C.
C ut 16 . A 2,4 - D i n i t r o p h e n y l h y a r a z o n e was p r e p a r e d
but c o u l d not be purified.
C u t s 18-23.
T h i s m a t e r i a l was not i d e n t i f i e d c o n ­
c l u s i v e l y but was b e l i e v e d to b e
hexanone
or
either 4,4 - d i m e t h y l - 2 -
3, 3 , 4-tr iinethyl-2-pentanone.
See part
II,B,3,a,
for f u l l d i s c u s s i o n of the i d e n t i t y of this compound.
C uts 13 - 25 gave
m e l t e d at
1 4 5 - 6 . 5°C.;
w i t h the
derivative
Laughlin
( 9 1 ^ m.p.
of i d e n t i t y .
a 2,4-dinitrophenylhydraaone
the fact
that a mixed m.p.
was ob t a i n e d
of 3 , 3 , 4 - t r i m e t h y l - 2 - p e n t a n o n e
145 -6.5°C.,
which
£c.f.
w a s not c o n s i d e r e d p r o o f
85.
The
s e m i c a r b a z o n e m e l t e d at 171 - 2 °G.
m.p. with a sample
of t h e derivative
pentanone obtained
f r o m L o q u i n and L e e r s
A mixed
of 3 , 3 , 4 - t r i m e t h y l - 2(138), m.p,
15O°0.,
was b e l o w 140^0.
A n a l y s i s : Calc,
Found:
C, 58.50;&; H,
for •C gIIigh 30 : C,
58.33^; H, 10.34;2.
10.28>o.
F u r t h e r d i s c u s s i o n of this m a t e r i a l will be f o u n d
in part II,B,3,a.
c•
Identification of
5, 5-Dimethyl-2-Isopr o p y l -
1-Butene
Ozonolysis.
119.7 - 1 2 0 . 8°C.,
ozonized
tour;
Cuts
5 - 8 ,
fractionation Ho.
n 20D 1 . 4 1 6 2 - 5 0 ,
as described in part
56.3 gm.
If,B,5,b.
22,
(.288 m o l e )
Gas rate,
17
"b.p.
were
L. per
t i m e required, 7 hours.
T h e ozonide was t h e n d e c o m p o s e d and u s e d i n t h e
usual m a n n e r ,
eacli of
using 14 gm.
(.29 mole)
of zinc dust
a r d 0.1 gm.
s i l v e r nitrate and hydr o q u i n o n e .
The
extracts
oil layer,
residue
of the water layer,
f r o m dist i l l a t i o n of
ether
a n d residue from d i s t i l l a t i o n of
the l o w - b o i l i n g h y d r o c a r b o n c o l l e c t e d In the i c e - t r a p s
combined
and charged to a n 0.8 x
3/32" s t a i n l e s s
steel heli x e s .
F r a c t i o n a t I o n Ho.
Cut
H e a d Temp.
1
29-33
2.
Pressure
734
40 cm. c o l u m n p a c k e d
Charge:
26.7 gm.
20-j-.
D
Amount
n
R e f l u x Ratio
4.6
12-1
36
1.3538
1.2
18-1
3
53
1.3603
■ 0.3
30-1
4
74
1.3815
0.5
ii
5
7 5.5
1.3923
1.4
n
6
93
1.3930
0.'5
n
7
108
1.4005
0.5
ir
8
118
1.4116
0.8
20-1
9
118.5
1.4136
1. 4
ir
10
119
1.4137
1.4
tt
11
118
1.4116
1.4
20-1
12
120
1.4130
1.6
10-1
739
with
32
1.3523
-
were
H e a d Temp.
Pressure
n 20 D
Amount Reflux Ratio
13
127
1.4070
1.3
20-1
14-
131
1.4040
1.2
11
15
131.5
1.4050
H
•
CD
Cut
IS
—
1.4060
CO
•
01
Residue vr1
1.4260
2. 6
15-1
-
The r e sidue was distilled f r o m a small distilling
flask.
17 to 150
1.4042
1.2
Residue # 2
1.4407
1.3
Identification
Water L a y e r .
k nown d e r i v a t i v e
of O z o n o l y s i s P r o d u c t s
Dimetol derivative,
of f o r m a l d e h y d e ,
m.p.
m.p.
187.7 -88.7°C.
189°C.
O n a t t e m p t i n g to p r e p a r e a d i b e n z a l d e r i v a t i v e
acetone a v e r y s m a l l
p r e cipitated.
amount
This
amount
of m a t e r i a l , m g .
i n d i c a t e s the p r o b a b l e
of a c e t o n e ,
dibenzal derivative,
L o w - B o i l i n g Ii7/dr o c a r b o n .
acetaldehyde
Cut
3. A
v e r y ' s m a l l amount
p r e s e n c e of a small
m.p.
112°C.
ITo d i m e t o l derivativ e
of
5.
purified.
2 , 4 - D i n i t r o p h e n y l - h y d r a z o n e , m.p.
of m e t h y l
m i x e d m.p.
- 1 2 2 . 5°C.
121.5
of 2 , 4 - d i n i t r o p h e n y l -
w h i c h c o u l d n o t be
known derivative
Cuts 7-12.
failed to b e
was
c o u l d be prepared.
h y d r a z o n e was o b t a i n e d ,
Cut
90 -115°C.
of
isopropyl ketone,
This material was
ozonized.
m.p.
121-2 2 ° C . ;
122 -3°C.;
olefin which had
Ho k e t o n e d e r i v a t i v e s
could be
obtained.
Cut
15.
2 , 4 - D i n i t r o p h e n y l h y d r a z o n e , m.p.
1G5.0
-
88
5.6°C.;
II
knovm derivative
3 , b .) m.p.
Gut 17.
derivative
m.p.
of p e n t a m e t h y l a c e t o n e
165.0 - 5 . 8 ° C . ;
O x i m e , m.p.
m i x e d m.p.
138.5
1 3 9 . 5 - 40.5°C.
1 6 5 . 0 -5.8°C.
-9.5°C.;
of p e n t a m e t h y l a c e t o n e , m.p.
(See p a r t
knovm
141 -1.5°C.;
mixed
B.
O X I D A T I O N OF N O N E N E S W I T H
SODIUM
D I C H R OIviATE- S ULF UR IC A C I D M I X T U R E
1.
Th e O x i d a t i o n .
Run I .
dichromate
1010 gm.
To
in 3 L.
(8 moles)
f r a c t i o n a t i o n No.
a solution of* 2 7 0 0 gms.
of water H e l d in a 12 L*
of nonenes,
17.
of 93/o s u l f u r i c
water a d d e d in 500 ccm.
THe w a t e r
oil layer
layer
layer,
s t i r r e d and a
acid
of
over a p e r i o d of six days.
THe
p r o d u c t was s t e a m
of s o d i u m c a r b o n a t e ,
one h a l f h o u r
w e i g h e d 537 gm.
and the w a t e r
i n 2160 ccm.
of di stil l a t e H a d H e e n
for
extracted w i t h e t h e r ,
flask was a d d e d
o f cuts 14-25,
l a y e r of the d i s t i l l a t e
treated w i t h 300 gm.
oil (ketone)
po rtions
s t i r r e d n i n e more days.
distilled u n t i l 7 L.
with the
consisting
The m i x t u r e was
solution of 2160 ccm.
It was t h e n
of sodium
collected.
was siphoned off,
a n d then s t i r r e d
at room, temperature.
The
T h e c a r b o n a t e layer was
the ether e x t r a c t a d d e d to the oil
layer c o m b i n e d w i t h t h e
alkali e x t r a c t
below.
The
t a r r y r e s i d u e f r o m the s t e a m d i s t i l l a t i o n was
extracted f r o m w a t e r
and c h r o m i u m sul f a t e
portions
this extract was
of b e n z e n e ;
and s t i rred w i t h a
in 3 L.
s o l u t i o n of 500 gm.
of w a t e r f o r
remaining benzene w a s
compounds f i l t e r e d
100 gm.
e v a p o r a t e d to 1.5 L.
of
s o d i u m hydroxid.e
t w e n t y - f o u r h o u r s u n d e r reflux.
The
d i s t i l l e d and p r e c i p i t a t e d c h r o m i u m
off;
these
of sodixim h y d r o x i d e
hours and r e m o v e d b y
w i t h two - 2 L.
were
in 1 L.
again extracted with
of w a t e r
for t w e n t y - f o u r
filtration.
The two a l k a l i extracts
a n d the
s o d i u m carbo n a t e
extract w e r e
oil
(acid)
combined and a c i d i f i e d with, sulfuric
acid.
The
layer which separated w a s removed and the w a t e r
layer e x t r a c t e d with two 750 ccm.
removal of ether the extract was
portions
of ether;
after
added to the m a i n p o r t i o n
of the acids.
R u n II.
in R u n I.
The procedure w a s
The nonenes used,
25-57, f r a c t i o n a t i o n Ho.
1010
identical w i t h that
gm. , were t a k e n f r o m
used
cuts
17.
F r a c t i o n a t i o n IIo. 55
T h e ketone layers f r o m R u n s I and II above w e r e
c o m bined a n d fractdonated t h r o u g h column W.
The
charge
1109 gm. i n c l u d e d some ether.
H e a d Temp.
n 20D
1
5 5 — 55.0
1.5542
82.0
2
40.0
1.3545
5.7
r*
5
82.0
1.3615
2.6
u
4
78-92.0
1.3883
3.0
o
to
Gut
5
99.5
1.3953
3.2
40,50-1
6
102.0
1.3983
3.7
ii
.7
104.0
1.3993
9.4
30,40-1
8
104.0
1.3993
9.3
50-1
9
1 05.0
1.4004
9.9
30-1
10
112.0
1.4045
6.9
40-1
11
117 . 0
1.4102
6.6
50-1
12
117.0
1.4122
6.2
ii
15
117.5
1.4122
6.3
ti
14
117 .5
1.4123
8.3
30,40-1
15
1 17.5
1.4-123
9.3
ii
Amount
R e f l u x Ratio
20-1
of
H
1
O
91.
Head Temp.
n
20.n
D
Amount
R e f l u x Ratio
30,40-1
16
117.3
1.4122
10.6
17
117.3
1.4123
10.9
18
118,0
1.4123
8.0
19
118.5
1.4123
8.0
20
119.5
1.4123
10.7
21
120.5
1.4128
10.8
22
120.5
1.4133
11.7
23
121.0
1.4134
9.6
24
121.0
1.4146
10.7
25
123.5
1.4183
10.2
26
125.0
1.4229
9.5
27
125.4
1.4242
9.7
28
125.5
1.4243
10.9
29
125.5
1.4244
12.4
30
125.5
1.4244
13.4
31
125.5
1. 4 2 4 4
11.9
32
125.5
1.4244
11.7
53
125.5
1.4244
14. 2
34
125.5
1. 4 2 4 4
12.4
35
125.5
1.4244
13.4
36
125.5
1. 4 2 4 4
11.3
37
125.5
1. 4 2 4 4
10.6
38
125.5
1.4244
13.8
39
125.5
1.4244
11. 9
40
125.5
1.4237
5. 6
41
125.5
1.424-2
2.3
125.5
1.4244
9.1
30-1
40-1
40-1
50-1
Cut
Head. T e m p
n 20D
Amount
Reflux Ratio
125.5
1.4-243
8.7
44
125.5
1.4244
13.5
45
125.8
1. 4 2 4 4
11.6
40-1
46
125.5
1. 4 2 4 5
14.2
if
47
125.5
1.4244
13.6
it
48
125.8
1.424-4
13.5
it
49
125.8
1 .4244
14.4
ir
50
125.8
1.4244
H
o
ti
51
125.8
1.4244
14.7
ir
52
126.0
1.4244
14.3
it
53
128.0
1. 4 2 5 1
14.2
if
54
130. 5
1.4255
10.4
55
132.0
1 .4264
10.7
it
56
140.5
1. 4 2 4 3
7.2
it
57
144.2 .
1.4184
9.4
tt
58
144.2
1. 4 1 7 3
9.8
if
59
1 4 4 .3
1. 4 1 7 2
13.9
it
60
144.3
1 .4172
13.3
if
61
144.4
1.4172
14.3
if
62
144.5
1.4172
13.8
if
63
144. 5
1.4172
15.1
64
1 44 . 5
1.4172
14.2
if
65
144.5
1.4 1 7 2
13.3
ir
66
1 4 4 .5
1.4172
15.7
ii
67
144-. 5
1. 4 1 7 2
13. 6
ii
68
144.5
1.4172
15.0
ii
69
144.5
1.4172
13.7
it
4
43
50-1
ir
n
if
93
H e a d Temp.
Out
n
20r.
D
Amount
Reflux Ratio
70
144. 5
1.4172
16.3
40-1
71
144.5
1.4 1 7 3
13.8
it
72
144.5
1.4172
15.3
tt
73
144.5
1.4172
15 . 0
it
74
14 4 . 5
1.4172
16. 2
ii
75
144.5
1.4172
15.1
ti
76
144.5
1.4172
15.8
it
77
144. 5
1.4 1 7 2
15.1
it
78
144 .5
1.4172
16.5
ii
1.4245
133.0
Residue
F r a c t i o n a t i o n Ho.
Tlie a c i d s
34
from Runs
I
a n d II w e r e
c onibined a n d
f r a c t i o n a t e d thorough. c o l u m n H*
Cut
H e a d Temp.
Pressure
1
55
2
n^D
Amount
200
1.3855
8.0
1 0 - 1
35
33
1.3895
4.5
it
3
35
26
1.3958
4.2
it
4
68
25
1.3987
4.4
it
5
87.5
28
1.4035
5.0
it
Reflux Ratio
6
98
28
1.4106
10.4
7
105
28
1.4156
5.5
ti
8
108.5
28
1.4181
8.8
it
9
112.5
28
1.4206
6.7
it
10
95-99
20
1.4180
lO. 4
11
104
20
1.4192
9.7
12
1 0 5.5
20
1. 4 2 0 5
12. 1
13
107
20
1.4250
8.4
'
12-1
20-1
ii
n
ii
94.
Pieacl Temp.
Pre ssixre
n SOD
Amom t
Refj/ujc :
14
107
20
1.4230
12.4
20-1
15
107
20
1.4219
14.1
ii
16
111
20
1.4226
13.2
ti
17
113
20
1.4237
6.0
it
18
113
20
1.4250
15.1
it
19
90-97
13
1.4216
16.9
18-1
20
98
11
Solid
15.9
4-1
21
lOl
14
13.7
n
22
98.5
it
23
1 07
24
84-89
6.5
25
101
6.5
26
lOl
6.5
27
101.5
6
28
98
29
rt
9
n
13.8
io
it
10.0
ii
ii
8.2
5-1
5.1
25-1
7.0
20-1
1.4395
9.9
15-1
5
1.4401
15.1
16-1
101
5
1. 4406.
17.0
ii
30
1 01
6
1.4408
14.8
tt'
31
98
5
1.4408
15.9
it
it
1.4305
—
32
101.5
5
1.4407
14.3
33
106
6
1.4410
16.7
34
103
5
1.4410
15.9
it
35
103
5
1.4410
15.9 '
ii
36
1 04
5
1.4412
16.0
ti
37
100
5
1.4415
16.3
it
58
98
4
1.4413
7.6
it
39
lOl
.4
1.4411
16.3
it
40
101
5
1.4415
18.1
it
ii
95.
Pressure
Cu
d Temp.
41
101
5
1.4418
16.9
16-1
42
106
5
1.4420
16.3
tr
43
103
4.5
1.4420
16.2
IT
44
103
4.5
1.4420
15.7
ti
45
108
6
1.4420
17.9
i:
46
101
5
1.4421
17.4
ir
47
103
4.5
1.4422
18.0
ti
48
103
5
1.4426
17.4
tt
49
98
3.5
1.4426
18. 2
tt
50
103
3
1.4427
18.1
51
105
3
1.4425
17.4
tr
52
103
3
1.4427
18.7
tt
53
103
3
1.4423
15.7
tt
54
104
3
1.4428
18.1
it
55
104
3.5
1.4429
18.0
tt
56
95
2.5
1.4430
18.4
it
57
95
2.5
1.4423
16.5
tr
58
96
2. 5
1.4430
11.0
tt
59
94
2.5
1.4430
18.5
60
92
2.5
1.4430
16.0
tt
61
93
2.5
1.4430
17.2
tt
62
94
3.0
1.4430
19.7
tt
63
94
2.5
1.4430
17.3
it
64
93
2.5
1.4430
13.3
10-1
65
93
2.5
1.4430
17.0
12-1
66
98
3.0
1.4432
17.6
14-1
57
94
2.5
1.4442
9.4
'
n 20D
Amount
Reflux
tt
Gut
Head. Temp.
Pressure
n
Residue
Gum
Runs III a n d
IV.
with, that d e s c r i b e d T o r
mixture
17,
R u n I.
cuts
9 - R f r a c t i o n a t i o n No.
mole p o r t i o n s and
bichromate
22,
Amount Reflux
The n o n e n e s ,
21,
were d i v i d e d
cuts 3 7 - 4 4
20,
i n t o two
and cuts
— seven
2360 gm. ofs o d i u m
in 2620 cm. of w a t e r and 1890 ccm.
in 1890 ccm.
ident i c a l
comprising a
1 - 9 f r a c t i o n a t i o n No.
e a c h oxidised with
Ratio
23.5
Tlae p r o c e d u r e u s e d w a s
of Cuts 1-5 f r a c t i o n a t i o n No.
f r a c t i o n a t i o n No.
acid
20D
of
93/o sulfuric
of wa t e r .
F r a c t i o n a t i o n H o . 55
The n o n - a c i d i c
(ketone)
portions
of R u n s
III and IV
were d r i e d over c a l c i u m c h l o r i d e and d i s t i l l e d t h r o u g h c o l u m n
W.
Cut
H e a d Temp.
Pre s sure
Amount
R e f l u x Rati o
80-1
1.3591
2.8
59
1.3751
2.0
I!
3
64
1.3780
2.7
If
4
82.5
1.3820
3.0
tr
5
93
1.3911
4.6
60-1
6
96
1.3921
8.4
ir
7
102
1.3971
7.1
tr
8
107
1.4024
10.4
ir
9
116
1.4083
8.0
10
117.5
1.4111
10. 2
45-1
11
117.5
1.4110
12.2
tt
12
117..'5
1.4109
13.7
40-1
13
118
1.4109
13.8
1
45-54
2
744
n^Op
741
n
n
97.
H e a d Temp#
Pressure
n 20D
Amount
Re flu:
14
118
1.4109
13.1
15
1 18
1. 4 1 0 9
12.0
if
IS
118
1. 4 1 0 9
14.4
ii
17
118
1.4109
12.6
50'
18
118
1.4109
8.7
ii
19
118.5
1.4109
8.5
ii
20
120
1.4115
8.8
ir
21
120.5
1.4122
10.2
ii
22
120.5
1. 4 1 2 5
12.3
ii
23
120.5
1.4125
13.4
it
24
120.5
1.4125
11.8
ii
25
120.5
1.4125
13.0
ii
26
120 .5
1.4125
12.9
ii
27
120.5
1.4124
12.8
it
28
121
1. 4 1 2 4
12.6
ii
29
122
1.4130
12.6
it
30
126
1.4154
13.5
ii
31
1 2 8.5
1.4189
12.0
50
32
130
1.4205
12.4
ii
33
131.5
1.4231
13.2
ii
34
131.5 .
1. 4 2 5 4
14.7
it
35
131.5
1.4262
15.3
ii
36
131.5
1.4264
11.8
ii
37
1 31.5
1.4266
11.3
ti
38
1 31.5
1.4268
12.0
ii
39
131.5.
1.4271
13.3
ii
40
131.5
1. 4 2 7 5
12.7
rt
736
736
40-
H e a d Temp,
41
Pressure
Amount
131.5
1.4277
11.9
50-1
42
131.5
1.4274
12.6
n
43
131.5
1.4274
44
131.5
1.4274
11.7
II
45
131.5
1.4275
13.1
II
46
131.5
1 .4280
13.1
II
47
131.5
1.4276
12. 6
It
48
131.5
1.4276
12. 6
II
49
131.5
1.4274
12.5
II
.
to
n 2(JD
H
O
•
Gut
R e f l u x Rat i o
I!
50
. 132
1.4260
11.8
II
51
14-2
1.4217
7.6
II
52
144
1.4167
12.9
II
53
144
1.4161
11.0
II
54
144
1. 4160
11.9
II
55
144
1. 4 1 6 2
13.3
II
56
145
1. 4 1 6 3
14.0
II
57
148.2
1.4166
13.3
II
58
150
1. 4170
14.7
II
59
151
1.4173
14.0
It
60
150.5
1.4173
14.0
II
61
150.5
1. 4174
15.5
II
62
150.5
1.4174
14.3
II
63
150.5
1.4174
12.8
II
1.4323
235. 5
736
Res idue
F r a c t i o n a t i o n No.
56
The acid, p o r t i o n of the products
f r o m Runs III and
IV were dried o v e r m a g n e s i u m sulfate and f r a c t i o n a t e d t h r o u g h
column N.
99*
Gut
Head.' Temp.
Pres sure
n 20D
Amount
R e f l u x F at io
1
20-40
130
1.3800
12.5
20-1
2
6 5 -70
100
1.3880
10.9
5-1
3
56-44
10-5'
1.3940
7.9
10-1
4
42
3
1. 3 9 9 7
9.1
12-1
5
57
3
1.4139
9.7
10-1
6
57
3
1.4135
10.4
10-1
7
59
3
1.4135
10.8
II
8
64
2.5
1.4138
13.3
12-1
9
62
3
1.4138
12.6
it
10
60
2
1.4139
15.8
it
11
62
3
1.4141
16.2
12-1
12
63.8
3
1.4146
15.0
ir
13
68.5
3
1. 4 1 8 0
15.1
ii
14
75
3
1.4233
14.6
ii
15
75
3
1.4261
14.3
ii
IS
72
3
1.4283
12.4
ii
17
73
3
1.4297
12.3
ii
18
82.5
3
1.4299
15.3
20-1
19
1 01
3.5
1. 4 3 7 0
12.7
10-!
20
96
3
1. 4 4 1 3
15.4
ii
21
102.5
3
1.4403
16.3
22
104
4
1.4409
11.8
it
23
104.5
4
1.4410
12.0
ii
24
104.2
4
1.4411
13.7
ii
25
103
3
1.4412
15.3
it
26
104
3
1.4410
15.7
'20-1
27
102
4
1.4412
16. 6
7-1
.
Cut
Head T e m p . P r e s s u r e
n
20.
D
Amount
Reflux Ratio
28
103
3.5
1 .4410
16.5
10-1
29
99
2. 5
1.4 4 1 0
14.2
12-1
30
lOl
3
1.4413
14.6
10-1
31
101
3
1. 4 4 2 0
16.8
12-1
32
lOl
3
1.4428
16.3
12-1
33
-
3.5
1.4430
10. 2
-
-
25.0
Residue
Dark
Oil
F r a c t i o n a t i o n No.
Tiie r e s i d u e
was ciiarged t o
Cut
1
Head T e m p
from
column
50
f r a c t i o n a t i o n No.
35,
235 g m . ,
EMJ.
Pressure
60-69
37
n 20D
Amount
R e f l u x Rati-
1.4150
1. 7
15-1
1.4172
3. 2
n
1 .4182
12.5
11-1
2
69.8
5
70. 2
4
70
1. 4 1 8 3
13.5
15-1
5
70
1.4186
12.9
u
6
72
1.4182
2. 2
7
72
1.4186
13.2
u
8
73
1.4186
13.7
it
9
73
1.4186
11.9
tr
10
72.5
1.4186
13.0
it
11
72.5
1 .4188
10.7
ii
12
72
1.4193
9.5
25-1
13
79
1.4253
7.6
15-1
14
86
1.4250
6. 8
ii
.15
105
1.4323
4. 9
10-1
16
109
1.4279
6.6
8-1
17
. 119
-
'
25
15-1
ii
1.4384
7. 6
Gut
H e a d Temp.
P r e s sure
n 20D
Amount
18
137
1.444-0
10.3
19
139
1.4413
8.6
20
139
1.4412
13.2
21
138
1.4417
5 .2
22
-
1.4528
12.5
Residue
Black Solid
_
in.n
Reflux
8-1
«
IT
3 -1
—
.
atio
2.
I d a n t i f i c a t i o n of N e u t r a l P r o d u c t s
f r o m Ilonene O x i d a t i o n
The n o n — a c i d i c
p o r t i o n of the
f r o m the s o d i u m d i c h r o m a t e - s u l f u r i c
o x i d a t i o n products
acid o x i d a t i o n of the
nonenes was f o u n d to "be composed o n l y of k e t o n e s
and ^^n-
oxidized olefins.
Por the m o s t
part the i d e n t i f i c a t i o n of ketones,
was carried out b y p r e p a r a t i o n of k n o w n d e r i v a t i v e s ,
point and r e f r a c t i v e
index.
Chromatographic
boiling
adsorbtion
methods were f o u n d u s e f u l for p u r i f i c a t i o n of 2 , 4-dinitr o p h e n y l hydrazones,
u s i n g 80 m e s h a c t i v a t e d a l u m i n a and p e t r o l e u m
ether as solvents.
Olefins
Church
were
i d e n t i f i e d b y the
ozonolysis method
of
(49).
Cuts 1 - 5 ,
hydrazone, m.p.
m i x e d m.p.
F r a c t i o n a t i o n No.
124-5°C.;
35.
2,4-Dinitrophenyl-
known derivative
of acetone 12 4 - 5°C.;
124-5°C.
Cuts 5 - 6 , F r a c t i o n a t i o n No.
p h e n y l h y d r a z o n e , m.p.
122.3 - 123°C.;
me t h y l i s o p r o p y l k e t o n e m.p.
122.5
35.
2,4 - D i n i t r o -
k n o w n derivative
- 1 2 3 . 5°C.;
of
m i x e d m.p.
122.5 - 3.0 ° C .
Cut 8 , F r a c t i o n a t i o n No.
hydrazone, m.p.
m.p.
125 - 5.5°C.;
125.3 - 126°C.;
Cuts
35.
2,4 - D i n i t r o p h e n y l -
known derivative
m i x e d m.p.
12 5 . 1 - 5.8°C.
10 - 2 0 , F r a c t i o n a t i o n No.
gave d e r i v a t i v e s
35.
for m e t h y l n e o p e n t y l k e t o n e
p roper t i e s do not c o r r e spond.
of p i n a c o l o n e ,
It was
shown
These cuts
all
although physical
to be an
103.
azeotropic
mixture of m e t h y l
n e o p e n t y l ketone
2 - i s o p r o p y l - 3 , 3-dime t h y l - l - b u t e n e
( 60io) . (c.f.
2 , 4 - D i n i t r o p h e n y l h y d r a z o n e , m.p.
derivative
of m e t h y l n e o p e n t y l ketone,
Cuts
174.5
m.p.
D i n i t r o p h e n y l h y d r a z o n e , m.p.
n e o p e n t y l ketone,
Cut
hydrazone
100
- 1 0 0 . 5° G .
known derivative
174 - 5 ° G .
(c.f.
100
35.
This material
part II,B,3,a.)
-100. 5°C.;
m.p.
100
5 0 , F r actionation No.
w as prepared
11,13,3,to.)
of m e t h y l neopentyl k e t o n e
2.3.4.4-tetramethyl-l-pentene
of m e t h y l
- 175°C.;
21 - 2 9 , F r a c t i o n a t i o n Ho.
was a n a s e o t r o p i c m i x t u r e
part
100 -100. 5°C . ; k n o w n
of me t h y l n e o p e n t y l k e t o n e , m.p.
S e m i carta z o n e , m.p.
(40/a) and.
2,4-
known derivative
-100.5°C.
35.
and s e p a r a t e d
and
A 2,4 - D i n i t r o p h e n y l ­
into two parts toy
c h r o m a t o g r a p h i c methods.
Part 1 , m . p .
99
of m e t h y l n e o p e n t y l k e t o n e m . p .
- 100°C.,
100
known derivative
-100.8°C.;
mixed m.p.
99.5 - 1 0 0 . 5°C.
Part
2. m.p.
2.4-dinitrophenylhydrazone
mixed m.p.
from cut
51 f P r a c t i o n a t i o n N o .
A v e r y small amo u n t
obtained,
- 77°C.; unidentified
31, m.p.
76.5
-77°C.J
75 —7 7 °C.
Cut
olefin.
74
m.p.
76.5 - 77°C.
of a
35.
The cut was l a r g e l y
dinitrophenylhydrazone
The
semicartoazone c o u l d n o t
was
toe
purified.
Cuts
was u n o x i d i z e d
acetone
believed
51 - 5 0 . F r a c t i o n a t i o n No.
olefin,
containing
and methyl pinacolyl
35.
This m a t e r i a l
traces of p e n t a m e t h y l
ketone.
The ol e f i n
is n o w
to toe 2 , 3 , 3 , 4 - t e t r a m . e b h y l - l - p e n t e n e . (See p a r t
lJ_,B,3,a) .
Cuts 46 and 49 g a v e
a
small amount
of the
2,4-
dinitrophenylhydrazone
o f methyl p i n a c o l y l k e t o n e ,
m.p.
111-112°G.
Gut 34,
gave
0.5 gm.
of
14 gm. , when treated v/ith hyclr oocylamine,
oocime m . p .
p e n t a m e t h y l acet o n e ,
140.5
m.p.
140-41°C.; known derivative
of
141 - 1 4 1 . 5°C.; m i x e d m.p,
- 141.2°C.
Gut 51 - 5 4 , F r a c t i o n a t i o n 35.
h y d r a z o n e , m.p.
p i n a c o l y l k etone
111.9
- 1 1 2 . 3°C.; k n o w n d e r i v a t i v e of m e t h y l
111.8
-
112.3°C.
Gut 6 2 , F r a c t i o n a t i o n ITo. 35.
h y d r a z o n e , m.p.
2,4-Dinitrophenyl-
2 ,4-Dinitrophenyl -
7 5 . 2 - 75.7°C.; k n o w n d e r i v a t i v e
dimethyl-2-hexanone,
m.p.
75°G.
(See p a r t
of 4,4-
II,C,2,c).
105.
3. Ident i f i c a t i o n
of
lionenes Recovered,
from I'lon e ne Q x i d a t Ions
a.
A t t e m p t e d I d e n t i f i c a t i o n of Nonene
155°C.
n 2QP
B. P .
1 .4500.
