close

Вход

Забыли?

вход по аккаунту

?

Презентация

код для вставкиСкачать
Mathematics & English
The 1st sign of equality of
triangles
Theorem on equality of triangles
If 2 sides and the angle between them
of the same triangle are accordingly equal to
2 sides and the angle between them of the
other triangle, then these triangles are equal.
B
A
C
B1
A1
C1
Given:
AB is equal to A1B1
AC is equal to A1C1
The angle A is equal to
the angle A1
To be to prove that:
The triangle ABC is
equal to the triangle
A1B1C1
B
A
C
B1
A1
C1
Proof
As the angle A is equal to the angle A1
then the triangle ABC can be put on
the triangle A1B1C1 so that the apex
A will be superposed with the apex
A1, and the sides AB and AC will be
accordingly put on the rays A1B1 and
A1C1. As far as, AB is equal to A1B1,
AC is equal to A1C1, then the side AB
will be superposed with the side A1B1
and the side AC with A1C1. In
particular the points B and B1, C and
C1 will be superposed. Therefore, the
sides BC and B1C1 will be superposed.
So the triangles ABC and A1B1C1 will
be completely superposed. That
means they are equal.
The theorem has been proved.
1. To proof the equality of the triangles AOB and
COD
D
Proof:
A
1) AO is equal to OC ( according to the condition)
2) BO is equal to OD (according to the condition)
3) The angle AOB is equal to the triangle COD ( as
vertical angles)
O
B
C
Therefore the triangle AOB is equal to the COD
(according to the first sing of triangles).
2. To proof the equality of the triangles AOB and
A
C
COD
K
B
O
D
P
Proof:
1)BA is equal to CD ( according to the condition )
2) BO is equal to OD ( according to the condition )
3)The angle ABО is equal to the angle CDO (as their
adjacent angles are equal )
Therefore the triangle AOB is equal to the triangle
COD ( according to the first sign of equality of
triangles).
• The presentation has been done by:
Mikhail Verbitskiy, Yana Karasyova,
7A form, school №511
• L.I. Kunaeva, Maths teacher
• V.V. Klyueva, English teacher
Moscow
2011
Библиография
1. Атанасян, Л.С. Геометрия: Учеб. для 7-9 кл. сред.
школы [Текст]/ Л.С. Атанасян, В.Ф. Бутузов, С.Б.
Кадомцев и др. – М.: Просвещение; ОАО «Моск.
учебн.» 2006. – 384с.
2. Рабинович, Е.М. Задачи и упражнения на готовых
чертежах. 7-9 классы. Геометрия [Текст]/ Е.М.
Рабинович. – М.:Илекса, 2006.-60с.
Подготовили:
• Ученики 7 «А» класса ГОУ СОШ № 511 Вербицкий Михаил и
Карасева Яна
• Учитель математики: Кунаева Л.И.
• Учитель английского языка: Клюева В.В.
Документ
Категория
Презентации по английскому языку
Просмотров
12
Размер файла
1 325 Кб
Теги
1/--страниц
Пожаловаться на содержимое документа