Tills m a t e r i a l was recovered, f r o m cuts c o n t a i n i n g
traces
of p e n t a m e t h y l a c e t o n e a n d m e t h y l
After o s o n o l y s i s
of tixe o l e f i n 3 o m e
structure d u e
to
certain p e c u l i a r i t i e s
deriva t i v e
the ketone f o r m e d .
of
m a t erial is n o w
considered to be
p i n a colyl ketone.
doubt
arose as to its
exhib i t e d b y the
( S e e part II,B,3,a).
either
The
2, 4 , 4 - t r i m e t h y l - l —
hexene , o r 2 , 3 , 3, 4-tetrame t h y l - l - p e n t e n e .
S e p a r a t i o n of K e t o n e - H y d r o c a r b o n Mixture.
of 80 gi.
ccm.
( 1 . 1 4 mole)
of w a t e r
ccm.
of h y d r o x y l a m i n e h y d r o c h l o r i d e
a n d a s o l u t i o n of 4 0
gm. of h y d r a t e d
s o d i u m acetate,
gm.
(1 mole)
i n 5 0 ccm.
of 9 5;o e t h a n o l were c o o l e d a n d mixed.
immediately a d d e d
No. 35,
101.1
to a s o l u t i o n of
gm. , d i s s o l v e d
of water and
in 2 5 0
layer was t h e n
The
the
ccm.
extr acted w i t h t w o 1 O 0
the r e s i d u e d r i e d
charged t o c o l u m n EI.IJ. Charge:
F r a c t i o n a t i o n No.
Cut
1
layers
e t h e r and a l c o h o l w e r e
small c o l u m n ,
Head ‘
Temp.
33-35
Pressure
735
in 1 2 0
of ITaOH,
of w a t e r and 1 0 0
This
was
of 95/i ethanol.
cooled,
separated.
ccm.
The
diluted
aqueous
p o r t i o n s of v/ater.
d i s t i l l e d off through, a
o v e r m a g n e s i u m sul f a t e
132,5
gm.
n^^D
Amount
and
58.
-
20
c u t s 41-50, f r a c t i o n a t i o n
T h e m i x t u r e was r e f l u x e d 1 0 hours,
with 200 c c m.
A solution
27.3
Reflux Ratio
5-1
106
Cut
H e a d Temp.
Pre s sure
n 20D
6 5-110
2
Amount
Reflux
1.3813
3.1
10-1
3
130
1.4218
5.1
20-1
4
131
1.4267
4.5
n
5
131.5
1.4272
4.0
I!
6
132.
1.4281
8.0
it
7
132.4
1.4287
7.5
it
8
132.8
1.4294
■7.1
ii
9
133
1.4297
11.3
10
133
1.4298
11.2*
ii
11
133
1.4299
10.3
it
1.4300
9.5
8-1
1.4300
5.9
3-1
1.4443
10.6
12
70.5
13
70.5
lOO
Residue
O z onol y s i s
No.
38,
manner.
4 9 . 2 gm.
(See part
t i m e required:
The
u s i n g 26 gm.
of Olefins.
(0.39 m o l e s )
Guts 8-12,
were o z o n i z e d
II,B,3,t>).
Ox y g e n rate:
12-1
fractionation
in the us u a l
16 L.
per hour;
14 l/4 h o u r s .
ozonide w a s d e c o m p o s e d in the u s u a l m a n n e r
of zinc d u s t
a n d 0.1 gm.
e a c h of
s i l v e r nit rate
and hydroquinone.
The
oil layer,
e t h e r extract,
r e s i d u e from d i s t i l l a t i o n of the
a n d r e s i d u e f r o m the d i s t i l l a t i o n
l o w —boiling h y d r o c a r b o n were
sulfate
combined,
dried over magnesium
and f r a c t i o n a t e d t h r o u g h an 0.8 x 40 cm.
paclced w i t h 3 / 3 2 i n c h s t a i n l e s s
5 6 . 2 gm.
F r a c t i o n a t i o n No.
39.
of the
steel h e l i x e s .
column
Charge:
Gut
H e a d Temp.
1
33-5
2
56
3
4
Pres sure
7 40
n 20D
Amount
—
Reflux
17.6
8-1
1. 3 6 6 3
0.7
15-1
82
1.3940
0.9
20-1
97
1.4003
1.2
tr
tr
5
1 07.5
1.4090
0.7
6
113
1.4150
1 . 0
u
7
115
1.4163
0.7
20-1
8
125
1.4193
1.3
15-1
9
131
1.4235
1.1 .
25-1
10
140
1.4220
1.1
u
11
145
1.4202
1.3
it
12
148
1.4201
1.0
it
13
149
1.4210
4.0
15-1
14
149
1.4210
4.4
it
15
149
1.4211
4.4
ii
16
149
1.4214
1. 3
1.44 30
12.0
738
Residue
I d e n t i f i c a t i o n of O z o n o l y s i s
Water L a y e r .
known derivative
Mo d i b e n z a l derivative
Out
rivative
1 8 7 . 5 - 8 8 . 5 ° C .j
of a c e t o n e
could be p r e p a r e d .
Mo dlrnetol deriva t i v e
of
c o u l d be prepared.
6.
A
small amount
was o b t a i n e d w h i c h c o u l d not b e
G u ts
m.p.
189°C.
Low-Boiling Hydrocarbon.
acetaldehyde
Products
Diraetol d e r i v a t i v e ,
of f o r m a l d e h y d e
3-1
7 - 9 .
c o u l d be
of 2 , 4 - d i n i t r o p h e n y l h y d r a s o n e
purified.
Mo a p p r e c i a b l e
obtained.
a m o u n t of ketone d e ­
T h i s m a t e r i a l was l a r g e l y o l e f i n
108
w h i c h had. failed to ozonize.
C u ts
w i t h that
10 - 16.
This k e t o n e was s h o w n to be
o btained f r o m part
II,A,3,b.
identical
The p o s s i b l e
s t r u c t u r e s w h i c h c a n be a s s i g n e d to it after r e f e r r i n g to a
table
of
derivatives
of octanones
trimethyl-2-pentanone
appear to be those
or 4 , 4 - d i m e t h y l - 2 - h e z a n o n e .
2 , 4 - D i n i t r o p h e n y l h y d r a z o n e , m.p.
L a u g h l i n 1s
(91) d e r i v a t i v e
m.p.
- 1 4 6 . 5°C.;
145.5
(82,83)
4 , 4-dime tliyl-2-hexanone m e l t s
at
its m.p.
S e m i c a r b a z o n e , m.p.
f r a c t i o n a t i o n No.
31, m.p.
145.5 - 6 . 5 ° C . ;
of 3 , 3 , 4 - t r i m e t h y l - 2 - p e n t a n o n e ,
mixed m.p.
D r a k e and K l i n e
h a s d e m o n s t r a t e d that
report that the m.p.
147°G.,
is 75°G.
171
171
145 - 1 4 6 . 5°C.
-2°G.;
semicarbazone
of
(See part
(see p a r t
derivative
-2°C.; mi x e d m.p.
oxirne of
II,C,2,c)
of the
the
40 -1°C.;
report the
cut 23,
-2°G. A
sample
(138)
(82,83)
semi cards a zone
171°G .
L o q u i n and L e e r s
3 ,3, 4 -1 r ime t h y 1 - 2 - pe n t anone , m.p.
4 0 . 5 -41°C'.
of
171
B o t h Drake and K l e i n
of 4 ,4 - d i m e t h y l - 2 - h e x a n o n e , m.p.
O x i m e , m.p.
II , C , 2 , c ) .
3,3, 4 - t r i m e t h y l - 2 - p e n t a n o n e , m.p.
1 5 0 - 5 1 ° C . , was b e l o w 140°C..
a nd the a u t h o r
of
but the p r e s e n t w o r k
m i x e d m e l t i n g point t a k e n w i t h L o q u i n and L e e r s
of the
of 3,3,4-
sample
of the
41°C . ; m i x e d m.p.
In v i e w of the d i s c r e p e n c y in the m e l t i n g points
semicarbazones
the f a c t
that m i x e d m e l t i n g p o i n t s
2,4 - d i nitrophenylhydrazo ne
and oxime did not d e p r e s s
cannot be
t aken as p r o o f of
of
structure.
Haloform Reaction.
Into a s o l u t i o n of 1 2 . 5
hyd.roxide
in 110 ccm.
gm.
(.312 mole)
of w a t e r c o o l e d b e l o w 10°G.
of
sodium
was
dropped
IS. 7 gm.
(.3.17 mole)
of* 'bromine w i t h s t i r r i n g .
s t i r r e d s o l u t i o n cooled, to minus 4e C.
(.039 moles)
of
of the k e t o n e ,
15 minutes.
o v e r a 2 hour p e r i o d ,
On h e a t i n g ,
above,
was w a r m e d to r o o m
temperature
v e r y little b r o m o f o r m d i s t i l l e d so 20
of 1'TaOE was
added.
was
further d i s t i l l e d b u t
of sulfuric
A f t e r two h o u r s
reflurcing the m i x t u r e
n o appreciable b r o m o f o r m distilled.
a c i d dissolved
in 35 c c m .
a d d e d and s t e a m d i s t i l l a t i o n continued,
containing a small
o v e r a period
s t i r r e d three h o u r s l o n g e r .
gm.
F o r t y ccm.
w a s added. 5.0 gm.
cuts 14-15
The m i x t u r e
To this
amount
y i e l d i n g a distil l a t e
of oily m a t e r i a l a n d
t a i n i n g a n on s t e a m - d i s t i l l a b l e
of water w a s
a residue c o n ­
oil w h i c h c r y s t a l l i s e d on
c ooling.
The d i s t i l l a t e
was
t i l l e d in a C l a i s e n f l a s h ;
at
740 mm. was
obtained.
extracted w i t h b e n z e n e
2.5 gm.
and d i s ­
of acid b o i l i n g at 205°C.
The m a t e r i a l
showed
n o tendenc y to
crystallize.
Amide, m.p.
128°C.,
A n i l i d e , m.p.
67
-8°C.
Neither d e r i v a t i v e
p o i n t s do not
possible
correspond
oily residue
c r y s t a l l i z e d on c o o l i n g ,
d i l u t e alcohol.
was c o n s i d e r e d p u r e ;
their m e l t i n g
v/ell w i t h k n o w n d e r i v a t i v e s
s even c a r b o n a c i d s
The
softening at 1 2 3 ° G .
of
found in the l i t e r a t u r e .
f r o m the
m.p.
steam distillation
106 -7°G.
after
It c o n t a i n e d no h a l o g e n but
recrystallization
was
definitely
acidic.
Neutral F q u i v a l e n t .
S a mple w e i g h t
0. 1 3 0 0
0.1304
Gem.
NaOH,
Neutral
Calc,
NF
0.0134
Equivalent
f o r G a H 160 3 ,
59.80
60.64
162
160
C 6H 1 3 CH0II G O O H
160
Elementary/- Anal y s i s
Calc,
for
Fo u nd:
C 6H 13 C H O H COOH:
C,
60.06:
C,
59.96; H,
10.07
PI, 10,. 13
The f o r m a t i o n of an h y d r o x y a c i d from a k e t o n e
the same n u m b e r
of
carbon atoms b y the
been reported p r e v i o u s l y
of
halof'orm r e a c t i o n h a s
(135).
D e c o m p o s i t i o n of the h y d r o x y a c i d to the aldehy d e
of one less
c a r b o n atom was a t t e m p t e d b y the m e t h o d of B l a i s e
(136).
R
CHOH
COOH
The acid,
RCHO
+
HgO
0.3 gm. , was h e a t e d
6 0 ° 0 . in a s m a l l
d i s t i l l i n g flask.
passed t h r o u g h a
saturated
hydrazine
In 2 N.
slowly, m.p.
143
+
The
s o l u t i o n of
hydrochloric
acid;
CO
for two h o u r s at 240 products f o r m e d were
2,4-dinitrophenyl-
t h e de r i v a t i v e f o r m e d
- 4 ° C . after two c r y s t a l l i z a t i o n s f r o m
methanol.
This
derivative
of a c a r b o n y l c o m p o u n d of a p o s s i b l e
the d e r i v a t i v e
d e r i v a t i v e does not
of
would be f o r m e d
2-pentanone,
The
if
structure;
isopropyl a c e t a l d e h y d e , which
the orig i n a l k e t o n e
were
3,3,4-trimethyl-
is u n k n o w n .
a c c umulated data does l i t t l e
e s t a b l i s h i n g the
ketone.
dimethyl
c o r r e s p o n d to a n y k n o w n
structure
The k e t o n e
haloform reaction,
in the w a y of
of the o l e f i n or its d e r i v a t i v e
derivatives
and
the
results
w h i c h were e n t i r e l y u n l i k e
of the
those o b t a i n e d
111.
for 4, 4 - d i m e t h y l - 2 - h e x a n o n e
indicate
that
the m a t e r i a l
While
with the
its oxime
derivatives
and L e e r s
(138)
(see part II,C,2,c)
would,
is n o t 4 , 4 - d i m e t h y l - 2 - h e x a n o n e .
and 2 , 4 - d i n i t r o p h e n y l h y d r a z o n e
of 3 , 3 , 4 - t r i m e t h y l - 2 - p e n t a n o n e
and L a u g b l i n
(91)
the
semicarbazone
check
of L o q u i n
f a i l s to
correspond.
W o r k on the
in t h i s
i d e n t i f i c a t ion of this ketone
laboratory.
"k•
Identification
of 2 - I s o p r o p y l - 5 , 5 - D i m e t h y l -
1-Butene R e c o v e r e d f r o m the M o n e n e
Th is m a t e r i a l was
of the n o n e n e s
k etone
is c o n t i n u i n g
o b t a i n e d in the
as an a z e o t r o p i c m i x t u r e
and olefin, b.p.
o x i d a t i o n pro d u c t s
of m e t h y l n e o p e n t y l
Be f o r e
attempting
to i d e n t i f y the o l e f i n b y o z o n o l y s i s the ketone was
removed by
t r e a t i n g the m i x t u r e
118 ° C . ,
Oxidation.
n ^ ^ D 1.4109.
with hydroxylamine
to f o r m the ketoxime.
S e p a r a t i o n of M e t h y l lieopentyl K e t o n e
A
s o l u t i o n of h y d r o x y l a m i n e h y d r o c h l o r i d e ,
(1.14 mole)
d i s s o l v e d in 1 2 0 ccm.
s o l u t i o n of 40 gm.
(1.0 mole)
of 95>"b e t h a n o l and 50 ccm.
This
f r o m the 0 l e f i n .
cuts
10-20,
b e e n d i s s o l v e d in 250 ccm.
treated with a
of s o d i u m h y d r o x i d e
in 100 ccm.
of w a t e r and c o o l e d to 40-50°C.
was a d d e d i m m e d i a t e l y to
olefin mixture,
of water was
8 0 . 0 gm.
1 2 2 . 8 gm.
of the k e t o n e
f r a c t i o n a t i o n Mb.
of 95Tb ethanol.
35,
-
w h i c h had-
The m i x t u r e was
r e f l u x e d 8 hours.
The
300 ccm.
c o n d e n s e r was
of m a t e r i a l
set for d i s t i l l a t i o n a n d about
removed;
two l a yers. A t this p o i n t m o s t
the d i s t i l l a t e
of the
separated
olefin had
passed
into
into
tlie distillate,
while
t h e lcet oxime r e m a i n e d
in the r e a c t i o n
flask.
The d i s t i l l a t e w a s
the 'oil l a y er s e p a r a t e d
s a t u r a t e d with, c a l c i u m chloride,
and again w a s h e d w i t h s a t u r a t e d
calcium chloride
s o l u t i o n and f i n a l l y w i t h w a t e r .
oil w e ighed 60.5
gm.
T h i s was d r i e d o v e r a n h y d r o u s m a g n e s i u m
sulfate and f r a c t i o n a t e d t h r o u g h an 0.8 x 42 cm.
packed with 3/32
inch
stainless
F r a c t i o n a t i o n Ho.
Gut
1
55-74
Pre ssure
737
85.5
steel h e l i x e s .
40
n 20D
Amount
Reflux Ratio
1. 3 8 2 0
0.9
20-1
1.3849
0.4
t!
1.4045
0‘.5
II
n o
4
117.5
1.4151
0/8
30-1
5
118.8
1.4161
0.8
rr
6
1 1 9.5
1.4166
3.6
20-1
7
119.8
1.4166
3.1
8
119.5
1. 4 1 6 6
1.3
30-1
9
119. 3
1.4165
1.8
ti
10
1 19.5
1.4166
2.0
ii
11
119. 5
1. 4 1 6 6
4 .8
20-1
12
1 19.5
1.4166
2.6
10-1
13
119
1.4166
2.2
15-1
14
119
1.4166
o. 5
25-1
15
119
1 .4166
3.1
ii
16
119
1 .4166
2.0
40-1
17
118
1.4166
20-1
18
118
{
(4 e 6
(
733
726
1.4166
ii
1
3
H
736
co l u m n
H
0
2
Head Temp.
The crude
Pressure
Am o u n t
n 20D
Reflux Ratio
19
US
1.416S
CO
Head Temp.
*
Gut
12-1
20
118
1.4166
4.7
9-1
21
119
1.4168
5.1
5-1
22
1.4179
4.4
R e sidue
1 . 448S
1.5
The
o i l y residue
remaining
■-
in the r e a c t i o n f l a s k
after the s t e a m d i s t i l l a t i o n , w h i c h was l a r g e l y m e t h y l
neopentyl ketoxime,
was
s e p a r a t e d f r o m the water a n d the
water e x t r a c t e d w i t h three
- 75
ccm.
port i o n s
of ether. A f t e r
51.5 gm.
was charged to colaxmn
This
F r a c t i o n a t i o n Ho.
Gut
H e a d Temp.
1
3 3 - 99
2
100
3-9
100
Pressure
weighed
.
the ether the c o m b i n e d oil and e x t r a c t
H
H
e v a p o r a t i o n of
41.
n 20D
Amount
Reflux Ratio
1.4405
0.2
10-1
30
1.4408
1.7
ti
30
1 . 4 4 6 7 - 80
39.5
8,12-1
Residue
1.4620
1.4
Ice T r a p
1.3668
4.3
91-30
F r o m the amounts
ketone-olefin
( l a r g e l y ether)
of o l e f i n a n d oxime r e c o v e r e d t h e
azeotropic m i x t u r e
apparently contained about
S0;j olefin.
Ozonolysis.
ozonolysis
of
and C h u r c h
(49).
The
used
The
apparatus
and procedure
for the
olefins h a s b e e n f u l l y d e s c r i b e d b y v/hitmore
low-boiling hydrocarbon,
as a s o l v e n t
some f o r m a l d e h y d e
in the
b.p.
5-20°C.,
commonly
r e a c t i o n h a d b e e n shov/n to y i e l d
on o z o n o l y s i s ,
consequently
it was
purified
■before vise toy t r e a t m e n t w i t h
with. o n e - t h ird its v o l u m e
0 ° C . , distilled,
to r e m o v e
ozone.
then
of 20% oleum for t h r e e
washed w i t h
sulfur d i o x i d e ,
It w a s
stirred,
hours at
strong s o d i u m h y d r o x i d e
and finally d r i e d o v e r
sol u t i o n
anhydrous
p o t a s s i u m cartoonate,
Cuts 5 - 22,
(0.4-18 mole),
solvent
were
at 0 ° C .
f r a c t i o n a t i o n No.
ozonized
40,
in the low-tootling hydrocartoon
toy p a s s i n g ozonized o x y g e n t h r o u g h the
s o l u t i o n in the m a n n e r d e s c r i b e d toy C h u r c h
15 Ij. per hour;
The
time
required,
ozonide
was
f i t t e d w i t h stirrer,
f i t t e d w i t h a trap,
off
dropping
funnel,
z i n c dust,
and
ccm.
and 0.1 gm.
ozonide
t h r e e - n e c k flask,
a n d a r e f l u x condenser
t h r o u g h w h i c h l i q u i d p r o d u c t s were taken
condenser
f l a s k was p l a c e d 500
the
17.5 hours.
f o r m e d f r o m the o z o n i d e .
and low-toolling p r o d u c t s
t h r o u g h the
(49) . Oxygen rate,
d e c o m p o s e d in a 1 L.
as r a p i d l y as t h e y w e r e
solvent,
52. *7 gm.
such as a c e t a l d e h y d e ,
were c o l l e c t e d in i c e - t r a p s .
of water,
27 gm.
( 0 . 4 1 4 mole)
e a c h of silver n i t r a t e
s o l u t i o n was
added
f u n n e l to the tooiling s o l u t i o n .
slowly
oil layer
f r o m the
In the
of
a n d hydr o q u i n o n e ;
through the
drop p i n g
was r e t u r n e d to the
r e a c t i o n f l a s k and r e d i s t i l l e d to insure c o m p l e t e
crude
passed,
A f t e r the d e c o m p o s i t i o n was
f i n i s h e d all of the l i q u i d distillate
The
The
decomp o s i t i o n .
second d i s t i l l a t i o n weighe d 28.5
gm.
A p o r t i o n of the w a t e r layer
was
set aside f o r a n a l y s i s ;
three
- 50 ccm.
portions
The oil layer,
f r o m the
the r e m a i n d e r was
distillation
extracted with
of ether.
the
residue l e f t
after
distillation
of the
l o w - b o i l i n g solvent,
d i s t i l l a t i o n o f the ether
and. the res i d u e
f r o m the
e t h e r extracts,
combined a n d d r i e d over m a g n e s i u m sulfate.
material was c h a r g ed to an 0.8 x 42
left after
cm.
were
The d r i e d
column packet
3/32 i n c h s t a i n l e s s steel h e l i x e s .
F r a c t i o n a t i o n No.
Cut
Head Temp.
1
27-40
P ressure
42
n S0D
A mount
Reflux
733
1.3526
10.7
10-1
732
1.3630
0.9
15-1
ir
2
71.5
3
78. 5
1.3820
1.0
4
81.0
1.3865
1.0
4-1
5
98.0
1. 3 9 3 8
1.0
15-1
6
106.5
1•4 0 3 3
0.9
if
7
115
1.4085
0.6
18-1
8
119
1.4103
1.0
15-1
9
120
1.4090
1 .
2
ir
10
124
1.4040
0.7
it
11
127. 2
1.3987
1.0
ii
12
129. 2
1.3987
1.2.
it
13
128. 5
1.4017
1.1
10-1
14
129.5
1.4029
1.3
15-1
15
131
1.4041
1.0
ii
16
129
1. 4 0 5 0
1.1
T!
17
130
1.4056
1.8
II
18
131
1.4055
2. 4
II
19
130
1. 4 0 5 0
2.7
If
20
-
1.4062
1.1
If
1.4312
3.6
Residue
741
I d e n t i f i c a t i on of O z o n o ly s i s
Lov/-Boiling H y d r o c arb o n S o l v e nt .
(small amount), m . p .
h y d e , m.p.
183-186°C.;
D i m e t ol d e r i v a t i v e
known derivative
of fo r m a l d e
1 8 9 °G .
Water Layer.
known derivative
D I m e t o l d e r i v ative,
of f o r m a l d e h y d e ,
m.p.
m.p.
Cuts
2 - 5 . A very
c o u l d be
1 8 7 . 5 - 1 8 3 ° C .;
189°C!.
ITo d i b e n z a l d e r i v a t i v e of ace t o n e
hydrazone
P r o d u cts
small amount
c o u l d be prepared.
of
o b t a i n e d f r o m botli cuts,
2 , 4-dInitroph.enyl
but
the m a t e r i a l
c o u l d not be pair if led or Identified.
Cuts 4 - 5 .
w i t h d i f f i c ulty,
I s o p r o p y l k etone,
Cuts
2 , 4- Dinitrophen y l l i y d r a z o n e , p u r i f i e d
m.p.
121-122°C.;
m.p.
6 - 1 0.
122-123°C.; m i x e d m.p.
No d e r i v a t i v e s
m a t e r i a l was u n o z o n i z e d
Cuts
known derivative
could
of m e t h y l
121.5-122.5 ° C .
be prepared;
this
olefin.
12 - 18.
Oxiine
1 4 1 - 1 4 1 . 5 ° C .; k n o w n d e r i v a t i v e
( p r e p a r e d in s e a l e d tube), m.p.
of p e n t a m e t h y 1 acetone, m.p.
141-142°C.
The k e t o n e ,
a d d i n g 2 gm.
95,o ethanol.
1.2
of m e t a l l i c
grn. , was r e d u c e d t o
s o d i u m to its
carbinol by
s o l u t i o n in 25 ccm.
P h e n y l u r e t h a n e of carbinol,
known derivative
the
m.p.
of
8 7 - 8 7 . 8°C.;
of 2 , 4 , 4 - t r i m e t h y l - 3 - p e n t a n o l ,
m.p.
86.4-
86.8°C.
2,4 - D i n i t r o p h e n y l h y d r a z o n e , p r e p a r e d by refluxing
a s o l u t i o n of the k e t o n e
and 2,4-dinltrophenylhydrasine
95;i .e t h a n o l c o n t a i n i n g a trace
m.p.
of H C 1 f o r o n e - h a l f hour,
1 6 4 . 5 - 1 6 5 . 8 ° C .(r e d - o r a n g e plates);
from a known
sample
of
In
derivative prepared
p e n t a m e t h y 1 acetone,
m.p.
1 6 5 - 1 5 5 . 8°C.
117
Residue.
A semicarloazone was prepared but
could
not b e p u r i f i e d .
2, 4 - D i n i t r o p h e n y l h y d r a z o n e , m.p.
melting point
wa3 depressed w h e n m i x e d w i t h the d e r i v a t i v e
ethyl n e o p e n t y l ketone which, m e l t s
was not
135.6-136. 3°C! . ; the
at 135.5°G.
I d e n t i f i c a t i o n of 2, 5 , 4 , 4 - T e t r a m e t h y l - l - P e n t e n e
in Olefin R e c o v e r e d
S e p a r a t i o n of K e t o n e
f r om O x i d a t i o n .
from
Olefin.
eighty grams
of h y d r o x y l a m i n e h y d r o c h l o r i d e
120 ccm.
w a t e r and a s o l u t i o n of 40 gm.
of
In 50 ccm.
of w a t e r and
and mixed.
hydrated
mi x t u r e was
(1 mole)
of ITaOII
105 gm. , and 20 gm.
in 250 ccm.
reaction mixture
of water and 20 gm.
and e x t r a c t e d with 3-3.00 ccm.
of 95;t ethanol.
cooled
of
of
The
was c o o l e d and tre a t e d w i t h
of ITaHGOg, the layers
portions
of ether.
separated
The
the ethanol was r e m o v e d f r o m the extract
small c o lumn;
A_t
ether
in a
the residue w a s a d d e d to the oil l a y e r a n d the
c o m b i n e d m a t e r i a l dried over
this point
large p a r t
s o d i u m sulfate.
the f l a s k w a s br o k e n t h r o u g h a c c i d e n t
of the m a t e r i a l w a s
recovered and d i s t i l l e d
t h r o u g h a 1 . 0 x 43 pm. c o l u m n p a c k e d with glass h e l i x e s .
Charge:
in
t h e n refl u x e d 8 hours.
Th e
but a
35,
of
(1.14 m o l e s )
100 ccm. o f 95;^ ethanol were
f r a c t i o n a t i o n Ho.
s o d i u m acetate
of
A solution
T h i s was poured i m m e d i a t e l y into a s o l u t i o n
cuts 21-29,
and m o s t
The m a t e r i a l
Identified.
c.
200 ccm.
of
150.5
gm.
.Fractionation Ho.
43
Cut
Head. Temp.
2
85
3
31-62
n 20D
736
63-79
1
Pre s s^^re
10 O
Amount
Re f l u x
1.4648
77.1
1.4820
4.5
ti
1.4407
1.1
10-1
10-1
4
63.8
1.4240
1 .2
ir
5
63.5
1.4234
0.9
tr
6
64.0
1.4238
4.2
7
64.0
1.4259
3.4
rt
8
65.0(-*)
1.4-240
4.9
tr
9
37.0
1.4240
4.8
4-1
10
37.0
1.4242
3.6
11
100.5
1.4376
0.5
12
101.5
1.4467
2.0 .
13
102.0
1.4480
5.6
tt
14
102.0
1.4479
6.6
tt
15
102.0
1.4480
5.8
rr
16
102.0
1.4-480
5.0
tr
17
102.0
1.4480
6.4
rr
18
-
1.44-80
5.8
-
Res idue
-
2.0
Tee T r a p
1.4240
0.5
(*)
b.p.
.
30
15
ti
10-1
5-1
124.8 at 734 m . m •
Cuts 4 - 10 w e r e
identical w i t h m a t e r i a l
in the u n o x i d i z e d n o n e n e s , cuts 15 to 30,
17,
8-1
and that r e c o v e r e d
f r a c t i o n a t I o n Ho.
se
f r a ctionat
f r o m o x i d a t i o n cuts 28
to 43,
33.
Due to the a c c i d e n t a l loss
of some of
tlie starting
m a t e r i a l the c o m p o s i t i o n cannot he determined, exactly;
it
was a p p r o x i m a t e l y 5 0 - 6 0 / m e t h y l
neopentyl ketone.
O z o n o l y s i s of O l e f i n s . C u t s 4-10 above,
(.172 m o l e s )
II,B,3,b,
were o z o n i z e d
Oxygen rate,
oz o n o l y s i s ,
IS
21.7
gm
in t h e manner d e s c r i b e d i n
part
L. p e r hour; time r e q u i r e d
for
6-1/4 hours.
The
ozonide w a s
u sing 12 gm.
decomposed
(.185 moles)
silver n i t r a t e
of
zinc
in the u s u a l m a n n e r ,
dust and 0.1 gm. e a c h of
and h y d r o q u i n o n e .
The crude
oil l a y e r
weighed
13.7 gm.
The
extraction,
oil layer,
and residue
h i g h - b o i l i n g mate r i a l f r o m t h e
f rom the
dis t i l l a t i o n of the
ether
low-
b o i l i n g h y d r o c a r b o n ca u g h t
in t h e ice traps,
were c o m b i n e d
and c h a r g e d
cm. c o l u m n packed
with 3/32
stainless
to an 0.3 x
42
steel helixes.
F r a c t i o n a t i o n IIo. 44
Gut
He a d T e m p .
1
2S-35
Pres sure
7 35 .
n 20D
Ether
Amount
Ref luce
12.5
5-1
2
52
1.3600
0.2
10-1
3
72
1.3840
0.5
20-1
4
79
1.4-046
0.7
25-1
5
105. 5
1.4025
0.3
ii
6
1 19
1.4099
0.3
ii
7
13 S
1.4126
0 .9
15-1
8
1 42
1.4133
1. 1
ii
9
142
1.4150
1.4
ii
—
1.4159
1.7
10-1
1.4426
6.5
3-1
10
Residue
I d e n t i f i c a t i o n of 0 z o n ol y s i s Products
inch
120
Water L a y e r .
On treatment with, dimethyldihyd.ro-
resorcinol this
m a t e r i a l yielded a d i m e t o l derivative, m.p.
137.5 -88.5°C.;
knovoi
derivative of formaldehyde, m.p.
Ho d i b e n z a l d e r i v a t i v e of acetone
189°C
could be obtained
L o w - B o i l i n g H/ydrocarbon. This m a t e r i a l yielded no
derivative of a c e t a l d e h y d e w h e n t r e a t e d w i t h dimethyldihydro
resorcinol.
Guts 5 - 4 . T h i s material gave
a s m a l l amount of
2 , 4 - d i n i t r o p h e n y l h y d r a z o n e which c o u l d not be purified.
Cuts 5 - 6 . 2 ,4-Dinitr o p h e n y l h y d r a z o n e , m.p. 125.74.7°C.; k n o w n d e r i v a t i v e
m ixed m.p.
of pinacolone, m.p.
124 -5°G.;
123.8 - 1 2 4 . 6°C.
Cuts 7 - 1 0 .2 , 4-Dinitr ophenylhydrazone,
111.6 -12.3°C.j
known
m.p. 111.9 - 112.3 ° C . ;
m.p.
derivative of m e t h y l pinacolyl ketone,
mixed m.p.
111.6 - 1 1 2 . 5°C.
C. ■ P R E L I M I N A R Y S T U D Y - THE HOHEHES F R O M
THE CUPOLYI.iERIZA.TIUN OP THE O L E F I N S
FROLI t-ALIYL A N D _t-BUTYL ALCOHOLS.
1•
P r e p a r a t i o n and O x i d a t i o n
The
following work comprises
the o x i d a t i o n of the n o n e n e s
the p r e l i m i n a r y w o r k on
f r o m the p o l y m e r i z a t i o n of
jt-butyl a n d _t-amyl alcohols
with sodium dichromate-sulfuric
acid m i x t u r e .
i n i t i a t e d b y P.O.
V/.O. O s b o r n e
The w o r k was
Y/hitmore a n d
of this l a b o r a t o r y who became i n t e r e s t e d
nonenes a n d their
oxidation products
in these
as a p r a c t i c a l m e t h o d of
p r e p a r a t i o n of m e t h y l p i n a c o l y l ke t o n e
and m e t h y l p i n a c o l y l -
carbinol.
T h e nonenes were p r e p a r e d
those of part A.
One h u n d r e d m o l e s
The jt-butyl alcohol u s e d was
h a v i n g a f r e e z i n g point above
f.p.
2 5 . 5 ° C.);
as that
in the same m a n n e r
of each a l c o h o l w a s used.
s t o c k m a t e r i a l of h i g h purity,
2 0 ° C . ( p u r e jt-butyl a l c o h o l ,
the t - a m y l a l c o h o l u s e d was of the
f r a c t i o n a t e d in part
as
same
source
I I , A , 1, which p r o b a b l y c o n t a i n e d
up to 1 0/j of other pentan o l s .
The
as in p a r t
o x i d a t i o n of the n o n e n e s was c a r r i e d
II,B,1,
three 8 m o l e
o x i d i z e d b o i l e d b e t w e e n 120 and
runs being m a d e .
131°C.
f r a ctive
above
indexes were b e t w e e n n ^ D
T he acids and k e t o n e s were
as d e s c r i b e d previously.
The m a t e r i a l
on r e f r a c t i o n a t i o n of
olefins b o i l i n g b e t w e e n 1 1 0 ° C . and 140°C.
12-20 p l a t e s at refluuc ratios
out e x a c t l y
through columns
seven to one;
the
1.4220 and n ^ D
isolated and
re­
1.4258.
separated
of
122.
F r a c t i o n a t i o n N o . 45.
Tiie a c i d p o r t i o n f r o m tlie n o n e n e oxidation,
Z,✓ 400 gm. , w a s
Cut
1
Head Temp.
75-79.5
ciiargecl to column I.
Pre s sure
20
n 20D
Amount
1.4033
1.5
18-1
Reflux
2
87
1.4060
2.6
ii
3
92
1.4117
3.6
ii
4
92.5
1.4138
4.6
ii
5
93.3
1.4140
6.1
ii
6
93.1
1.4143
6.3
30-1
7
95
1.4150
6.5
19-1
8
98.6
1.4173
4. 7
ir
9
101.5
Solid
6.4
ii
10
105 .5
11
4. 4
15-1
11
106.5
It
6.9
14-1
12
106. 9
9.5
ii
13
107 . 2
II
6.7
15-1
14
108
II
3.9
11-1
15
108
4. 2
20-1
16
107.5
5.5
ti
17
111
1.4253
6.6
ti
18
121
1.4281
2. 5
11-1
19
129
1.4337
2.9
20-1
20
130.5
1.4372
3.6
it
21
129.5
1.4384
4.7
ii
22
132.5
1.4397
3.3
16-1
23
127. 5
1.4409
5.9
ii
24
131
1.4411
4.9
n
II
run
123*
Cut
Head Temp,
Pressure
n 20D
Amount
Reflux
25
133.3
1.4413
7.6
16-1
26
133 • 5
1. 4 4 1 0
6.9
it
27
133
1.4411
6.3
it
28
133
1.4413
4.2
it
29
133.3
1.4412
7.1
ir
30
133 .4
1.4413
7.0
51
133.8
1.4414
7.9
ii
32
133.7
1. 4 4 1 6
7.6
it
33
134.5
1.4418
7.3
ii
34
134.8
1.4420
10.S
ii
35
135
1.4420
8.8
it
36
135
1.4420
7.3
ii
37
133.8
1.4420
6.5
ir
38
•133.3
1.4423
7.4
it
39
136
1.4423
10.7
it
40
. 135.5
1.4423
9.5
n
41
135.0
1.4424
5.4
ii
42
135
1.4425
10.6
ii
20
n
43
• 135.5
1.4-429
12.2
ii
44
135. 5
1.4428
12.1
ii
45
135. 5
1.4428
11.8
ti
46
13 5.5
1.44 28
12.3
it
47
135.5
1 .4428
15.5
ii
48
136
1.4431
7.3
ii
49
135. 5
1.4432
7.6
ti
50
135.5
1.4436
8.2
ti
CO
H
02
Residue
124
Fr ao t ionat 1 on H o . 46
The
acid xoortion from the
2 and 3,
o x i d a t i o n of* the nonenes,
was f r a c t i o n a t e d t h r o u g h c o l u m n X .
Head Teiap.
Pressure
n^D
Amount
Reflux
1.4010
2.6
10-1
72
1.4009
5.5
it
3
78
1.4022
6.3
7-1
4
92
1.4090
5.6
ii
5
94
1.4141
6.5
it
6
94.5
1.4143
6.2
8-1
7
95. 2
1.4146
10.0
10-1
8
95. 5
1.4147
14.4
ii
9
95.8
1.4148
9.2
ii
10
96. 2
1.4150
10.1
ii
11
98.0
1.4157
9.7
11-1
12
99. 4
1.4172
8.0
ii
13
105. O
1.4219
8.6.
ii
14
105. 5
1.4243
8.8
15-1
15
107 . 5
21
Solid
11.7
8-1
16
106. 1
20
"
11. 3
ti
17
106 . 5
"
11.7
ti
18
106 . 5
"
9.7
19
107 . 0
"
11.7
20
107. 5
"
9.1
21
107.7
"
lO . 6
22
108 . 5
23
125. 0
130 . 5
1
53.5-70
2
20
4
ii
ti
ii
ir
9.9
3-1
1.4304
8.8
5-1
1.4363
9.5
15-1
"
d. T e m p .
Pres sure
n 20D
Amount
Reflux Ratio
25
134. 7
1.4394
9.0
15-1
26
1 3 4. 9
1.4400
9.8
tr
27
134. O
1.4401
10.5
28
133 . 6
1.4407
10. 6
12-1
29
134.0
1.4410
13.9
12-1
30
134.0
1.4410
14.1
ti
31
134. 5
1.4411
14.5
32
13 6 . 0
1.4416
13.7
33
136. 5
1.4420
•
CO
r—i
34
1 3 6. 5
1.4420
14.8
TI
35
134. 5
19
• 1.4418
15.0
It
36
135 . O
20
1.4414
15.9
If
37
135. O
ii
1. 4 4 1 6
14.9
It
38
134. 5
18
1.4418
18.7
It
39
136. 5
20
1.4419
16.0
If
40
136. 5
ir
1.44 27
16.5
II
41
1 3 5 .O
19
1.4426
17.1
It
42
140. O
22
1.4425
15.6
15-1
43
135.0
19
1.4424
18.1
12-1
44
138. 0
20
1.4427
16.9
10-1
45
133.2
21
1.4429.
16.6
ii
46
138. 2
ii
1.4424
14.8
ii
47
137.0
20
1.4430
21.1
8-1
48
137. 0
1.4430
18.8
7-1
49
137.0
1.4430
16.2
8-1
50
135 . 5
1.4430
16. 6
8-1
51
138.5
22
1.4430
16.7
5-1
52
139. O
23
1.4431
20.1
it
20
ir
it
n
ti
Cut
Head Temp.
Pressure
n 20D
Amount
Reflux
53
137. O
20
1.4432
21.1
5-1
54
138.0
r?
1.4434
16.9
IT
55
138.5
IT
1.4438
18.6
IT
56
138.5
ir
1.4446
8.3
-
R e sidue
B l a c k Oil
F r a c t i o n a t i o n Mo.
5.0
47.
The n o n - a c i d i c p o r t i o n of the n o n e n e
oxidation, r u n
1, was f r a c t i o n a t e d t h r o u g h a column h a v i n g a n efficiency of
m o r e than 12 t h e o r e t i c a l plates.
this work,
Cut
performed
Head Temp.
1
33-34
2
¥/. 0. O s b o r n e ,
who initiated
this distillation.
Pre s sure
737
n
D
Amount
Re f l u x
1.3528
202
10-1
33
1.3538
3.0
IT
3
86
1.3635
2.7
IT
4
98
1.3930
4.9
IT
5
103
1.3978
5.3
IT
6
105
1.4000
8.0
TT
7
112
1.4035
9.3
If
8
118
1.4110
8.9
It
9
118.2
1.4129
9.2
It
10
1 18.5
1.4130
9.2
IT
11
118.5
1.4128
8.4
If
12
118.6
1.4130
10.2
II
13
118.9
1.4130
9.4
If
14
119
1.4130
8.9
II
15
119
1.4130
11.8
II
16
119. 2
1.4130
8.6
II
74-7
i
746
n soD
Amount
119.5
1.4139
9.1
10-1
18
120.0
1.4145
9.5
IT
19
122.0
1.4161
•
o
H
II
20
125.0
1.4183
11.6
II
21
124.5
1.4-200
10.3
t!
22
125
1.4210
9.0
II
25
1 26
1.4221
10.3
24
127
1 . 4 2 3 2 - 42 86.4
ii
25
130.4
1. 4 2 4 8
9.9
ii
26
131.3
1.4253
9.5
ii
27
131.8
1.4254
9.5
ii
28
131.9
1.4256
10.0
29
142.3
1.4184
9.5
30
1 44
1.4170
13.3
n
31
144. 2
1.4170
10.9
ti
32
144.2
1.4170
•
o
H
33
144. 6
1.4170
39 o8
It
34
144. 9
1.4170
39.2
It
1.4169
32.1
11
Cut
H e a d Temp,.
17
35
Pressure
742
7 43
145. 2
Reflux
7-1
10-1
7-1
TI
36
145 . 1
1.4170
9.3
11
37
144.
1.4170
9; 9
11
38
-
1.4173
10.2
tl
39
142.
1.4177
8.3
11
-
Re sidue
F r a c t i o n a t i o n Ho.
The non-acidic
products,
runs
50
48.
portion
of the nonene
oxidation
2 and 3, was f r a c t i o n a t e d t h r o u g h c o l u m n IT
128.
Gut
Head Temp.
Pressure
n 20D
739
1.3965
2.9
20-1
Amount
Reflux R
1
34-90
2
94
1. 3956
2.2
ii
3
98
1. 3950
2.9
ti
4
102
1.3966
2.8
ti
5
104
1. 399 0
3.3
IT
6
1 04.5
1. 3991
8.0
II
7
104.8
1. 3993
8
1 05.5
1.4003
6.3
15-1
9
108
1. 4022
4.6
ii
10
114
1. 4067
4.4
20-1
11
117
1.4122
4.3
it
12
118
1. 4133
6.9
ir
13
118.3
1.4-133
12.2
10-1
14
118.1
1.4130
15
118.1
1.4130
!>
• •
H H
H H
15-1
16
118.2
1.4126
17. 2
12-1
17
1 18.5
1.4123
13. 4
8-1
18
118.4
1. 4123
8.2
15-1
19
118.4
1. 4121
12.2
20-1
20
113.4
1.4121
13 . 2
30-1
21
118.6
1.4119
11.2
ii
22
119
1.4118
12.
6
35-1
23
1 19.4
1.4117
14.8
12-1
24
1 19.4
1.4118
10.0
20-1
25
1 19.3
1.4120
12.8
ii
26
120.0
1.4125
15 .3
12-1
27
1 21.6
1 .4144
14. 6
14-1
•
H
743
o
742
II
it
129
Cut
H e a d Temp.
28
122.8
29
P r e s sure
743
n 20D
Amo.unt
R e f l u x R a t io
1.4170
13.5
22-1
125.1
1.4187
13.9
14-1
30
1 2 5 .5
1.4204
14.4
10-1
31
1 2 5 .5
1.4212
13.6
20-1
32
126
1.4224
13.7
14-1
53
126.1
1.4232
13.1
15-1
34
1 2 6 .2
1.4232
14.2
20-1
35
1 2 6 .3
1.4234
13.9
15-1
36
1 2 6 .3
1.4234
13.1
14-1
37
1 2 6 .5
1.4239
22.4
9-1
38
126.7
1.4237
17.7
15-1
39
1 2 6 .7
1.4237
13.9
it
40
1 2 7’•2
1.4237
11.1
30-1
41
128.0
1.4238
14.3
12-1
42
1 2 9 .0
1.4239
13.0
ii
43
131.0
1.4242
15.2
15-1
44
1 3 2 .0
1.4259
17.3
12-1
45
132.5
1.4263
14.5
17-1
46
132.3
1.4263
12.8
1!
47
1 3 2 .5
1.4268
15.0
TI
4-8
1 3 3 .3
1.4261
14.8
50-1
49
145 .
1.4210
9.2
20-1
50
14 5 . 2
1.4170
12.1
ii
51
1 4 5 .4
1.4167
48.7
10-1
52
1 4 5 .5
1.4167
45.7
ir
53
145 .5
1.4-167
47.9
7-1
54
1 4 5 .5
1.4167
46,3
10-1
738
736
Cut
h e a d Temp.
P re s sure
n 20D
Amount
R e f l u x Rati o
55
145.5
1.4166
47.7
10-1
56
147.0
1.4169
40.5
ii
57
148.5
1.4172
13.5
rr
58
150.
1.4173
7.1
1.4285
126.0
Resi due
R e fr a c t d o n a t i o n Ho . 49.
The r e s i d u e s
f r o m f r a c t i o n a t i o n s H o . 47 and 48
were combined an d f r a c t i o n a t e d in a 0.9 x 45
•cm. co l u m n
packed with 3 m m . g l a s s hel ixe s .
Cut
H e a d Temp.
Pressure
70
n 20D
Amount
Reflux R a t i o
1.4175
1.8
8-1
78.2
1.4183
3.8
12-1
79.0
1.4184
6.7
10-1
1.4186
8.7
7-1
1
735-77
2
3
150.0
74 5
4
79.0
70
5
79.0
1.4189
10. 6
ii
6
79.4
1.4187
7.7
ii
7
79.8
1.4184
9.0
ii
8
80.0
1.4189
10.7
ii
9
80.0
1.4192
11.7
ri
10
80.2
1.4193
9.4
n
11
80.0
1.4192
11. 8
12
80.3
1.4193
8.9
ri
13
82.0
1.4198
9.5
10-1
14
84.0
1.4226
9.6
12-1
15
84.5
1.4258
9.4
11-1
16
90
1.4357
7.6
-
Re sidue
46
35. 2
ii
2.
I d e n t i f i c a t i o n of the O x i d a t i o n
Products
a.
o f the Nonenes.
Acidic Products.
Cut 5, F r a c t i o n a t i o n No.
45. Anilide, ra.p. 89.5
9 0 ° C . ; k n o w n derivative
of d i m e t h y l e t h y l a c e t ic acid, m.p.
91 - 9 1 . 5 ° C . ; m i x e d m.p.
90.2 -91°C.
Cut 1 1 , F r a c t i o n a t i o n No.
111°C.;
k n o w n deriva t i v e
of t h e s e
amount
c o m b i n e d cuts
m.p.
Cut
m.p.
105.2
1 1 0 . 6 -111.1°C.
F r a c t i o n a t i o n No. 45. R e f r a c t i o n a t i o n
t h r o u g h a small c o l u m n gave a small
of an acid m e l t i n g
Anilide,
s l i g h t l y above r o o m remperatu r e .
132.5 -133°C.;
m i x e d m.p.
55 - 5 0 , F r a c t i o n a t i o n No.
-106°C.
Neutral Equivalent
ing t o a nine carbon f a t t y acid,
b.
M .1 7 .
129.5 -131°C.
45. A n i l i d e , ( c u t 45)
157,
158.
to the ketone
d e c o m p o s i t i o n of the
R Q
ti
cnpi „
R-C-C-OIi ------- 2 ---*»-
of one less carbon
a l p h a - b r o m o acid amide.
87) .
!
160 c o r r e s p o n d ­
D e g r a d a t i o n of Cut 4 2 (Meth?,rlpin a c o l 7/-lacetic A c i d)
The acid was d e g r a d e d
atom b y the
110.5-
of methyl-jfc-hutylacetic a c i d , m . p .
111.1 - 1 1 1 .7 ° C .; m i x e d m.p.
Cut 1 - 4,
45. Anilide, m.p.
-
R 0
T
n
R-C-C-Cl
(PBr3 )
R
0
R 0
1
"
» "
R - C - C - m o .V-D5---------R - C - C - C l
t
^
t
Br
Br
Br2
(139,
132
K O H ________ ^
The acid,
R-C = 0
R
Excess
was t r a n s f err ed to
was
t h i o n y l chloride was
a 200 ccm.
of l i q u i d b r o m i n e
then d i s t i l l e d
to 9 8 ° 0 . The residue
t h r e e - n e c k f l a s k and 20 gm.
added
slo w l y ,
of m e r c u r y was t h e n a d d e d and the m a t e r i a l
any ex c e s s
with stirring,
A small amount
stirred v i g o r o u s l y
bromine.
One h u n d r e d ccm.
gas p a s s e d into the
KBr
heated on a
the m i x t u r e was a l l o w e d to stand overnight.
to remove
+
of t h i o n y l chloride
off until the v a p o r t e m p e r a t u r e rose
(0.125 mole)
KG N
1 5 . 8 gin. (0.1 mole),
steam h a t h u n d e r r*eflux w i t h 20 gm.
for two hours.
+
of ether was
added, and d r y a m m o n i a
s o l u t i o n as long as ammonia was absorbed.
The p r e c i p i t a t e d a m m o n i u m h a l i d e w a s filtered off,
dissolved in w a t e r
pe t r oleum ether.
and
The
extract were combined,
ligroin,
the aqueous
a n d p e t r o l e u m ether
evaporated,
a n d c r y s t a l l i s e d from
or 62p of the theoretical yield
of the a l p h a - b r o m o a c i d amide
The b r o m o amide,
stick p o t a s s i u m h y d r o x i d e
stirred
extracted with
ether extract
to o b t a i n 1 4 . 0 gm.
ethanol were
solution
of m.p.
13.8 gm.
96 - 100°G.
(.061 mole),
(.223 mole),
and h e a t e d on a
12.5 gm.
a n d 60 ccm.
of
of 95%
s t e a m h a t h f o r five and
one half h o u r s .
Three h u n d r e d ccm.
mixture
steam d i s t i l l e d .
diluted to 300 ccm.
of water was
The
to re d u c e
first
t h e n added and the
150 ccm.
of distilla t e
the c o n c e n t r a t i o n of ethanol
and e x t r a c t e d w i t h ether.
This was w a s h e d w i t h saturated
calcium c h l or i d e
dried with anhydrous calcium
solution,
was
133.
chloride,
a n d f i n a l l y f r a c t i o n a t e d in a 0 . 7 x 45
c olumn p a c k e d with. 2 mm,
i.d.
cm.
glass helixes.
F r a c t i o n a t i o n No. 50,
Cut
H e a d Temp.
n 2°D
0
3 6-67(742)
ether
1
82
1.3631
4.4
2
127
1.4105
0.9
3
134
1.4163
CO
•
o
4
—
1.4165
1.5
5
—
1. 4 1 7 0
1.3
6
—
1.4170
1. 5
Residue
-----
—
0.4
Amount
—
A l l fractions h a d a f a i n t
of k e t o n e b a s e d on the b r o m o
odor o f nitrile.
The yield
a m i d e was 67/o of the theore t i c a l
yield.
The n ^ D
1 . 4 1 7 0 c o r r e s p o n d s to tlie r e f r a c t i v e
of m e t h y l p i n a c o l y l ketone,
n^D
1.4170.
2 , 4-Dinit r o p h e n y l h y d r a z o n e , m.p.
112 -112. 7°0.;
derivative
of m e t h y l p i n a c o l y l ketone, m.p.
m i x e d m.p.
111,9 - 1 1 2 , 7°C.
c.
index
known
112 - 113°C. ;
I d e n t i f i c a t i o n of S o m e Ketonic P r o d u c t s
of Nonene
Oxidations.
Cut
hydrazone,
1 - 2 . F r a c t i o n a t i o n No. 48.
m.p. 1 2 2
-2.5°C.;
k n o w n derivative of m e t h y l
i s o p r o p y l ketone, in.p. 1 2 3 - 4 ° C . ;
M i x e d m e l t i n g points w i t h t h e
125.8 - Q.5°C.)
and
large d e p r e s s i o n s .
2,4 - D i n i t r o p h e n y l -
pinacolone
mixed m.p.
derivatives
(m.p. 125.5
121.5
of ace t o n e
- 26°C.)
- 1 2 2 . 2°C.
(m.p.
gave
134
S e mi cart* a zone , m.p. 108.5 -110°C.;
knovra derivative
of methyl i sopropyl ketone, m.p. 113,5 - 1 1 5 ° C . ; mixed m.p.
110.5 - 1 1 1 .2°G .
Gut 7 ,
hydrazone,
m.p.
F r a c t i o n a t i o n No.
125.3
-5.6°C.;
48.
2 , 4-Dinitrophenyl-
known d e r i v a t i v e of pinacolone,
m.p. 125.5 -126°C.; m i x e d 125.2 -5.7°C.
G u t 15. F r a c t i o n a t i o n No.
hydrazone,
m.p.
100.5
neopentyl ketone, m.p.
48.
2 * 4-Dinitr ophenyl-
— 101.3°C.; k n o w n d e r i v a t i v e of methyl
100.0 -100.2°C.; m i x e d m.p.
100.5 -
101.2°C.
G ut
24 , F r a c t i o n a t i o n No. 4-8.
h y d r a z o n e , m.p.
100.5
neopentyl ketone, m.p.
2, 4-Dinitrophenyl-
- 101°C.; k n o w n d e r i v a t i v e of methyl
100 -1 0 0 . 2 ° C . ; m i x e d m.p. 100.6 -101°C.
Guts 58 - 4 7 , Fractionation No.
rivatives could be
obtained,
48.
indicating t h a t
No ketone d e ­
this material was
largely u n o x i d i z e d olefin.
Guts 51 - 5 5 , Fractionation No.
hydrazone, m.p.
ketone, m.p.
48.
2,4-Dinitrophenyl-
112 -13°C.; known d e r i v a t i v e
of methyl pinacolyl
113 - 3 . 5 ° C , ; mixed m.p.
Cut 58 . F r a c t i o n a t i o n No.
zone, m.p.
79.7 - 8 0 . 3 ° C . ;
(see below)
m.p.
74.2
The fact t h a t
112-13°C.
48.
2 , 4-Dinitr ophenylhydra-
derivative of 4 , 4 -dimethyl-2- h e x a n o n e ,
— 74.9°C.; m i x e d m . p .
the melting point
phenylhydrazone w a s a b o v e that
of
of the k n o w n
68.5 - 70.5°C.
this 2,4-dinitroderivative of
4, 4 - d i m e t h y l - 2 - h e x a n o n e suggested that a n o t h e r ketone, bo i l i n g
b e t ween m e t h y l p i n a c o l y l ketone and 4,4 - d i m e t h y l - 2 - h e x a n o n e ,
w a s present.
No
confirmation
of this was
Cuts 2 - 1 2 , Fractionation No,
obtained.
49.
This materia l was
135.
shown to h e
4 , 4-dimethyl-2-hexanone by degradation through
the haloforra
degradation
reaction to
t-amyl
ac e t i c
acid,
and further
o f this a c i d to d i m e t h y l ethyl a c e t a l d e h y d e .
O r i g i n a l l y s o m e d o u b t w a s e x p e r i e n c e d as to t h e
this k e t o n e
since
rather t h a n
IL470C., as r e p o r t e d b y Drake and K l i n e
'however,
the
its d i n i t r o p h e n y l h y d r a z o n e
struc t u r e
m e l t e d at
of
7 4 °C.,
(82,83);
d e g r a d a t i o n s r e m o v e d reasonable doubt.
(See Part
II,C,2,d).
2 , 4 — D i n i t r o p h e n y l h y d r a z o n e , m.p.
ported d e r i v a t i v e
7 4 . 2 - 7 4 . 9 ° C .; r e ­
of 4, 4-dime t h y l - 2 - h e x a n o n e , m.p,-, 147°C.
(82,83).
Semicarbazone,
rivative
of
1 6 8 . 7 - 6 9 , 3 ° G .; r e p o r t e d d e ­
4 , 4 - d i m e t h y l - 2 - h e x a n o n e , m.p.
d.
and d r o p p i n g
funnel was
placed a
of water.
( 0 . 3 mole)
of bro m i n e
(.111 mole)
gm.
period of 40
minutes., a l l o w e d to
two hours
solution of 32 gm.
T h i s was
dropped 1 4 . 2
of k e t o n e
an d stirred
acid a n d t h e m i x t u r e
longer.
the r e s i d u e
over a
of c r u d e
acid.
acidified
Pressure
1
105-105
20-19
n 20 D
1.4260
The
and the ether
D i s t i l l a t i o n was
i n a C l a i s e n flask u n d e r redu c e d pressure.
B.P*
over
Th e
a g a i n steam distilled.
acid d i s t i l l a t e was e x t r a c t e d w i t h ether,
Cut
5°G.
Into t h i s was
(cuts 3 and 4)
three hours
with s u l f u r i c
obtain 10 gm.
(0.8 mole)
w a r m to room t e m p e r a t u r e
then s t e a m d i s t i l l e d off,
evaporated to
condenser,
cooled to m i n u s
added slowly.
bromoform w a s
carried out
(82,83).
t h r e e - n e c k flask f i t t e d w i t h stirrer,
of I'TaOH in 2 8 0 ccm.
a p e r i o d of
169°0.
H a l o f o r m D e g r a d a t i o n of 4 , 4-Dime thyl-2-Iiexanone .
In a
and 48 gm.
m.p.
Amount
2.3
Cut
B.P.
Pressure
n 20D
Amount
2
108
19
1,4260
2.5
3
108
19
1.4262
3.0
Residue
1.5
The acid h a d
a neutral equivalent
of 133;
calculated
T or 07H 1 4 0 2 j 130.
Anilide,
m.p,
104,0 - 4.6°C.; k n o w n d e r i v a t i v e
_t- amylacetic a c i d 1 0 6 . 0°C.
acetic acid, h.p.
Mixon
(106)
111.8°C
(106, 82, 83).
The
anilUde of jt-amyl-
(24 mm.), n 20D 1.4258,
obtained by
t h r o u g h o x i d a t i o n of 4 , 4-dime t h y l - l - h e x e n e w i t h
chromic acid h a d a m e l t i n g point
of 105.5 -106°C.
m e l t i n g point of t h i s m a t e r i a l w i t h that o b t a i n e d
h a l o f o r m reaction was
Amide, m.p.
_t~amylacet ic acid
3.9 gm.
for 45 minutes,
mole)
77.8
(82,
(c.f.
78.7°C.;
83), m.p.
by the
known dexdvative
of
76.5°C.
t-Amylac etic A c i d .
The a c i d obtained
(0.03 m o l e ) was refl u x e d w i t h t h i o n y l chloride
the e x c e s s distilled
of b r omine a d d e d
meanwhile
A mixed
1 0 4 , 6 - 1 0 5 , 2°C,
Degradatioxa of
above,
of
87).
off and 5.6 gm.
(.035
slowly, h e a t i n g g e n t l y on a steam bath
A f t e r a d d i t i o n was c o m p l e t e
c o n t inued for two h o u r s .
The product was s h a k e n with m e r c u r y
to remove excess b r o m i n e , d i l u t e d w i t h 200 ccm.
solution saturated w i t h
heating was
ammonia gas at 0°C.
of ether
A f t e r standing
overnight the ammonlvun ha l i d e was r e m o v e d b y filtration,
filtrate e v a p o r a t e d
to obtain 6,3 gm.
and
the
of a b r o w n residue.
Th i s was h e a t e d on a s t e a m b a t h for 4.5 h o u r s w i t h 25 ccm.
95^0 ethanol and 5 gm.
One h u n d r e d
of
stick p o t a s s i u m h y d r o x i d e .
f i f t y ccm.
of w a t e r w a s
a d d e d and the
of
137.
m a t e r i a l d i s t i l l e d to h a i r its o r i g i n a l volume.
A 2,4-
d i n i t r o p h e n y l h y d r a z o n e was p r e p a r e d d i r e c t l y from the d i s ­
tillate , m.p.
144.2 - 1 4 4 . 6 ° C .; k n o w n
d i m e t h y l e t h y l a c e t a l d e h y d e , m.p.
144.0 -
derivative
144.0
of
-144.S°C.; m i x e d m . p .
1 4 4 . 6°C.
e•
H a l o f o r m D e g r a d a t i o n of
Pe n t a n o n e
5 ,4,4-Trimethyl-2-
(Methyl P i n a c o l 7fl K e t o n e ) .
A l t h o u g h this ketone h a d b e e n identified as m e t h y l
p i n a c o l y l k e t o n e by c o m p a r i s o n of i t s
derivatives
material
the
structure was
derivatives w i t h k n o w n
c o n f i r m e d by d e g r a d a t i o n of the
to m e t h y l - t - b u t y l a c e t i c
a c i d through the h a l o f o r m
react ion.
To a stirred s o l u t i o n of 1 2 . 5 gm.
in 110 ccm,
13.7 gm.
of the
of water c o o l e d t o m i n u s
(.117 mole)
ketone
of bromine.
(.039 mole)
three h o u r s
To
over a two h o u r period and. then stirx’ed
longer.
A b o ut
obtai n e d .
24.5°C.,
points
1.5 gm.
Drake
The b r o m o f o r m w a s
of acid,
and Kline
(82,
83)
o f 5 0 ° C . have b e e n r e p o r t e d
acid, m . p .
known derivative
steam d i s t i l l e d off,
acid and again s t e a m d i s ­
solid
for methyl-_t-but y l a c e t i c
110.5 - 1 1 0 . 8 ° C . ;
this w a s added 5.0 gm.
T h e m a t e r i a l was allowed to w a r m
the r e s i d u e a c i d i f i e d w i t h sulf u r i c
tilled.
5°C. w a s slowly a d d e d
(Cuts 30 - 32, f r a c t i o n a t i o n N o . 47)
over a p e r i o d of 15 minutes.
to r o o m t e mperature
of ITaOH (.31 m o l e )
at r o o m temperature
was
report a m e l t i n g p o i n t
ac i d , although m e l t i n g
(
). Anilide,
m.p.
of methyl-_t-butyl a c e t i c
1 1 1 . 1 -111.7°C.; m i x e d m . p .
110.9 - 111.3°C.
of
138
D.
I S O M E R I Z A T I O N OP 2 ,4 ,4 - T R I M E T H Y L X-PENTEITE WITH 50,.'b S U L F U R I C ACID.
Purification
of 2 .4 ,4 - T r i m e t h y l - l - P e n t e n e .
of 2,4, 4-tr Imethyl-l-p>entene which, had. b e e n
f r a c t i o n a t i o n of
A
sample
prepared b y close
a commercial diisobutylene,
was freed of
peroxides b y w a s h i n g w i t h str ong s odium hydroxide., dried,
f r a c t i o n a t e d over
s o d i u m metal
paclced w i t h glass h e l i x e s .
P r a c t i o n a t i o n No.
Cut
Head Temp.
in a 1.7 x 7 0
The charge was
cm. column
3 3 3 gm.
51.
n 2(^D
A m o unt
Reflux R a t i o
100.3-100.5
1.4083
3.0
7-1
2-21
100.5
1.4087
274.4
7,9-1
22
100.5
1.4088
14 .2
7-1
23
100.5
1.4089
13.3
7-1
-
19.0
1
Residue
Cuts 2 - 2 1
Cottrell
and
w e r e combined for use.
B o i l i n g Point
Initial
100.0 5 ° C .(738 mm. )
50;'o D i s t i l l e d
100.O 5 0C . (738 mm. )
Density Determination
P y c n o m e t e r Calibration,
Gins . D i i s o b u t y l e n e
Gms.Water(4°C)
(20°C . )
3.3857
d 2^
Wrenn
(50,
a b o i l i n g point of
4.7368
0.7148
29)
reports for 2,4,4 - t r Imethyl-l-pentene
10O.l°C.
at 736 mm.
and a density,
d 2^
0.7151.
Isomerization
1 L.
of 2 .4 ,4 - t r i m e t h y l - l - p e n t e n e .
flask f i t t e d witta a r e f l u x condenser
(g las s
In a
joints)
was
placed a m i x t u r e of
247 gm.
b u tylene m a d e up of
cuts 2 - 21,
of w a t e r a n d 150 ccm.
bottle was
After
provided
of t h e lower isomer* of d i i s o ­
fractionation ho.
of 9 3 $ s u l f u r i c acid.
although, n o
150 h o u r s of r e f l u x i n g
A
51,
150 ccm
gas c o l l e c t i n g
gas was e v o l v e d dirring heating
t h e refractive i n d e x of t h e
layer h a d ch ang ed f r o m n 2 ° D 1 . 4 0 8 6 to 1.4120.
oil
The m a t e r i a l
was d e e p g r e e n in color;
a small
present.
a f t e r w a s h i n g with w a t e r and d ilute
The
oil layer,
sodium h y d r o x i d e w a s
gm.
It w a s
dried
1
sodium metal;
weight
-
240
d i s t i l l e d t h r o u g h c o l u m n EMJ.
P r ac t ionat i on ITo.
Gut
over
amount of sulfur d i o x i d e was
Plead Temp.
9 8 - 1 0 1 ( 734mm)
52.
n 20D
Amount
Reflux Ratio
1.4087
7.8
10-1
2
101.0
1. 4 0 9 0
7.4
15-1
3
101.0
1. 409 0
8.7
M
4
101.0
1.4-091
9.1
II
5
101.0
1. 409 1
9.3
II
6
lOl. 2
1.4091
10.3
II
7
101.0
1. 409 1
9.4
II
o
O
101.0
1. 409 1
9.1
II
9
101.2
1. 4 0 9 4
9.9
II
10
101.2
1. 409 6
9.0
II
11
lOl. 2
1. 409 6
9.3
12-1
12
lOl. 2
1. 409 7
9.5
ti
13
lOl. 2
1. 4097
9.8
ii
14
101.3
1.4099
9.5
ii
15
101.4
1. 4102
14.5
U
16.
101.5
1. 410 2
13. 2
tf
20
D
Cut
H e a d Temp.
17
101.8
1.4108
12.2
12-1
18
102.4
1.4113
14.7
ti
19
102 .8
1.4124
11.7
ii
20
103.5
1.4140
11. 2
ii
21
104 .7
1.4155
9.4
-
1.4237
11. 6
n
Re sidue
Amount
Ref lux Rati
F r a c t i o n a t i o n No. 5 o .
Cu ts
to an 0 .8 x 40
21 - R
cm.
from the d i s t i l l a t i o n above were char
c o l u m n packed w i t h 3 / 3 2
inch stainless
steel h e 1i x e s .
n 20D
Amount
101-102.5(743mm.)
1.4147
1. 5
6-1
2
10 2.5
1.4150
4.1
5-1
3
102.5
1 .4152
O
•
H
4-1
4
-
1.4153
1.3
ir
5-
-
1.4157
1. 5
ii
6
-
1.4155
CO
•
o
Cut
H e a d Temp.
1
8-1
7
-
1.4163
1.0
4-1
8
-
1.4178
1.0
3-1
9
B a t h 190°C
1.4215
0.3
-
1.4546
3.8
Re sidue
F r o m t h e d a t a above it see ms
arrangement t o o k p l a c e
of 2 , 4 , 4 - t r i m e t h y l - l - p e n t e n e
mixture
of 2 , 4 , 4 - t r i m e t h y l - l - p e n t e n e ,
mm., n 20D 1.4082,
k n o w n isomerization
to a n equili bri um
b.p.
100.1 at 756
a n d 2, 4, 4-trime t h y l - 2-pentene, b.p.
103.4 ° C . at 737 mm,
ment p r o d u c t s
a p p a r e n t that no r e ­
other t h a n the
(50,29)
Re flux Rat
n ^ O p 1.4158.
Other
possible rearrange­
a l l b o l l well above 1 0 3 ° C .
T he presence
oi
141.
2,3,4— tr ime th.yl-2-pentene,
1.4263,
b.p.
115.5°G.
seems e s p e c i a l l y improbable.
at 745 mm.,
n 20D
142.
SUMMARY
1.
Tb.e p r e s e n c e
of 2 ,4, 4-tr ime thyl-2-hexen.e, 3,5,5-
t r ime t b y 1 - 2 -he se ne , 3 , 5 , 5 -1r ime thyl -3- liex e lie , 2,3,4,4-tetram e t h y l - l - p e n t e n e , a n d 2 , 3, 4, 4 - t e t r a m e t h y l — 2-pentene i n the
nonenes f o r m e d b y the
c o p o l y m e r i z a t i o n of* the olefins
t-butyl and t-ainyl al coh o l s ,
from
as r e p o r t e d b y Mixon (19), has
b e en confirmed.
2.
The
olefin,
id ent i f i e d in the
3.
2 , 3 , 4 - t r i m e t h y l - 2 — pentene, h a s been
octene
Nonenes
portion
p o l y m e r i z a t i o n products.
previously unreported
2,4, 4 - t r i m e t h y l - l - h e x e n e
have b e e n i d e n t i f i e d ,
a n d 3 , 4 , 4 - t r i m e t h y l — 2-hexene and 2,3,3,4-
Oxidation of
sulfuric acid m i x t u r e
in this mixtxire,
and 2-i sopr o p y l — 3 ,3-dimethyi — 1-butene ,
tetramethyl-l-pentene have
4.
of the
been t e n t a t i v e l y identified.
the non ene s
with
sodium dichr ornate -
y i e l d s 4,4 - d i m e t h y l — 2-hexanone, 3,4,4—
t r i m e t h y l - 2- p e n t a n o n e ,
4 , 4 - d i m e t h y l - 2- p e n b a n o n e , p i n a c o l o n e ,
2,4 , 4 - t r i m e t h y l - o - p e n t a n o n e , acetone,
a large
mi xtu re
l a r g e l y methylpinacolyl-
acetic
o f .n i n e
c a r b o n a c i d s w h i c h is
acid, methyl-_t- b u t y l a c e t i c acid,
and e t h y l d i m e t h y l a c e t i c
r e c o v e r e d unoxid.ized;
acid.
A
amount of a
tri met h y l a c e t i c acid,
large a m o u n t
t hos e i d e n t i f i e d w e r e
of ole f i n is
2-i so p r o p y l - 3 ,3-
d i m e t h y l - l - b u t e n e , .2 ,3,4 ,4 - t e t r a m e t h y l - l - p e n t e n e and a n
olefin b e l i e v e d to b e
2 , 3 ,3,4-t etrame t h y l — 1-pentene.
PART
III
S T U D I E S ON M E T H Y L P I N A C O L Y L C A R B I U O L
INTRODUCTION
Questions
to b e
involving the n a t u r e
and. rearrangements
expected, f r o m the fragment o b t a i n e d
o n the loss of a n
hydroxyl g r o u p f r o m m e t h y l p i n a c o l y l c a r b i n o 1 have a r i s e n
several times
mode
i n tlae past.
of f o r m a t i o n
po l y m e riz ati on
alcohols
(116),
fragment as an
of
Notable
among
these co nc e r n s the
o f 2,o, 4 - t r i m e t h y l - 2- p e n t e n e in the cothe olefins from t - b u t y l
and a e c -butyl
s i n c e it is p r e s u m a b l y f o r m e d th rough this
int erm edi ate .
In a n a t t e m p t
further i n f o r m a t i o n on the nature
of t h i s
p i n a c o l y l c a r b i n o l w a s dehydrated a n d t h e
the a c t i o n of a n h y d r o u s hyd rogen c h l o r i d e
v/as also studiecl.
to obtain
fragment me thyl olefins
on this
studied;
carbinol
144.
HISTORICAL
P r i m a r y a n d s e c o n d a r y alcohols of the type
R R' CH-CHOII-R",
of w h i c h m e t h y l p i n a c o l y l c a r h i n o l
d e h y d r a t e d or tre a t e d w i t h a c i d reagents
and t h e
products h a v e
a lcohols of the n e o p e n t y l type.
I s obutyl alcohol,
the
on r e a c t i o n w i t h aci d r e a g e n t s
group
simplest c o m p o u n d of this type,
i n v a r i a b l y g ives considerable
of the t e r t i a r y b u t y l com pound
(140).
The
shift of
t e r t i a r y h y d r o g e n in preference to the methyl
is general.
On d e h y d r a t i o n
l ittle
of m e t h y l isopropyl c a r b i n o l
or no i s o p r o p y l e t h y l e n e
s i s t i n g f or the m o s t
p art
o l e f i n of r e a r r a n g e m e n t ,
of th e
those
in m a n y instances,
In t h i s respect t h e y dem o n s t r a t e a
m a r k e d r e l a t i o n s h i p to the
the a d j a c e n t
one,have been
i n v a r i a b l y be en shown to co nsist largely
of r e a r r a n g e d products.
amounts
is
fragment,
are
the products con­
of trl m e t h y l e t h y l e n e
w i t h sulfuric
acid
not the f r a g m e n t
(CH^) gCIi( C H ^ )CH-*.
(127) h a s
T r e a t m e n t of
forms js-amyl
s h o w n that the d e h y d r a t i o n products
of 2 - e t h y l — 1 - b u t a n o l p r o d u c e s
3 - h e x e n e , 2 - h e x e n e , 3-m et h y l - 2
and 2- e t h y l - l - t u t e n e , the r e a r ran ged pro d u c t s pr e­
dominating.
produces
only
(141).
Karnatz
pentene,
(82,83)
obtained, w h i c h are formed f r o m a jb-amyl
m e t h y l i s o p r o p y l c a r b i n o l w i t h h y d r o g e n hal i d e s
halides
an d the
m e t h y l e t h y l e t h y l e n e . On polymerization
dehydration products
po ly m e r s
is obtained,
(142)
Tr eatment
of this carbinol w i t h h y d r o g e n halides
largely rearranged
chlorides
(128).
I.'ethylplnacolylcarblnol Itself has not b e e n dehydrated
previously.
In c o n n e c t i o n with, the
present
to note the d e h y d r a t i o n pro duct s
lated to p i n a c o l y l
alcohol
w o r k it is of interes t
of o t h e r octyl alcohols r e ­
or its d e h y d r a t i o n products.
O n t r e a t i n g 2 ,4, 4 -1 r ime thyl - 3- p ent anol with a p h o s ­
phorus p e n t o x i d e c a t a l y s t W h i t m o r e
and Houle (133,134)
but 2f0 of 2, 4 ,4 - t r i m e t h y l - 2-pentene,
the
but 16;^ of 2, 4 , 4 - t r i m e t h y l - l - p e n t e n e , Q %
obtained
unr earranged pro d u c t
of 2, 3,4-t rI m e t h y l - 1 -
pentene, a n d 18/t of 2,3,4-trimeth.yl-2-pen.tene. D e h y d r a t i o n
with sulfuric a c i d
halide y i e l d e d
or b y d e c o m p o s i t i o n
s i m i l a r mat erial,
of the a l k o x y m a g n e s i u m
but the pyrolysis of the
acetic ac id e s t e r f o r m e d the u n r e a r r a n g e d olefin.
Laughlin
and obtained,
product,
(143)
d e h y d r a t e d 3, 4 , 4-tri2nethyl-3-p ent ano l
3, 4, 4 — tr imethyl - 2 - p e n t e n e
and the r e a r r a n g e d
2 , 3 , 3 - t r i m e t h y l - l - p e n t e n e , in the ratio of 4 to 1.
«
D e h y d rat ion of 2 , 3 ,3- t r i m e t h y l - 2- p e n t a n o l yielded 2,3,3trimethyl-l-pentene
2-pentene,
a n d the r e a r r a n g e d product,
in t he r a t i o of 19 to 1.
alcohols f o r m e d the
be e x p e c t e d t h a t
same pro d u c t s
th ese
products
3,4,4-trimethyl
Since b o t h of the
on de hyd rat ion ,
that
it is to
c o n s t i t u t e an e q u i l i b r i u m
m i x t u r e , a l t h o u g h the d i s c r e p a n c y In t h e i r ratios
would Ind i c a t e
above
e q u i l i b r i u m h a d not
in e a c h case
b e e n attained in
either case.
B y loss
2-pentanol,
of w a t e r f r o m
" d i i s o b u t o l ", 2,4,4 - t r i me thy l-
o n l y the no rm al p rod ucts,
pentene and 2,4, 4 - t r i m e t h y l - 2 - p e n t ene
1, are f o r m e d
2 , 4 ,4-trimethyl-li n the ratio of 4 to
(29).
D e h y d r a t i o n of 2,3 ,4-tr ime t h y l - 3 - p e n t anol
no r e a r r a n g e d p r o d u c t s ,
(144) .forms
y i e l d i n g 2, 3, 4-trIrnethyl-2-pent ene
and 2 - i s o p r o p y l - 3 - m e t h y l - l ~ b u t e n e
deh.ycT.ratio n p r o d u c t s
been
in a r ati o of 2 to 1. The
of 2,3,4 -tr I m e t h y l - 2~ p e n t a n o l h a v e
not
studied.
The
interest in the d e h y d r a t i o n p r o d u c t s
pinacolylcarbinol
and c o - w o r k e r s
is in c o n s e q u e n c e
(93,99,116,126)
2,3,4 - t r i m e t h y l - 2 - p e n t e n e were
the o l e f i n s f o r m e d b y the
and s e c - butyl alcohols.
of the findin gs
that c o n s i d e r a b l e
hy dra te
that the
of Whitmore
am ou n t s
of
o b t a i n e d in the c o p o l y m e r s
of
s i m u l t a n e o u s d e h y d r a t i o n of _t-butyl
I n a s m u c h as
_fc-butyl a l c o h o l alone c o n t a i n e d none
29 ,49 ,51 ,12 6),
of rnethyl-
the p oly m e r s f o r m e d
of this octene
from
(c.f.
50,
a nd s e c o n d a r y b u t y l a l c o h o l alone fails to de­
a n d p o l y m e r i z e u n d e r the c o n d i t i o n s used,
it appeared
2 ,3,4 - t r i m e t h y l - 2 - p e n t e n e was fo r m e d b y the
of a _t-butyl f rag men t
action
on 2- b u t e n e to f o r m the f r a g m e n t
(Ji-C^Hg)
CIi(CH3 ) C H { C H 3 ) -;c-, f o l l o w e d b y r e a r r a n g e m e n t . T his f r a g m e n t
is t h e s a m e as
loss
that for m e d b y m e t h y l p i n a c o l y l c a r b i n o l
on the
of a n h y d r o x y l group.
A r e a c t i o n w h i c h is b e l i e v e d
to involve
r e a r r a n g e m e n t has b e e n r e p o r t e d b y Drake,
(82,83)
Kline,
a similar
and R o s e
w h o i d e n t i f i e d 3 , 4 , 5 , 5- t e t r a m e t h y l - 2 -he xen e i n the
d i a m y l e n e s f o r m e d b y p o l y m e r i z a t i o n of the
methylisopropylcarbinol.
olefins f r o m
DISCUSSION
T h e studies
of Drake, Kline,
elaborated b y W h i t m o r e and. Mosher*
the olefins f o r m e d b y t he
and Rose
(84,125),
(82,83),
later
demonstrated, that
action of 75>£ s u l f u r i c acid a t 80°C.
on m e t h y l i s o p r o p y l c a r b i n o l were 3 , 5 ,5-trimethyl-2-hept e n e
and 3 ,4 ,5 ,5-te tramet h y l - 2 — hexene .
The
first olefin was
a
product pr edi c t e d f o r a normal p o l y m e r i s a t i o n b y Whitmore's
polymerisation m e c h a n i s m
(92), w h i l e the la t t e r
appeared to
be a quite u n e x p e c t e d rearran gem ent product.
The d i a m y l e n e s predic ted b y t h e m e c h a n i s m advanced
by Whitmore are
sh own b elo w.
The most p r o b a b l e
Isomers would,
be formed from a jt-amyl fragment a n d tr Imethylethylene o r
m e t h y l e t h y l e t h y l e n e , s i n c e the meth yl! sop rop ylc arb iny l
fragment
or i sop rop y l e t h y l e n e w o u l d rearrange to these olefins o r
fragment i m m e d i a t e l y u n d e r the c o n d i t i o n s used.
C
c
c-c-c-c
C-C-C ©
i
C
C G G
G - C - 9 -C-C-C
C
©
III
- H
C C C
C - C-C -C= C- C
c
IV
c c c
t
t
1
c-c-9-c-c=c
c
V
148.
G
i
c-c-c
t
G
C
?
C =C-C-C
9
-=>»- C-C-C-C-C-C-C
C
®
VIII
G
C
G~C~C-G— G — C G
»
C
IX
I t will b e
f o rme d i n
observed, t h a t
appreciable amoiint w a s
It was c o n s i d e r e d m o s t
the only o l e f i n w h i c h was
(VIII) .
likely that the
t e t r a m e t h y l - 2-hexene was formed, b y rea rrangement
(IV).
One
possible m e a n s
of m e t h y l
9 9 9
CHrz; 10
r
9
9
G —C-C-G-C-C
CH3 1
/
7
c c
i
^
c • c
IV
t
G - C ^ G — C-(y~C
G
H
of fragment
two successive rearrangements,
gr o u p s ,
c-c-c-c-c-c
A
®
c
is b y
3,4,5,5-
0 c c
1 ! 1
C-C-C-G-G-C
9
n
4
Tills w a s
n o t considered, l i k e l y as
change of a t e r t i a r y fra gment
seldom occurs
to
It involved tlie
to a s e c o n d a r y fragment,
an app rec iab le
extent
is omerization of t e t r a m e t h y l e t h y l e n e
if at all
(145,
posed m e c h a n i s m i n v o l v e s a 1;3 shift,
which,
(c.f.
27). Ano the r p r o ­
or shift of a gr oup
from the a t o m h o l d i n g it to the second i n s t e a d of to the
first atom.
qt
ct ci
C-C-C-C-C-G
q
®
9 9 9
CH5
1:3
■,
C-C-C-C-C-C
®
C
,“H +
n
n ? ? ?
c-c=«c-c-c-c
!
c
The t h e o r y of the 1:3 shift r e c e i v e d some sub­
stantiation w h e n it was found s u b s e q u e n t l y that a similar
rearrangement
took place
in the c o p o l y m e r i z a t i o n of the
olefins f r o m _t-butyl alcohol
sulfuric acid.
co-workers
and sec - b u t y l alcohol w i t h 75>o
In s t u d y i n g this p o l y m e r i z a t i o n Whitmore and
(116,91,93). f o u n d that the
o c t y len es obtained were
composed of 25/£ of 2 , 4 , 4 - t r i m e t h y l - l - p e n t e n e and 2,4,4-trlm e t h y l - 2 - p e n t ene , 40)£ of 3, 4, 4 - t r i m e t h y l - 2 - p e n t e n e , and 35/o
of 2,3,4- t r i m e t h y l - 2-pentene,
and. e v i d e n c e
of 2 ,3,4— t r i m e t h y l - 1 — p e n t e n e .
T h e f o r m a t i o n of the 2,4,4-
tr i m e t h y l p e n t e n e s was normal,
p o l y m e r i z a t i o n of i s o b u t y l e n e
pr edicted as a c o p o l y m e r
of a small amount
the k n o w n p r o d u c t s of the
j
3, 4, 4 — trimet h y l - 2 - p e n t e n e vra.3
of isobut yle ne
formation of 2 , 3 ,4 - t r i m e t h y l - 2-penten e
a n d 2-butene.
was
The
not predicted;
n e i t h e r d i d the ol efi n a p p e a r
ment p r o d u c t
to he any normal r e a r r a n g e ­
of an e x p e c t e d poly mer .
The mat eri al did not
ap p e a r to he a pr o d u c t
p o l y m e r i s a t i o n of i s o b u t y l e n e
alone,
o r d i n a r y d i i s o b uty len e p r e p a r e d
action of
67;^ sulfuric
50 ,51 , 2 9 ) ;
since it was
s h o w n that
f r o m t-butyl al co h o l b y
a cid c o n t a i n e d none of it
the presence
of
or a b s e n c e
of peroxides
(126,
the
49,
in the
r e a c t i o n mi xtu re did not a f f e c t
the product
d i i s o b u t y l e n e w i t h 67yZ s u l f u r i c
acid for several d a y s d i d not
prodiice th is
olefin
(see part
t r i m e t h y l - 2-pentene c o u l d be
II,D)
(52). R e f l u x i n g
although some 2 , 3 , 4 -
o b t a i n e d b y r e f l u x i n g diisobu ty-
lene for m a n y hours w i t h 75/a sulfuric acid (.52) .
B y dr op p i n g _t-butyl a l c o h o l into a m i x t u r e
b u t y l a l c o h o l and 67p s ulf u r i c
to o b t a i n be t t e r yields
a c i d Surmatis
(126)
of s e c w a s able
of 2, 3 , 4 - t r i m e t h y l - 2-p ent ene
than
w h e n the mi xtu re of _t-butyl a l c o h o l and sec-butyl a l c o h o l
was h e a t e d with sulfuric acid.
alcohol
In asmuch as the t;-butyl
Is m u c h m o r e r e a d i l y d e h y d r a t e d a n d p o l y m e r i z e d than
the s e c o n d a r y al cohol this w o u l d
that
the
reaction
2 , 3 , 4 - t r i m e t h y l - 2 - p e n t e n e Is a product
of a t— b u t y l f r a g m e n t
In a f a s h i o n s i m i l a r
formation
of the
a n d 2- b u t e n e .
to
that pr opo sed f or the
of 3, 4, 5 ,5 - t e t r a m e t h y l - 2 - h e p t e n e from m e t h y l ! so-
p r o p y l c a r b i n o l , the
2,3 ,4 - t r i m e t h y l - 2-pentene c o u l d be formed
either b y two successive
shift of
appear to be add ed evidence
a met hyl group.
rearrangements
or by a s i n g l e
1:3
151
G
0
C-C
C C
t
G = C-C
!
c-c-c-c-c
*
©
c
w
!
G
ch
G G G
t » i
C-C-C-C-C
3 W
0
0
!
I
c-c-c-c-c
CH3 Ifl
©
a
9
-H+
Gt
G
G
t t
C —0 = C - C - C
c
C G C
t
t
I
c-C-C-C
s
L i k e w i s e , the 2,3, 4 - t r i m e t h y l - 2 - p e n t e n e
been f o r m e d f r o m d i i s o b u t y l e n e b y two
could have
successive r e a r r a n g e ­
ment s .
G
G
C
c
C-C-C-C-C
1
c
H+
C-6-C-6 = C
i
G
H 10
9
Gt Gr
V
G'H 5 in
c-c-c-c-c
— H+
c c
I
I
?
C-C-C-C-C
• ©
c
c
t
C-C-C-C-C
Ho w e v e r ,
as has b e e n e x p l a i n e d
not seem p l a u s i b l e ,
diisobu tyl ene
the f o r m a t i o n
i t s e l f req uires v i g o r o u s
even small y ie l d s ,
of 35% u n d e r
since
while th e o l e f i n was
previously,
this do es
of this olefin f r o m
c ond iti ons to obt ain
formed to the e xtent
c o m p a r a t i v e l y m ild c o n d i t i o n s in the copol-y-
m e r i z a t i o n of ole fin s f r o m jfc-"butyl and sec -butyl alcohols.
In an a tte mpt to
of f o r m a t i o n of th e
c l a r i f y the q u e s t i o n of t h e mode
2,3, 4-tri:methyl-2-pentene,
c a r b i n o l , w h i c h g ive s t he
methylpinacolyl
s a m e fragment on d e h y d r a t i o n as that
o b t a i n e d b y the r e a c t i o n o f a j:-butyl fragment w i t h 2-butene,
was p r e p a r e d and d e h y d r a t e d
o v e r anhydrous
copper sulfate.
The pro d u c t s i d e n t i f i e d were 3,4 ,4 - t r i m e t h y l - 2 p e n t e n e , 2-ethy 1 3 , 3 - d i m e t h y l - 1 - b u t e n e , 2 , 3 , 3-trimeth.yl-lpentene,
10
: 3;
G
a n d 2,4,4 - t r i m e t h y l — 2 -pentene in the r a t i o of 67 : 20
respectively
G
c-c-c-c-c
t
t
C
- OH
0 C
r !
C-C-C-C-C
OH
XI
c
f
c-c-c-c-c
C
C-c-c-c-c
i
c
X I I I (67#)
XII
t
XV
-H+
—
G - Gf- G - G - G
XIV
(20#)
CT GT
C - cr -c-c
C
XVIII
CH 3 ID
(10#)
-H+
? ?
c-c-c-c-c
® c
.
H+
C - 9 - C - 9 -C
c
c
XVI
(3#)
No evidence
o f the
presence
of 2, ,3,4 - t r i m e t h y l - 2 - p e n t e n e or
2,3,4-trinethyl-l-pentene wa s obtained .
It is
of
an i n t e r m e d i a t e
f r o m fragment
interest
(XI)
if the r e a c t i o n p r o c e e d s "by two s u c c e s s i v e
(XII)
-traces only. F r a g m e n t
and
(XV) in a r a t i o
of a b o u t
is c o n f i r m e d b y t h e f o r m a t i o n of a n e a r l y pure
considered to be m e t h y l e t h y l - t - b u t y l c a r b i n y l
by t h e a c t i o n of h y d r o g e n c h l o r i d e on inethylpinacolyl-
carbinol.
The
fact
carbinol r e a r r a n g e s
sidered r e a s o n a b l e
obtained
is formed in
fragments
t e r t i a r y c h l o rid e,
chloride,
is
the formation of 2 , 3,4-tr ime thyl-2~ p e n t e n e
(XX) r e a r r a n g e s to
This
(XV) , w h i c h
in
shifts o f m e t h y l g r o u p s ,
8 t o 1.
to n o t e f r a g m e n t
that the 3 - h y d r o g e n atom in m e t h y l p i n a c o l y l in preference
evidence
in t he co p o l y m e r s
s e c -butyl a l c o h o l s
(XI),
is c o n ­
that the 2 ,3,4 - t r l m e t h y l - 2 - p e n t e n e
of the
o l e f i n s f r o m _t~butyl and
is not f o r m e d b y t w o
in vol v i n g f r a g m e n t s
The f a c t
to t h e 3-methyl g r o u p
(XV),
and
t h a t no e v i d e n c e
successive m e t h y l shifts
(XVII).
of
a 1:3 shift was found in
the d e h y d r a t i o n of
m e t h y l p i n a c o l y l c a r b i n o l leaves the
an open question.
Inasmuch as a 1:3 sinift In a n y case must
be c o n s i d e r e d
cannot b e
to give
an unusual rather t h a n a
inferred
evidence
of
this r e a c t i o n u n d e r
that the f ail ure
such a shift
of
subject
general r e a c t i o n it
m e t h y l p i n a c o l y l c a r b inol
excludes
the p o s s i b i l i t y of
condit ions p e c u l i a r to polymerisation.
EXPERIMENTAL
A.
D E H Y D R A T I O N OF IviETHYLPINACOLYLCARBINOL
1. P r e p a r a t i o n of the Starting; M a t e r i a l s .
a. R e d u c t i o n of M e t h y l P i n a c olyl K e t o n e
S o d i u m in M o i s t
In a 1 L.
Benzene.
t h r e e - n e c k flask fit ted with, a m e r c u r y - s e a l e d
s t i r r e r and r e f l u x c o n d e n s e r was placed 100 ccm.
a q u e o u s sodium c a r b o n a t e
26.5
gm,
(0.2 mole)
f r a c t i o n a t i o n No.
solution,
125 ccm.
47.
T o t h i s was added,
0.7 tol,0 cm.
on a side.
in one
25 gm.
of 20%
of be nzene,
of m e t h y l pinacolyl ketone,
p o r t i o n s over a p e r i o d of f o u r days,
cubes
with
and
cuts 31 - 34,
to two gm.
of s o d i u m cut into
The t e m p e r a t u r e d i d not rise
a p p r e c i a b l y above r o o m t emp era tur e.
The layers w e r e
w i t h 50 ccm.
of b e n z e n e
over m a g n e s i u m sulfate.
separated,
the a q u e o u s
a n d the combined b e n z e n e
The
layer extracted
layers dried
dried sol uti on was c h a r g e d to
c o l u m n II.
Fract i o n a t i o n N o . 5 4 .
Gut
1
Head Temp.
57-63
R e f lu;
Pressure
n 20D
Amoim t
21
1.4272
0.9
io
2
67
25
1.4317
0.8
12
3
67
25
1.4330
1. 6
tr
4
67.5
25
1.4340
1.0
tf
5
68.0
25
1.4342
1.7
10
6
68.6
25
1.4344
1.5
rt
7
70.0
25
1.4543
1.5
n
8
73.0
25
1.4343
1. 2
t!
155
Gilt
H e a d Tem p,
9
76.0
25
1.4 351
1.2
10-1
10
78.2
25
1.4358
1.1
II
11
80.0
23
1.4363
1.2
If
12
78.0
23
1. 437 0
1.2
14-1
13
78.0
23
1.4370
0.9
ti
14
78.5
22 -
1.4370
1.3
10-1
15
78.5
22
1. 4 3 7 2
2.3
8-1
16
78.8
22
1. 437 1
1.3
5-1
1.4 538
2.4
Pressure
Residue
n 20D
Amount
Reflux :
T h e yield, of m e t h y l p i n a c o l y l c a r b i n o l
(fractions
3-10)
was at out 4 2%.
Its plnenylur ethane was prepared., m.p.
96.5 - 9 ’7.4°C.
after s e v e r a l r e c r y s t a l l i z a t i o n s f r o m ligroin.
Cuts
11
- 16 r e p r e s e n t e d a y i e l d of about 32>o of a
mat er ial b e l i e v e d to be 4, 4-dime t h y l - 2 - h e x a n o l formed b y the
re duc tio n o f t h e c o r r e s p o n d i n g k e t o n e
pr esent in the
st ar t i n g
materi a l «
b.
R e d u c t i o n of M e t h y l P i n a c o l 7/d Ketone wi th
Aluminum Isopropoxide.
M e t h y l p i n a c o l y l ketone,
30 - 33)
mole)
f r a c t i o n a t i o n No.
This
the f l a s k
was
gin. (0.2 mole)
47, was m i x e d with 42.8 gm.
of a l u m i n u m isopr< poxide
alcohol.
25 .6
and 120 ccm.
m a t e r i a l was r e f l u x e d f o r
(cuts
(0.212
of d r y i s o p r o p y l
24 hours,
p l a c e d un der c o l u m n II a n d 40 ccm.
af t e r w h i c h
of ace t o n e
co n t a i n i n g d i s t i l l a t e t a k e n off at a h i g h r e f l u x rat io over
a nine h o u r
200 gm.
of
period.
ice
c e n t r a t e d H01.
The residue
In the
flask was p o u r e d
an d water and t r e a t e d w i t h 100 ccm.
The
layers were
into
of c o n ­
s e p a r a t e d and the wa ter l a y e r
15S
e x t r a c t e d with, four - 5 0 c c m .
re mov al
of the e t h e r b y
portions of ether;
after
d i s t i l l a t i o n the ex tr a c t
b i n e d w i t h the oil l a y e r a n d
of p o t a s s i u m carbona te.
It
w a s com­
this m a t e r i a l d r i e d
over 5 gm.
was then d i s t i l l e d thorough
c o l u m n II.
F r a c t i o n a t i o n No.
Gut
H e a d Temp.
46 -60
1
55 .
Pressure
n
D
Am ount
Ref*luce Ratio
20
1.4255
1.8
10-1
o
64
20
1.4330
2. 2
11-1
3
65
21
1.434-3
2.3
8-1
4
65
21
1.4345
2. 6
7-1
5
64
18
1.4345
2.4
7-1
6
65
21
1.4353
2.3
6-1
7
84
20
1.4357
1.0
1.4468
11.3
Re sIdue
carbinol
The
y i e l d of c i m d e
(cuts 1 - 7)
c•
R e d a c t i o n of M e t h y l P i n a c o l y l K e t o n e
was about
-w
with
A l u m i n u m I s o p r o p o x i d e - Isoproioyl A l c o h o l
Mixture.
M e t h y l p i n a c o l y l ketone,
34,
f r a c t i o n a t i o n No.
isopropoxide
47)
and 150 ccm.
p l a c e d in a f l a s k u n d e r
and d i s t i l l a t e
23 h o u r s ;
residue
25.6 gm.
(0.2 mole)
w a s mixed w i t h 3.0 gm.
of alu minum
o f dry i s o p r opy l a l c o h o l and
c o l u m n II.
t a k e n off a t
the rate
The m i x t u r e
of 4 ccm.
w a s refluxed
p e r hour f o r
th e h e a d t e m p e r a t u r e v ari ed from 75 to
f r o m the d i s t i l l a t i o n was t r e a t e d w i t h
w a t e r and 10 ccm.
(cut
30°G.
20 ccm.
of c o n c e n t r a t e d IIG1 , the l a y e r s
The
of
separated
a n d the wa ter l a y e r
of the e t h e r
the
extracted with e t h e r .
ex tra ct w a s add ed to
the
After d i s t i l l a t i o n
oil layer,
and
the combined m a t e r i a l d r i e d b y s h a k i n g w i t h p o t a s s i u m c a r b o n ­
ate,
s e p a r a t i n g t h e aqueous layer w h i c h
dr yin g over
solid
p o t a s s i u m carbonat e.
d i sti l l e d t h r o u g h
56.
Pressure
n 20D
Amount
20
1.4158
2.2
Reflux
7-1
59
ii
1.4200
2.4
3
63
ii
1.4280
2.3
ir
4
64
ii
1. 4330
2.6
ti
5
64
it
1. 4 3 3 8
2.3
6-1
S
64
21
1.4338
2.1
ii
7
64
ii
1.4340
2.2
ii
8
ii
1 .4339
2.8
it
1.4395
3.7
•
2
CD
-d
CJl
i
Head Temp.
1
T h e dry m a t e r i a l was
column II.
P r a c t i o n a t i o n No.
Cut
formed, a n d fu rth er
Re s I due
The y i e l d
ii
of rnethylpinacolylcarbin ol (cuts 2 - 8)
wa s a b o ut 6Op .
d.
R e d u c t i o n of Liethyl P i n a c o l y l Eel:one w i t h
A l u m i n u n Isopropoxide -Isopropyl Alcohol
Mixture.
M e t h y l p i n a c o l y l ketone,
34 - 38,
a t i o n No,
f r a c t i o n a t i o n No. .47), a n d
48) , w a s mixed with 25 gm.
a n d 1200 ccm.
un der
252 gm.
of
c o l u m n I.
off f r o m the h e a d
(1.99 moles) (cuts
(cuts 51 - 54,
of
I s o p r o p y l al coh ol and
fraction­
aluminum i s o p r o p o x i d e
p l a c e d in a f l a s k
The mi xtu re was r e f l u x e d and m a t e r i a l
at the
rate
of 15 ccm.
taken
per hour for 36 h o u r s .
I s o p r o p y l alcohol was t h e n d i s t i l l e d off at a r e f l u x ratio
of 10 t o
1 until
the to t a l d i s t i l l a t e
amounted to
1100 ccm.
The r e a c t i o n m i x t u r e
was cooled and t r e a t e d with
200 c c m .
of salt
enough c o n c e n t r a t e d
dissolve
the p r e c i p i t a t e d a l u m i n u m hydroxide.
s e p a r a t e d and the
solution and
The
layers were
water l aye r5 extracted wi th e t h e r ,
e x t r a c t s dried ove r p o t a s s i u m carbonate and the
b y d i s t i l l a t i o n i n c o l u m n II.
alcohol
HC1 to
the
e t h e r rem oved
The remainder of t h e isopropyl
was r em o v e d u n d e r 200 mm.
of m erc u r y p r e s s u r e and the
m e t h y l p i n a c o l y l c a r b i n o l d i s t i l l e d at about 20 mm.
pressure.
F r a c t i o n a t i o n 2fo. 5 7 ,
Cut
1
H e a d Temp.
37-37
Pressure
n20D
Amount
Reflux :
90 -50
1.3867
7.7
3-1
2
47
21
1.4158
4.0
3-1
3
47.5
21
1.4166
7.9
8-1
4
46.7
29
1.4170
8.6
10-1
5
.46.2
20
1.4170
8.3
tt
6
46.2
ti
1.4170
7.7
rr
7
46.2
1.4172
7.8
ir
8
55 .0
1.4187
11. 9
15-1
9
57.5
1.4230
10.3
20-1
10
61.5
1.4294
8.7
TI
11
62.1
1.4320
8.0
rr
12
63. 6
1.4326
4.4
rr
13
64.0
1.4331
6.2
u
11
64.0
1.4339
5.9
n
15
64.0
1.4343
47.9
7-1
16
64.0
1.4344
45.9
8-1
'
159
Cut
Pres sure
ITead Temp.
n 20D
Amount
Reflux :
17
68.4
1. 433 1
19.4
12-1
18
72.5
1. 433 8
6.0
15-1
19
74 .0
1* 4336
5.3
20-1
20
74.5
1.4 360
5.6
20-1
1 . 450 2
15. 5
Res idue
The
exclusive
y i e l d of”m e t h y l p i n a c o l y l c a r l i n o l was
of the higher* b o i l i n g
about 55><S
m a t e r i a l (cuts 19
- 20) w h i c h
is "believed t o h a v e b e e n 4 ,4 - d i m e t h y l - 2—h e x a n o l formed f r o m
an i m p u r i t y in the
starting material.
Outs
2 - 8
represent
abou.t 2 2 ‘o of r e c o v e r e d ketone.
Fractionation N o . 58A.
Gut
H e a d Temp.
Initial C h a r g e
P res s u r e
:
n^^D
Guts 9-13,
3-4,
1-2,
1-3,
Amount
Reflux Ratio
f r a c t i o n a t i o n No.
57
56
55
54
1
47-48
21
1. 4 1 8 0
6.4
20-1
2
54
20
1.4184
5.4
13-1
3
63
Added:
Cuts
20
14,
5-7,
3-5,
4-7,
1. 4 2 7 8
f r a c t i o n a t i o n No.
4.9
n
57
56
55
54
4-
62-63.8
20
1 .43 56
4.1
15-1
5
64.0
20
1.4340
9.2
12-1
6
64.0
20
1.4 339
9.8
10-1
Added:
7
Cuts
63- 64
15 -16 ,
f r a c t i o n a t i o n No.
57
20
1.4 337
7.1
20-1
8
64.0
20
1•4 o 40
5»o
7 —1
9
64.0
20
1.4342
5.4
"
Cut
Head
10
Temp.
S4 .0
Pressure
20
n 20D
1.4340
Residue
Am o u n t
R e f l u x Ratio
50.0
7-1
1.4340
F r a c t i o n a t ion ITo. 58 B.
As
du r i n g t h e
a s mal l a m o u n t
later
10, R e s i d u e ,
were
stages
of water H a d leaked into the systen
of f r a c t i o n a t i o n No.
c o m b i n e d and
58A,
cuts
again fractionated through
c olumn II •
Cut
h e a d Temp.
Pres sure
n 20D
Amount
Reflux
1 . 433 5
5.1
1 . 433 6
4.4
7
1.4341
5.0
12-1
4 5 .9
7
1.4342
8.3
10-1
5
44.5
6
1. 4343
8.7
6-1
6
47.0
6
1.4342
9.0
6-1
7
4 2 .5
6
1. 434 1
8.5
7- 1
O
O
41.0
6
1. 434 3
10.1
10-1
9
43 .6
6
1 . 434 3
8.9
10
41.5
6
1. 434 3
10.6
8-1
11
4 1 .3
6
1.4342
9.3
6-1
12
39.9
5
1.4342
7.5
7-1
15
3 9 .0
5
1. 4 3 4 2
7.1
6-1
14
39.0
5
1. 4 3 4 3
7.6
7- 1
15
39.0
5
1 .4345
7.0
9-1
16
41.5
5
1.4340
9.0
7- 1
1.4351
10.2
1
45. 8-46.5
2
45.2
3
45.9
4
Res idue
8
5 to
..7-1
ii
it
F r a c t i o n 14 h a d a f r e e zing point of plus 21°i
161
2. D e h y d r a t i o n and id e n t i f i c a t i o n of Olefins
f r o m Ivlethylpinacolylcarhinol.
a•
D e h y d r a t I o n of M e t h y l p i n a c o l y l c a r b i n o l
Fractions
(0.878 mole)
were
3 - 16, f r a c t i o n a t i o n Ho.
combined and d rop ped i n t o a two-neck f l a s k
placed, u n d e r c o l u m n
and 20 gm.
II c o n t ain ing 4 gm.
of a n h y d r o u s copper
immersed in a n oil
column jacket
of
sulfate.
powdered pumice
T h e flask was
"bath m a i n t a i n e d at 1 8 5
- 195°C.; the
t e m p e rat ure was h e l d at H O ° G .
taken o f f as r a p i d l y as formed.
required twelve h o u r s .
no gas w a s e v o l v e d .
completion of the
53B, 114.1 gm.
Addition
No t ar was f o r m e d
and the olefin
of the carbinol
on the catalyst and
Any olefin r e m a i n i n g
in the column after
re ac t i o n was ca rried o v e r by a slow s t r e a m
of hot a i r and condensed.
About
17 ccm.
the crude o l e f i n a m o u n t e d to 90.0 gm.
The o l e f i n
of water was formed;
(91. 5,c of theoretical)
was dried ov er ma gne s I um sulfate and
distilled t h r o u g h c olurnn II.
Fract ionat ion Ho.
Gut
1
H e a d Temp.
105.5-107.7
Pressure
735
59
n 20p>
Amount
1.4190
7.9
Influx Ratio
5-1
ii
2
108. 1
1.4200
9.2
3
108 . 8
1 .4203
8.8
4
199.0
1.4208
9.8
8-1
5
109.5
1.4214
9.3
ii
G
109. 7
1.4220
9.5
it
7
110.0
1.4223
9.0
ri
8
110.0
1.4230
lO. 3
.
2 - 1
H
Cut
H e a d Temp.
9
110.0
Pressure
n
20
D
Amoumt
R e f l u x Ratio
1.4237
9.3
8-1
10
1.4240
3.8
rf
Re s idue
1.4-337
1.7
to.
O z o n o l y s i s of O l e f i n s f r o m Ivlethylpinac olylcartoinol, Run X
Ozono l y s i s . Guts 6 gm.
( 0 . 3 7 4 mole)
were
10, fractionation ITo.
59, 41.9
o z o n i z e d In the u s u a l m a n n e r ( S e e part
I I , B , 3 , to). Oxygen rate,
14 L .
per hour;
time r e q u i r e d ,
22
hours.
The ozonide was d e c o m p o s e d as u s u a l u s i n g
of*
zinc dust and 0 . 3 gm. e a c h
24.5 gm.
of silver nitrate a n d hydro-
quinone .
The corntoined m a t e r i a l from the oil
residue
and the
from
residue left
the ether
sulfate
the d i s t i l l a t i o n
extract
layer,
of material
the
from t h e ice-trap,
after d i s t i l l a t i o n of the e t h e r from
of the w a t e r
layer,
was dried o v e r magnesium
a n d d i s t i l l e d t h r o u g h column II.
F r a c t i o n a t i o n ho.
SO
Amount
Gut
H e a d Temp.
Pressure
n^°D
1
34-34.5
734
1.3548
2.7
10-1
1.3631
0.4
rr
1.3707
1.5
R e f l u x
Ratio
2
50
3
55
4
55.5
1.3734
1.6
5
55.5
1.3740
1. 5
6
56.5
1.3740
1.1
7
94. 5
1.3885
1. 2
15-1
8
99.5
1.3921
1.1
12-1
Solid-in-head
u
rr
u
rr
Pressure
9
101.0
1.3950
1.5
10-1
10
103 .0
1.3961
2. 2
rr
11
1. 3965
2.3
u
12
-
1.3960
1.9
n
13
115.0
1.3910
3.2
-
1. 4 3 9 0
2.5
♦
o
H e a d Temp.
H
O
ib
n 20]-)
Cut
Res idue
Amo unt
R e f l u x Ra t i o
I d e n t i f i c a t i o n of O z o n o l y s i s Products
Water Layer.
known d e r i v a t i v e
Dimetol derivative,
m.p.
1 8 7 . 5 - 1 8 S ° C .;
of ECHO, m. p . 18 8 .5 — 1 8 9 . 5 ° C .; m i x e d m.p.
187.5- 1 8 8 ° G .
E s t i m a t i o n of ECHO b y C y a n i d e
method
(146)
0 . 1 3 9 0 IT. A gHO £
B l a n k Ho.
1
0. 1 4 0 6 H .H H 4 CNS
1 0 . 3 4 ccm.
0.78 ccm.
B l a n k ITo. 2
10.09
0.54
Analysis H o. 1
10.06
1.69
Analysis H o . 2
1 0 .06
1.50
Water* L a y e r
162 ccm.
5 ccm.
Aliquot
F o r m a l d e h y d e (a v e r a g e ) 0 . 0 0 4 9 moles
TTo d i b e n z a l de riv a t i v e
o f ace t o n e could be prepared.
Lov/- B o i l in v H ydr o c arb o n S o l u t i o n . Al l of this m a t e r i a l
m
s
s a t u r a t e d w i t h d r y amm oni a at
aldehyde-ammonia,
This c o r r e s p o n d s
G u ts
in. p. 85-86°C.
to 0.074 mole
2 - 5 .
carbonyl compounds;
was
A total of 4.6 gm*
o:^
o b t a i n e d after five days.
of acetaldehyde.
This m a t e r i a l
wave no der iva tiv es
of
It was a p p a r e n t l y made up e n t i r e l y of the
hi g h e r b o i l i n g h y d r o c a r b o n s
bollin^ h y d r o c a r b o n
0°G.
c o m m o n l y a s s o c i a t e d w i t h the low-
solvent u sed
in th e
ozonolysis.
164.
Gut 7.2, 4-Dinitrophenylhyd.razone , p u r i f i e d with,
di f f i c u l t y ,
m.p,
194-197°C.
(yellow);
t r i m e t h y l a c e t a l d e h y d e , m.p .
known derivative
211°C.; m i x e d m.p.
of
2 0 5 - 2 0 6 . 5°C.
Cuts 8 — 1 1 . 2 , 4 - D i n i t r o p h e n y l h y d r a z o n e , m.p.
1 2 5 . 5 - 1 2 6 . 2 ° C .; k n o w n d e r i v a t i v e of pin aco lon e,
1 2 6 ° C .; m i x e d m.p.
Cut 15.
derivative
S e m i c a r h a z o n e , m.p.
of e t h y l _t-butyl ketone,
I n a s m u c h as
1 4 4 . 5 - 1 4 5 . 5°C . ; known
m.p.
145°C.
could not be purified.
s i m i l a r m a t e r i a l from
1 - 5, f r a c t i o n a t i o n Ho.
ke tone,
125.5-
12 5-1 2 6 ° G .
The 2 , 4 - d i n i t r o p h e n y l h y d r a z o n e
cuts
m.p.
61,
co nta ine d
the
ozonolysis of
e t h y l _t-butyl
it is r e a s o n a b l y c e r t a i n that this m a t e r i a l was that
ketone.
R e s i d u e . This m a t e r i a l gave a 2,4 - d i n i t r ophenylh y d r a s o n e w h i c h could n o t be purified.
c.
Ozonolysis
ca rbi nol ,
of Olefins f r o m 11e t h y l p l n a c o 1 y 1R u n II.
Ozonolysis. Cuts
1 - 5, f r a c t i o n a t i o n Ho.
59, were
o z o n i z e d in the u s u a l m a m i e r
(see part I I , B , 3 , b ) e. Oxygen rate,
14 L
20 hours.
per hour;
The
26.2
time
required,
ozonide w a s
gm. of zinc dust
d e c o m p o s e d in the u s u a l ma nne r using
a n d 0.3
gm.
e a c h of s i l v e r nitrate and
hydroquinone.
The
c o m b i n e d m a t e r i a l from the oil layer,
the r e ­
sidue f r o m the d i s t i l l a t i o n of the m a t e r i a l f r o m the ice-trap,
and
the res i d u e
e t h e r ex tract
f r o m t he d i s t i l l a t i o n of the e t h e r f r o m the
of the w a t e r
sulfate a nd d i s t i l l e d
layer, was dri ed over m a g n e s i u m
t h r o u g h col umn II.
F r a c t i o n a t i o n No.
Cut
H e a d T emp.
1
61.
Pressure
40-55
736
n 20D
Amount
Reflux Ratio
1.3675
1.3
10-1
tt
2
66
1.3759
0.7
3
84
1. 3 8 1 8
0.7
4
97
1.3880
1.0
n
5
100
1.3934
1.4
rr
r~*
o
104. 5
1. 3945
2.1
f!
7
105. 5
1. 3 9 4 8
2.0
ii
8
106.5
1. 394 5
2.7
12-1
9
109.0
1. 39 30
2.1
ti
10
112. 3
1. 3 9 1 3
1.5
7-1
11
11 6.0
1. 3 8 8 3
1.6
10-1
12
130.0
,1 .39 00
1.9
7-1
13
-
1.4042
1.3
-
1.4316
4.9
Re s i d u e
Identification
W a t e r La yer .
known d e r i v a t i v e
of O z o n o l y s i s P roduct
ii
s
D i m e t o l d e r i v a t i v e , m. p.
o f IICHO, m .p.
188— 189°C .
189°G.
E s t i m a t i o n of K C H O b y Cy ani de
met hod
0 . 1 3 9 0 N. A.yNCAO
0.1406 N. NI-I
0.80 ccm.
1
10.06
B l a n k ITo0 2
9.97
0.80
B l a n k No.
ccm
(146).
•
Analysis
No. l
10.17
3.70
Analysis
No. 2
10.06
3.69
W a t e r L a y e r - 163 ccm.
5 cc m. Aliquot
F o r m a l d e h y d e (a v e r a g e ) 0 . 0 1 2 m o l e .
166.
An a t t e m p t
acetone
t o p r e p a r e the d i b e n z a l d e r i v a t i v e ■of
from the w a t e r l a y e r yielded a v e r y s m a l l amount
of d e r i v a t i v e w h i c h w a s
insuffi cie nt for f u r t h e r work.
L o w - B o i l i n g H y d r o c a r b o n Solution.
A
5 ccm.
of tine l o w - b o i l i n g h y d r o c a r b o n solvent f r o m t h e
t o t a l i n g 770 ccm.,
aqueous
the
w a s t r e a t e d with 30 ccm.
d i m e t h y l d i h y d r o r e sore inol,
dimetol d e r i v a t i v e of
1-4.
saturated
gm. of
133.5-136.5°C.
0.07 mole.
T h i s m a t e r i a l c o n s i s t e d l a r g e l y of the
h i g h e r boi l i n g p a r a f f i n s
C a r b o n y l com pou nds w e r e
formaldehyde
ice-traps,
to y i e l d 0 . 1 3 8 6
a c e t a l d e h y d e , m.p.
Total A c e t a l d e h y d e
Cuts
of
sample
f r o m the l o w - b o i l i n g
solvent.
p r e s e n t in small a m o u n t s ,
or its poisoners for the m o s t part.
apparently
ITo,derivatives
could, be purified.
Cut 5.
2 , 4 - D i n i t r o p h e n y l h y d r a z o n e p u r i f i e d with
di ffi cul ty, m . p .
m.p.
125.5-126°G. ; m i x e d m.p.
the
derivative
was
b e l o w 112°C.
Cut
of m e t h y l
6.
k n o w n der iva tiv e
m. p.
1 2 4 . 3 - 125°C.; k n o w n d e r i v a t i v e
124-125°C.
A m i x e d m.p. with
isopropyl ketone, m . p .
123-124°c.,
2 ,4 - D i n i t r ophenylhydr az one , m . p .
of p i n a c o l o n e , m.p.
of pinacolone
125-126.1°C . ;
125. 5 - 1 2 S . 2 ° c . ; mixed
125-126°C.
Cut
11.
k n o w n de riv a t i v e
2, 4 - D i n i t r o p h e n y l h y d r a z o n e , m.p .
of pin a c o l o n e , m.p.
123-123. 5°C.
1 2 5 - 1 2 6 . 1 ° C .; mined m.p.
123— 124°C.
Cut 15.
k n o w n der iva tiv e
m.p.
2 , 4-Dinitrophenylhydrazone, m.p.
of e t h y l - t - b u t y l ke tone, m. p.
142,4-143.2 ° C .
14l-142°C.;
145°C.j m i x e d
167
The
semi carbazone w a s p r e p a r e d but could, not b e
purified.
R e s i d u e . The residue was d i s t i l l e d in a small
Cut
Vapor Temp. (•::-)
n 2°D
R 1
12 0-131
1.4010
O
♦
d i s t i l l i n g f l a s k at 740 ram.
R2
144
1.4041
0.5
R 3
154
1.4060
0.5
R 4
1G8 ( )
1.4091
5 above gave
1 0 9 - 1 0 9 . 5°C . ; k n o w n d e r i v a t i v e
m.p.
1 0 9 - 1 0 9 . 8 ° C . ; mixed m.p.
m i x e d m. p.
(-::•)
1 0 9 - 1 0 9 . 8°C.
m.p. 1 3 5 . 5 - 1 3 6 ° c . ;
of me thyl jt-amyl k e t o n e , m.p.
138.5-139°G .;
1 3 6 . 7 - 1 3 7 . 7°c.
Boiling points
assumed
of methyl t - a m y l k e t o n e
R 3 gave a s e m i c a r b a z o n e ,
known derivative
CO
a 2 , 4 - d i n i t r ophenylhydrazone ,
m.p.
Cut
L0
R
•
O
Cut
Amount
t o be
taken u n d e r
t h e s e conditions cannot be
true b o i l i n g p o i n t s .
M i c r o b o i l i n g point of c u t R 4 , 1 4 4 . 5°C.
S u m m a r y of Ozonolysis P r o d u c t s
Ozonolysis
I
II
Formaldehyde
0.0049
0.012 mole
A c et a l d e h y d e
0.0754
0.070
T r line thy lac et a l d e h y d e
0.010
Pinacolone
0. 1 0 1
0.128
Et hyl _t- B u t yl K e 1 o ne
0.040
0.031
M e t h y l jt-Amyl K e t o n e
0.000
0.033
(0 .0 1 0 )
0.000
Ac et o n e
Olefins
(est.)
0.000
f r o m the D e h y d r a t i o n of
M e t h y l p l n a c olylc arb i n o l
2, 4 ,4-Tr line t h y l - 2 - p e n t ene
Percent
3
2-Ethyl- 3 , 3-dirne thyl- 1-hut ene
20
3, 4 , 4 - T r i m e t h y l - 2 - p e n t e n e
67
2,3, 3 - T r i m e t h y l - l - p e n t e n e
10
E x p r e s s e d as a p p r o x i m a t e pe rce n t a g e
identified.
of the
olefins
)
169
B.
R E A C T I O N OP I.TETHYLP IIIACOLYLCARBIITOL
WI TH H Y D R O G E N C H L O R I D E
1*
P r e p a r a t i o n of S t a r t i n g Mat er i a l s
a.. R e d u c t i o n of M e t h y l P i n a c o l y l K etone w i t h
A l u m i n u m Isopr opo xid e- I s o p r o p y l A l c o h o l
Mixture.
M e t h y l p ina c o l y l k e t o n e ,
(b.p.
144 - 1 4 5 . 4°C.,
25 gm.
gm.
(1.7 moles)
n 20D 1 . 4 1 7 0 - 1 . 4 1 7 2 )
of a l u m i n u m i so p r o p o x i d e
isopropyl a lcohol
218
and
was m i x e d w i t h
1000 ccm.
and placed i n a 2 L.
of d r y
flask u nde r c o l u m n I.
After r e f l u x i n g one h o u r m a t e r i a l w a s
t ake n off at a h i g h
re f l u x r a t i o
per h o u r f or 60 hours.
The r e m a i n d e r
at a rate of 5 to
10 gm.
of the m a t e r i a l w a s d i s t i l l e d at a 10 to 1
r e f l u x ratio u n t i l
the residue
a m o u n t e d to about
This wa s w a s h e d w i t h two-100 ccm.
f i n a l l y w i t h water.
ethe r,
and the
portions
350 ccm.
of 30fo KOI! and
The a q u e o u s w a s h e s were extractedwith.
the e t h e r re mov ed f r o m the e x t r a c t b y distillatio:
residue
m a t e r i a l was
ad d e d to the
dried
oil 1 ayer.
T he co m bIn e d
1
over m a g n e s i u m su lfa te
and d i s t i l l e d
t h r o u g h c o l u m n I.
'fractionation ITo. 62
Cut
H e a d Temp.
n 2<^D
A m o tint
Reflux Ratio
10-1
1
27 (50mm) 23 (50mm)
1. 37c32
16.3
2
67
1. 403 1
5.9
u
3
79
1.4203
7.3
12-1
4
81
1.4288
9.2
TT
5
81
1.4 3 2 0
7.9
If
(50mm)
P
CO
O
U
170.
Amount
6
82.5
1.4340
9.5
10-1
7
82.0
1.4333
8. 5
ir
8
82.0
1.4333
7.7
ii
9
82.0
1 . 4340
8.3
TI
10
82.0
1.4339
8. 9
12-1
11
82.0
1.4340
12. 3
10-1
12
82.0
1.4340
9.4
15
82.0
1.4341
13.0
it
14
82.5
1.4340
15. 6
it
15
82.5
16
82.0
17
H e a d Temp.
Re f l u x Ratio
ii
10.4
TI
1.4340
3.3
II
32.0
1.434-0
18. 6
18
82.0
1.4340
7.8
10-1
19
82.0
1.4340
7.0
ti
20
90.0
1.4343
9.7
TI
21
92.0
1.4353
4.5
TI
H
tA
tb
O
Cut
21. 5
•
Re si due
1.4340
8-1
F r a c t i o n a t i o n ITo. S3
Ciit s 2 - 18, f r a c t i o n a t i o n Ho.
62 w e r e
combined
an d charged, to c o l u m n EITJ.
Cut
H e a d Temp.
Pressure
n^D
1
54-64
50
1.4314
4.3
10-1
Amount
Re f l u x Ra
2
75
50
1.4198
5.4-
20-1
3
80.3
50
1.4277
6.6
20-1
4
81.5
50
1.4307
7.1
20-1
o
l
81-82
50
1.4319
2.9
10-1
171.
Cut
H e a d Temp.
Pressure
n 20D
6
82.5
50
1.4333
8.6
15-1
7
82.8
50
1.4333
8.5
20 -1
a
82.8
50
1.4339
7.6
20 -1
9
82.9
50
1.4340
8.9
20 -1
10
82.8
50
1.4340
11.7
20-1
11
82.8
50
1.4340
9.7
ir
12
32.8
50
1.4340
9.1
30-1
13
82.8
50
1.4340
12.1
20-1
14
82.8
50
1.4340
10.5
n
15
83.0
50
1. 434 0
12.7
ir
16
82.8
50
1.4340
3.7
u
1.4350
17.6
Residue
Amount
Reflux Ratio
F r e e z i n g Points, I.iethylpinac o l yl c a r b i n o l ,
F r a c t d o n a t i o n ITo. 63
Cut
8
26 .7 6 ° G • (Plates )
Cut
lO
•
27.3 0 ° C .
22 . 1 5 ° C ® 9
Cut
12
22 . 1 9 ° C • 9 27.3 7 ° C .
Cut
14
2 2 . 1 5 ° C * 3 27.30° c.
Cut
16
27.56°C
The
c a r b i n o l plainly e x h i b i t e d dimorphism, in its
cr ys t a l l i n e
m
Either the l o w - m e I t in g form or the h i g h e r
f or m s .
me It ing forrn c o u I d be obtained at w i l l
b y seed! nr the s u p e r ­
On one oc casion
cooled l i q u i d w i t h the proper c r y s t a l s
crys t a l l i z a t i o n o f the lower m e l t i n g f*o r m proce ecled for a b o u
live m i n u t e s
ra pid ly to
at
22*l°c., whereup on t h e
27.37°C.
temperature rose
and remained, at t h a t
the m a t e r i a l was
solid;
this i n d i c a t e s
f o r m is u n s t a b l e
at its m e l t i n g p o i n t
temperature u n t i l
that the l o w - m e l t i n g
and was o r i g i n a l l y
o b t a i n e d b y supercooling; the
liquid c o n s i d e r a b l y .
D e n s i t y or Ilethylp i n a c o l y l c a r b l n o l ,P r a c t ionation
No. 6 5 . Gut
12 w a s
used in this d e t e r m i n a t i o n .
We ight
of C a r b i n o l
in Pycnometer,
We ight
of W a t e r
Pycnometer,
In
20°C.
3.9826
4°G.
4.7368
D e n s i t y , D 22
Vapor
0.8408
Pressure
of Methylpi n a c o l y l c a r b i n o l ,
F r a c t i o n a t i o n ITo ._ 6 5 .
The b o i l i n g - p o i n t
o f m e t h y l p i n a c o l y l c a r b i n o l was
o b s e r v e d at va rio us p r e s s u r e s
p o int
apparatus
using a s tandard C o t t r e l l boiling-
and a short r a n g e An sch u t z t h e r m o m e t e r c e r ­
t i f i e d b y the n a t i o n a l Bureau, of Standards.
Gu ts
13,14, were
used.
Pressure
Boiling-Point (H a l f —
58.50°C .
29.0
70.55°C .
77,30°C .
54.0
83.40°C •
57.0
88.50°G .
69.0
89.20°C .
77.0
9 1 .50 ° C .
100.0
97.90°G .
•
H
O
15.5 mm. H g .
2. R e a c t i o n of M etlnylpina c o l y l c a r b i n o l
with
H y d r o gen C h l o r i d e .
a.
A d d i t i o n of H y d r o g e n C hloride to t h e
Dry h y d r o g e n c h l o r i d e was g e n e r a t e d b y
concentrated hydrochloric
a c i d Into c o n c e n t r a t e d
pas sing
sulfuric
Garbin
17 3 e
acid, an d p a s s i n g
the gas so g e n e r a t e d
throvigh a d r y i n g
tower f i l l e d with, c onc e n t r a t e d
sulfuric
hour period t he g a s
into 7 9 . 0
ac o l y l c a r b i n o l
was passed
acid.
gm.
Ove r a fo ur
of m e t h y l p i n -
( c u t s 9 - 16, f r a c t i o n a t i o n Ho.
in a 25 x 500 mm.
glass tube.
at
without f r e e z i n g
t h e mixture,
of m e r c u r y a b o v e
first but
at minus
contained
T h e t e m p e r a t u r e was h e l d at
room t e m p e r a t u r e
saturated w i t h K O I
S3)
l o w e r e d as
r apidly as po ssi b l e
u n t i l f i n a l l y the car bi n o l was
12°C. u n d e r
atmospheric.
a pressure of 40 mm.
T h e v i s c o s i t y was h i g h at this
point and a b s o r b b i o n was slow;
29 g m . of hyd rog en chloride
wo.s taken up.
The
tube
was i m m e d i a t e l y s e a l e d off and allowed to
warm to r o o m t e m p e rat ure .
formed a f t e r
IS h o u r s .
and the c o n t e n t s
tube was
A b o u t 8 cent,
After 48 hours
of water layer h a d
the tube wa3 opened
re saturated w i t h PIC1 at minus 1 0 ° C . ; the
a g a i n s e a l e d off a n d a l l o w e d
t o stand at r o o m
temperature.
After
opened,
the
s t a n d i n g an a d d i t i o n a l
layers
separated,
ra pid ly w i t h 15 ccm.
of sodium b i c a r b o n a t e
of ice-water,
solution.
anhydrous p o t a s s i u m carbonate
crude m a t e r i a l w a s
a n d the
82.8 gm.
oil layer wa s h e d
and
The
25 days the tube was
finally w i t h 15 ccm.
o i l was then d r i e d over
i n an ice-box.
(92;6 of theoretical),
T h e .crude chloride was d i s t i l l e d
under d i m i n i s h e d
The weight
1.4443.
in a G l a i s e n fls.sk
pressure.
H r act i o n a t i o n ITo . 64 .
Gut
1
Plead T e m p .
35.5
Pressure
7 ram.
Amount
3.5
of
n
20
D
1.4430
174.
Out
Head Ternp.
2
P res sur e
Amount
6 mm.
77.1
1.4 445
1.0
1.4470
34-34.5
Re sid ue
n 20 D
Gut 2 gave a t u r b i d solution w i t h a q u e o u s
n i t r a t e after 1 mi nut e,
silver
a. precipitate a f t e r 2 m i n u t e s ,
In­
d i c a t i n g that It w a s a t e r t i a r y chloride.
A f r e e z i n g p o i n t d e t e r m i n a t i o n was m a d e
The m a t e r i a l was c o n t a i n e d
wi th a n agitator,
tube;
m in u t e s
0
T e mpe nature ( m i n u s )
3.8
First
placed inside
provided
an e m p t y 30 mm.
s u r r o u n d e d with a n ice-hydrochloric'
acid b a t h held at m i n u s
Time,
In a 20 2mn. glass tube,
w h i c h was
the whole was
o n cut 2.
1 5 °C.
2
4
6
8
4.6
4.6
4.6
4.7
10
18
4.7
6 .0
28
7.5°C.
a p p e a r a n c e of crystals.
)M a t e r i a l c o m p l e t e l y solid.
The p h y s i c a l
most
l i k e l y to be f o r m e d are
3,4,
n <o0D
c o n s t a n t s of the t e r t i a r y chlorides
1.4-442-6,
as follows(See part
4 - T r i m e t h y l — 3-Chloropentane , b.p.
f.p.
1.4450,
f.p.
above
n^D
produced b y the
a c t i o n of h y d r o g e n
on m e t h y l p i n a c o l y l c a r b i n o l was t e r t i a r y a nd apparent ly
quite pure,
mo st
27°G.,
f.p. u n d e t e r m i n e d .
Since the c h l o r i d e
chloride
undetermined,
0°C.
2, 3,4 ~ T r i m e t h y l - 2 - 0 h l o r o p e n t a n e , b.p.
1.4379-90,
33°G. (5mm
undetermined.
2, 3, 3 - T r i m e t h y l - 2 - C h l o r o p e n t a n e , b.p.
n 20D
1X1,13,3,4,5) :
c o m p a r i s o n of Its physical c o n s t a n t s
w i t h those
l i k e l y to be f o r m e d indicates that the m a t e r i a l was
p r o b a b l y 5, 4, 4-tr i m e t h y l - 3 - c h l o r o p e n t a n e ,
a l t h o u g h conclusive
175.
evidence
is l a c k i n g .
b.
A t t e m p t e d P r e p a r a t i on of Grignard R e a g e n t
o f Ch lorides f r o m 1:1etirylpinacolylcarbino 1.
Preparation
ma terial was
or the
attempted,
S-ri^nard reagent from this
u s i n g the m i x e d Grignard m e t h o d w h i c h
had. b e e n p r o v e d s a t i s f a c t o r y f o r the
preparation o f the r e ­
agent f r o m 2, 4 „ 4 - t r i m e t h y l - 2 - c h l o r o p e n t a n e . (See p a r t IV, 2).
In a
condenser,
three-neck,
f la sic fitted with r e f l u x
m e r c u r y - s e a l e d s tirr er,
trap was p l a c e d 21 gm,
200 ccm.
1 L.
of a n h y d r o u s
ethyl b r o m i d e
d r o p p i n g funnel
(0.875 mole)
d i e t h y l ether.
f r o m a 38.1 gm.
and G i l m a n
o f magnesium t u r n i n g s a n d
T o this, about
(0.55 mole)
5 ccm.
of
portion was a d d e d
to
i
initiate
the
reaction.
To t h i s
was a d d e d over a 2 8 h o u r p e r i o d
a s o l u t i o n c o n s i s t i n g of the r e m a i n d e r
of the ethyl br>omlde,
78.0 gm.
(c\its 1,2, f ract i o n a t i on
ho. 64),
( 0 . 5 2 5 moles)
a n d S O O ccm.
complete
the
of the
chloride
of a n h y d r o u s e t h e r .
the m i x t u r e was s t i r r e d overnight.
st irring t w o l i q u i d l a y e r s
of the u p p e r
la y e r
with water
r e a c t i o n to p h e n o l p h t h a l e i n ,
S t i r r i n g was
A
then
continued
3 ccm.
vo lume 8 4 0 c c m .
9.30
On w a r m i n g a s a n p l e
the s o l u t i o n showed a n a c i d
f o r a n a ddi tio nal 48 hours.
th en t a k e n for analysis.
Total
Titration required:
ccm.
This corresponds
a s s u m i n g tha t
se par ate d;
On d i s c o n t i n u i n g
the l o w e r layer a b a s i c r e a c t i o n .
sample was
1 1 . 1 0 ccm.
y i e l d the
After a d d i t i o n w as
of 0 .9GO I:, s u l f u r i c acid
of 0 . 6 3 2 8 1:1. s o d i u m hyxlroxide
to an o v e r a l l y i e l d
ethylmagnesimn bromide
of 61.4,o of th e o r i c a l ;
was formed In t h e o r e t i c a l
y i e l d of the o c t y l m a g n e s i u m chloride was
35.8/0
theoretical.
since
Presumably the
the h y d r o l y s i s
the analysis
to g i v e
actual y i e l d was
s o m e w h a t higher
of u n r e a c t e d oc t y l c h l o r i d e
would cause
l o w results.
R e a c t i o n of t h e G r i g n a r d R e a g e n t w i t h C a r b o n D i o x i d e .
D r y c a r t o n d i o x i d e was
ag e n t
were
until i t was
required.
p a s s e d into the a g i t a t e d G-rignard r e ­
s a t u r a t e d at 0°C . ;
two and one-half h o u r 3
It w as a l l o w e d to v/arm to r o o m temperature
and
s t i r r e d for 3 4 h o u r s
w h i l e m a i n t a i n i n g a sli ght pressure of
c a r b o n dioxide above
the
r e a c t i o n mixture.
The material was
ic e-s ulf uri c
acid m i x t u r e .
a s m a l l amount of s o l i d
later*
t h e n d eco mp o s e d b y p o u r i n g into an
The
solution was
c r y s t a l l i z i n g in the
stage o f the d i s t i l l a t i o n .
The
were
separated and the w a t e r layer,
with
three- 200 ccm.
1
32 -34
2
of the distillate
about 400 ccm .,
T he
extracted
ex tr a c t s and the
t h r o u glu c o l u m n II.
F r a c t i o n a t i o n ITo.
Head Temp.
c o n d e n s e r in the
layers
p o r t i o n s of ether.
oil l a y e r w e r e d i s t i l l e d
Cut
s t e a m distilled,
65
Pressure
n20D
Amount
R e f l u x Ratio
10-1
1.3522
13.8
55-97
1.3983
1.2
3
lO l
1.4084
2.5
it
4
lO l
1.4037
3.7
7-1
5
104
1.4036
6.4
10-1
G
103
1.4030
11.0
7
104
1.4030
9.4
12-1
8
104
1.4081
9. 1
12-1
9
10 6
1.4083
8.3
12-1
1.4101
2.3
10
Re sI due
(D a r t Vise o u s )
735
736
7.0
n
7-1
1*77
Cuts
5 - 10 gave B a y e r ' s t e s t for olefins
reacted, with, b r o m i n e
represent a yield
and
in c a r b o n tetracbloricle solution;
of 9 0 . 4 :.i of o c t e n e s ( a n d octanes)
they
from the
octyl c h l o r i d e used.
The
res idue was t a k e n up
so dium c a r b o n a t e
1 gnu of a w h i t e ,
the an illde
be
solution;
in
ether and. e x t r a c t e d v/ith
on a c i d i f y i n g this
solid aci d was
obtained.
of this m a t e r i a l w e r e
B o t h the
fact t h a t
e i g h t - c a r b o n t e r t i a r y chloride
f a c t o r y y i e l d the failure
d i o x i d e to a n y a p p r e c i a b l e
ami de
and
p r e p a r e d but n eit her c o u l d
o b t a i n e d in a s a t i s f a c t o r i l y cr y s t a l l i n e
I n v i e w of the
solution a b o u t
the
state.
Grignard reagent
a p p a r e n t l y was
of
the
formed in s a t i s ­
of the r e a g e n t to react w i t h c a r b o n
extent
is not cl early u n d e r s t o o d .
F r a c t i o n a t ion h o . 66
Cuts
3 - 10, f r a c t i o n a t i o n h!o. 65,
octenes a nd
o ct a n e s
carbonation
of the G r i g n a r d r e a g e n t
c o n s i s t i n g o f the
fo rme d in th e att em p t e d p r e p a r a t i o n a n d
o f the ch lori des
b y t r e a t i n g m e t h y l p l n a c o l y l c a r b i n o l w i t h HC1,
and c h a r g e d
Cut
1
to c o l u m n EMI;
liead. T e m p .
82-95
51. 1 gm.
Pres sure
732
n
obtained
were c o m b i n e d
were charged.
D
Amount
Reflux
1.4101
0.8
50-1
o
94
1.4112
1.2
60-1
3
97 . 5
1.4114
1.0
50-1
4
103
1.4120
1.4
tt
5
105
1.4105
1.2
tt
6
105
1. 4 1 0 2
1. 3
70 -1
7
105
1.4090
2.0
60-1
8
105
1.4075
1.5
70 -1
733
Cut
He ad T e m p .
P re s s ure
105
9
n 20D
Amount
Reflux
1.4078
1.8
50-1
1.4065
1.7
50-1
io
105. 5
11
105 .7
1.4060
1. 3
30-1
12
IO 5.8
1.4051
0. 9
50-1
13
105
1.4050
1.0
50-1
14
105
1.4051
1.7
45-1
15
105
1.4053
2. 7
40-1
IS
105 .5
1.4058
1.6
40-1
17
106.3
1.4058
2.3
45-1
13
108
1.4077
4.2
12-1
19
106.7
1.4078
1. 1
40-1
20
106.7
1.4072
0. 9
40-1
21
106. 8
1.4090
1.3
50-1
22
108 .0
1.4118
0. 9
50-1
23
108.5
1.4127
0. 9
50-1
24
103.5
1.4139
1.4
70-1
25
109. 2
1.4143
1.4
11
26
109.2
1.4150
1. 2
If
27
108. 5
1.4140
1. 4
IT
1 .4073
6. 5
72 8
725
735
R e sidue
P r o m the
f r a c t i o n a t i o n d a t a above
it is impo
t o d ete rmi ne a n y t h i n g c o n c e r n i n g the n a t u r e , nurater or
re la t i v e
amo u n t s
of the
c or.ipounds present.
O z o n o l y s l s of the Olefins.
f r a c t i o n a t i o n ITo. 65,
the usixal m a n n e r
h o ur;
4 4 . 7 gm.
Guts
(0.40 mole)
1-27,
v/ere ozonized in
(see p a r t II,B,3,b) . O x y g e n rate,
time required,
7 hours.
residue,
15 L. per
179.
The
gm.
ozonide m s
(0.3 mol e)
ni trate
of zinc d u s t
each, of silver
combined m a t e r i a l f r o m the oil layer,
the
f r o m the d i s t i l l a t i o n of m a t e r i a l in the ic e-t rap ,
and the r e s i d u e
the e t h e r
sulfate
and 0 . 1 gm.
an d h y d r o q u i n o n e .
The
res id ue
d e c o m p o s e d as usual usi ng 2 1 . 8
left a f t e r d i s t i l l a t i o n of the ether f r o m
extract
of the water layer,
was dried over s o d i u m
a n d di sti l l e d i n an 0.8 x 42 cm.
o/32 i n c h s tai n l e s s
steel helixes.
F r a c t i o n a t i o n No.
Cut
Eiead Temp.
1
34 -35
column packed v/ith
67.
Pr e s sure
n
20„
D
Amount
ether
73 8
Ref lux
15-1
2
54
1.3730
1.2
35-1
3
74
1.3801
0.8
rt
4
87.5
1.3847
0.7
5
86-96
1.3954
0.7
u
6
97.2
1.3970
1.0
40-1
7
98.5
1.3966
1,3
30-1
8
99.2
1.3972
1.3
ii
9
100
1.3976
0.9
ii
734
.
ii
10
100.1
1.3980
1.4
ti
11
100. 5
1. 3 9 8 8
1.7
ii
12
101.5
1.4000
1.5
n
13
107
1.4022
0.8
it
14
10 8 . 3
1.4033
1.7
it
15
108.7
1.4033
1.0
it
16
109 . 5
1.4033
1.3
ii
17
11 0 . 5
1.4039
1.6
ii
73 8
742
Cut
H e a d Temp.
Pre s s u r e
n 20D
Amount
Reflux R a t i o
18
1 1 1 . 1
1.4047
1.2
30-1
19
111.5
1.4052
0.9
IT
20
-
1.4053
1.4
20-1
1.4141
4.0
Residue
Bo i l i n g - p o i n t
of cut 15(micro method)
109.0° C( 734mm)
Boiling-point
of cut 19(micr o method)
111.2° C( 738mm)
I d e n t i f i c a t i o n of Ozonolysis Pr odu c t s
7/ater jbajyer. T e n com.
of the w a t e r l aye r1, which total­
ed 180 ccm. , was s h a k e n w i t h 75 ccm.
of a s a t u r a t e d solution
of dime t h y l h y d r ores or cinol for one-half hour;
took place
on mixing.
The
a s i n t e r e d glass crucible,
de riv ati ve obtained,
gm.
(0.008 mole)
137.5 -88.5°G.;
solution was c o o l e d
a n d filtered on
dried at 8 0 ° C . , and weighed.
The
0. 1 4 0 1 gm. , corresponds to a total of 2,52
of I-ICHO.
derivati ve was ra.p.
precip ita tio n
The m e l t i n g point
184-6°C.,
of the cmide
after r e c r y s t a l l i z a t i o n m.p.
the k n o w n derivati ve
of E C H O m e l t s at 189°C.
No d ibe n z a l d e r i v a t i v e of acetone
c o u l d be obtained
f r o m the water layer.
L o w - B o i l i n g Ilydrocarbon Solution.
of this
solution,
t o t a l i n g 550 ccm.,
T he
solvent was removed,
in a si nte red glass crucible,
5 ccm. aliquot
was t r e a t e d with 75 ccm,
of saturated d imethyldihyd.r ore sore inol in the
hours.
A
ice-box for
the d e r i v a t i v e
dried at 80°G.,
24
filtered off
a n d weighed.
The m a t e r i a l w e i g h e d 0. 154 5 g m . , c o r r e s p o n d i n g t o a total of
0.055 m o l e s
of a c e t a l d e h y d e .
The m e l t i n g p o i n t
after r e c r y s t a l l i z a t i o n was 139-40°G.;
of ac et a l d e h y d e has a m e l t i n g point
of the mat e r i a l
the k n o w n derivative
of 140-1°C.
181.
G u t 3 1 - 5.
derivative w h e n
chloride
not b e
in
These
cuts
gave v e r y small a m o u n t s
of
treated, w i t h 2 ,4 - d i n i t r o p h e n y l h y d r a z i n e h y d r o ­
2 N • hydrochloric
purified.
ac id but the d e r i v a t i v e s
The m a t e r i a l was
could
l a r g e l y the h i g h e r - b o i l i n g
pa raf fin s f r o m t h e lov;-boiling h y d r o c a r b o n solvent u s e d i n the
osonolys is .
Outs
153.8°G.;
5 - 7 .
k n o w n der iva t i v e of d i e t h y l ketone, m.p.
mixed, m.p.
125.2°C.;
9-12.
known
mi x e d m.p.
2 , 4 - D i n i t r o phe n y l h y d r a z o n e , m.p.
d.erivative of pi nac olo ne, m.p.
1 4 - 20.
et ha n o l a n d 9 3 ^
sulfuric
125.3 - 1 2 6 ° C . ;
These
acid
cuts were all In sol ubl e
i n 80,6
and w ere made up of oc t a n e s
for
of t h i s m a t e r i a l w i t h 2,4-d.initrophenyl­
hydrazine hydrochloride
amount
of material
could
i n 2. N. h y d r o c h l o r i c
be obtained b y chroma.tographic methods,
143-3.44°G . ; mixed m . p .
Residue.
The
m.p.
o f e t h y l jt-butyl ketone,
2 , 4 - D i n i t r o p h e n y l h y d r a s o n e was prepared;
obtained, m . p .
of m e t h y l _t-arayl ketone,
a
143-144°c.
on c h r o m a t o g r a p h i n g the m a t e r i a l
fr a c t i o n w as
a cid y i e l d e d
from w h i c h a pure 2,4 - d i n i t r o p h e n y l -
14-3. 2-143. 8 ° C „ ; known d e r i v a t i v e
m.p.
124.5-
pa r t .
Treatment
hy dra zon e
153-154°C.;
124. 3- 1 2 5 . 4°C .
Guts
small
15 3-
153-153.7°C.
Guts
the m o s t
2 , 4 - D i n i t r o p h e n y l h y d r a z o n e , m.p.
10 9 . 5
ov er a c t i vat ed a l u m i n a a
- 1 1 0 . 5°C.: k n o w n d e r i v a t i v e
m.p.
110 — 3.11°C. ; m i x e d m.p.
109.5—
m.p.
1 3 7 . 8 - 1 3 8 . 2 ° C .; k n o w n d e r i v a t i v e
m.p.
1 3 8 . 5 - 1 3 9 °G.
110.5°G.
Semicarbazone,
of m e t h y l t - a m y l
ketone,
S u m m a r y o f Ozonolysis P r o d u c t s
F o rma 1 d e hyd e
0.008
Acetaldehyde
0 . 0 5 5 mole
Me thy l jt-Amyl K e t o n e
0 . 0 3 5 mole
Ethyl jfc-Butyl K e t o n e
Trace
P i n a co lon e
0 . 0 7 mole
Diethyl Ketone
0 . 0 3 5 mole
It is t h e r e f o r e
d u c t s formed b y loss
concluded that the
sole
p rin cip al p r o ­
o f H C 1 from the c h l o r i d e s
obtained b y
the
act ion of h y d r o g e n c h l o r i d e on m e t h y l p i n a c o l y l carblnol
are
3 , 4 , 4 - t r i m e t h y l - 2 - p e n t ene , 2, 3 >3-t r i m e t h y l - 1-pentene ,
and
2 - e t h y l - o ,3 - d i m e t h y l — 1-but ene in the a p p r o x i m a t e ratio
of I O
: 5 : 1, r e s p e c t i v e l y .
The f o r m a t i o n o f these olefins
s u p p o r t s the
a s s u m p t i o n that the c h l o r i d e formed b y the a c t i o n of hy drogen
c h l o r i d e on m e t h y l p i n a c o l y l carblnol was l a r g e l y 3,4,4-trimethyl-3-c-hloropent a n e .
The d i e t h y l K e t o n e w h i c h was
to h a v e been d e r i v e d f r o m
the heptene,
I d e n t i f i e d was believed
3 - e t h y l — 2-pentene,
f o r m e d by the a c t i o n of c a r b o n dioxide on t h e
the
eight-carbon t e r t i a r y
method.
ethylmagnesium
chloride b y the m i x e d Grignard
183
3•
P r e p a r a t i o n of 2 ,5, 5 - T r i m e t h y l - 2 - C h l o r o p e n t a n e .
D i m e t h y l - t - a m y l c a r b i n o 1 was p r e p a r e d in 75.;' y i e l d
b y tiie a d d i t i o n
of 0.09 5 m o l e
a p p r o x i m a t e l y 0 . 0 9 5 m ole
ether
s olu t i o n ;
b.p.
of m e t h y l jt-amyl k e t o n e
of m e t h y l m a g n e s i u n iodide
80 ° C . ( 5 0 mm. ),
Dimethyl-_t-amylcarbinol,
l a yer s w h i c h f o r m e d were
rapidly with
w i t h water,
mi xt u r e .
ice-water,
separated
was
5°C. The two
and the oil l aye r w a s h e d
solution,
a gai n
a n d dr ied over c a l c i u m c h l o r i d e - c a l c i u m car bon ate
The
y i e l d was
6.5 gm.
a ref rac t i v e
crystallised
after
for
(0.065 mole),
at minus
sodium bicarbonate
material had
5°C.
in d i e t h y l
n 2°D 1.4413.
8 .4 gm.
saturated w i t h d r y hydrogen chloride
to
or 67;t of theoretical.
i n d e x of n ^ D
standing
1.4450;
The
the m a t e r i a l
in an i c e - b o x at a p p r o x i m a t e l y
s e v e r a l days.
4.
P r e p a r a t i o n of 5,4, i-Trirnethyl-S-diloropentane .
He t h y l e t h y l - t - - b u t y l c a r b i n o l was pre p a r e d in 52p
y i e l d b y the
a d d i t i o n of 1.22 m o l e s
i m a t e l y 1.22 m o l e s
solution; b . p .
Into
carbinol
7 7 ° C . ( 5 0 m m.) ,
13.8 gm.
u n t i l the m a t e r i a l was
ice-water,
5°G. was
saturated.
of me t h y l e thy l-t - b u t y l -
p a s s e d d r y h y d r o g e n chloride
The
yielded
ag ain w i t h ice-water,
over p o t a s s i u m carbonate.
cm. u n p a c k e d
10.5 gm.
3-chloropentane,
two layers w h i c h were
oil l a y e r washed q u i c k l y w i t h
so d i u m bicarbonate solution,
t h r o u g h a n 0.8 x 45
ra t i o
n 2(^p) 1 ,4345.
(0.3.14 mole)
s e p a r a t e d a n d the
and. f i n a l l y d r i e d
to a p p r o x ­
of e t h y l m a g n e s l u m b r o m i d e in d i e t h y l et her
c o o l e d to m i n u s
f o r m e d were
of pinacolone
b.p,
c o l u m n at a n 8 to 1 r e f l u x
(62,'. of t h e o r e tic al)
3 3 ° G ( 5 mm. )^
Distillation
n~^D
of 3 , 4 , 4-tr im etnyl-
1.4443.
5.
P r e p a r a t i o n of 2 ,5,4-Trimeth7fl-2-chloropentane .
2,5,4— Trimeth.yl-2-pentanol v;as p r e p a r e d
"by the addition of 35 gm.
pentanone
(0.307 mole)
in r/6;i yield
of 3 , 4-d.imethyl-2-
to a p p r o x i m a t e l y 0 . 3 3 mole of methylmagnesiiim iodide
in d i e t h y l ether;
b.p.
Into 20 gm.
8 5 ° C . (55mm.), n 20D 1.4-342.
(0.151- mole)
of 2, 3 , 4-triraethyl-2-pentanol
co o l e d to minus 5°G. was p a s s e d dry h y d r o g e n c h l o r i d e until the
material m s
separated,
solution,
saturated.
The
two layers w h i c h f o r m e d were
v/ashed q u i c k l y w i t h ice-water,
again w i t h w a t e r ,
s o d i u m bicarbo nat e
and finally d r i e d o v e r calcium
ch l o r i d e - c a l c l u m ca rbo n a t e mixture.
On d i s t i l l a t i o n th rou gh
an 0. 8 x 45 cm. u n p a c k e d c o l u m n at a r e f l u x r a t i o
a y i e l d of 13.9 gm.
(55/b of theoretical)
2-ch.loropentane was
obtained,
b.p.
of 8 to 1
of 2 , 3 , 4-trirnethyl-
27°C.(5 ram.),
n 2(^D 1.4380.
1.
The p r e p a r a t i o n of m e t h y l p i n a c o l y l c a r b i n o l b y
the r e d u c t i o n of met h y l pinac oly l k e t o n e
w i t h aluminum
i s o p r o p o x i d e - i s o p r o p y l alcohol m i x t u r e h a s
2.
and the
Hethylpinacolylcartinol has b e e n
ole fin s
be en described.
dehydrated
p r o d u c e d i d e n ti fie d as 3 , 4 , 4-trime thyl-2-
pentene,
2 - e t h y l - 3 , 5 - d i m eth yl- l-b ute ne , 2 ,3, 3-trimethyl-l-
pentene,
and 2 ,4 , 4-trime th yl- 2 - p e n t e n e , in the ra tio of
67 : 20:
10:
3.
3,
respectively.
Treatment
hydrogen chloride
of m e t h y l p i n a c o l y l c a r b i n o l w i t h
at r o o m t e m p e r a t u r e prociuc ed lar gel y one
t e r t i a r y alk yl ch lo rid e, b e l i e v e d to be
chloropentane.
of this
chloride
olefins were
3 , 4 , 4-trimethyl-3-
I n attempting to f o r m a G'ri/rnard r e a g e n t
olefins and p a r a f f i n s w e r e
formed;
the
s h o w n to be 3,4 ,4 - t r i m e t h y l - 2 - pentene , 2,3,3-
t r i m e t h y l - l - p e n t ene , and 2-ethyl-3, 3 - d i m e t h y l - l - b u t e n e ,
in the a p p r o x i m a t e
4.
pentane,
radio of IO
The p r e p a r a t i o n of
: 5
: 1, respectively.
2,3,3-trimethyl-2-chloro-
3, 4, 4— trirnethyl-3-chlorop:>entane , a n d 2,3,4-
t r i m e t h y l - 2 - c h l o r opentane is described.
PART
IV
M I S C E L L A N E O U S STUDIES
MX S C E L L A H E O U S
STUDIES
DISCUSSION
The
r e a c t i o n o f t-b u t y l
aniline c h l o r i d e ,
chloride with magnesyl-
CgHgldi-Mg-Cl, at 55°C.
resulted in the
f o r m a t i o n of p a r a - t - b u t y l a n i l i n e . S u c h reactions have "been
r e p o r t e d p r e v i o u s l y and tlae f o r m a t i o n of the nuclear
s u b s t i t u t e d p r o d u c t va rio usl y a t t r i b u t e d to an intermol ecular r e a r r a n g e m e n t or t o r e a c t i o n s
a l k y l a t i o n of t h e
(1 2 3 )
Involving direct
benzene nuc leu s b y
an •olefin i n t e r m e d i a t e
.
Houben
( 118)
s t u d i e d the
r e a c t i o n of m a g n e s y l -
anll-lnes w i t h c a r b o n dioxide a n d f o u n d that the U-plienylca rba mic
acid was
was f o r m e d
if the
formed,
hut t h a t
para-aninobenaoic
reaction t e m p e r a t u r e was above 2 0 0 ° C . The
r e a c t i o n inagnesyl amines w i t h e s t e r s
carbonates
(120)
Houben
(119) and with c hi or o-
was f o u n d to b e n o r m a l .
(121) a l s o e x a m i n e d
the process
"metallat i o n 1' w i t h Grignard r e a g e n t s ;
treated w i t h methylmagnesium iodide
195°C.
mediate
Is ass ume d to be
p h e n y l m a g n e s l u m iodide. A
described b y Challenger
and carbon d ioxide at
Th e
reactions
c l u s i o n be d r a w n
butylaniline
acid. The i n t e r ­
tlae para-dine thy lam! no -
si mil ar ex per ime nt
and Miller
has b e e n
( 122) .
above do n o t
as to t h e m o d e
of
dimethylaniline,
yield_ed p ar a-d line t h y 1 ami no b e n z o i c
compound
acid
permit that a n y c o n ­
of f o r m a t i o n of tne p a r a — t-
i n tiae present case.
I n a s m u c h as the r e a c t i o n
t e m p e r a t u r e w a s b u t 55°G . the f o r m a t i o n of the para c o m p o u n d
leather than the N g t - b u t y l a n i l i n e was u n e x p e c t e d .
The p o s s i b l e
m e t h o d s by which, the p a r a -t-butyl-
a n i l i n e could h a v e b e e n f o r m e d are as follows:
1. R e a c t i o n o f m a g n e s y l a n i l i n e
_t-b u t y l chloride
to
c h l o r i d e with
f o r m h-_t-butylaniline follov/ed b y r e ­
ar ran gem ent .
2. A l k y l a t i o n
of aniline b y is obu tyl ene ,
formed
f r o m _t-butyl c h l o r i d e b y loss of h y d r o g e n chloride,
brought
abox.it b y the c a t a l y z i n g i n f l u e n c e
possibly
of anhydrous
m a g n e siiua h a l i d e .
3. F o r m a t i o n o f uara-aminophenylinagnesium halide
(metallation)
f o l l o w e d b y co upling w i t h jt-butyl chloride.
Via 11 is
a l k y l anilines
(123)
h a s di scus sed t h e re arr ang eme nt
in t h e p r e s e n c e of h y d r o g e n h a l i d e s
m e t a l l i c halides,
allcyl compounds
a n d c o n c l u d e d that
are
b y direct n u c l e a r
of
and
in g e n e r a l the pa ra-
f o r m e d t hr o u g h the amino
group and not
substitution.
The p r e p a r a t i o n of dimethyln.eopentyl.acetic acid
has
p rev iou sly c a u s e d
synthesis,
some d i f f i c u l t y since
the most direct
c a r b o n a t i o n of the Grignard rea g e n t
of 2,4,4-
trirnethy 1 -2- c h i o r o p e n t a n e , could not b e u s e d due to the
failure
of the t e r t i a r y a l k y l chloride
reagent
(29,76).
I n the
o b t a i n e d b y m a k i n g us e
a halide w h i c h f o r m s
to f o r m a. Grignard
present w o r k the
of the
reagent was
"ent r a i n m e n t " method,
in w h i c h
a G r i g n a r d reagent w i t h d i f f i c u l t y is
m i x e d with an a l k y l h a l i d e which r e a c t s
r e a c t i o n of b o t h h a l i d e s
carried out
readily,
and the
s imu lta neo usl y.
m e t h o d was i n t r o d u c e d b y Ove rhoff and Pro o s t
(124)
This
for the
183
f o r m a t i o n of p y r i d y l m a g n e s l u m 'bromide.
Tlie Grig n a r d reagent
of 2 , 4 , 4-trimeth.yl-2-c>iloro-
p e n t a n e was p r e p a r e d in 5 2 # yield;
dioxide
based
gave
a d d i t i o n of ca r b o n
a 33;o yield o f d i m e t h y l n e o p e n t y l a c e t i c
o n tlie 2 , 4 , 4 - trimet iiyl-2-chloropentane used.
acid,
189
E X P S RIL'EHTAL
1.
A l k y l a t i o n of A nilI n e .
In a 200 ccm.
f u n n e l , stirrer,
mole)
t hre e- n e c k f l a s k f i t t e d
a nd refliuc condenser w a s p l a c e d
of a n i l i n e a n d 50 ccm.
ad ded an e t h e r
solution
theoretical amount
excess
of clny b e n z e n e .
of e t h a n e had b e e n e vol v e d ;
_t-Butyl c h l o r i d e ,
( t emp er atu re
mixture
14 gm. (0.15 mo l e ) ,
additional 25 ccm.
t h e mass stirra ble ;
h a l f h o u r the m a t e r i a l
a g a i n solidified.
stand ove r n i g h t at
r o o m temperature. A
evolved
acetic
r e a c t i o n m i x t u r e was
separated,
and the
The r e s i d u a l
anhydride
w i t h water,
and
of "benzene was
after
It w as
t o t a l of
another oneallowed to
900 ccm.
of
d e c o m p o s e d w i t h 250 gm.
tine oil l a y e r
ether a n d b e n z e n e
o f the d i s ­
removed b y d i s ­
o i l was t r e a t e d w i t h 25 ccm. of
at r o o m temperature f o r 5 h o u r s , diluted
s t e a m d i s t i l l e d to
not b e e n a c e t y l ate d.
distillation a white
after
w a s added,
in the reaction.
of ice and. t h e n s t e a m distilled,
tillation.
slight
then added.
a d d e d in order to m a k e
ti lla te
a
the
A f t e r one a n d o n e - h a l f h o u r s the
solidified and an
The
this w a s
r e a c t i o n mixture a n d the m a t e r i a l refluxed
- 55°G.).
isobutylene was
To
14 gm (0.15
of ethylinagnesiura b r o m i d e until
of the G r i g n a r d rea gent was
d i r e c t l y to the
with d r o p p i n g
remove m a t e r i a l which had
O n cooling t h e r e s i d u e
s o l i d crystallized,
m.p.
f r o m the s t e a m
149-154-°C.
one r e c r y s t a l l i z a t i o n from a lco h o l .
After
ac eta te m i x t u r e
m e l t i n g point
two c r y s t a l l i z a t i o n s f r o m l i g r o i n - ethyl
the m a t e r i a l melted at 1 1 2 — 11 3°G • ; the
was n o t d e p r e s s e d w h e n m i x e d w i t h
a known
sample
of* a c e t a n i l i d e ,
m.p.
114°G.
T h e m o t h e r liquor's f r o m t h e crystallisations
were evaporated
and the
r es i d u e crystallized,
f r o m m e t h a n o l to ob tai n l a r g e , w h i t e ,
169-170°C.
The m e l t i n g p o i n t
m a t e r i a l w a s m i x e d wi th
e s t i m a t e d to b e
2.
flaky crystals,
m.p.
was n o t depressed w h e n t h e
1S9-70°C.
to the d i f f i c u l t i e s
o f par a -t-butyl acetanilide
h u t was
several t i m e s
a k n o w n s a m p l e of IT-acetyl d e r i v a t i v e
o f p a r a - t - b u t y l aniline, m .p.
Due
above
(18).
en cou nte red in the i s o l a t i o n
t he y i e l d s could not b e calculated,
30 - 40 p e r c e n t of t h e o r et ica l.
P r e p a r a t i o n of Dime t h y l n e o p e n t y l aee tic Ac i d .
P r e p a r a t i o n of 2 ,4 ,4 - T r i m e t h y l - 2 - c h l o r o p e n t a n e . In a
1 L i t e r t h r e e - n e c k f l a s k f i t t e d w i t h a mechani cal
placed
166
f l a s k was
passed
gm.
(1.48 moles)
surrounded by
The
o f c o m m e r c i a l d i i s o o u t y l e n e . The
an ice b a t h and dry h y d r o g e n ch-lpride
into the ina.terie.1 as
tinued.
l o n g as
absorbtlon of the g a s con­
oil was w a s h e d r a p i d l y w i t h ice-water and
over anhydrous potassium carbonate.
gm,
(29)
re p o r t s the r e f r a c t i v e
cliloropentane , n ^ D
s tored
The product w e i g h e d 219
r e p r e s e n t i n g a y i e l d of 9 9 . 5/j of theoretical,
V/renn
s t i r r e r was
n^D
1.4283.
i n d e x of 2 , 4 , 4 - t r i m e t jhyl-2-
1.4307.
P r e p ar a t ion of the
G r i g n a r d Reagent of 2,4,4-'Tri-
m e t h y l - 2-c h i p r o p e n t a n e .
I n a 500 ccm.
condenser,
Gilman
mercury-sealed
trap was p la ced
T h e a p p a r a t u s was
amount
t h r e e - n e c k flask fi tted w i t h r e f l u x
stirrer,
18 gm.
then swept
dropping funnel,
ancl
(0.75 mole) of m a g n e s i u m
w i t h a. stream of dry air.
of e t h y l m a g n e s i u s b r o m i d e w a s
prepared by a d d i n g
burnings
A
small
SO ccm.
of
a mixture
of 3 3 . 3 gm.
(0.25 mole)
of e t h y l hromide in
1 5 0 ccm. of d r y ether.
The remainder of the e t h y l bromide
s o l u t i o n was
solution o f 180 ccm.
ad ded
to a
a n d 74.3 gm. (0.50 m ole )
o f dry et her
of the 2,4 ,4 -tr ime thy l-2 -ch lor o-
pentane, and
the combined, material added to t h e
m i x t u r e over
a period
of
t o o k place t h r o u g h o u t
9 hours.
reaction
R e f l u x i n g o f the ether
ttie addition of the h a l i d e solution.
T i t r a t i o n of
the p r o d u c t
by the m e t h o d of G i l m a n (12) i n ­
d i c a t e d that
0.514 m o l e s
of Grignard r e a g e n t w a s present;
th.is corresponds
of
to a y i e l d of 52.6/b of the Gri gnard r e a g e n t
2,4,4-trinethyl-2-chloropentane
if the e t h y l bromide
a s s u m e d to f o r m e t h y h n a g n e s i u m bromide
Carbonatlon o f
me thyl-2-chloropentane .
r e a g e n t was
immersed
d i o x i d e gas p a s s e d
of
is
quantitatively.
the Grignard l e a g e n t of 2,4.4—T r i The flask c o n t a i n i n g the Grignard
i n a salt-ice b a t h and d r y carbon
in u n t i l no m o r e was
40 mm, of m e r c u r y a b o v e atmospheric
Ttie pasty r e a c t i o n m i x t u r e
ac i d i f i e d w i t h s u l f u r i c
the m a t e r i a l
and f i n a l l y s t e a m distilled.
Tine layers o f the d i s t i l l a t e were
o v e r m a g n e s i u m s ulfate
(8 h o u r s required).
was po u r e d on to ice,
acid,
l a y e r ext rac ted w i t h etiier;
a b s o r b e d at a p ressure
separated anci the water
the oil and e x t r a c t s were d r i e d
a n d distilled t h r o u g h co l u m n I.
F r a c t i o n a t l o n No.
Cut
H e a d Temp,
1
33-49
Pressure
68.
n 20j}
Amount
740-170
1 . 4000
3.1
Reflu:
5-1
2
49
150
1 . 4010
12.3
it
3
31
50
1.4007
4. 2
it
4
10 6
45
1.4025
6.1
ti
5
144
45
1. 430 3
2.7
7-1
6
145
44
1.4435
0*4
it
7
14 8
46
1.4420
2.7
5-1
8
148
45
So l i d
2.4
it
9
148.5
45
ii
2. 5
ii
10
149
45
tt
2.3
it
11
149
45
2. 6
it
12
148
43
ii
2.4
it
13
142.5
35
ii
2.8
tt
14
14 5 . 5
37
ii
2.3
it
15
14 5.5
43
it
2.4
it
45
it
1.1
-
16
Re sidue
Solid
00
u
So l id 0 0
0.6
scrapings from column
Th e
r e s i d u e was acid of h i g h p u r i t y , s l i g h t l y dis
The
“based o n
2.6
yield of dime thy I neopentylace tic acid, wa s 33.4,-b,
the S , 4 J4-tri!nethyl-2-chloropentane used.
Gut
14 h ad a m e l t i n g poi nt
of 44-45°G.
Derivatives
of D i m e t h y l n e o p e n t y l a c e t i c A c i d .
A m i d e , m.p.
70.0-70.8 ° C .
this m a t e r i a l w i t h t he a m i d e
A mixed m e l t i n g p o i n t
of d i m e t h y l n e o p e n t y l a c e t i c
of
acid
obtained b y W i l s o n
triisobutylene,
(76)
m.p.
in the o x i d a t i o n p r o d u c t s
6 9 . 5 - 70.5°C.,
70.8° C.
A n i l i d e . m.p .
77.5 -78°C.
was m . p .
of
69 .S -
SUMMARY
1.
T h e rea ct i o n of raagnesylaniline
"bromide,
formed b y t r e a t i n g ani lin e w i t h e t h y l m a g n e s i u m bromide,
with jfc-butyl c h l o r i d e
at 55°G.
r e s u l t e d in the f o r m a t i o n
of para-_t -but y l a n i l i n e .
9
2.
T h e p r e p a r a t i o n of the Grignard
2,4,4 - t r i m e th.yl-2-chloropentane
described;
i n 52/b yield ha s b e e n
a d d i t i o n of c arb on d i o x i d e
pr od u c e d d l m e t h y l n e o p e n t y l a c e t i c
reagent of
to this reagent
a c i d i n 33;ro yield,
on the 2 , 4 , 4 - t r i m e t h y l - 2 - c h l o r o p e n t a n e
used.
based
APPENDIX
FRACTIOiTAT JUG EQ,UIPMEHT
FRACTIONATING EQUIPI.IEI1T
COLUMN I
Tills
tak e-off
a 1.5 x
type
65 cm.
helixes.
column was of the t o t a l c o n d e n s a t i o n , p a r t i a l
commonly used in t h i s
laboratory (11), h a v i n g
packed s ec t i o n f i l l e d with. 3.5 mm.
Adis-hatic c ond iti ons w e r e
electrically h e a t e d
jackets
glass
maintained b y mea ns
of*
s u r r o u n d i n g the packed section.
Th e c o l u m n had. an e f f i c i e n c y of a b o u t 12 theoretical p l a t e s .
column
This
condensation,
II
was a 0.9 x 45 cm.
g l a s s column of the t o t a l
partial take-off t y p e
similar to c olumn I.
wa s p a c k e d w i t h 3.5 ram. glass h e l i x e s .
equivalent
to
It
Its e f f i c i e n c y w a s
10 t he o r e t i c a l p l a t e s .
C O L U M N IT
C o l u m n IT has b e e n d e s c r i b e d in the l iterature
(137)
previously.
take-off
3.5 mm.
type
glass
It was of the p a r t i a l condensation,
having a se cti on of 1 . 4 x 135 cm.
partial
p ack ed w i t h
helixes.
C O L U M N HP
This
column has b e e n d e s c r i b e d p r e v i o u s l y (11).
/
It was of t he
total c ond e n s a t i o n ,
h a v i n g a s e c t i o n of 27 x 1 2 3
helixes.
cm.
p a r t i a l take-off type
p a c k e d with 3.5 mm.
glass
COLUMN EMJ
C o l u m n EI.U w a s
ta ke - o f f t ype h a v i n g a
3 / 3 2 inch, sta inl ess
equivalent
of the total c o n d e n s a t i o n ,
s e c t i o n of 1.0 x 150 cm,
s t e e l helixes.
partial
packed wi th
Its e f f i c i e n c y was
to 25 - 35 t h e o r e t i c a l plates.
The
la bor ato ry.
column was
constructed b y E.I.I. J o n e s of this
197.
C0LUM1T S W
D e s c r i p t i o n of C o l u m n
This
take-off type
and m o r e
c o l u m n w as
of the t o t a l - c o n d e n s a t i o n ,
c o m m o n l y u s e d i n t h i s laboratory.
iinportant d i m e n s i o n s
sketch. A d i a b a t i c
fractionating
s e c t i o n b y me ans
input
so that
jackets a n d the
li qui d in the
of e l e c t r i c a l l y h e a t e d
co uld b e adjusted, b y me ans
the t e m p e r a t u r e
of air
of p a c k i n g a l igh t c h r o m e l ribbon,
s usp e n d e d in the
contact
with variable
sec tion.
p a c k i n g gland,
or der to p e r m i t
tyoe
tj
—
of 1 0 0 0 - 5 0 0 0 R. P.
the r i b b o n to wipe the l iqu id
of the v a p o r and
liquid.
about
The r i b b o n was
of a light c h r o m e l wire
sp e e d drive,
0 .48 x
c o l u m n pro per and d u r i n g
o f the c o l u m n c o n t i n u a l l y and bro u g h t
c o n n e c t e d b y m ean s
denser
of
column.
IvT. T h i s w h i r l i n g m o t i o n c a u s e d
i n tim at e
jackets
space b e t w e e n the
o p e r a t i o n t h i s r i b b o n was r o t a t e d at speeds
on the' w a l l s
in tbe
c o l u m n w as e s s e n t i a l l y the same as the b o i l i n g
In place
145 era. , w a s
Its d e s i g n
shown in the a c c o m p a n y i n g
cond.itions were m a i n t a i n e d
in w h i c h the h e a t
r h e o st ats ,
are
partial
to a Cenco motor,
c l a m p e d d i r e c t l y above the c o n ­
A t the top of the c o n d e n s e r was p l a c e d a
t h r o u g h w h i c h the
r o t a t i n g wire passed,
o p e r a t i o n u n d e r vacuum.
is d e s c r i b e d b y L e s e s n e a n d Loo hte
w
in
A c olu mn of this
(150).
19S
E f f i c i e n c y Tests.
r
The
determ ina tio ns
co l u m n were m a d e
using
w i t h n-heptane - m e t h y l c y c l o h e x a n e m ixt ure
the m e t h o d
c o m p o sit ion s
of Tongberg,
of
v/ere d e t e r m i n e d
of s e p a r a t i n g a bi l i t y of tlie
the
Quiggle,
and Fenske
(151);
liquid i n the head and in the stillpot
f r o m a refractive i n d e x - composition curve.
The m a t e r i a l s u s e d v/ere a p a r t of those described in the
data of t hes e t e s t s
All tests
on Column Y7 1 (see telow) ,
were-run under total reflux conditions,
t a k i n g the u s u a l precautions
to a v o i d e r r o r due to dead
liquid in s t o p c o c k wells and
the like.
The
jacket t e m p e r a ­
tures v/ere h e l d w i t h i n 2°C. o f the head temperature at all
t imes.
A p r e l i m i n a r y test
mixture
- carbon tetrachloride
i n d i c a t e d tha t the co l u m n gave b e t t e r separation than
could be e s t i m a t e d
Test Ho.
on b e n z e n e
Time
Min.
satisfactorily b y this method
Reflux
Drops/Min,
lie ad
n
D
1^
nI QD
(152).
R .P .I./'
Plates
(total)
6
90
168
1.3977
1.4184
4600
41.8
9
170
130
1. 3917
1.4180
4500
57.0
10
105
90
1. 3837
1.4132
4500
67.0
8
315
70
1.3921
1.4177
4600
54.7
15
150
50
1. 3900
1.4130
4500
53.4
7
140
28
1.3950
1.4158
4600
59 .9
13
225
35
1. 3909
1.4149
4500
51.8
16
180
60
1.3892
1.4140
1400
65.7
T e s t Di.stillati on of the Diisobutylene s
A mixture
n 20D 1.4083,
and
of 2, 4,4 - t r i m ethyl--1 -pe n t e n e ,
pp
2,4,4 - 1r imethyl- •2-pen bene, n ~ uD
of 14 .4 gm.
1 4 . 4 gm. of
1S9.
1.4-153,
\vas distilled t h r o u g h column >3 17; 0.5 a;m. of
a n h y d r o tis potas s 1uin c art> on a t e
that
no
rearrangement
f r actionation.
of tlie
was added in order t o insure
olefins
took place d u r i n g
T lie r i b b o n s p eed was 1725 R.P.M . ; the jack
t e m p e r a t u r e s were kept b e t w e e n 100°G. and 101. 5 °C.
Cut
n 20D
1
1.4083
2
Amount
G-ms.
Reflux Ratio
Reflux
Drops/l.'in,
0.9
90-1
100
1.4083
1.1
65-1
100
3
1.4085
1.5
65-1
100
4
1.4037
1.6
50-1
65
5
1.4083
1.0
60-1
90
6
1.4087
1.5
7
1.4085
l.S
65-1
80
3
1.4083
1.3
50-1
60
9
1.4087
1.3
50-1
70
10
1.4090
1.2
50-1
90
11
1.4088
0. 9
60-1
70
12
1.4108
1.1
60-1
70
13
1.4123
0.8
50-1
60
14
1.4133
0.8
50-1
60
15
1.4142
0.9
50-1
70
IS
1.4149
0.9
50-1
70
17
1.4153
0.9
50-1
70
13
1.4154
1.0
50-1
70
19
1.4156
1.0
50-1
70
20
1.4157
0.9
50-1
70
21
1.4158
0.8
50-1
70
lie s iclue
1.4150
5.4
—
—
90,15-1•
100
20 0
D i s c u s s ion
F r o m tlie dat a above it is evi den t that the co l u m n
shows h i g h e f f i c i e n c y and is e n t i r e l y sa tisfactory in cases
where but small amounts
of m a t e r i a l are available for study.
Se ve r a l fine fea tures are f o u n d in it, namely,
struction, h i g h throughput,
low holdup,
ease of c o n ­
low II.E.T.P. However,
there are s ev e r a l dis advantages a c c o m p a n y i n g the above
desireable features,
1.
Due
to the low h o l d u p and the time required to
e s tab l i s h e q u i l i b r i u m slight d i s t u r b a n c e s
such as a c c i den tly
h i g h take-off rates while a d j u s t i n g the take-off
stopcock
m a y dis tur b s e p a r a t i o n pr oce s s e s temporarily,
2,
It is n e a r l y impossible to m a i n t a i n adiabatic
conditions w h e n m o r e c o m p l e x m i x t u r e s
or mixtures
b o i l i n g range
since there Is no means
are b e i n g fractionated,
of d e t e r m i n i n g the correct
jacket tempera tur e
s e ction of the column. A l s o the v a p o r
c o n s i d e r a b l y w i t h i n a n y one
jacket
of wide
for any given
temperature m a y v a r y
section,
due to separation
of the co nstituents. A n efficient v a c u u m jacket might
over­
come this -difficulty.
E x p e r i e n c e w i t h this col umn indicates that It Is
us efu l w h e n f r a c t i o n a l i n g a m i x t u r e h a v i n g a. k n o w n boiling'
range
of not m o r e
than 5°G.
to S ° G . so that the correct
jacket t e m o e r a t u r e m a y b e determined, with some accuracy.
unknown mixtures
part
In
an overh eat ed jacket m a y prevent a large
of the r e f l u x liquid f r o m r e t u r n i n g to the pot due
to r e b e l l i n g of this m a t e r i a l in the
column proper,
th e r e b y
c a u s i n g actual s e p a r a t i o n to be little b etter
o b t a i n e d b y use of a simple d i s t i l l i n g flask.
tha n tliat
COLUMN W 1
D e s c r i p t i o n of Column
C o l u m n VI 1 v/as of the total condensation,
ta ke- o f f type,
a packed
s ec t i o n of 102 inches.
t u r n helixes
B.
h a v i n g an internal dia met er
partial
of 0.79 inch and
It v/as p a c k e d wi th single
of 3/ 32 inc h internal d i a m e t e r made from ho.
<1 S. gauge
" U i r o s t a 1' stainless
steel,
30
obtained f r o m the
p e t r o l e u m R e f i n i n g L a b o r a t o r y at the P e n n s y l v a n i a State
College.
A c o l u m n of a p p r o x i m a t e l y the same dimensions and
p a c k e d w i t h the
b y Tongberg,
same m a t e r i a l has b e e n r e p o r t e d previ ous ly
Law ros ki,
Heat
and Penske
(149).
losses f r o m the column were' pr evented b y
s u r r o u n d i n g 100 inches of its packed l e n g t h with, electrically
heated
jackets,
c o n s t r u c t e d in three
sections,
i n d e p e n d e n t l y controlled, b y means of "Variac",
v a ria ble
v oltage tr ans for mer s.
determined b y means
jackets
the
at
Type 200 GM,
Jacket temperatures were
of t hermometers p l a c e d inside the glass
and a t t a c h e d to the column proper.
jackets were
wh i c h v/ere
suspended
The column and the
separately in a steel frame
(see cut);
column i t s e l f v/as supported, b y a c lam p about the column
the bot tom .
In order to eliminate dif f i c u l t i e s in jacket
c o n t r o l ca use d b y dr afts the entire c o l u m n was encased b y
" T r a n s i t e " b o a r d provided, wit h glass w i n d o w s and lights
for o b s e r v a t i o n of the p a c k e d section.
The
stillpot
was contained in an ele ctr ica lly h e a t e d
a i r b a t h of cast aluminum.
in the f o l l o w i n g manner.
The heat input was
A pressure
controlled
tap f r o m the bottom, of
tlie c o l u m n led. to a m e r c u r y m a n o m e t e r "by which the pressure
d r op t h r o u g h the packed, se cti on was observed. This n a n o m e t e r
was f i t t e d w i t h adjustable c o n t a c t s and an electrical r ela y
b y w h i c h a part
of the heat
off w h e n the pressure
input
to the stillpot v/as cut
drops e x c e e d e d a predetermined value.
In this m a n n e r the pressure d r o p
m a i n t a i n e d at a c o n s t a n t value,
through the column was
t h e r e b y ke e p i n g the t h r o u g h ­
put, w h i c h is a f u n c t i o n of the pressure drop,
v e r y s l o w str eam of an inert
pressure
gas was Injected into the
line b e t w e e n the col umn
to k e e p the line free
constant. A
and the ma nometer in order
of vapor and condensate of the material
b e i n g f r a c t ion ate d.
E f f i c i e n c y Tests
T h e d e t e r m i n a t i o n of the efficiency of the column
was c a r r i e d out u s i n g the m e t h o d
Fe n s k e
(151)
n- hep tan e
w i t h a mix t u r e
and 280 gm.
of Tongberg,
Quiggle,
of a p p r o x i m a t e l y 120 gm.
and
of
of m e t h y l c y c l o h e x a n e .
T h e n - h e p t a n e used v/as a part of a b a t c h obtained
in Larch,
1938,
b y the 'Petroleum R e f i n i n g L a b o r a t o r y from
the C a l i f o r n i a Ch emi cal Co.
It had b e e n extracted and
f r a c t i o n a t e d at the P e t r o l e u m R e f i n i n g Laboratory.
p h y s i c a l con sta nts were:
9 0 . 6 6 ° G ., Sp.
cyclohexane
G.
(20/4)
b.p.
(760 mm.)
0.63366,
98.39°C.,
Its
f.p. minus
n 20D 1.38775. The m e t h y l -
was m a t e r i a l o bta ine d from the Ro hm and Haas Co.
w h i c h h a d b e e n p u r i f i e d b y f r a c t i o n a t i o n through the 100
plate n i c k e l co lumn at the P e t r o l e u m R efining Laooratory.
ha d a ref rac tiv e
It
Index of n 2<^D 1.4230.
The d e t e r m i n a t i o n of e f f i c i e n c y was carried out in
204.
the u sua l m a n n e r w h i c h is b r i e f l y outlined below. The test
m i xture v/as bro u g h t to a b o i l and the c o l u m n thoroughly
flooded t h r o u g h o u t
its length. Visible
fl ooding seldom
oc cur red if the pr es s u r e drop v/as be low 70 to 100 mm.
mercury.
of
W h e n the pa c k i n g had been t h o r o u g h l y wet the
flood was a l l o w e d to subside
and the co l u m n brought to normal
o p erating con dit i o n s without allowing the vapor flow to cease
or the p a c k i n g to d r a i n for any reason.
The
jackets were adjusted to the head temperature
or not more t h a n 2 ° C . b e l o w it.
taken f r o m the time
d e s i r e d value.
The time
of the test was
at w h i c h the pressure drop reached the
When
sampling the head or pot liquid care was
ta k e n to remove d e a d liquid from stopc ock wells,
before
taking a one
Test Ho.
Time,
kin.
to two ccm.
and the like,
sample.
Pressure Drop, Head Stillpot
mm, H g
n20D
n 20D
Plates
(total)
1
85
26
1.3894
1.4153
63.5
2
205
30
1.3885
1.4172
85
3
125
30
1.3892
1.4172
70.5
190
30
1.3893
120
20
1.5883
180
20
1.3883
4
(-::•) C a l c u l a t i o n of the ore tic al Plates
^n
B„
"
1.07
/ -i \
(n-1)
1.4175
1.4177
1.4178
Bs
-
m o l fraction, n-heptane at head
A
=
m o l fraction, n-heptant at pot
-
86.8
A
=
■
r
-s
86.5
(148)
An
=
70.6
m o l fraction, met hyl cy c l o h e x a n e at head
m o l fraction,
met hyl cy c l o h e x a n e at pot
205.
COLUMN W
2
C olumn W 2 was s i m i l a r i n design to col umn W 1 tut
was
somewhat
brought
a b o u t greater ease of manipulation.
It
type,
larger a n d e m b o d i e d certain features which,
was of the t o t a l condensation,
h a v i n g an in ternal d i a m e t e r
le n g t h of 1 0 4 inches.
turn h e l i x e s
i:o, 30 B. o
of one inch and a packed
The p a c k i n g used was compos ed of single
of 3/32 inch i n t e r n a l diameter
S. gauge
p artial take-off
"ITirosta"
stainless
the P e t r o l e u m Re fin ing L a b o r a t o r y
(149)
steel,
formed from
obtained from
of the Pennsylvania State
College.
T h e column tube w a s
s e c t i o n of
standard P yre x pipe having a
one inch pipe 108 i n c h e s long in w h i c h the packing
was p l a c e d ,
Inches l o n g ,
denser
of
and an enlarged s e c t i o n of 1-1/2 Inch pipe,
12
fused on the u p p e r e n d in which the reflux con­
and product ta ke-off d e v i c e v/ere planed..
T h e head, condenser
feet of 1 / 4
consisted of ap pro xim ate ly 12
inch o.d. m one l tubing;, wrapped in double coll,
h a v i n g a n Internal diameter of 7 / 8 inch, which was inserted
into the
enlarged, head
section.
During the coi l i n g operation
the. t u b i n g was i n t e n t i o n a l l y de for med t o have cur oval crosssection,
I n order to in cre ase the
c o n d e n s e r a n d the P y r e x pipe
connections
clearance b e t w e e n the coil
(see
cut). The Inlet
for c oo l i n g water w e r e
and outlet
sealed into a steel blank
fl ang e w h i c h was connected to the Pyrex pipe b y means
s t a n d a r d 1-1/2 i nch flange u n i o n
of the
furnished for P y r e x pipe.
T h e product t a k e - o f f device co nsi ste d of an
e l e c t r i c a l l y heated r e b o i l i n g t u b e constructed of P y r e x glass
(see cut)
lo ca t e d
just un der the c o n d e n s e r coll. R efl ux
liquid from the c o n d e n s e r dropped Into one leg of a "U"
shaped tube,
excess
k e e p i n g the
"U" filled at all times, while
liquid ov erf l o w e d and passed ba ck down the column as
re flu x liquid.
Ab ou t the other leg of the
15 turns of Ho.
2 5 nichrome wire;
current
t h r o u g h this element
caused to boil.
"U" was w rapped
on pa s s i n g an electric
the liquid in this tube was
The v apo r i z e d m a t e r i a l passed th rou gh a
small d i s e n g a g i n g chamber and then t h r o u g h a vapor riser
w h i c h p ass ed t h r o u g h the condenser coil,
flange,
where
t hrough the b l a n k
and f i n a l l y led d own war d t h r o u g h a product
line
the v a p o r was con densed and p a s s e d to the reciever.
The v a p o r r i s e r line was protected f r o m the cooling action
of the
c o n d e n s e r coil b y a second larger tube w h i c h was
sealed c o n c e n t r i c a l l y about the va p o r riser;
the electrical
leads to the b o i l e r h e a t i n g element passed, d o w n the anular
space b e t w e e n
the two tubes.
C o n t r o l of the take-off rate
was a c c o m p l i s h e d b y v a r y i n g the current
el ement b y p l a c i n g a "Variac", Type
In the he ati ng
200 Oil, tr ans for mer In
the line.
The whole
reboiler unit v/as sealed Into tlae bl ank
flange at the top b y means of a pac kin g gland containi ng soft
rubber p a c k i n g
(see cut).
In order to d e t e r m i n e the v a p o r temperature at the
he ad s. t h e r m o c o u p l e was j/laced in a well of l/8 inch monel
tu b i n g w h i c h p a s s e d down the
ex t e n d e d about
off d e v i c e .
side of the condenser and
one inch b e l o w the b o t t o m of the product t a k e ­
The
amount
of mat'er’ial p a s s i n g throvigh the c olu mn
v/as determined, b y m e a s u r i n g the temperature rise
of* the
c o o l i n g w a t e r in the condenser.
throughput
could be
l a ten t hea t
be
P r o m this d a t a the
p r o v i d e d that the approx ima te
of* v a p o r i s a t i o n of the m a t e r i a l v/as k n o w n or could
e sti mat ed.
determined,
cal c u l a t e d ,
and the amount
Once the
throughput
of a n y m a t e r i a l had b e e n
nearly constant conditions
could be m a i n t a i n e d b y
k e e p i n g the p r e s s u r e d r o p t h r o u g h the p a c k e d s e c t i o n at a c o n ­
stant value,
w i t h o n l y a n o c c a s i o n a l c h e c k on th r o u g h p u t b y
actual measurement.
The
ab o u t
stillpot v/as d e s i g n e d to a c c o m o d a t e
1- 1 / 2 gallon.
stainless
steel
It v/as f a b r i c a t e d of 3/16 inch,
of the
f o r Pyrex' pipe. A n c h o p r e n e
standard flange u n i o n furnished
(Dviprene)
v/as s u p p l i e d to the b o t t o m of
500 watt,
heater.
lation
ga ske ts v/ere used.
of the h e a t
of the t h r e e - h e a t u n i t s
Heat
the pot b y m e a n s of one three-
r i n g h e a t e r a n d one three-heat,
The c o n t r o l
s m a l l e r unit;
type 304
(see cvxt). C o n n e c t i o n to the P y r e x pipe v/as
accomplished b y means
he at,
a charge of
750 watt,
ring
input v/as o b t a i n e d b y m a n i p u ­
and b y use of a rh eostat on the
an a m m e t e r p l a c e d in the circuit
facilitated
c o nt r o l .
The whole
of
1 i n c h ang le
column W
board
1.
c o l u m n v/as s u p p o r t e d b y a frame constructed
iron,
qui te
sim i l a r to that d e s c r i b e d for
It v/as c o m p l e t e l y encased b y 1/4 I n c h " T r a n s i t e "
i n order to s h i e l d the c o l u m n f r o m drafts;
glass windows
w i t h b a c k l i g h t i n g v/ere p r o v i d e d t h r o u g h which, the whole l e n g t h
of the
c o l u m n c o u l d be
Heat
observed.
losses f r o m the c o l u m n p r o p e r v/ere p r e v e n t e d b y
208.
s u r r o u n d i n g the
tube with, t h r e e
independent
electrically
v,
lieated jackets,
centric
e a c h 34 in c h e s
P y r e x tubes.
The
w r a p p e d w i t h 100 turns
of a b o u t 0.7
independent
of
determine
input to the
type
correct
jacket
temperature
The
jackets w e r e mounted,
as d e s c ri bed for c o l u m n XI 1.
jackets was c o n t r o l l e d b y
temperatures
In order to
four p air s
and s.t the top.
o f the
vapor
tube
of t h e r m o ­
shielded b y a polished
of the
tube
anular
34 inches
Of e a c h pair,
one
a nd I n d i c a t e d a p p r o x i m a t e l y
inside the tribe, w h i l e the other,
p l a c e d m i d w a y b e t w e e n the t u b e
a n d the h e a t e d
of s t a i n l e s s
of the
a l l o w e d to v a r y f r o m one
jacket and
steel,
space b e t w e e n the
I n o p e r a t i o n the t e m p e r a t u r e
v/ere not
se cti on was p l a c e d inside
p l a c e d on the c o l u m n at the bot t o m ,
38 i n c h e s above,
temperature
h a v i n g a re sis tan ce
200 CI'.I, t r a n s for mer s.
w a s b o u n d t i g h t l y a g a i n s t the
the
G5 ram. o.d., was
ribbon,
of 75 rani. o.d.
"Variac",
couples were
above,
this
c o n s t r u c t e d of two c o n ­
section,
of n i c h r o m e
of the c o l u m n tube,
The heat
means
inner
oh m per foot;
a n o t h e r P y r e x tube
long,
i n d i c a t e d the
jacket
and the tube.
tube and the a n u l a r space
another b y m o r e
than a few
degrees.
'E f f i c i e n c y T e s t s
I n c a r r y i n g out the
of c o l u m n X! 2 the
f o r the
t est s
t ests
same p r e c a u t i o n s
of c o l u m n W
of the s e p a r a t i n g a b i l i t y
v/ere t aken as d e s c r i b e d
1.
T h e t est m a t e r i a l s , ■m e t h y l c y c l o h e x a n e
were
of the
same
q u a l i t y and
and n - h e p t a n e ,
f r o m the same sou rce d e s c r i b e d
previously.
T h e test d a t a are
s u m m a r i z e d below.
I n e a c h case the
c-olurnn wa s a i l owe d three
to
six h o u r s
in w h i c h to a p p r o a c h
e q u i l i b r i u m condit ion s.
C h a r g e : 644 ccm.
of m e t h y l c y c l o h e x a n e , 162 ccm.
of n-heptane.
Te st Ho.
1
I-Tead
n 20j2)
1.3390
n§8£
1.4134
P r e s s u r e Drop,
mm.
8
2
1.3910
1.4121
1
49
3
1. 3 3 8 3
1.4129
9
40
4
1.3920
1.4143
15
46
5
1.3882
1. 418 0
20
96
6
1. 3 8 3 6
1.4176
21
35
7
1.3889
1.4199
25
90
Theoretical
Plate s ,T o t a l
65
1-Tote a:
R u n 1. C o l u m n b r o u g h t to r e f l u x b e f o r e t u r n i n g on jacket
heat;
R u n 2,3,4.
n o f l o o d i n g b e f o r e test.
S t a r t e d with, n o r m a l
before
R u n 5,6,7.
jacket heat;
no f l o o d i n g
test.
C o l u m n f l o o d e d t h o r o u g h l y b e f o r e e a c h test.
210.
BIBLIOGRAPHY
1.
B a d e r t s c h e r , J. Am.
Cliern. Soc.
B a d e r t s c h e r , Ph. D. Th esis,
2.
College ,
1934.
Whitmore
and W h e e l e r ,
3.
J. Am.
4.
Norris
5.
Kondakov;,
6.
K ara s e v ,
Chem.
Soc. _60, 2899
(1958);
The P e n n s y l v a n i a State
1957.
G-ustus and Stevens,
5 5 . 378
c.f.
Tlae P e n n s y l v a n i a State
c.f. V/laeeler, M.S. T h e s i s ,
College,
_55, 1559 (1933);
J. Am.
Chem.
Soc.
5 4 , 3 4 6 1 (1932);
(1933)
and Righy,
J. Am.
J. Russ.
J.
Gen.
7 . ( a ) W h i t a k e r , Ph.
Chem.
Soc.
Plays. Chem.
Chem.
7_, 179
D» Th e s i s ,
5 4 . 2088
Soc. _26, 12
(1937);
(1932)
(
)
C. A. 31,
4268
(1937)
The P e n n s y l v a n i a S tate College
(1939).
( h )Wh it mor e
and I-Ieyd, J. Am.
(c )V/hitmore,Iieyer,Pedlov/,
Chem.
Soc.
and Popkin,
(d) W h i t m o r e ,Poplcln, W h i t a k e r ,Mat til,
Soc. jSO, 2 4 5 8 , 2 4 6 2
60 , 2788
and Zech,
(1938)
(1938)
J • Am.
Chem.
(1958)
8.
S chm id l i n ,
9.
c.f.
10.
W h i t m o r e ,W h i t a k e r ,M a t t 11,
45,
1159 (1910)
7 a, To, c, d.
6 0 , 2790
11.
Ber.
S O , 2 030
Popkin,
J. Am. Chem.
Soc.
(1938)
V/hitmore and Lux,
Wi lson,
and
Parker,
12.
O i l m a n et al,
13.
Lieerv/ein, Ann.
J. Am.
Chem.
a n d Lau gh l i n ,
J. Am.
Chem.
5 9 6 , 256
(
Soc.
5 4 ,3448
(1952);
in i d .
5 5 ,2795
(1933)
Soc. _45, 150 (1923)
)
14.
Krapiwin,
Cent.
Bull.
soc.
naturalistes Moscow 1 9 0 8 , 1-1 76j
1 9 1 0 . I. 1336.
15.
S tep h e n s ,
J. Am.
Chem. Soc. _56, 450
IS.
N e n i t s e s c u and Chicos, Ben.
17.
V/hitmore, et al,
18.
Ipatieff
19.
L a w s o n I.Iixon, Ph. D. Thesis,
Co lle ge,
1937
68 B , 1584
J. Am. Chem.
and Schmerl ing ,
(1934)
(1935)
Soc. _63, 643
J. Am.
Chem.
The
(1941)
Soc. _59,1056
(1937)
P e n n s y l v a n i a State
; P a p e r P r e s e n t e d B e f o r e the 9 0 t h Meeting,
A m e r i c a n C h e m i c a l Society,
San Franci sco , A ugust
19-23,
19 35.
20.
E gloff,
"The P h y s i c a l C o n s t a n t s
of Hyd rocarbons",
I, T h e R e i n h o l d P u b l i s h i n g Co.,
21.
Yard
and Kurtz,
22.
C a h o u r s , Ann.
23.
Doss,
25.
Burk,
26.
Brooks,
Ind.
(1938)
Co.
H e w York,
1939'; C.A.
55,
Eng.
Chem.,
5 0 , 822
D.G.,
(1938)
D i v i s i o n of Organic
Thesis,
(1933)
The P e n n s y l v a n i a State
1936.
Ph. D. Thesis,
The P e n n s y l v a n i a State
1936.
S. IT. W r en n,
College,
M a r c h 2 6-3 1
Ph. D.
Marschner,
C o lle ge,
(1938)
8 5 t h Me eti ng, A m e r i c a n C h e m i c a l Society,
H eun i e r ,
Co llege,
29.
1 0 , 559
of the P r i n c i p a l H y d r o c a r ­
P a p e r P r e s e n t e d Before
V/ashingt on,
R.F.
The T e x a s
ibid., _30, 1054
Chemistry,
28.
Ed.,
(19 39)
W ach t e r ,
P.L.
C h e m . , Anal.
1939.
P h a r m . , 5 0 , -295 (1839)
2nd Ed.,
24.
27.
Eng.
"The P h y s i c a l C o n s ta nts
bo ns" ,
3389
Ind.
H e w York,
Vol.
Ph.
1935.
D. Thesis,
The P e n n s y l v a n i a State
Egloff,
1825
Schaad,
a n d Low ry,
J. Pbys . Chem.,
55,
(1931)
r
Su li v a n ,
Ch e m . ,
Voorhee3,
25,
604
ITeeley,
and Shankland,
Ind.
Eng.
K i e t h a n d Y/a.rd, R e f i n e r hat.
Ne wth ,
J. Am.
Chem.
J . Chem.
Soc.
O r m s n d y and C raven,
Sz ayn a,
Ind.
Soc. _56, 1998
79,
J.
C. A.
Brandes,
Eng.
917
Soc.
Chem.
2 5 , 1384
Oruse,
Chem., _27, 1055
Chem.
Gayer,
Eng.
Ind.
Ip atieff,
18 25
Pines,
(1935)
Ind.
Eng.
(1936)
(19 27)
2 5 , 1122
and F r i e d m a n ,
Chem. _28, 554
1 7 , 544
(19 28)
(1955)
J.
Am.
Chem.
Soc.
61,
Ann.
16 9 , 146
(1873);
Ber. _6,
(1873)
Chim.
Butlerow,
37 0
(1927)
(1939)
Butlerow,
Soc.
(1929);
(1929)
B u t l e r o w a n d Ger j a I now,
56 1
4 8 , 291
T e c h L 5 , 84 4
1067
P harm. Ass'n,
Chem.
(1934)
Ind.
Pet.
Otto, B r e n n s t o f f , Chem. _8, 321
J. Am.
(1935)
(1901)
27,
and Lo wry ,
V a n Winkle,
(1935)
Gas. Mfr. JL4, 506
<7. Inst.
Ip ati eff ,
Eng.
(1931)
F r o l i c h and Y/agner,
Brooks,
Ind.
Ann.
1 8 0 , 245
(2) _25,
59 5
Ber. _9, 1 605
(1875);
Ber. _9, 1 6 8 7 ( 1 8 7 6 ) ; Bull.
(1876)
(1876) ; Bull.
Soc.
Chim.
(2)
27,
(1877)
Butlerow,
1 8 9 , 44
J. Russ.
Pbys.
Chem.
Soc.
9, 38
(1877); Ann.
(1877)
H e C u b h i n an d A d k i n s ,
J. Am .Chem.
Soc.
52,
2547
(1930)
49.
V/lil fcrnore
and
50.
Wlii tmo re
a n d Y7renn,
51.
Church,
P e n sice, ^ n i g g l e ,
J.Am.
Gliein.
doc.
5 4 , 3710
(1932)
J. Am.
Chem.
Soc.
5 5 1 3135
(1931)
and To ngb e r g ,
40 3
(1932) ;Ton,gberg,
Am.
Chem.
Pickens,
Soc. J54, 370G
52.
Sha bic a,
U.S.
Th e s i s ,
53.
Std.
Dev.
Co.,
Oil
Ind. Eng.
Chem.
24.
P e n s k e , and U h i t m o r e , J.
(1932)
The P e n n s y l v a n i a State
Brit.
507 , 4 3 9
(1939);
College,
193S
C.A. j34, 446
(1940)
54.
L e r m o n t o f f / Ann.
55.
Kondakov/,
Phys.
Jj, Pract.
Chem.
56.
Oddo,
57.
Vain Hove,
1 9 0 8.
Senderens,
59.
L e b e d e v and
C.A.
60.
Chim.
Bull.
58.
30,
Chem.
34,
(1879)
(2) _54, 4 4 2
Acad.
326
Soc.
(1901)
3elg.
, 540
Rend.
Orlov,
216 9
J.
1 4 8 , 9 27
Gen,
Chem.
(U.S.S.R.) _5, 1589
Tr.
Par.
Soc.
5 5 , 1025
Corp)
U.S.
2,139,655
(1939);
(1940)
(To Poly.
62.
Keunecke
a n d I.Iuench (To I t G-. P a r b . , A.G.)
Burk,
(1935);
(1936)
Ruthruff
65.
(1908);
(1909)
61.
(1959);
J. Russ.
I I . 292
C ompt.
76
Roy.
(1896);
(1896)
Ital. _31, I,
I n g o l d a n d Y/asserman,
C.A.
116
Soc. J28, I, 784
Gazz.
Cent.
196.
Proc.
C.A. _34, 446
(1939)
U.S.
2,173 ,48 4
(1940)
"polymerization", Reinhold
publish ing Co.
New York
(1937)
64.
B roo ks,
319
65.
Cleaton,
a n d Carter,
J.
Res.
Hat.
Bur.
Std.
(1937)
Drake and Veitch,
J. Am.
Chem.
Soc. _57, 2 6 2 3
(1935)
19,
214.
66.
Butlerow,
Ber.
12,
14-82 (1879); J. Che m.Soc.
38,
230
(1880)
67.
Lermontoff,
68.
Dobbin,
69.
Ilalbot and D e n t i l e , Ann.
J.
Cornpt.
Ber.
Chem.
Reiid.
70.
Lebedev
71.
Ipatieff,
11.
1285
(1877);
Soc. _37,
108,
958
and. P i l o n e n k o ,
Ber. _44.
236
Ch.
Ann.
1 9 6 „ 119
(187
)
(1830)
Phys.
(6) JL9, 370
(18
);
(1899)
Ber.
2978
5 8 B , 163
(1911);
(1925)
J. Chem.
Soc.
100,
937
(1911)
72.
LTcCubbin,
J. Am.
Chem.
73.
Conant
74.
Y/hitmore
75.
Y/hitmore a n d Y/ilson, J. Am.
76.
C y r i l D. Y/ilson,
and Y/heland,
Soc.
J. Am.
and Lau.vhlin,
College,
Ph.
5 5 , 356
Chem.
J. Am.
78.
Butlerow,
75 (1877)
79.
Y/ischnes;radsky,
■30.
Kondakov/,
Drake
83.
Drake,
84.
Ann.
J.
P rac t.
82.
189,
Soc.
Soc.
2499
(1933)
56 t 112 8
5 6 , 1397
(1934)
(1934)
The P e n n s y l v a n i a State
Russ.
Chem.
a nd K l i n e ,
Kline
Ph.
Chem.
Ber. _8, 434
J, Res.
a n d Rose,
Brooks
86.
Michael
87.
Preylon,
Ann.
88.
Ipatieff
a n d Pines,
Chem.
Hat.
J. A m
D. T hes is,
35.
Soc.
5 4 , 442,454
J. Am.
The
and JTumphrey, J. Am.
and Brunei, Am.
C h i m . (8)
Ind.
1,
464
(1936)
(1875)
P h y s . Chem.
(2)
and J o u b e r t ,
Mosher,
55,
1939
I. Org.
Korris
Chem.
D. T hes is,
Ipa.tieff a n d Pines,
81.
Soc.
Chem.
77.
J.
(1931)
24-,
509
(1895);
(1896)
Soc.
Bur.
4 9 , 873
(1927)
Std. JL3, 705
Chem.
Soc. _56,
(1934)
2076
(1934)
P e n n s y l v a n i a State C o l l e g e ,1940
Chem.
Chem.
Soc.
J. 4 1 ,
4 0 , 8 22
118
(1918)
(1909)
2 0 , 71 (1910)
Sng.
Chem.
2 7 , 1364
(1935)
215.
89.
Steacie
ancl Shane,
90.
Thomas
■91*
L a u g hli n,
Gan.
a nd C a r m o d y ,
J. Res.
J. Am.
Ph. D. T h e s i s ,
Chem.
16 B,
210
(1938)
Soc.
54,
2480
(19 32)
The P e n n s y l v a n i a State College,
1933
92.
V/hitmore,
Ind.. Eng.
Chem.
96,
94
93.
U n p u b l i s h e d w o r k b y H.Lv. Crooks
(19 34)
of th is
Laboratory
U n p u b l i s h e d w o r k b y J. P. Ivlatuszeski of this L a b o r a t o r y
94.
Ipatieff,
95.
I p a t i e f f and Co rs on,
96.
Birch,
97.
C.I.
Eng,
Chem. _27, 10S7
Ind.
Pirn, a n d Tait,
Uoll,
College,
98.
Ind.
Ph.
Liny. Chem.
J. Soc.
D. Thesis,
(1935)
Chem.
97,
1069
Ind.
(1935)
5 5 , 335T
(1936)
T h e Pennsylvania. State
1938
G. Ki lme r,
M.S.
Thesis,
The Pennsylvania. State College,
1937.
99.
V/hitmore,
Laughlin,
Ivlatuszeski, Crooks,
Paper Presented Before
the
and Fleming,
Organic D i v i s i o n of the
A m e r i c a n C h e m i c a l Society,
P i t t s bu rgh ,
100.
Sparks,
Tr. Par.
101.
D e a n s l e y and W a c h t e r
R o s e n a n d Frolich,
(To S h e l l Dev.
September,
Soc. _35, 1040
Co.),
U.S.
1936
(1939)
2,181,640
(1939)
102.
Gage
(To S h e l l Dev.
Co.), U.S. 2 , 1 7 0 , 2 7 5
103.
Std.
Oil Co.,
5 07, 439
104.
U n p u b l i s h e d W o r k b y W.R. T r e n t of this L a b o r a t o r y
105.
Schneider,
106.
L a w s o n Mixon,
C ollege,
107.
108.
T ri ebs,
Ann.
1 5 7 , 207
Ph.
(19 39)
(1871)
D. Thesis,
The P e n n s y l v a n i a State
1937
Ber.
Sc h i e s s l e r ,
1939
Brit.
(1959)
61 B,
B.
459
(1928)
S. Thesis,
The P e n n s y l v a n i a State College
216
109.
S.
II. F l e m i n g , Ph. D. Thesis,
College,
110.
C.
the P e n n s y l v a n i a S tat e
1936.
S. M i n e r ,
IT. Si. Thesis,
T h e P e n n s y l v a n i a State C o l l e g e
193 Q
111.
Prileschajew,
J. Russ.
Phys.
Chem.
Soc.
57,
769
(1907)
T r a n s l a t i o n - Ref . 29)
112.
Butlerov/,
J. Russ.
Translation
113.
Phys.
- Ref.
Prileschajew,
J.
13-4.
Wagner,
Ber.
Soc. _14, 199
(1882)
29)
Russ.
T r a n s l a t i o n - Ref.
Claem.
P
h y s . Chem.
Soc.
36, 872
(1904)
29)
2 1 , 1230
(1838);
D e r s e r t a t i o n , W a r 3c h a w
(1883)
115.
Howes
116.
V/hitmore,
Chem.
a n d Nash,
V/hitmore
113.
Ho uhen,
ibid.
Bodroux,
120.
Oddo,
I,
<63, 756
Chem.
115 T
(3.930)
I.'atussski, and Surmatis,
J. Am.
Ber.
J37, 3978
3333
Compt.
Gass.
J.
Am.
(1904);
Chem.
Soc.
ibid.
42,
6 0 , 2626(1938)
3 729 , 4 4 8 8
(1909)
(1913)
Rend.
Chim.
138,
1 427
(1904);
Ital. 4 1 , I , 255
C.
(19
1 9 0 4 . II,
); C.
201
1911,
1354
121.
Ilouben, Ber.
122.
C h a l l e n g e r a n d Biller,
123.
Gi3_man (7/allis),
and Sons,
42,
4815
(1909)
J.
"Organic
Chem.
Soc.
1 9 5 8 . 894
Chemistry";,
p.
750,
J o h n Vviley
H e w Y o r k 1938
124.
Overhoff
a n d Proust,
Rec.
125.
V/hitmore
and k osher,
J, Am.
126.
Ind.. 49,
(1941)
a n d B ern ste in,
46,
119.
Soc.
Lau ghl in,
Soc.
13.7.
J.
trav.
chim.
Chem.
Soc.
57,
65,
179
(1933)
1120,(1941)
U n p u b l i s h e d w o r k b y J.D. Surmatis.. of t h i s l a b o r a t o r y
217
127.
Whitmore
and Karnatz,
I*1.A. Kar n a t z ,
C o ll e g e ,
Ph.
J. Am.
D. The s i s ,
Gliem. Soc._54,
3461(1932)
T he P e n n s y l v a n i a State
1937
128.
Whitmore
aixl K a r n a t z ,
129.
Whitmore
a n d Lllxon, J. Ain. Chem.
150.
Whitmore,
131.
iS.LT. Jones,
J. Am.
J. Am.
Chem.
Chem.
Soc. _60, 2533
Soc. _63, 1460
Soc. j54, 5274
LI.S. T h e s i s ,
(1938)
(1941)
(1932)
The Pennsylvania. State College
" 1937
132.
Ch urc h,
176
Whitmore,
Whitmore
134.
Houk,
135.
Richards
136.
and Houle,
Ph.
Soc.
56,
D.
J. Am.
Thesis,
Chem.
Soc.
5 4 , 3714
(1932)
T h e P e n n s y l v a n i a State College, 1935
and L a n g l a i s ,
Bull.
soc.
c h i m . (4) J7, 464,
(1910)
Bl aise,
phys.
137.
Chem.
(1954)
133.
605
and ITcGrew, J. Am;
Bull.
(8)
Laughlin,
soc.
11,
Hash,
111
c h i m . (3)
5 1 , 489
(1904); Ann.
chim.
(1907)
and W h i t m o r e ,
J. Am.
Chem.
Soc.
56,
1395
(1934)
138.
L o q u i n a n d Leers,
(1926);
159.
Thomas
C.A. _21, 1 7 9 6
Oakwood,
College ,
Bull.
Ph.D.
soc.
(1927);
Th esi s,
(iv)
Compt.
5 9 . 655,433
Rend.
1 7 9 , 55
(1925)
T h e P e n n s y l v a n i a State
1937
140.
Whitmore
a n d Lux,
141.
Whitmore
and Johnstone,
142.
chim.
Wischnegradsky,
J. Am.
Ann.
190,
Chem.
Soc.
5 4 , 3448
J. Am.
Chem.* Soc.
539
)
(18
(1932)
G O , 2265
(1938)
145.
Whitmore
and L a u g h l i n ,
J. Am.
Chem.
Soc. _54, 4011
(1932)
144.
Whitmore
and Laughlin,
J. Am.
Chem.
Soc. _54, 4392
(1932)
145.
Whitmore
a n d I.Teunler, J. Am.
Chem.
Soc. _55, 3721
(1933)
218.
146.
Cummings,
Hop p e r ,
Cliemistry ”, p.
ancl V/heeler,
481 ,49 5,
"System ati c Organic
V a n No strand a n d Co.1925
147.
I-Iock and. ITeuwirth, Ber.
7 2 B , 1562
148.
Penske,
2 4 , 482
(1932)
149.
Tongberg,
Penske,
Ind.
957
150.
151.
152.
153.
Eng.
Lawroski,
a n d Lo c h t e ,
and
Eng.
Chem. 2 9 ,
Ind. Eng.
Chem.
Anal. Ed.
10.
(1933)
Tongberg,
Qniggle,
1213
(1934)
K.A.
Varteressian,
College
1930
Penske,
Lawroski,
297
Chem.
(1937)
Lesesne
45 0
Ind.
(1939)
(1938)
and Penske,
U.S. Th esi s,
and T ong ber g,
Ind. Eng.
Chem.
26,
The P e n n s y l v a n i a State
Ind.
Eng.
Chem.
50,
Документ
Категория
Без категории
Просмотров
1
Размер файла
7 927 Кб
Теги
sdewsdweddes
1/--страниц
Пожаловаться на содержимое документа